JPWO2009054330A1 - Method for mating incompetent filamentous fungi - Google Patents

Method for mating incompetent filamentous fungi Download PDF

Info

Publication number
JPWO2009054330A1
JPWO2009054330A1 JP2009538182A JP2009538182A JPWO2009054330A1 JP WO2009054330 A1 JPWO2009054330 A1 JP WO2009054330A1 JP 2009538182 A JP2009538182 A JP 2009538182A JP 2009538182 A JP2009538182 A JP 2009538182A JP WO2009054330 A1 JPWO2009054330 A1 JP WO2009054330A1
Authority
JP
Japan
Prior art keywords
mating
strain
mat1
spp
deficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009538182A
Other languages
Japanese (ja)
Other versions
JP5483001B2 (en
Inventor
力 有江
力 有江
徹 寺岡
徹 寺岡
峻介 今井
峻介 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Original Assignee
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY filed Critical NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Priority to JP2009538182A priority Critical patent/JP5483001B2/en
Publication of JPWO2009054330A1 publication Critical patent/JPWO2009054330A1/en
Application granted granted Critical
Publication of JP5483001B2 publication Critical patent/JP5483001B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

この発明は、交配不全性の糸状菌を交配する方法であって、親株である交配不全性糸状菌と、該親株の交配型遺伝子領域を、該親株と異なるが同種の交配不全性株に由来する別の交配型遺伝子領域で入換えることによって作出された、染色体パターンが実質的相同でありながら交配型が異なる株とを交配させることを含む方法に関する。The present invention relates to a method of mating a deficient mating fungus, wherein the deficient mating fungus as a parent strain and the mating type gene region of the parent strain are derived from a deficient mating strain of the same type that is different from the parent strain. This method relates to a method comprising mating with a strain having a different chromosome type but having a substantially homologous chromosomal pattern, which has been created by exchanging in another mating type gene region.

Description

本発明は、交配不全性糸状菌を交配する新規な方法に関する。   The present invention relates to a novel method for mating deficient mating fungi.

菌類は、キチン質を主成分とする細胞壁を有する真核生物である。俗に、「かび」、「きのこ」、「酵母」と呼ばれる形態を有する世代を内包する。このうち、主に、菌糸や胞子(主に球形で発芽し、次世代を形成する能力を有する)からなるもので、酵母状でないものを一般に糸状菌と総称する。糸状菌には分類体系上の子嚢菌、担子菌、接合菌を含む。   Fungi are eukaryotes having a cell wall mainly composed of chitin. In general, it includes generations called “mold”, “mushroom” and “yeast”. Among these, those mainly consisting of hyphae and spores (mainly having the ability to germinate in the shape of a sphere and form the next generation) and those that are not yeast-like are generally collectively referred to as filamentous fungi. Filamentous fungi include ascomycetes, basidiomycetes, and zygotes on the classification system.

糸状菌の生活環は無性世代と有性世代から構成される。菌糸、菌核、分生子、厚膜胞子、bud cell(酵母状細胞)などが核相nの無性世代であり、菌糸の伸長、菌核や分生子などの形成によって遺伝的に同一の後代(クローン)を生み出している(無性増殖)。多くの糸状菌では、無性増殖が繰り返され、生活環の大部分が無性世代によって占められている。   The life cycle of filamentous fungi is composed of asexual and sexual generations. Mycelia, mycelia, conidia, thick membrane spores, bud cells (yeast-like cells) are asexual generations of nuclear phase n, and their progeny are genetically identical by the formation of mycelia, formation of mycelia, conidia, etc. (Clone) is produced (asexual growth). In many filamentous fungi, asexual growth is repeated, and most of the life cycle is occupied by asexual generations.

一方、環境条件が整うと、糸状菌は有性世代へとその生活環を切り替える場合がある。子嚢菌では子嚢、担子菌では担子器のような器官を、それぞれ子嚢果(子嚢殻など)、担子器果(いわゆる、きのこ)等の子実体上に形成し、そこで有性生殖を行い、後代を形成する。有性生殖では、核相nの2つの細胞が融合し、n+nの状態(異核共存体)になり、その後、核融合(2n)し、相同染色体が対合、さらに減数分裂によって核相nの後代をつくる。相同染色体の対合から減数分裂の過程での染色体シャフリングや乗換え等によって、遺伝子が組換わり、親と遺伝的に異なる後代が生じる可能性がある。その結果、後代は親と異なる性状をもつ可能性がある。子嚢菌では子嚢胞子が、担子菌では担子胞子(担胞子)がこの後代にあたる。この一連の現象を交配(mating)と呼ぶ。また、形成された子実体や次世代を含む一連の器官やそれを形成する生活間の部分は完全世代と呼ばれる。   On the other hand, when the environmental conditions are met, the filamentous fungus may switch its life cycle to the sexual generation. In ascomycetes, in basidiomycetes, basidiomycetous organs are formed on the fruiting bodies of ascitic berries (such as ascolic shells) and basidiomycetes (so-called mushrooms). Do and form progeny. In sexual reproduction, two cells in nuclear phase n fuse and become n + n (heteronuclear coexistence), then fuse (2n), paired with homologous chromosomes, and then nuclei by meiosis Create a successor of phase n. Gene recombination may occur through homologous chromosome pairing to chromosomal shuffling or crossover during meiosis, resulting in a genetically different progeny from the parent. As a result, the progeny may have different properties from the parent. In the case of ascomycetes, ascospores and in basidiomycetes, basidiospores (basidiospores) correspond to this progeny. This series of phenomena is called mating. In addition, a series of organs including the formed fruiting body and the next generation and the part between the life forming it are called a complete generation.

糸状菌は基本的に雌雄同体であるが、有性生殖の際に相手を要求するものとしないものが存在する。相手を必要としない性質をホモタリック、相手を必要とする性質をヘテロタリックと呼ぶ。ホモタリックは自家和合性(self-compatible)、ヘテロタリックは自家不和合性(self-incompatible)と理解することが可能である(非特許文献1)。子嚢菌の基本的な有性生殖様式はヘテロタリックであり、ホモタリックな菌はヘテロタリックな菌から生じたと考えられている(後述する。)。   Although filamentous fungi are basically hermaphroditic, there are those that do not require a partner during sexual reproduction. A property that does not require an opponent is called a homothalic, and a property that requires an opponent is called a heterothalic. It can be understood that homothalic is self-compatible, and heterothallic is self-incompatible (Non-patent Document 1). The basic sexual reproduction pattern of ascomycetes is heterothalic, and homothallic is thought to have originated from heterothallic (described later).

ヘテロタリックな糸状菌では、1種のうちに2つの交配型(MAT1-1とMAT1-2)の菌株が存在する。交配型はその2つに限定される。MAT1-1の菌株とMAT1-2の菌株が適した環境条件の下で出会うと、細胞融合が起こり(この場合、雌雄同体であるため、細胞融合するいずれかの細胞が雄、もう一方が雌として機能する)、有性生殖(上述)の一連の過程が進み、後代を形成する。MAT1-1の菌株同士、あるいはMAT1-2の菌株同士では交配は起きない。菌株の交配型を決定しているのは、交配型遺伝子領域(MAT1)に存在する1組の対立遺伝子(MAT1-1-1およびMAT1-2-1)であり、各菌株はこの対立遺伝子のどちらかを保持している。両遺伝子産物とも、DNA結合モチーフを有しており、交配の初期調節因子であることが示唆されている(非特許文献1および2)。   In heterothallic filamentous fungi, there are two mating strains (MAT1-1 and MAT1-2) in one species. The mating type is limited to the two. When the MAT1-1 and MAT1-2 strains meet under appropriate environmental conditions, cell fusion occurs (in this case, since they are hermaphroditic, one cell is fused and the other is female. Functioning), a series of sexual reproduction (described above) proceeds to form progeny. No mating occurs between MAT1-1 strains or between MAT1-2 strains. The mating type of the strain is determined by a set of alleles (MAT1-1-1 and MAT1-2-1) existing in the mating type gene region (MAT1). Holding either one. Both gene products have a DNA binding motif and are suggested to be early regulators of mating (Non-patent Documents 1 and 2).

従って、ヘテロタリックな糸状菌の、異なる交配型の菌株を適当な環境条件で掛け合わせる(交雑、outcross)と、完全世代を形成する。この場合、適当な環境条件は種ごとに異なっている。例えば、Neurospora crassaでは、通常の培地上で対峙培養すれば良い、Cochliobolus heterostrophusでは、最少培地上に滅菌したトウモロコシ葉を置き、その縁に両菌株を対峙させ、20℃前後、暗黒、過湿にならないように管理すれば良い、Gibberella fujikuroiではV8寒天培地上に片菌株の菌糸を生育させ、そこにもう片菌株の分生子懸濁液をかけ、しばらく放置した後に過剰な水相を除去、その後約25℃で培養すれば良い。   Therefore, when cross-type strains of heterothallic filamentous fungi are crossed at appropriate environmental conditions (crossing out), a complete generation is formed. In this case, the appropriate environmental conditions vary from species to species. For example, in Neurospora crassa, it is only necessary to cultivate on a normal medium, and in Cochliobolus heterostrophus, sterilized corn leaves are placed on a minimal medium, and both strains are confronted on the edge, and around 20 ° C, dark, overhumid In Gibberella fujikuroi, the mycelium of one strain is grown on the V8 agar medium, and the conidia suspension of the other strain is applied to the Gibberella fujikuroi, and after leaving it for a while, the excess aqueous phase is removed. Incubate at about 25 ° C.

完全世代の形成に、交配型の異なる菌株とのoutcrossを必要としないホモタリックな糸状菌では、交配型遺伝子領域に2種類の交配型遺伝子が独立してあるいは融合して存在するか、MAT1-1-1およびMAT1-2-1に相当する遺伝子がゲノム上の離れた領域に存在することが見出されており、ヘテロタリックな菌から、ホモタリックな菌が進化上生じたことを示唆している(非特許文献3)。   For homothallic filamentous fungi that do not require outcrossing with strains of different mating types to form a complete generation, are two mating type genes present in the mating type gene region independently or fused? -1 and MAT1-2-1 genes have been found to exist in distant regions of the genome, suggesting that homotalic bacteria evolved from heterothallic bacteria (Non-Patent Document 3).

以上のことは、糸状菌が交配を行い、完全世代を形成するのにいずれにせよ、MAT1-1-1およびMAT1-2-1遺伝子の両者あるいは両者の産物が必要であることを示している。   The above indicates that the MAT1-1-1 and / or MAT1-2-1 genes are required in any case for the fungi to cross and form a complete generation. .

糸状菌の中には、これまで交配および完全世代の形成が観察されていない種が多く存在する。完全世代を形成しないことから、これらの糸状菌は、不完全菌と呼ばれる。過去に、これらの菌は、Deuteromycotina(不完全菌亜門)あるいはFungi imperfecti(不完全菌類)としてまとめられて来たが、近年は分子系統解析の進展によって、近縁の交配可能種との系統関係が明らかにされるようになっており、過去のDeuteromycotinaあるいは、Fungi imperfectiのような菌群は無意味なものとして理解されている(非特許文献4)。ここでは、交配が観察されていない糸状菌を「交配不全性糸状菌」と呼ぶこととする。交配不全性糸状菌は交配できないため、遺伝子機能の遺伝的解析(交配検定)や、交配による育種が不可能であった。交配が可能になれば、交配検定による遺伝子機能の解析が格段に進歩すること、麹菌等でより良好な形質の菌の育種が可能になり、科学的、産業的に意義深いものとなる。   There are many species of filamentous fungi that have not previously been observed to cross and form full generations. These filamentous fungi are called imperfect bacteria because they do not form a complete generation. In the past, these fungi have been grouped as Deuteromycotina (Incomplete fungi) or Fungi imperfecti (Incomplete fungi), but in recent years, with the progress of molecular phylogenetic analysis, strains of closely related mating species The relationship has been clarified, and a fungus group such as past Deuteromycotina or Fungi imperfecti is understood as meaningless (Non-patent Document 4). Here, a filamentous fungus in which no mating has been observed is referred to as a “cross-competent filamentous fungus”. Since incompetent filamentous fungi cannot be mated, genetic analysis of gene function (mating test) and breeding by mating were impossible. If mating becomes possible, the analysis of gene function by mating test will be greatly advanced, and breeding of bacteria with better traits will be possible, such as Neisseria gonorrhoeae, which will be scientifically and industrially significant.

交配不全性の糸状菌は多種に亘る。重要植物病原糸状菌として、Fusarium oxysporum、Verticillium dahliae、Alternaria alternata、Penicillium italicumなど、多くの交配不完全性種が報告されている(非特許文献5、不完全菌類の項目参照)。また、我が国の国菌とも言われる黄麹かびAspergillus oryzaeも交配不完全性種である。そのほか、抗生物質産生菌であるPenicillium spp.や、家庭内で問題となる黒かび類(Cladosporium spp.やAlternaria spp.など)も多くは交配不完全性である。   There are many types of incompetent filamentous fungi. As an important phytopathogenic fungus, many mating imperfect species such as Fusarium oxysporum, Verticillium dahliae, Alternaria alternata, Penicillium italicum have been reported (see Non-Patent Document 5, item of incomplete fungi). In addition, yellow mold fungus Aspergillus oryzae, which is said to be the national fungus of Japan, is also an incompletely mated species. In addition, many of the antibiotic-producing Penicillium spp. And black molds (Cladosporium spp. And Alternaria spp.) That are problematic in the home are incompletely mated.

従来は、交配不全性の糸状菌を交配する手立ては、種の起源地(多様性が豊かであると想定される)などから交配能を保持する株を探し出し、これと交配することのみであった。例として、イネいもち病菌(Magnaporthe oryzae、不完全世代Pyricularia oryzae)は長く交配不全性の菌として知られていたが、中国昆明由来のイネいもち病菌が実験室レベルで交配能を持つこと、その後、ベトナム北部、インド北西部からも交配能を持つイネいもち病菌が採集されたことが報告されている。さらにまた、従来より交配困難であった担子菌ブクリョウの交配を、アイソザイム分析による交配菌株の選択によって可能とした例もある(特許文献1)。   In the past, the only way to cross a deficient filamentous fungus was to find a strain that retains the mating ability from the origin of the species (which is assumed to be rich in diversity), and cross it with this. It was. As an example, the rice blast fungus (Magnaporthe oryzae, incomplete generation Pyricularia oryzae) has long been known as a mating deficient fungus, but the rice blast fungus from China's Kunming has a mating ability at the laboratory level, It has been reported that rice blast fungus with mating ability has been collected from northern Vietnam and northwestern India. Furthermore, there is also an example in which mating of basidiomycetes, which has been difficult to mate conventionally, is enabled by selection of mating strains by isozyme analysis (Patent Document 1).

このような方法による交配不全性の糸状菌の交配は、交配不全性菌と同種の交配能を有する株が偶然にも見出された場合にのみ可能になり、しかも交配不全株を交配できるようにしたとは言えない。すなわち、日本や韓国などで実際に圃場で発生しているイネいもち病菌菌株は交配不全性なままである。   Crossing of deficient filamentous fungi by such a method is possible only when a strain having the same type of mating ability as that of the deficient hybrid is found by chance, and the mating deficient strain can be crossed. I can't say I did it. That is, the rice blast fungus strain actually occurring in the field in Japan, Korea, etc. remains incompetent.

交配能を有することが知られているヘテロタリックな糸状菌(例えばNeurospora crassa)では、テスター菌株との交配試験によって、各菌株の交配型(MAT1-1かMAT1-2のどちらであるか)を検定することが容易である。その結果に基づいて、交配型の異なる菌株を適当な条件で掛け合わせ、交配させ、完全世代を形成することができる。   In heterothallic filamentous fungi known to have mating ability (eg Neurospora crassa), the mating type (MAT1-1 or MAT1-2) of each strain is determined by mating tests with tester strains. It is easy to test. Based on the results, strains of different mating types can be crossed under appropriate conditions and mated to form a complete generation.

しかし、交配不全性の糸状菌では、以前は、そもそも菌株の交配型を検定することすら不可能であった。言い換えれば、交配不全性の糸状菌菌株に交配型があるのかどうかもわからなかった。   However, in the case of incompetent filamentous fungi, it was previously impossible to even test the mating type of the strain in the first place. In other words, it was not known whether there was a mating type in the incompetent filamentous fungal strain.

非特許文献6および関連する特許「交配型遺伝子上の特定部位を増幅させるためのプライマー;特許3718755」(特許文献2)は、PCR法に基づいて、交配不全性糸状菌の菌株の交配型の検定を可能にした。(もちろん、この方法は、交配能を持つ糸状菌にも適用可能である。)   Non-patent document 6 and a related patent “a primer for amplifying a specific site on a mating type gene; patent 3718755” (patent document 2) are based on the PCR method. The test was made possible. (Of course, this method is also applicable to filamentous fungi having mating ability.)

この手法を利用して、交配不全性糸状菌であるFusarium oxysporum、Alternaria alternata、日本産のMagnaporthe oryzaeの種内に交配型が異なる菌株が存在するかどうかを調査、両交配型の菌株が存在すること(非特許文献6、7、8、9)を示した。さらに、その検定結果に基づいて、異なる交配型の菌株間の掛け合わせ試験を行ったが、いずれも交配には至らなかった(非特許文献7、9)。   Using this technique, we investigated whether there are strains with different mating types in the species of Fusarium oxysporum, Alternaria alternata, and Magnaporthe oryzae from Japan, and there are strains of both mating types. (Non-Patent Documents 6, 7, 8, and 9). Furthermore, based on the result of the test, a crossing test between strains of different mating types was performed, but none of them resulted in mating (Non-Patent Documents 7 and 9).

交配不全性菌が交配不全である原因として、以下の事項(1)、(2)及び(3)が推定された。(1)交配の初期調節因子である交配型遺伝子領域あるいは交配型遺伝子領域の遺伝子(交配型遺伝子)が存在しないか機能不全である、(2)その下流(以降の意味)で機能するシグナル伝達系の不全、(3)片方の交配型の菌株しか存在しない(交配パートナーの不在)。これらを検証した従来の研究例を概説する。   The following items (1), (2), and (3) were presumed as causes of the mating failure of the mating deficient bacteria. (1) The mating type gene region that is the initial regulator of mating or the gene of the mating type gene region (mating type gene) does not exist or is dysfunctional. (2) Signal transduction that functions downstream (hereinafter meaning) System failure, (3) There is only one mating type strain (absence of mating partner). The example of the conventional research which verified these is outlined.

交配不全性の菌が交配能を有する近縁の菌と同等の交配型遺伝子領域を持つこと、その領域にコードされている交配型遺伝子が、交配能を有する近縁の菌とほぼ相同であることが、Bipolaris sacchari、Fusarium oxysporum、Alternaria alternata、日本産Magnaporthe grisea等を用いて示されている(非特許文献7、9、10)。また、これらの交配型遺伝子が発現していることが示されている(非特許文献9、10、11)。   A mating deficient bacterium has a mating type gene region equivalent to a related bacterium with mating ability, and the mating type gene encoded in that region is almost homologous to a related bacterium with mating ability This is shown using Bipolaris sacchari, Fusarium oxysporum, Alternaria alternata, Japanese Magnaporthe grisea, etc. (Non-patent Documents 7, 9, and 10). Moreover, it is shown that these mating type genes are expressed (Non-Patent Documents 9, 10, and 11).

また、交配不全性の菌の交配型遺伝子が機能を持つことは、交配不全性の菌の交配型遺伝子を、ヘテロタリックな交配能を有する近縁の菌の交配型遺伝子領域を除去した交配不全性変異菌株をレシピエントとして導入した場合に、交配能が回復することで報告された。この様な手法を用いた研究例は、交配不全性のBipolaris sacchariおよびAlternaria alternataについての2つの報告(非特許文献7,11)のみがあるが、いずれでも、交配不全性の菌の交配型遺伝子領域を導入した、レシピエントのゲノム領域は交配型遺伝子領域(MAT1)ではない。   In addition, the mating type gene of a mating deficient bacterium has the function that the mating type gene of the mating deficient bacterium has been removed from the mating type gene region of a closely related bacterium having heterothallic mating ability. It was reported that mating ability was restored when sex mutants were introduced as recipients. There are only two reports (Non-Patent Documents 7 and 11) on the deficiency of Bipolaris sacchari and Alternaria alternata. The genomic region of the recipient into which the region has been introduced is not a mating gene region (MAT1).

交配型遺伝子産物は、既述したようにDNA結合部位を有し、これがゲノムDNAに結合することによって、交配に係わる、フェロモンやフェロモン受容体遺伝子の発現を調節するとされる。フェロモンは、異なる菌株のフェロモン受容体と結合し、その情報が、シグナル伝達系であるG-タンパク質、MAPキナーゼ、cAMP、STE12タンパク質などの調節因子を介して核内に伝えられ、細胞融合、核融合、子実体の形成、後代の形成などの一連の交配挙動が起こるとされている。   As described above, the mating type gene product has a DNA binding site and binds to genomic DNA, thereby regulating the expression of pheromones and pheromone receptor genes involved in mating. Pheromones bind to pheromone receptors of different strains, and the information is transmitted to the nucleus through regulators such as G-protein, MAP kinase, cAMP, and STE12 protein, which are signal transduction systems. It is said that a series of mating behaviors such as fusion, formation of fruiting bodies, and formation of progeny occur.

これまでに、交配不全性糸状菌のいくつかで、フェロモンやフェロモン受容体、G-タンパク質、MAPキナーゼ等の遺伝子が解析され、それらが、交配能を有する菌と同様に機能していることが示されている。   So far, some dysmorphic fungi have been analyzed for genes such as pheromones, pheromone receptors, G-proteins, and MAP kinases, and they function in the same way as those with mating ability. It is shown.

以上のことは、交配不全性の原因と考えられた上記(1)および(2)を否定し、交配不全性の菌が基本的に交配能を有する可能性を示しているかもしれない。   The above may deny the above (1) and (2), which are considered to be the cause of mating deficiency, and may indicate the possibility that the mating deficient bacteria basically have mating ability.

非特許文献8は、交配不全性のトマト萎凋病菌(F. oxysporum f. sp. lycopersici)菌株がF. oxysporumの系統樹中で3つの系統を形成すること、異なる系統に含まれる菌株では、菌糸融合群が異なること、各系統に含まれる萎凋病菌菌株は菌糸融合群が同一であるばかりか、交配型も1つに限られることを報告した。   Non-patent document 8 describes that a mating-deficient tomato wilt fungus (F. oxysporum f. Sp. Lycopersici) strain forms three strains in the F. oxysporum phylogenetic tree. It was reported that the fusion groups were different and that the wilt fungal strains contained in each strain were not only the same mycelium fusion group, but also limited to one mating type.

非特許文献12は、交配不全性の原因追及の一環としてFusarium oxysporumの交配型遺伝子領域(MAT1)の入換え株の作出を試みた。
特開平07-227164号公報 特許3718755号公報 「交配型遺伝子上の特定部位を増幅させるためのプライマー」 Debuchy R, Turgeon BG (2006) Mating-type structure, evolution, and function in euascomycetes. In The Mycota I (Kues & Fisher eds.), Springer-Verlag, Berlin. pp. 293-323 Shiu PK, Glass NL (2000) Cell and nuclear recognition mechanisms mediated by mating type in filamentous ascomycetes. Curr Opin Microbiol 3:183-188 Yun SH, Berbee ML, Yoder OC, Turgeon BG (1999) Evolution of the fungal self-fertile reproductive life style from self-sterile ancestors. Proc Natl Acad Sci USA 96:5592-5597 宍戸和夫ら、キノコとカビの基礎科学とバイオ技術、アイピーシー、2002 米山勝美ら編、植物病原アトラス、ソフトサイエンス社、2006 Arie, T., Christiansen, S. K., Yoder, O. C. and Turgeon, B. G. (1997). Effecient cloning of ascomycete mating type genes by PCR amplification of the conserved MAT HMG box. Fungal Genet Biol 21: 118-130 Arie, T., Kaneko, I., Yoshida, T., Noguchi, M., Nomura, Y. and Yamaguchi, I. (2000). Mating type genes from asexual phytopathogenic ascomycetes, Fusarium oxysporum and Alternaria alternata. Mol Plant-Microbe Interact 13 (12):1330-1339 M. Kawabe, Y. Kobayashi, G. Okada, I. Yamaguchi, T. Teraoka and T. Arie (2005). Three evolutionary lineages of tomato wilt pathogen, Fusarium oxysporum f. sp. lycopersici, based on sequences of IGS, MAT1, and pg1, are each composed of isolates of a single mating type and a single or closely related vegetative compatibility group. J Gen Plant Pathol:71 (4):263-272 Masaki Kanamori, Hana Kato, Nobuko Yasuda, Shinzo Koizumi, Tobin L. Peever, Takashi Kamakura, Tohru Teraoka, Tsutomu Arie (2007) Novel mating type-dependent transcripts at the mating type locus in Magnaporthe oryzae. Gene 403:6-17 Sharon A., Yamaguchi K., Christiansen S., Horwitz B.A., Yoder O.C., Turgeon B.G., 1996. An asexual fungus has the potential for sexual development. Mol Gen Genet 250: 11-122 Yun, Sung-Hwan, Arie, Tsutomu, Kaneko, Isao, Yoder, O. C., Turgeon, B. Gillian, 2000. Molecular Organization of Mating Type Loci in Heterothallic, Homothallic, and Asexual Gibberella/Fusarium Species. Fungal Genet Biol 31: 7-20 今井峻介、寺岡 徹、有江 力 2007. 「Fusarium oxysporumの交配型遺伝子領域(MAT1)の入換え株の作出」 平成19年度日本植物病理学会関東部会講演要旨集 8
Non-Patent Document 12 tried to produce a replacement strain of the mating type gene region (MAT1) of Fusarium oxysporum as part of the pursuit of the cause of mating deficiency.
Japanese Patent Laid-Open No. 07-227164 Japanese Patent No. 3718755 “Primers for amplifying specific sites on mating type genes” Debuchy R, Turgeon BG (2006) Mating-type structure, evolution, and function in euascomycetes.In The Mycota I (Kues & Fisher eds.), Springer-Verlag, Berlin.pp. 293-323 Shiu PK, Glass NL (2000) Cell and nuclear recognition mechanisms mediated by mating type in filamentous ascomycetes. Curr Opin Microbiol 3: 183-188 Yun SH, Berbee ML, Yoder OC, Turgeon BG (1999) Evolution of the fungal self-fertile reproductive life style from self-sterile ancestors.Proc Natl Acad Sci USA 96: 5592-5597 Kazuo Shishido et al., Basic Science and Biotechnology of Mushrooms and Molds, IPC, 2002 Edited by Katsumi Yoneyama et al., Plant Pathogenic Atlas, Soft Science, 2006 Arie, T., Christiansen, SK, Yoder, OC and Turgeon, BG (1997) .Effecient cloning of ascomycete mating type genes by PCR amplification of the conserved MAT HMG box. Fungal Genet Biol 21: 118-130 Arie, T., Kaneko, I., Yoshida, T., Noguchi, M., Nomura, Y. and Yamaguchi, I. (2000). Mating type genes from asexual phytopathogenic ascomycetes, Fusarium oxysporum and Alternaria alternata. Mol Plant- Microbe Interact 13 (12): 1330-1339 M. Kawabe, Y. Kobayashi, G. Okada, I. Yamaguchi, T. Teraoka and T. Arie (2005). Three evolutionary lineages of tomato wilt pathogen, Fusarium oxysporum f. Sp. Lycopersici, based on sequences of IGS, MAT1 , and pg1, are each composed of isolates of a single mating type and a single or closely related vegetative compatibility group.J Gen Plant Pathol: 71 (4): 263-272 Masaki Kanamori, Hana Kato, Nobuko Yasuda, Shinzo Koizumi, Tobin L. Peever, Takashi Kamakura, Tohru Teraoka, Tsutomu Arie (2007) Novel mating type-dependent transcripts at the mating type locus in Magnaporthe oryzae. Gene 403: 6-17 Sharon A., Yamaguchi K., Christiansen S., Horwitz BA, Yoder OC, Turgeon BG, 1996. An asexual fungus has the potential for sexual development. Mol Gen Genet 250: 11-122 Yun, Sung-Hwan, Arie, Tsutomu, Kaneko, Isao, Yoder, OC, Turgeon, B. Gillian, 2000. Molecular Organization of Mating Type Loci in Heterothallic, Homothallic, and Asexual Gibberella / Fusarium Species. Fungal Genet Biol 31: 7 -20 Shusuke Imai, Tohru Teraoka, Tsuyoshi Arie 2007. “Creating a replacement strain of the mating type gene region (MAT1) of Fusarium oxysporum” Proceedings of the 2007 Annual Meeting of the Kanto Division of the Japanese Society of Plant Pathology 8

上述したことは、交配不全であるFusarium oxysporumでは、交配し得る近縁の集団内にパートナーが不在になってしまっており、これが交配不全の原因である可能性を示唆した。すなわち、原因として推測された上記背景技術の項の上記(3)の可能性を示唆したものである。   As described above, in the case of Fusarium oxysporum, which is a mating deficiency, the partner was absent in the close population that can be mated, suggesting that this may be the cause of the mating deficiency. That is, this suggests the possibility of the above (3) in the background art section presumed as the cause.

そのため、交配不全性糸状菌を交配する新規な方法の開発が望まれている。   Therefore, the development of a new method for mating deficient mating fungi is desired.

本発明は、交配不全性糸状菌を交配する新規な方法を提供することを目的とする。   An object of the present invention is to provide a novel method for mating deficient mating fungi.

上記課題を解決し、本発明の目的を達成するため、本発明者らは、今回、交親株である交配不全性糸状菌と、該親株の交配型遺伝子領域を、該親株と異なるが同種の交配型不全性株に由来する別の交配型遺伝子領域で入換えることによって染色体パターンが実質的に相同でありながら交配型が異なる入換え株とを交配させることを含む方法によって、交配不全性糸状菌を交配可能にする方法を見出した。   In order to solve the above-mentioned problems and achieve the object of the present invention, the present inventors have determined that the mating-deficient filamentous fungus that is a mating strain and the mating type gene region of the parent strain are different from the parent strain but of the same species. A mating deficient filamentous form by a method comprising mating with a substitutive strain of different mating type while having a substantially homologous chromosomal pattern by exchanging with another mating type gene region derived from the mating deficient strain We found a way to make it possible to cross the fungus.

ここで、限定されるわけではないが、糸状菌が、植物病原性糸状菌又は麹菌であることが好ましい。また、限定されるわけではないが、植物病原性糸状菌がFusarium oxysporumであることが好ましい。また、限定されるわけではないが、入換えが相同組換えによって行なわれることが好ましい。   Here, although not necessarily limited, it is preferable that the filamentous fungus is a phytopathogenic filamentous fungus or a koji mold. Moreover, although not necessarily limited, it is preferable that a phytopathogenic filamentous fungus is Fusarium oxysporum. Moreover, although not necessarily limited, it is preferable that replacement | exchange is performed by homologous recombination.

本発明の交配不全性糸状菌を交配する方法は、産業上重要又は有用な糸状菌の遺伝子機能の解析や、良好な形質の菌の生成、すなわち育種、を可能にする利点を有する。   The method of mating deficient filamentous fungi of the present invention has the advantage of enabling the analysis of gene functions of industrially important or useful filamentous fungi and the generation of bacteria with good traits, that is, breeding.

この図は、Fusarium oxysporumのCHEF分離による染色体パターンを示す。図中、Aは、NBRC6531株、Bは、880621a-1株、Cは、MAFF103038株、Dは、MAFF103036株、Eは、tomino 1-c株、Fは、F-1-1株をそれぞれ表わす。アガロースゲル電気泳動条件は次のとおりである。ゲル:0.8% Certified Megabase Agarose (Bio-rad);泳動バッファー:0.5×TBE;温度:10℃;電圧:2.0 V/cm;泳動時間:120時間;初期スイッチング時間:10分:最終スイッチング時間:30分。This figure shows the chromosomal pattern of Fusarium oxysporum by CHEF separation. In the figure, A represents the NBRC6531 strain, B represents the 880621a-1 strain, C represents the MAFF103038 strain, D represents the MAFF103036 strain, E represents the tomino 1-c strain, and F represents the F-1-1 strain. . The agarose gel electrophoresis conditions are as follows. Gel: 0.8% Certified Megabase Agarose (Bio-rad); Running buffer: 0.5 × TBE; Temperature: 10 ° C .; Voltage: 2.0 V / cm; Running time: 120 hours; Initial switching time: 10 minutes: Final switching time :Half an hour. この図は、Gibberella fujikuroiのCHEF分離による染色体パターンを示す。アガロースゲル電気泳動条件は次のとおりである。ゲル:0.8% Certified Megabase Agarose (Bio-rad);泳動バッファー:0.5×TBE;温度:10℃;電圧:2.0 V/cm;泳動時間:120時間;初期スイッチング時間:10分:最終スイッチング時間:30分。This figure shows the chromosomal pattern of Gibberella fujikuroi by CHEF separation. The agarose gel electrophoresis conditions are as follows. Gel: 0.8% Certified Megabase Agarose (Bio-rad); Running buffer: 0.5 × TBE; Temperature: 10 ° C .; Voltage: 2.0 V / cm; Running time: 120 hours; Initial switching time: 10 minutes: Final switching time :Half an hour. この図は、TAIL-PCRで用いたプライマーの位置と880621a-1とtomino1-cのMAT1領域の構造を示す。白抜きのボックスは、塩基配列が95%以上相同な領域を示す。This figure shows the positions of the primers used in TAIL-PCR and the structure of the MAT1 region of 880621a-1 and tomino1-c. A white box indicates a region where the base sequence is 95% or more homologous. この図は、TAIL(thermal asymmetric interlaced)-PCR及びLA(long accurate)-PCRの反応条件及び手順を示す。なお、TAIL-PCRの試薬はすべて、New England Biolabs社製であり、一方、LA−PCRの試薬はすべてTakara社製である。This figure shows the reaction conditions and procedures of TAIL (thermal asymmetric interlaced) -PCR and LA (long accurate) -PCR. All TAIL-PCR reagents are from New England Biolabs, while LA-PCR reagents are all from Takara. この図は、MAT1領域入換えベクターの構築(図5A)と形質転換体の交配型検定結果(図5B)を示す。This figure shows the construction of the MAT1 region replacement vector (FIG. 5A) and the mating type test result of the transformant (FIG. 5B). この図は、形質転換体の染色体パターンを示す。アガロースゲル電気泳動条件は次のとおりである。ゲル:0.8% Certified Megabase Agarose (Bio-rad);泳動バッファー:0.5×TBE;温度:10℃;電圧:2.0 V/cm;泳動時間:120時間;初期スイッチング時間:10分:最終スイッチング時間:30分。This figure shows the chromosomal pattern of the transformant. The agarose gel electrophoresis conditions are as follows. Gel: 0.8% Certified Megabase Agarose (Bio-rad); Running buffer: 0.5 × TBE; Temperature: 10 ° C .; Voltage: 2.0 V / cm; Running time: 120 hours; Initial switching time: 10 minutes: Final switching time :Half an hour. この図は、トマト茎上に形成された子嚢殻(図7A及び7B)、子嚢(図7C)及び子嚢胞子(図7D)を示す。This figure shows the ascending shell (FIGS. 7A and 7B), ascending (FIG. 7C) and ascospore (FIG. 7D) formed on the tomato stem.

以下、糸状菌を交配する方法にかかる発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the invention according to the method for mating filamentous fungi will be described.

本発明は、交配不全性の糸状菌を交配する方法であって、親株である交配不全性糸状菌と、該親株の交配型遺伝子領域を、該親株と異なるが同種の交配不全性株に由来する別の交配型遺伝子領域で入換えることによって作出された、染色体パターンが実質的に相同でありながら交配型が異なる入換え株とを交配させることを含む方法を提供する。   The present invention relates to a method of mating a deficient mating fungus, wherein the deficient mating fungus as a parent strain and the mating type gene region of the parent strain are derived from a mating deficient strain of the same type that is different from the parent strain. A method is provided that comprises crossing with a replacement strain that is generated by replacement with another hybrid-type gene region, and that has a substantially homologous chromosomal pattern but a different cross-type.

本明細書で使用される「交配不全性糸状菌」は、交配が観察されていない糸状菌を指す。ここで糸状菌は、菌類のうち菌糸や胞子からなるものを指し、子嚢菌、担子菌、接合菌なども包含する。交配不全性糸状菌は交配できないため、遺伝子機能の遺伝的解析(交配検定)や、交配による育種が不可能であるため、本発明の方法により交配が可能になれば、交配検定による遺伝子機能の解析が格段に進歩すること、また、麹菌等でより良好な形質の菌の育種が可能になり、科学的、産業的に意義深いものとなる。   As used herein, a “cross-hybrid filamentous fungus” refers to a filamentous fungus in which no mating has been observed. Here, the filamentous fungi refers to fungi composed of hyphae and spores, and includes ascomycetes, basidiomycetes, zygotes, and the like. Since mating deficient filamentous fungi cannot be mated, genetic analysis of gene function (mating test) and breeding by mating are impossible, so if mating is possible by the method of the present invention, The progress of the analysis will be remarkable, and the breeding of bacteria with better traits will be possible with gonorrhea and the like, which will be scientifically and industrially significant.

本発明における交配不全性糸状菌は、以下のものに限定されないが、例えば重要な植物病原性糸状菌、例えばFusarium oxysporum、Verticillium dahliae、Alternaria alternata、Penicillium italicumなど(米山勝美、2006(非特許文献5)、「不完全菌類」の項目参照)、麹菌、例えば黄麹かび(Aspergillus oryzae)やAspergillus spp.、或いは、その他の子嚢菌、例えばAcremonium spp.、Alternaria spp.、Ambrosiella spp.、Arthrobotrys spp.、Aureobasidium spp.、Beauveria spp.、Blastomyces spp.、Botriosporium spp.、Botrytis spp.、Chalara spp.、Cercospora spp.、Cephalosporium spp.、Chrysomnia spp.、Chrysosporium spp.、Cladosporium spp.、Chlorodoim spp.、Coccidioides spp.、Cryptococcus spp.、Curvularia spp.、Cylindrocarpon spp.、Cylindrocladium spp.、Drechslera spp.、Epicoccum spp.、Fusarium spp.、Geotrichum spp.、Gliocladium spp.、Graphium spp.、Helicomyces spp.、Helicosporium spp.、Heliscus spp.、Helmithosporium spp.、Hyalodendron spp.、Hystoplasma spp.、Isaria spp.、Lemonniera spp.、Metarhizium spp.、Microsporium spp.、Monilia spp.、Monocillium spp.、Nigrospora spp.、Nodulisporium spp.、Oidiodendron spp.、Paecilomyces spp.、Penicillium spp.、Phialomyces spp.、Phialophora spp.、Pyricularia spp.、Raffaelea spp.、Ramularia spp.、Rhinocladiella spp.、Sporpthrix spp.、Staphylotricum spp.、Stilbella spp.、Thermomyces spp.、Trichiphyton spp.、Trichoderma spp.、Trichothecium spp.、Tripospermum spp.、Varicosporium spp.、Verticillium spp.、 Ascochyta spp.、Endothiella spp.、Leucocytospora spp.、Melasmia spp.、Pestalotia spp.、Pestalotiopsis spp.、Phoma spp.、Phomopsis spp.、Septoria spp.、Rhizoctonia spp.、Sclerotium spp.などのうち完全世代の報告がないものを例示することができる。   The incompetent filamentous fungi in the present invention are not limited to the following, but for example, important phytopathogenic filamentous fungi such as Fusarium oxysporum, Verticillium dahliae, Alternaria alternata, Penicillium italicum, etc. (Katsumi Yoneyama, 2006 (Non-patent Document 5) ), See “Incomplete fungi”), gonococci such as Aspergillus oryzae and Aspergillus spp., Or other ascomycetes such as Acremonium spp., Alternaria spp., Ambrosiella spp., Arthrobotrys spp. , Aureobasidium spp., Beauveria spp., Blastomyces spp., Botriosporium spp., Botrytis spp., Chalara spp., Cercospora spp., Cephalosporium spp., Chrysomnia spp. spp., Cryptococcus spp., Curvularia spp., Cylindrocarpon spp., Cylindrocladium spp., Drechslera spp., Epicocumcum spp., Fusarium spp., Geotrichum spp., Gliocladium spp., Graphium spp., Heliumyp , Heli scus spp., Helmithosporium spp., Hyalodendron spp., Hystoplasma spp., Isaria spp., Lemonniera spp., Metarhizium spp., Microsporium spp., Monilia spp., Monocillium spp., Nigrospora spp., Nodulipor spid. Paicilomyces spp. Trichiphyton spp., Trichoderma spp., Trichothecium spp., Tripospermum spp., Varicosporium spp., Verticillium spp., Ascochyta spp., Endothiella spp., Leucocytospora spp., Melasmia spp., Pestalotia spp., Pestalotia spp. ., Phomopsis spp., Septoria spp., Rhizoctonia spp., Sclerotium spp.

本明細書で使用される「交配型遺伝子」とは、菌株の交配型を決定する遺伝子である。一般にヘテロタリックな糸状菌では1種のうちに2つの交配型(例えばMAT1-1とMAT1-2)の菌株が存在し、これらの菌株が適した環境条件で出会うと細胞融合が起こり、有性生殖の一連の過程が進み、後代を形成する。交配型の呼称は各菌種によって異なる場合があるが、交配型遺伝子領域の構造からはMAT1-1およびMAT1-2と整理することが標準とされており(Turgeon, B. G. and Yoder, O. C. (2000). Proposed nom enclature for mating type genes of filam entous ascom ycetes. Fungal genet. Biol. 31:1-5.)、本明細書では交配型としてそのような標準的呼称を採用している(従って、他の表記もすべて内包することになる)。   As used herein, a “mating gene” is a gene that determines the mating type of a strain. Generally, in heterothallic filamentous fungi, there are two mating strains (for example, MAT1-1 and MAT1-2) in one species, and cell fusion occurs when these strains meet in appropriate environmental conditions. A series of reproductive processes proceeds to form progeny. The name of the mating type may differ depending on the bacterial species, but it is standard that the mating type gene region is organized as MAT1-1 and MAT1-2 (Turgeon, BG and Yoder, OC (2000 ). Proposed nom enclature for mating type genes of filam entous ascom ycetes. Fungal genet. Biol. 31: 1-5.), This specification adopts such a standard designation as a mating type (and therefore other All of the notation is also included).

本発明では、交配不全性糸状菌の親株と、該親株と異なるが同種の交配不全性株に由来する別の交配型遺伝子領域で入換えることによって染色体パターンが実質的に相同となった入換え株とを交配させる。ここで、親株の交配型遺伝子と、入換え株の交配型遺伝子は、菌株間での細胞融合を起こしうる、交配型を決定する2つの遺伝子である。上記例示のような、MAT1-1とMAT1-2などが、交配型決定遺伝子の対である。   In the present invention, a parental strain of a mating deficient filamentous fungus, and a replacement in which the chromosome pattern is substantially homologous by exchanging in another mating type gene region that is different from the parent strain but derived from the same type of mating deficient strain Cross with stocks. Here, the mating type gene of the parent strain and the mating type gene of the replacement strain are two genes that determine the mating type that can cause cell fusion between strains. As exemplified above, MAT1-1 and MAT1-2 are a pair of mating type determining genes.

MAT1-1及びMAT1-2などの交配型遺伝子を含む領域の配列情報としては、各種の交配不全性糸状菌についてGenBank(米国NCBI)などのジーンバンクに登録された配列、あるいは刊行物に記載された配列などを利用することができる。例えば、Fusarium oxysporumのMAT1領域及びその隣接領域(flanking regions)を含むゲノム領域の配列情報は、GenBank AB011379, AB011378などとして登録されている。また、黄麹かび(Aspergillus oryzae)の交配型遺伝子領域を含むゲノム配列に関する配列情報は、Galagan et al., (2005) Nature Vol 438:22-29に登録されている。   The sequence information of the region containing mating type genes such as MAT1-1 and MAT1-2 is described in sequences registered in gene banks such as GenBank (US NCBI) or publications for various mating deficient filamentous fungi. Can be used. For example, the sequence information of the genome region including the MAT1 region of Fusarium oxysporum and its flanking regions is registered as GenBank AB011379, AB011378, and the like. Moreover, the sequence information regarding the genome sequence including the mating type gene region of Aspergillus oryzae is registered in Galagan et al., (2005) Nature Vol 438: 22-29.

本発明は、同種の糸状菌間、特に株間での交配型遺伝子領域の入換え(例えば、組換え又は置換)を利用する。後述の実施例では、Fusarium oxysporumのうち、880621a-1株とtomino1-c株との間で、880621a-1株のMAT1-1領域(約4.5kb)及びその両隣接領域(それぞれ、約2.5〜3.0kb)を含むゲノム領域によって、tomino1-c株のMAT1-2領域及び(880621a-1株のMAT1-1領域(約4.5kb)の両隣接領域の各々と)95%以上(好ましくは97%以上、より好ましくは98%以上)の相同性を有するその両隣接領域(約2.5〜3.0kb)を含むゲノム領域を、相同組換え法によって組み換える(図3、図5参照)。相同組換えを実施するために、目的の糸状菌において、交配型遺伝子領域及びその両隣接領域からなる挿入しようとするゲノム領域(全長約7〜10kb)を、プライマーを用いるPCR (Polymerase Chain Reaction)にて増幅し、この増幅産物をプラスミドなどのベクターに組み入れたのち、制限酵素で切断して一本鎖にし、これを用いて、親株のゲノムの相同領域との組換えを行う。このとき、親株からプロトプラスト(又はスフェロプラスト)を作製し、このなかにプラスミド由来の相同組換え用DNAを導入する。このような方法は、一般的な手法で実施しうる。プロトプラスト(又はスフェロプラスト)は、培養糸状菌を細胞壁溶解酵素(例えばセルラーゼ、プロテアーゼ、ペクチナーゼ、キチナーゼ、リゾチームなど))で処理することによって該菌の細胞壁を部分的に又は全体的に溶解して得ることができる。プロトプラスト(又はスフェロプラスト)内への外来DNA(ここでは、プラスミド)の導入のために、ポリエチレングリコール(PEG)法、エレクトロポレーション法などを使用できる。PEG法で使用可能なPEGの分子量は、一般に約4,000〜約10,000の範囲である。また、エレクトロポレーションは、細胞懸濁液に電気パルスをかけて微小な孔をあけ、これにより外来DNAを細胞内に導入する手法である。プラスミドは、糸状菌の形質転換用であればいずれも使用可能であり、例えばpCSN43(Staben, C. et al., (1989) Fungal Genet. Newsl. 36:79-81)などを含む。プラスミドは、プロモーター、エンハンサー、選択マーカー(例えば、薬剤耐性マーカー(例えばG418、オリゴマイシン、ブラシチシジンSなど)、栄養要求性マーカー(例えばpryG、argB、tryCなど)、チミジンキナーゼ(tk)遺伝子など)、マルチクローニングサイトなどを含むことができる。   The present invention utilizes the replacement (for example, recombination or substitution) of the mating type gene region between the same type of filamentous fungi, particularly between strains. In the examples described later, among Fusarium oxysporum, between the 880621a-1 strain and the tomino1-c strain, the MAT1-1 region (about 4.5 kb) of the 880621a-1 strain and its adjacent regions (each about 2.5 to 95% or more (preferably 97%), depending on the genomic region containing 3.0 kb) and each of the MAT1-2 region of the tomino1-c strain and each of the adjacent regions of the MAT1-1 region (about 4.5 kb) of the 880621a-1 strain As described above, more preferably 98% or more of the genomic region including both adjacent regions (about 2.5 to 3.0 kb) having homology is recombined by the homologous recombination method (see FIGS. 3 and 5). In order to carry out homologous recombination, PCR (Polymerase Chain Reaction) using primers for the genomic region to be inserted (total length: about 7-10 kb) consisting of the mating type gene region and its adjacent regions in the target filamentous fungus After the amplification product is incorporated into a vector such as a plasmid, it is cleaved with a restriction enzyme to make a single strand, and this is used to recombine with the homologous region of the genome of the parent strain. At this time, a protoplast (or spheroplast) is produced from the parent strain, and a plasmid-derived DNA for homologous recombination is introduced therein. Such a method can be implemented by a general method. Protoplasts (or spheroplasts) are obtained by treating a cultured filamentous fungus with a cell wall lytic enzyme (for example, cellulase, protease, pectinase, chitinase, lysozyme, etc.) to partially or totally lyse the cell wall of the fungus. Obtainable. A polyethylene glycol (PEG) method, an electroporation method, or the like can be used for introducing foreign DNA (here, a plasmid) into protoplasts (or spheroplasts). The molecular weight of PEG that can be used in the PEG method is generally in the range of about 4,000 to about 10,000. Electroporation is a technique in which fine holes are made by applying an electric pulse to a cell suspension to introduce foreign DNA into cells. Any plasmid can be used as long as it is for transformation of filamentous fungi, and includes, for example, pCSN43 (Staben, C. et al., (1989) Fungal Genet. Newsl. 36: 79-81). Plasmids include promoters, enhancers, selectable markers (eg, drug resistance markers (eg, G418, oligomycin, brassicidin S, etc.), auxotrophic markers (eg, pryG, argB, tryC, etc.), thymidine kinase (tk) gene, etc.) Multiple cloning sites can be included.

本発明では、交配を成功させるためには、親株の染色体パターンと、交配パートナーの入換え株の染色体パターンとが実質的に相同である必要がある。ここで、染色体パターンは、後述の実施例に記載のようにCHEF電気泳動によって確認することができる(図6参照)。ここで、実質的とは、完全一致でないが視覚的に一致していることの意味である。また、染色体パターンとは、CHEF電気泳動によって識別できる当該菌株が有する染色体の数や大きさのEFHEH意味である。核型とも同義である。   In the present invention, in order to achieve successful mating, the chromosome pattern of the parent strain and the chromosome pattern of the mating partner replacement strain must be substantially homologous. Here, the chromosome pattern can be confirmed by CHEF electrophoresis as described in Examples described later (see FIG. 6). Here, “substantial” means that they are not completely matched but visually matched. The chromosome pattern means EFHEH of the number and size of chromosomes of the strain that can be identified by CHEF electrophoresis. It is synonymous with karyotype.

上記のようにして作出した形質転換株(入換え株)と親株との交配は、寒天培地などの固体培地に必要な栄養分を補充した培地にて両菌株を一緒に培養し、必要であれば感染対象を接触させて培養を行い、交配により親株類と異なる形質の株を選抜する。形質の違いは、例えば、子嚢殻様構造の形成、内部の子嚢および子嚢胞子の形成や子嚢殻からの子嚢胞子の放出によって判定することができる。   Crossing between the transformed strain (replacement strain) produced as described above and the parent strain is carried out by culturing both strains together in a medium supplemented with nutrients necessary for a solid medium such as an agar medium. Culturing is conducted by bringing the target to be infected into contact, and a strain having a trait different from the parent strain is selected by crossing. Differences in traits can be determined, for example, by the formation of a cyst-like structure, the formation of internal cysts and cysts, and the release of cysts from the cyst.

染色体パターンが相同で交配型遺伝子が異なる株は、必ずしも全く同一の株の交配型遺伝子入れ換え株に限定されない。染色体パターンが相同(同一でなく、類似する場合も含む)であっても、相同染色体が対合することが可能であればよい。   Strains with homologous chromosomal patterns and different mating genes are not necessarily limited to mating gene replacement strains of the same strain. Even if the chromosome pattern is homologous (including cases where they are not the same and similar), it is only necessary that the homologous chromosomes can be paired.

なお、本発明は上述の発明を実施するための最良の形態に限らず本発明の要旨を逸脱することなくその他種々の構成を採り得ることはもちろんである。   The present invention is not limited to the best mode for carrying out the above-described invention, and various other configurations can be adopted without departing from the gist of the present invention.

つぎに、本発明にかかる実施例について具体的に説明する。ただし、本発明はこれら実施例に限定されるものではないことはもちろんである。   Next, specific examples of the present invention will be described. However, it goes without saying that the present invention is not limited to these examples.

交配不全性菌であるFusarium oxysporum 菌株における遺伝的なバックグラウンドを調査するために、CHEF (Clamped Homogeneous Electric Fields) 電気泳動を行い、染色体のパターンを核型解析によって調査した。使用した菌株は、トマト萎凋病菌F. oxysporum f. sp. lycopersici MAT1-1の株を4株(NBRC6531, 880621a-1, MAFF103038, MAFF103036)、MAT1-2の株を2株(tomino1-c, F-1-1)である。各株のプロトプラストを調製(プロトプラストの調製法は後述する。)、1.0 x 108 protoplasts/ml以上になるようにSTE (1 M Sorbitol, 25 mM Tris-HCl, 50 mM EDTA, pH 7.5) に再懸濁した。等量のSTEに1.4 % InCert agarose (低融点アガロース、FMC) を融解、プロトプラスト溶液と混合し、プロトプラストを包埋した。できたプラグを3 mm程度の薄さにスライスし、SE buffer (1 M Sorbitol, 50 mM EDTA, pH 8.0)中で55℃、36時間インキュベートした。プラグを取り出し、2 mg/mlのProteinaseKを含むNDS (100 mM Tris, 500 mM EDTA, 1 % N-laurylsarcosyl) 中で更に55℃で36時間インキュベートして、細胞を破壊し、染色体を露出させた。50 mM EDTAにプラグを浸して10分間震盪した後、EDTAを捨てた。この作業を3回繰り返し、完成したプラグをCHEF Mapper (Bio-rad) に供試した。電気泳動の条件は図1に示す。各株で染色体パターンが異なるのが分かる(図1)。特に、交配する可能性があるMAT1-1株とMAT1-2株間で染色体パターンが類似するものがない。In order to investigate the genetic background in Fusarium oxysporum, a mating-deficient bacterium, CHEF (Clamped Homogeneous Electric Fields) electrophoresis was performed, and chromosomal patterns were investigated by karyotype analysis. The strains used were 4 strains of F. oxysporum f. Sp. Lycopersici MAT1-1 (NBRC6531, 880621a-1, MAFF103038, MAFF103036) and 2 strains of MAT1-2 (tomino1-c, F -1-1). Prepare protoplasts for each strain (Protoplast preparation method will be described later), and reconstitute with STE (1 M Sorbitol, 25 mM Tris-HCl, 50 mM EDTA, pH 7.5) to a concentration of 1.0 x 10 8 protoplasts / ml or more. Suspended. 1.4% InCert agarose (low melting point agarose, FMC) was melted in an equal amount of STE, mixed with the protoplast solution, and the protoplast was embedded. The resulting plug was sliced to a thickness of about 3 mm and incubated in SE buffer (1 M Sorbitol, 50 mM EDTA, pH 8.0) at 55 ° C. for 36 hours. The plug was removed and incubated in NDS (100 mM Tris, 500 mM EDTA, 1% N-laurylsarcosyl) containing 2 mg / ml Proteinase K for an additional 36 hours at 55 ° C. to disrupt the cells and expose the chromosomes . After immersing the plug in 50 mM EDTA and shaking for 10 minutes, the EDTA was discarded. This operation was repeated three times, and the completed plug was used for CHEF Mapper (Bio-rad). The electrophoresis conditions are shown in FIG. It can be seen that each strain has a different chromosome pattern (FIG. 1). In particular, there is no similar chromosomal pattern between MAT1-1 and MAT1-2 strains that can be crossed.

F. oxysporumに近縁で交配能を持つGibberella fujikuroiには交配群 (mating population) と呼ばれるグループが存在し、同一交配群内の異なる交配型の菌株間でのみ交配がおこる。G. fujikuroi菌株の染色体を上述と同様にCHEFによって分離すると、一つの交配群の中では、異交配型の菌株間でも類似したパターンを示した(図2)。   Gibberella fujikuroi, which is closely related to F. oxysporum, has a group called mating population, and mating occurs only between strains of different mating types in the same mating group. When the chromosomes of G. fujikuroi strains were separated by CHEF in the same manner as described above, within one mating group, similar patterns were shown even among the outcrossing strains (Fig. 2).

しかるに、F. oxysporum菌株がたとえ交配する潜在能力を持っていたとしても、菌株ごとに異なる染色体パターンを持つため、異交配型菌株が交配を開始した場合でも、染色体の対合から減数分裂の過程が不全になる可能性、さらには、これがF. oxysporumの交配不全性の原因であることが示唆された。この原因は、これまでF. oxysporumが交配をせずに、無性的な増殖を繰り返してきた結果であると推測された。   However, even if F. oxysporum strains have the potential to cross, each strain has a different chromosomal pattern, so even if a cross-bred strain starts mating, the process of meiosis from chromosomal pairing It was suggested that this could be a failure, and that this was the cause of F. oxysporum mating failure. It is speculated that this is because F. oxysporum has repeated asexual growth without mating so far.

以上のことは、F. oxysporumでは、各菌株の染色体パターンが異なるため、交配可能なパートナーの不在が起きている可能性を示し、交配不全性の原因として上述で推測した(3)を強く支持するものである。   The above shows that in F. oxysporum, each strain has a different chromosomal pattern, indicating the absence of mating partners, and strongly supporting (3), which was speculated above as the cause of mating failure. To do.

そこで、F.oxysporumにおいて、染色体パターンが相同でありながら、交配型が異なる菌株を人工的に作出し、それを用いて交配試験を試みた。図3に示すように、MAT1領域の両側は、MAT1-1株およびMAT1-2株とも相同であるため、二回相同組換え法に基づいて、MAT1領域をそっくり入れ換えることを意図した。その結果、上述した従来作出されたMAT1領域挿入株とは異なる新たなタイプの挿入株が生じる。なお、二回相同組換えによる遺伝子領域の入換え自体は普遍的な技術である。   Therefore, in F. oxysporum, a strain having a homologous chromosome pattern but having a different mating type was artificially produced, and a mating test was attempted using it. As shown in FIG. 3, since both sides of the MAT1 region are homologous to the MAT1-1 strain and the MAT1-2 strain, it was intended to completely replace the MAT1 region based on the twice homologous recombination method. As a result, a new type of inserted strain different from the conventionally produced MAT1 region inserted strain described above is generated. In addition, the replacement of the gene region by twice homologous recombination itself is a universal technique.

二回相同組換えによる遺伝子領域の入換えを行うには、当該遺伝子領域の両側の隣接領域約0.5〜5 kbの塩基配列情報が必要になる。そこで、すでに決定されていたF. oxysporumのMAT1領域および隣接領域の塩基配列(Arie et al. 2000;GenBank AB011379, AB011378)のさらに周辺領域の塩基配列を決定した。そのために、F. oxysporum 880621a-1株 (交配型MAT1-1) ゲノムDNAを鋳型に用いてTAIL-PCR(非特許文献7(Arie et al. 2000))を行った。   In order to replace a gene region by twice homologous recombination, base sequence information of about 0.5 to 5 kb adjacent regions on both sides of the gene region is required. Then, the base sequence of the peripheral region of the MAT1 region of F. oxysporum and the base sequence of the adjacent region (Arie et al. 2000; GenBank AB011379, AB011378) that had already been determined was determined. For this purpose, TAIL-PCR (Non-patent Document 7 (Arie et al. 2000)) was performed using F. oxysporum 880621a-1 strain (mating MAT1-1) genomic DNA as a template.

GenBank AB011379で登録されている塩基配列を基に設計した特異プライマーと7つの非特異プライマー (表1) を用いて図4に示した条件で数回のTAIL-PCRを行い、MAT1領域の上流約2.8 kb、下流約2.6 kbの隣接領域の塩基配列を決定した (図3) 。これらの塩基配列はF. oxysporum tomino 1-c株 (交配型MAT1-2) の同領域と95%以上の高い相同性を示した(図3)。   Perform TAIL-PCR several times under the conditions shown in Fig. 4 using specific primers designed based on the nucleotide sequence registered in GenBank AB011379 and seven non-specific primers (Table 1). The nucleotide sequence of the adjacent region of 2.8 kb and about 2.6 kb downstream was determined (FIG. 3). These base sequences showed high homology of 95% or more with the same region of F. oxysporum tomino 1-c strain (mating MAT1-2) (FIG. 3).

Figure 2009054330
Figure 2009054330

プライマーXとY (表1) を用いて図4に示した条件でF. oxysporum 880621a-1株ゲノムDNAを鋳型にLA-PCRを行い、得られた約10 kbのMAT1領域(MAT1-1-1遺伝子を含む)を含むDNA断片をTOPO XL Gel purification kit (Invitrogen) を用いて精製し、pCR-XL-TOPO (Invitrogen) ベクターに導入、MAT1領域入換えベクターpMAT1-1とした (図5A) 。   LA-PCR was performed using primers X and Y (Table 1) and F. oxysporum 880621a-1 genomic DNA as a template under the conditions shown in FIG. 4, and the resulting MAT1 region (MAT1-1- DNA fragment containing 1 gene) is purified using TOPO XL Gel purification kit (Invitrogen) and introduced into the pCR-XL-TOPO (Invitrogen) vector to obtain the MAT1 region replacement vector pMAT1-1 (Fig. 5A) .

PSA (potato sucrose agar) 培地上で生育させたtomino 1-cの菌糸を培地ごと切り出し、50 mlのPSB (potato sucrose broth) 液体培地に入れ、5日間、120 rpmで震盪培養した。二重滅菌ガーゼで濾過して菌糸を除き、3000 rpmで10分間遠心し、胞子をチューブの底に沈め上清を捨てた。滅菌RO水を加えて沈殿している胞子をよく洗い、再び3000 rpmで10分間遠心し、上清を捨て、適当な量の滅菌RO水を加え胞子懸濁液とした。1.0 x 107個の胞子を100 mlのPSBに加え、室温で静置した。約36時間後、発芽した胞子をブフナー漏斗と濾紙を用いて回収し、50 mlの滅菌RO水に懸濁、3000 rpmで10分間遠心して上清を捨てた。再び滅菌RO水を加えて同様の作業を行った後、回収した発芽胞子を10 mlの1.2 M MgSO4に再懸濁し、そこへ等容量の酵素液 (2% Lysing Enzymes, 2% ドリセラーゼ(セルラーゼ・プロテアーゼ・ペクチナーゼ複合酵素;協和発酵工業製)、0.0005%キチナーゼを加えて、70 rpmで3時間インキュベートした。滅菌ティッシュペーパーで菌糸を取り除き、等容のSTC (1 M Sorbitol, 10 mmM Tris-HCl, 10 mM CaCl2・2 H2O) を加えて、3000 rpmで20分間遠心し、沈殿したプロトプラストを回収して120 μlのSTCに再懸濁し、プロトプラスト溶液を調製した。このとき、濃度が1.0 x 108 protoplasts/ml以上になるように調整した。The mycelium of tomino 1-c grown on PSA (potato sucrose agar) medium was cut out together with the medium, put into 50 ml of PSB (potato sucrose broth) liquid medium, and cultured with shaking at 120 rpm for 5 days. The mycelium was removed by filtration through double sterilized gauze, centrifuged at 3000 rpm for 10 minutes, the spores were submerged at the bottom of the tube, and the supernatant was discarded. Sterile RO water was added to thoroughly wash the precipitated spores, and the mixture was centrifuged again at 3000 rpm for 10 minutes. The supernatant was discarded, and an appropriate amount of sterile RO water was added to form a spore suspension. 1.0 × 10 7 spores were added to 100 ml of PSB and allowed to stand at room temperature. After about 36 hours, germinated spores were collected using a Buchner funnel and filter paper, suspended in 50 ml of sterile RO water, centrifuged at 3000 rpm for 10 minutes, and the supernatant was discarded. After the same work sterile RO water was again added, and the recovered germinated spores were resuspended in 1.2 M MgSO 4 in 10 ml, the enzyme solution of equal volume to it (2% Lysing Enzymes, 2% Driselase (cellulase・ Protease-pectinase complex enzyme (manufactured by Kyowa Hakko Kogyo Co., Ltd.), 0.0005% chitinase was added, and the mixture was incubated at 70 rpm for 3 hours. , 10 mM CaCl 2 · 2 H 2 O), and centrifuged at 3000 rpm for 20 minutes, and the precipitated protoplasts were collected and resuspended in 120 μl of STC to prepare a protoplast solution. Adjusted to 1.0 x 10 8 protoplasts / ml or more.

pMAT1-1と、ハイグロマイシンB耐性遺伝子を持つpCSN43はそれぞれQIAfilter Plasmid Midi kit (QIAGEN) で抽出し、それぞれ20μgずつを制限酵素Not Iで一本鎖化した。両プラスミド液は65℃で20分間以上加熱し制限酵素を失活させた後、既述のプロトプラスト溶液に全量を加え、20分間氷上に静置した。この液に60 % PEG (ポリエチレングリコール) 4000溶液を200μl、200μl、800μlの順に混ぜながら段階的に加えていき、20分間氷上で静置し、細胞内に両プラスミドをとりこませた。6 mlのSTCを加えPEGを希釈し、40℃程度に冷ましたRM培地に混ぜ込み、シャーレに分注した。約24時間後に100μg/ml のハイグロマイシンB(非形質転換体F. oxysporumが感受性の抗生物質)を含む1.0 %水寒天を重層し、上層に生えてきた菌株を形質転換体とし、以降の実験に用いた。この形質転換は、2つのプラスミドを同時に使用して行っている。高い効率で2つのプラスミドが同時にゲノムに取り込まれることが知られており、この方法をcotransformationという。本実施例では、2つのうちの1つに、糸状菌をハイグロマイシン耐性にするpCSN43を使用しているため、形質転換体をハイグロマイシンB添加培地で選抜できる。   pMAT1-1 and pCSN43 having a hygromycin B resistance gene were each extracted with QIAfilter Plasmid Midi kit (QIAGEN), and 20 μg each was single-stranded with restriction enzyme Not I. Both plasmid solutions were heated at 65 ° C. for 20 minutes or longer to inactivate the restriction enzyme, and then the entire amount was added to the protoplast solution described above, and left on ice for 20 minutes. To this solution, 60% PEG (polyethylene glycol) 4000 solution was added stepwise while mixing in the order of 200 μl, 200 μl, and 800 μl, and left on ice for 20 minutes to incorporate both plasmids into the cells. 6 ml of STC was added to dilute the PEG, mixed with RM medium cooled to about 40 ° C., and dispensed into a petri dish. Approximately 24 hours later, 100 μg / ml hygromycin B (non-transformant F. oxysporum-sensitive antibiotic) was overlaid with 1.0% water agar, and the strain that had grown in the upper layer was used as the transformant. Used for. This transformation is performed using two plasmids simultaneously. It is known that two plasmids are simultaneously incorporated into the genome with high efficiency, and this method is called cotransformation. In this example, pCSN43 that makes the filamentous fungus resistant to hygromycin is used as one of the two, so that the transformant can be selected using a medium supplemented with hygromycin B.

得られた2株の形質転換体のゲノムDNAを抽出し、A+B、C+Dのプライマー (表1、図5) の組合せでPCRを行い、交配型を調査した。その結果、tomino1-cのMAT1-2と880621a-1のMAT1-1が入れ替わった株tomino1-c (ΔMAT1-2; MAT1-1) [以降R1とする] と入換えが起こらずMAT1-1が異所に挿入された株tomino1-c (MAT1-2; MAT1-1) [以降E1とする] が得られたことが確認された (図5B) 。   Genomic DNAs of the two transformants obtained were extracted, PCR was performed with combinations of A + B and C + D primers (Table 1, FIG. 5), and the mating type was investigated. As a result, MAT1-2 of MAT1-2 and MAT1-1 of 880621a-1 were replaced by TOM1-1 and MAT1-1 was not replaced with the strain tomino1-c (ΔMAT1-2; MAT1-1) [hereinafter referred to as R1]. It was confirmed that the strain tomino1-c (MAT1-2; MAT1-1) [hereinafter referred to as E1] inserted in the ectopic site was obtained (FIG. 5B).

これらの形質転換体の染色体を上述と同様にCHEF電気泳動で分離し、染色体パターンを調査した。その結果、形質転換体(R1およびE1)の染色体パターンが親株(tomino 1-c)と相同になっていることが分かった (図6) 。   The chromosomes of these transformants were separated by CHEF electrophoresis as described above, and the chromosome pattern was investigated. As a result, it was found that the chromosome pattern of the transformants (R1 and E1) was homologous to the parent strain (tomino 1-c) (FIG. 6).

この結果、F.oxysporumにおいて、染色体パターンがtomino 1-c (MAT1-2)と相同でありながら、交配型が異なる(MAT1-1)菌株(R1)を人工的に作出できたことになる。本実施例の特徴は、単に交配型の異なる株を得たのではなく、染色体パターンを相同にした上で交配型が異なる株を作出した点にある。   As a result, in F. oxysporum, a strain (R1) having a chromosomal pattern homologous to tomino 1-c (MAT1-2) but having a different mating type (MAT1-1) could be artificially produced. The feature of this example is not that strains having different mating types were simply obtained, but that strains having different mating types were produced while homogenizing chromosome patterns.

上述までに作出した形質転換体(R1、MAT1-1)とその親株tomino 1-c(MAT1-2)の掛け合わせ試験を行った。試験管の底に3 cmほどの水寒天を入れ、オートクレーブ滅菌を行った。PSA、MMAのいずれかの平板培地上で両菌株を5日間ほど培養し、生育が良好な菌そうの先端部を培地ごと、約1 cm四方に切り出し、先述の試験管内の水寒天上に置いた。次に、一ヶ月以上滅菌土で育苗したトマト (品種: ポンデローザ) の茎の気根を取り除き、約5 cmの長さに切断したものを、70 %エタノール中で5分間振とうしながら洗浄した。さらに有効塩素濃度1 %に調整した次亜塩素酸ナトリウム水溶液中で5分間上下に振とうし、殺菌した。次亜塩素酸ナトリウム水溶液を捨て、滅菌RO水で洗浄した。この洗浄作業を3回繰り返した。得られた表面殺菌済みのトマトの茎を、茎の下端が試験管内の水寒天に届くように垂直に入れて、試験管にシリコ栓をし、25℃、明暗12時間周期に設定したインキュベータ内で培養した。   A crossover test of the transformant (R1, MAT1-1) produced so far and its parent strain tomino 1-c (MAT1-2) was performed. About 3 cm of water agar was added to the bottom of the test tube and autoclaved. Both strains are cultured for about 5 days on a PSA or MMA plate medium, and the tip of the fungus cell with good growth is cut out about 1 cm square together with the medium and placed on water agar in the above-mentioned test tube. It was. Next, the air roots of tomatoes (variety: Ponderosa) grown in sterile soil for more than a month were removed, and the cut pieces of about 5 cm length were washed with shaking in 70% ethanol for 5 minutes. Furthermore, it was sterilized by shaking up and down for 5 minutes in an aqueous sodium hypochlorite solution adjusted to an effective chlorine concentration of 1%. The aqueous sodium hypochlorite solution was discarded and washed with sterile RO water. This washing operation was repeated three times. Place the obtained surface-sterilized tomato stalk vertically so that the lower end of the stalk reaches the water agar in the test tube, plug the test tube into a silico, and set it at 25 ° C in a 12 hour light / dark cycle. In culture.

培養14日後、tomino1-c×R1の組合せで菌を入れた試験管内で、有性世代に特異的な器官である子嚢殻が形成されているのを確認した。更に顕微鏡下で観察を行ったところ、子嚢殻内部に子嚢、及び、子嚢の内部に8個の子嚢胞子が確認された。従って、上述の条件下で交配が行われたことが示された (図7) 。   After 14 days of culturing, it was confirmed that an ascocar, an organ specific to the sexual generation, was formed in a test tube containing a combination of tomino1-c × R1. Further observation under a microscope revealed ascending sac and 8 ascospores inside the sac. Therefore, it was shown that mating was performed under the above-mentioned conditions (FIG. 7).

糸状菌は、交配の為に種ごとに異なる環境条件を要求する。本実施例では、上述がF. oxysporumの交配好適条件であることを見出したことも初の報告であり、意義深い。   Filamentous fungi require different environmental conditions for each species for mating. In this example, it was also the first report that the above-mentioned was found to be suitable conditions for mating F. oxysporum, which is significant.

以上のように、遺伝的なバックグラウンドが極めて近く、交配型が異なる菌株を作出し、交配好適条件で掛け合わせることによって、交配不全性菌糸状菌の交配が可能になった。また、この結果は、F. oxysporumが交配に係わる機能を完全に維持していることの初の証明である。   As described above, by producing strains having very close genetic background and different mating types and crossing them under suitable mating conditions, mating of deficient mating fungi became possible. This is also the first proof that F. oxysporum has fully maintained mating functions.

両交配型遺伝子を保持するE1株は、上述の条件でE1の菌そうのみを植えたところ、上述と同様な完全世代を形成した。ここで使用したE1株は、背景技術で既述したホモタリック株と同様に、両交配型遺伝子を保持しているため、リーズナブルである。   The E1 strain carrying the double-crossing gene formed the same complete generation as described above when only E1 fungus was planted under the above-mentioned conditions. The E1 strain used here is reasonable because it retains the double-crossing gene in the same manner as the homothallic strain described in the background art.

なお、配列表において、880621a-1 MAT1-1 locusは、MAT1-1領域を含む塩基配列であり、MAT1-1領域は2897-7501 bpである。tomino1-c MAT1-2 leftは880621a-1の1219-2754 bpに相当する部分の配列であり、tomino1-c MAT1-2 rightは880621a-1の7556-10302 bpに相当する部分の配列である。   In the sequence listing, 880621a-1 MAT1-1 locus is a base sequence including the MAT1-1 region, and the MAT1-1 region is 2897-7501 bp. tomino1-c MAT1-2 left is a sequence corresponding to 1219-2754 bp of 880621a-1, and tomino1-c MAT1-2 right is a sequence corresponding to 7556-10302 bp of 880621a-1.

以上のことから、本実施例によれば以下のような効果が得られる。
今後Fusarium oxysporumの完全世代の命名が可能となる。
Fusarium oxysporumにおいて、遺伝学的手法に基づき、交配によって遺伝子機能(植物病原性、宿主特異性なども含む)の解析などが可能になる。
他の交配不全性の植物病原性糸状菌種でも同様な方法で発病因子の解析に遺伝的手法が利用できるようになる。
From the above, according to the present embodiment, the following effects can be obtained.
In the future, the full generation of Fusarium oxysporum can be named.
In Fusarium oxysporum, genetic functions (including plant pathogenicity and host specificity) can be analyzed by mating based on genetic techniques.
Genetic methods can be used to analyze pathogenic factors in the same way for other dysmorphic phytopathogenic fungal species.

植物病原性でない交配不全性の糸状菌(例えばAspergillus oryzae)にも同様な手法が適用可能であり、完全世代を形成させること、交配試験による遺伝子機能などの遺伝解析が可能になる。
産業上有用な交配不全性菌(Aspergillus oryzae、Penicillium spp.)で、交配による形質の改善、すなわち、育種が可能になる。
A similar technique can be applied to non-phytopathogenic filamentous fungi (for example, Aspergillus oryzae), and it is possible to form a complete generation and to perform genetic analysis such as gene function by mating tests.
It is an industrially useful mating deficient bacterium (Aspergillus oryzae, Penicillium spp.), And it is possible to improve traits by breeding, that is, breeding.

産業上有用な交配不全性菌(例えばAspergillus oryzae、Penicillium spp.)で、交配による形質の改善、すなわち、育種が可能になる。   An industrially useful mating deficient bacterium (for example, Aspergillus oryzae, Penicillium spp.) Enables improvement of traits by mating, that is, breeding.

【0007】
非特許文献10:Sharon A.,Yamaguchi K.,Christiansen S.,Horwitz B.A.,Yoder O.C.,Turgeon B.G.,1996.An asexual fungus has the potential for sexual development.Mol Gen Genet 250:11−122
非特許文献11:Yun,Sung−Hwan,Arie,Tsutomu,Kaneko,Isao,Yoder,O.C.,Turgeon,B.Gillian,2000.Molecular Organization of Mating Type Loci in Heterothallic,Homothallic,and Asexual Gibberella/Fusarium Species.Fungal Genet Biol 31:7−20
非特許文献12:今井峻介、寺岡 徹、有江 力 2007.「Fusarium oxysporumの交配型遺伝子領域(MAT1)の入換え株の作出」平成19年度日本植物病理学会関東部会講演要旨集8
発明の開示
発明が解決しようとする課題
上述したことは、交配不全であるFusarium oxysporumでは、交配し得る近縁の集団内にパートナーが不在になってしまっており、これが交配不全の原因である可能性を示唆した。すなわち、原因として推測された上記背景技術の項の上記(3)の可能性を示唆したものである。
そのため、交配不全性糸状菌を交配する新規な方法の開発が望まれている。
本発明は、交配不全性糸状菌を交配する新規な方法を提供することを目的とする。
課題を解決するための手段
上記課題を解決し、本発明の目的を達成するため、本発明者らは、今回、交親株である交配不全性糸状菌と、該親株の交配型遺伝子領域を、該親株と異なるが同種の交配型不全性株に由来する別の交配型遺伝子領域で入換えることによって染色体パターンが実質的に相同でありながら交配型が異なる入換え株とを交配させることを含む方法によって、交配不全性糸状菌を交配可能にする方法を見出した。
ここで、限定されるわけではないが、糸状菌が、植物病原性糸状菌又は麹菌であることが好ましい。また、限定されるわけではないが、植物病原性糸状菌がFusarium oxysporumであることが好ましい。また、限定されるわけではないが、入換えが相同組換えによって行なわれることが好ましい。
本発明は、Fusarium oxysporum tomino1−c株と、Fusarium oxysporum tomino1−c株のMAT1−2とFusarium oxysporum 880621a−1株のMAT1−1が入れ替わったFusarium oxysporum tomino1−c株(形質転換体R1とする)とを交配する方法である。
本発明は、他の交配不全性株に由来する交配型遺伝子領域が挿入された、交配不全性株を培養する方法である。
本発明は、Fusarium oxysporum 880621a−1株のMAT1−1が挿入されたFusarium oxysporum tomino1−c株(形質転換体E1とする)を培養する方法である。
本発明は、親株である交配不全性糸状菌と、該親株の交配型遺伝子領域を、該親株と異なるが同種の交配不全性株に由来する別の交配型遺伝子領域で入換えることによって作出された、染色体パターンが実質的に相同でありながら交配型が異なる株とを交配させることにより、遺伝学的手法に基づき、遺伝子機能(植物病原性、宿主特異性も含む)を解析する方法である。
本発明は、Fusarium oxysporum tomino1−c株と、Fusarium oxysporum tomino1−c株のMAT1−2とFusarium oxysporum 880621a−1株のMAT1−1が入れ替わったFusarium oxysporum tomino1−c株とを交配させることにより、遺伝学的手法に基づき、遺伝子機能(植物病原性、宿主特異性も含む)を解析する方法である。
[0007]
Non-Patent Document 10: Sharon A. et al. , Yamaguchi K .; , Christiansen S .; Horwitz B. A. , Yoder O. C. , Turgeon B. G. , 1996. An sexual fungus has the potential for sex development. Mol Gen Genet 250: 11-122
Non-Patent Document 11: Yun, Sung-Hwan, Arie, Tsutomu, Kaneko, Isao, Yoder, O. C. Turgeon, B .; Gillian, 2000. Molecular Organization of Matching Type Loc in Heterothallic, Homothallic, and Axial Gibbellaella / Fusarium Species. Fungal Genet Biol 31: 7-20
Non-Patent Document 12: Shusuke Imai, Toru Teraoka, Tsutomu Arie 2007. “Creation of a replacement gene for the mating type gene region (MAT1) of Fusarium oxysporum” Abstracts of the 2007 Kanto Division Meeting of the Japanese Society of Plant Pathology 8
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention As described above, in Fusarium oxysporum, which is a mating failure, there is no partner in the close population that can be mated, which may cause the mating failure Suggested sex. That is, it suggests the possibility of the above (3) in the background art section presumed as the cause.
Therefore, the development of a new method for mating deficient mating fungi is desired.
An object of the present invention is to provide a novel method for mating deficient mating fungi.
Means for Solving the Problems In order to solve the above-mentioned problems and achieve the object of the present invention, the present inventors have determined that the mating-deficient filamentous fungus that is a mating strain and the mating-type gene region of the parent strain, Crossing with a replacement strain having a different chromosomal type while having a substantially homologous chromosomal pattern by replacement with another hybrid-type gene region that is different from the parent strain but derived from the same type of hybrid deficiency strain By the method, the method of making a mating deficient filamentous fungus possible was discovered.
Here, although not necessarily limited, it is preferable that the filamentous fungus is a phytopathogenic filamentous fungus or a koji mold. Moreover, although not necessarily limited, it is preferable that a phytopathogenic filamentous fungus is Fusarium oxysporum. Moreover, although not necessarily limited, it is preferable that replacement | exchange is performed by homologous recombination.
The present invention includes a Fusarium oxysporum tomino 1-c strain, a Fusarium oxysporum tomino 1-c strain MAT1-2 and a Fusarium oxysporum 880621a-1 MAT1-1 strain transformed into a Fusarium oxysporum tom1R1 transformant (R) Is a method of mating.
The present invention is a method for culturing a mating deficient strain in which a mating type gene region derived from another mating deficient strain is inserted.
The present invention is a method for culturing a Fusarium oxysporum tomino1-c strain (referred to as transformant E1) into which MAT1-1 of Fusarium oxysporum 880621a-1 strain has been inserted.
The present invention is produced by replacing a parental mating deficient fungus and a mating type gene region of the parent strain with another mating type gene region different from the parent strain but derived from the same type of mating deficient strain. In addition, it is a method of analyzing gene function (including plant pathogenicity and host specificity) based on genetic methods by mating with strains that have substantially homologous chromosome patterns but different mating types. .
The present invention relates to a Fusarium oxysporum tomino 1-c strain, a Fusarium oxysporum tomino 1-c strain MAT1-2 and a Fusarium oxysporum 880621a-1 strain MAT1-1, and an inherited strain of Fusarium oxysporum tominoc 1 to 1 This is a method for analyzing gene function (including plant pathogenicity and host specificity) based on a genetic approach.

Claims (5)

交配不全性の糸状菌を交配する方法であって、親株である交配不全性糸状菌と、該親株の交配型遺伝子領域を、該親株と異なるが同種の交配不全性株に由来する別の交配型遺伝子領域で入換えることによって作出された、染色体パターンが実質的に相同でありながら交配型が異なる株とを交配させることを含む、前記方法。   A method of mating an incompetent filamentous fungus, wherein the mating incompetent filamentous fungus that is a parent strain and another mating type gene region of the parent strain are different from the parent strain but derived from the same incompatibility strain Said method comprising crossing strains produced by transposition in the type gene region, with strains having substantially different chromosomal patterns but different mating types. 糸状菌が、植物病原性糸状菌、麹菌、又はその他の子嚢菌である、請求項1記載の方法。   The method according to claim 1, wherein the filamentous fungus is a phytopathogenic filamentous fungus, gonococcus, or other ascomycetes. 植物病原性糸状菌が、Fusarium oxysporumである、請求項1又は2記載の方法。   The method according to claim 1 or 2, wherein the phytopathogenic fungus is Fusarium oxysporum. 交配型遺伝子領域又は別の交配型遺伝子領域が、MAT1-1又はMAT1-2のいずれかである、請求項1〜3のいずれか1項に記載の方法。   The method according to any one of claims 1 to 3, wherein the mating type gene region or another mating type gene region is either MAT1-1 or MAT1-2. 交配型遺伝子領域の入換えが相同組換えによって行なわれる、請求項1〜4のいずれか1項に記載の方法。   The method according to any one of claims 1 to 4, wherein the replacement of the mating type gene region is performed by homologous recombination.
JP2009538182A 2007-10-21 2008-10-19 Method for mating incompetent filamentous fungi Expired - Fee Related JP5483001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009538182A JP5483001B2 (en) 2007-10-21 2008-10-19 Method for mating incompetent filamentous fungi

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007273264 2007-10-21
JP2007273264 2007-10-21
PCT/JP2008/068907 WO2009054330A1 (en) 2007-10-21 2008-10-19 Method of mating fungus showing mating failure
JP2009538182A JP5483001B2 (en) 2007-10-21 2008-10-19 Method for mating incompetent filamentous fungi

Publications (2)

Publication Number Publication Date
JPWO2009054330A1 true JPWO2009054330A1 (en) 2011-03-03
JP5483001B2 JP5483001B2 (en) 2014-05-07

Family

ID=40579436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009538182A Expired - Fee Related JP5483001B2 (en) 2007-10-21 2008-10-19 Method for mating incompetent filamentous fungi

Country Status (2)

Country Link
JP (1) JP5483001B2 (en)
WO (1) WO2009054330A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130011876A1 (en) 2010-02-04 2013-01-10 Dsm Ip Assetts, B.V. Process for preparing filamentous fungal strains having a sexual cycle and a process for preparing sexually crossed filamentous fungal strains
FR3068710A1 (en) 2017-07-07 2019-01-11 IFP Energies Nouvelles PROCESS FOR RE-ESTABLISHING SEXUAL REPRODUCTION IN TRICHODERMA REESEI FUNGUS
JP6979309B2 (en) * 2017-09-01 2021-12-08 月桂冠株式会社 Jiuqu making method, rice koji product manufacturing method and sake manufacturing method

Also Published As

Publication number Publication date
WO2009054330A1 (en) 2009-04-30
JP5483001B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
Lee et al. The evolution of sex: a perspective from the fungal kingdom
Lin et al. Mechanisms of homothallism in fungi and transitions between heterothallism and homothallism
Kahmann et al. REMI (restriction enzyme mediated integration) and its impact on the isolation of pathogenicity genes in fungi attacking plants
James et al. A single mating-type locus composed of homeodomain genes promotes nuclear migration and heterokaryosis in the white-rot fungus Phanerochaete chrysosporium
Findley et al. Discovery of a modified tetrapolar sexual cycle in Cryptococcus amylolentus and the evolution of MAT in the Cryptococcus species complex
Sasaki et al. Infection of Rosellinia necatrix with purified viral particles of a member of Partitiviridae (RnPV1-W8)
Du et al. Mating systems in true morels (Morchella)
Lambou et al. The crucial role of the Pls1 tetraspanin during ascospore germination in Podospora anserina provides an example of the convergent evolution of morphogenetic processes in fungal plant pathogens and saprobes
Lu et al. Altering sexual reproductive mode by interspecific exchange of MAT loci
JP5483001B2 (en) Method for mating incompetent filamentous fungi
Bos Somatic recombination
Leach et al. Heterokaryon incompatibility in the plant-pathogenic fungus, Cochliobolus heterostrophus
Lee et al. Uniparental inheritance and replacement of mitochondrial DNA in Neurospora tetrasperma.
Huber Genetic analysis of vegetative incompatibility polymorphisms and horizontal transmission in the chestnut blight fungus, Cryphonectria parasitica
Judelson et al. Recombination pathways in Phytophthora infestans: polyploidy resulting from aberrant sexual development and zoospore-mediated heterokaryosis
Migheli et al. Stability of transformed antagonistic Fusarium oxysporum strains in vitro and in soil microcosms
EP0708826A1 (en) Production and application of transgenic mushroom mycelium and fruitbodies
Wang et al. Agrobacterium tumefaciens-mediated transformation of Valsa mali: an efficient tool for random insertion mutagenesis
Yun Molecular genetics and manipulation of pathogenicity and mating determinants in Mycosphaerella zeae-maydis and Cochliobolus heterostrophus
Passer et al. Obligate sexual reproduction of a homothallic fungus closely related to the Cryptococcus pathogenic species complex
Zhang et al. Functional characterization of two cell wall integrity pathway components of the MAPK cascade in Phomopsis longicolla
Morgan Yeast strain improvement by protoplast fusion and transformation
Challen et al. Science and Cultivation of Edible Fungi, Van Griensven (ed.)© 2000 Balkema, Rotterdam, ISBN 90 5809 1430 Transformation technologies for mushrooms
Chen et al. Efficient transformation and expression of gfp gene in Valsa mali var. mali
Banerjee Identification and characterization of genes involved in pathway (s) regulating mounds and fruiting bodies in Schizophyllum commune

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140204

R150 Certificate of patent or registration of utility model

Ref document number: 5483001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140311

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees