JPWO2008140074A1 - Method for producing optically active carboxylic acid ester - Google Patents

Method for producing optically active carboxylic acid ester Download PDF

Info

Publication number
JPWO2008140074A1
JPWO2008140074A1 JP2009514165A JP2009514165A JPWO2008140074A1 JP WO2008140074 A1 JPWO2008140074 A1 JP WO2008140074A1 JP 2009514165 A JP2009514165 A JP 2009514165A JP 2009514165 A JP2009514165 A JP 2009514165A JP WO2008140074 A1 JPWO2008140074 A1 JP WO2008140074A1
Authority
JP
Japan
Prior art keywords
carboxylic acid
optically active
cdcl
nmr
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009514165A
Other languages
Japanese (ja)
Other versions
JP5417560B2 (en
Inventor
椎名 勇
勇 椎名
中田 健也
健也 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Original Assignee
Tokyo University of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science filed Critical Tokyo University of Science
Priority to JP2009514165A priority Critical patent/JP5417560B2/en
Publication of JPWO2008140074A1 publication Critical patent/JPWO2008140074A1/en
Application granted granted Critical
Publication of JP5417560B2 publication Critical patent/JP5417560B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0215Sulfur-containing compounds
    • B01J31/0218Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0245Nitrogen containing compounds being derivatives of carboxylic or carbonic acids
    • B01J31/0247Imides, amides or imidates (R-C=NR(OR))
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0271Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds also containing elements or functional groups covered by B01J31/0201 - B01J31/0231
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B57/00Separation of optically-active compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/88Separation; Purification; Use of additives, e.g. for stabilisation by treatment giving rise to a chemical modification of at least one compound
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/60Separation; Purification; Stabilisation; Use of additives by treatment giving rise to chemical modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Furan Compounds (AREA)
  • Pyrane Compounds (AREA)

Abstract

ラセミの2級アルコールとカルボン酸から光学活性カルボン酸エステルを直接、製造する方法を提供すること、及び前記方法と同じ手段によって、ラセミの2級アルコールを光学分割する方法を提供すること。不斉エステル化触媒として(−)−テトラミソール、(+)−テトラミソール、(−)−ベンゾテトラミソール、(+)−ベンゾテトラミソール等を用い、安息香酸無水物又はその誘導体の存在下で、ラセミの2級アルコールのいずれか一方のエナンチオマーとカルボン酸とを脱水縮合反応させて光学活性カルボン酸エステルを製造し、未反応のもう一方のエナンチオマーを光学分割する。To provide a method for directly producing an optically active carboxylic acid ester from a racemic secondary alcohol and a carboxylic acid, and to provide a method for optical resolution of a racemic secondary alcohol by the same means as described above. (-)-Tetramisol, (+)-tetramisole, (-)-benzotetramisol, (+)-benzotetramisol, etc. are used as asymmetric esterification catalysts in the presence of benzoic anhydride or its derivatives. The enantiomer of any one of the racemic secondary alcohols and a carboxylic acid are subjected to a dehydration condensation reaction to produce an optically active carboxylic acid ester, and the other unreacted enantiomer is optically resolved.

Description

本発明は、ラセミの2級アルコールとカルボン酸から光学活性カルボン酸エステルを製造する方法、ラセミの2級アルコールを光学分割する方法、及び第2級水酸基を有するラセミのヒドロキシカルボン酸から光学活性ラクトンを製造する方法に関する。   The present invention relates to a method for producing an optically active carboxylic acid ester from a racemic secondary alcohol and a carboxylic acid, a method for optically resolving a racemic secondary alcohol, and an optically active lactone from a racemic hydroxycarboxylic acid having a secondary hydroxyl group. It relates to a method of manufacturing.

光学活性カルボン酸エステル及び2級アルコールは、医薬品、生理活性物質の中間体、天然物合成の中間体等として、様々な分野に使用されている。   Optically active carboxylic acid esters and secondary alcohols are used in various fields as pharmaceuticals, intermediates for physiologically active substances, intermediates for natural product synthesis, and the like.

光学活性カルボン酸エステルを製造する方法として、不斉アシル化触媒を用いて、ラセミの2級アルコールと、酸塩化物又は酸無水物とを反応させることによって、ラセミの2級アルコールから対応するエステルを製造する方法が知られている。また、特許文献1には、特定の不斉アシル化触媒を用いて、ラセミの2級アルコールのうち一方のエナンチオマーを選択的にアシル化して光学分割する方法が記載されている。   As a method for producing an optically active carboxylic acid ester, by reacting a racemic secondary alcohol with an acid chloride or an acid anhydride using an asymmetric acylation catalyst, a corresponding ester from the racemic secondary alcohol is obtained. A method of manufacturing is known. Patent Document 1 describes a method in which one enantiomer of a racemic secondary alcohol is selectively acylated and optically resolved using a specific asymmetric acylation catalyst.

非特許文献1には、テトラミソール又はベンゾテトラミソールを触媒として用い、酸無水物の存在下で、ラセミの2級ベンジル性アルコールから光学活性エステルを製造すると共に、もう一方の2級アルコールのエナンチオマーを得る方法が記載されている。非特許文献2には、ベンゾテトラミソールを触媒として用いて、酸無水物の存在下でラセミのプロパルギル性アルコールを同様に光学分割する方法が記載されている。   In Non-Patent Document 1, an optically active ester is produced from a racemic secondary benzylic alcohol in the presence of an acid anhydride using tetramisol or benzotetramisole as a catalyst, and the other enantiomer of the secondary alcohol Is described. Non-Patent Document 2 describes a method for optically resolving racemic propargyl alcohol in the presence of an acid anhydride using benzotetramisole as a catalyst.

しかし、これらの方法では、アシル化剤として用いる酸塩化物や酸無水物の構造が極めて限定されているため、基質一般性に乏しいという問題があった。アルコールとカルボン酸から直接、エステルを製造することができれば、この問題は解決されるが、これまでに、アルコールとカルボン酸から、直接、光学活性カルボン酸エステルを製造する方法は知られていなかった。
特開2006−15255号公報 Org.Lett.,(2006)Vol.8,No.7,p.1351−1354 Org.Lett.,(2006)Vol.8,No.21,p.4859−4861
However, these methods have a problem of poor substrate generality because the structures of acid chlorides and acid anhydrides used as acylating agents are extremely limited. Although this problem can be solved if an ester can be produced directly from an alcohol and a carboxylic acid, there has been no known method for producing an optically active carboxylic acid ester directly from an alcohol and a carboxylic acid. .
JP 2006-15255 A Org. Lett. , (2006) Vol. 8, no. 7, p. 1351-1354 Org. Lett. , (2006) Vol. 8, no. 21, p. 4859-4861

本発明の目的は、ラセミの2級アルコールとカルボン酸から光学活性カルボン酸エステルを直接、製造する方法を提供することである。   An object of the present invention is to provide a method for directly producing an optically active carboxylic acid ester from a racemic secondary alcohol and a carboxylic acid.

本発明の他の目的は、前記方法と同じ手段によって、ラセミの2級アルコールを光学分割する方法を提供することである。   Another object of the present invention is to provide a method for optical resolution of racemic secondary alcohols by the same means as described above.

本発明の別の目的は、第2級水酸基を有するラセミのヒドロキシカルボン酸から光学活性ラクトンを直接、製造する方法を提供することである。   Another object of the present invention is to provide a method for directly producing an optically active lactone from a racemic hydroxycarboxylic acid having a secondary hydroxyl group.

本発明者らは、先に、置換安息香酸無水物を脱水縮合剤として用いるカルボン酸とアルコールとの効率的な脱水縮合反応方法を開発した。この反応によると、塩基触媒である4−ジメチルアミノピリジン(DMAP)の存在下で、縮合剤として2−メチル−6−ニトロ安息香酸無水物を用いることで、カルボン酸とアルコールを基質とした場合には対応するエステルを製造することができる。   The present inventors have previously developed an efficient dehydration condensation method for a carboxylic acid and an alcohol using a substituted benzoic anhydride as a dehydration condensation agent. According to this reaction, when 2-methyl-6-nitrobenzoic anhydride is used as a condensing agent in the presence of 4-dimethylaminopyridine (DMAP) as a base catalyst, carboxylic acid and alcohol are used as substrates. Corresponding esters can be produced.

一方、非特許文献1及び2には、市販品であるテトラミソール及びその誘導体であるベンゾテトラミソールが、2級アルコールの速度論的光学分割に効果的な触媒であることが報告されていた。そこで、上記の置換安息香酸無水物法に対して、塩基触媒であるDMAPの代わりに、テトラミソール等を適用する可能性について鋭意、研究した結果、本発明を完成させるに至った。   On the other hand, Non-Patent Documents 1 and 2 reported that tetramisole, which is a commercial product, and benzotetramisole, which is a derivative thereof, are effective catalysts for the kinetic optical resolution of secondary alcohols. Therefore, as a result of earnest and research on the possibility of applying tetramisol or the like instead of DMAP which is a base catalyst to the above substituted benzoic anhydride method, the present invention has been completed.

すなわち、本発明は、以下のものを提供する。   That is, the present invention provides the following.

(1)不斉エステル化触媒として、下記一般式(1)、(2)、(3)又は(4)で示される化合物を用い、安息香酸無水物又はその誘導体の存在下で、ラセミの2級アルコールのいずれか一方のエナンチオマーとカルボン酸とを脱水縮合反応させて、光学活性カルボン酸エステルを製造する方法。

Figure 2008140074
Figure 2008140074
Figure 2008140074
Figure 2008140074
上記の式中、Xは、下記化学式(5)で表される置換基のいずれかである。
Figure 2008140074
(式中、Rは保護基である。)(1) As asymmetric esterification catalyst, a compound represented by the following general formula (1), (2), (3) or (4) is used, and in the presence of benzoic anhydride or a derivative thereof, racemic 2 A method of producing an optically active carboxylic acid ester by dehydrating and condensing any enantiomer of a secondary alcohol and a carboxylic acid.
Figure 2008140074
Figure 2008140074
Figure 2008140074
Figure 2008140074
In the above formula, X is any of the substituents represented by the following chemical formula (5).
Figure 2008140074
(In the formula, R is a protecting group.)

なお、上記(1)及び(2)で表される化合物のうち、XがPhであるものが、テトラミソールであり、上記(3)及び(4)で表される化合物のうち、XがPhであるものが、ベンゾテトラミソールである。   Of the compounds represented by (1) and (2) above, the compound in which X is Ph is tetramisole, and among the compounds represented by (3) and (4) above, X is Ph. One is benzotetramisole.

(2)前記ラセミの2級アルコールの不斉炭素原子に隣接する炭素原子の少なくとも1つが、多重結合により他の原子と結合している(1)に記載の光学活性カルボン酸エステルを製造する方法。   (2) The method for producing the optically active carboxylic acid ester according to (1), wherein at least one carbon atom adjacent to the asymmetric carbon atom of the racemic secondary alcohol is bonded to another atom by a multiple bond. .

(3)前記ラセミの2級アルコールの不斉炭素原子に隣接する炭素原子のうち、一の原子が3重結合により他の原子と結合している原子であり、別の原子が2重結合により別の他の原子と結合している原子であって、前記3重結合にコバルト錯体が結合している(1)に記載の光学活性カルボン酸エステルを製造する方法。   (3) Of the carbon atoms adjacent to the asymmetric carbon atom of the racemic secondary alcohol, one atom is an atom bonded to another atom by a triple bond, and another atom is a double bond. The method for producing the optically active carboxylic acid ester according to (1), wherein the cobalt complex is bonded to the triple bond, which is an atom bonded to another atom.

(4)前記安息香酸無水物の誘導体は、フェニル環に電子供与性基が置換されたものである(1)に記載の光学活性カルボン酸エステルを製造する方法。   (4) The method for producing an optically active carboxylic acid ester according to (1), wherein the benzoic anhydride derivative is a phenyl ring in which an electron donating group is substituted.

(5)不斉エステル化触媒として、一般式(1)、(2)、(3)又は(4)で示される化合物を用い、安息香酸無水物又はその誘導体の存在下で、ラセミの2級アルコールのいずれか一方のエナンチオマーとカルボン酸とを選択的に反応させることによって、ラセミの2級アルコールを光学分割する、ラセミの2級アルコールの光学分割法。

Figure 2008140074
Figure 2008140074
Figure 2008140074
Figure 2008140074
上記の式中、Xは、下記化学式(5)で表される置換基のいずれかである。
Figure 2008140074
(式中、Rは保護基である。)(5) Racemic secondary in the presence of benzoic anhydride or a derivative thereof using a compound represented by the general formula (1), (2), (3) or (4) as an asymmetric esterification catalyst A method for optical resolution of racemic secondary alcohols, wherein a racemic secondary alcohol is optically resolved by selectively reacting either enantiomer of alcohol with a carboxylic acid.
Figure 2008140074
Figure 2008140074
Figure 2008140074
Figure 2008140074
In the above formula, X is any of the substituents represented by the following chemical formula (5).
Figure 2008140074
(In the formula, R is a protecting group.)

(6) 不斉エステル化触媒として、一般式(1)、(2)、(3)又は(4)で示される化合物を用い、安息香酸無水物又はその誘導体の存在下で、第2級水酸基を有するラセミのヒドロキシカルボン酸のいずれか一方のエナンチオマーの前記第2級水酸基を、分子内に存在するカルボン酸基と選択的に反応させることによって、光学活性ラクトンを製造する方法。

Figure 2008140074
Figure 2008140074
Figure 2008140074
Figure 2008140074
上記の式中、Xは、下記化学式(5)で表される置換基のいずれかである。
Figure 2008140074
(式中、Rは保護基である。)(6) As the asymmetric esterification catalyst, a secondary hydroxyl group is used in the presence of benzoic anhydride or a derivative thereof using a compound represented by the general formula (1), (2), (3) or (4) A process for producing an optically active lactone by selectively reacting the secondary hydroxyl group of one of the enantiomers of a racemic hydroxycarboxylic acid having a carboxylic acid group present in the molecule.
Figure 2008140074
Figure 2008140074
Figure 2008140074
Figure 2008140074
In the above formula, X is any of the substituents represented by the following chemical formula (5).
Figure 2008140074
(In the formula, R is a protecting group.)

本発明によると、ラセミの2級アルコールとカルボン酸から光学活性カルボン酸エステルを直接、製造することができる。   According to the present invention, an optically active carboxylic acid ester can be produced directly from a racemic secondary alcohol and a carboxylic acid.

また、本発明によると、前記方法と同じ手段によって、ラセミの2級アルコールを容易に光学分割することができる。   In addition, according to the present invention, racemic secondary alcohol can be easily optically resolved by the same means as the above method.

更に、本発明によれば、第2級水酸基を有するラセミのヒドロキシカルボン酸から光学活性カルボン酸エステルを直接、製造することができる。   Furthermore, according to the present invention, an optically active carboxylic acid ester can be produced directly from a racemic hydroxycarboxylic acid having a secondary hydroxyl group.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

<第一の実施形態>
以下、本発明の第一の実施形態について詳細に説明する。
<First embodiment>
Hereinafter, the first embodiment of the present invention will be described in detail.

本発明の第一の実施形態は、ラセミの2級アルコールとカルボン酸から、光学活性エステルを製造するに際して、不斉エステル化触媒として、一般式(1)、(2)、(3)又は(4)で示される化合物を用い、脱水縮合剤として、安息香酸無水物又はその誘導体を使用する点に特徴がある。

Figure 2008140074
Figure 2008140074
Figure 2008140074
Figure 2008140074
上記の式中、Xは、下記化学式(5)で表される置換基のいずれかである。
Figure 2008140074
(式中、Rは保護基である。)In the first embodiment of the present invention, when an optically active ester is produced from a racemic secondary alcohol and a carboxylic acid, a general ester (1), (2), (3) or ( 4) and using a benzoic anhydride or a derivative thereof as a dehydrating condensing agent.
Figure 2008140074
Figure 2008140074
Figure 2008140074
Figure 2008140074
In the above formula, X is any of the substituents represented by the following chemical formula (5).
Figure 2008140074
(In the formula, R is a protecting group.)

なお、上記(1)及び(2)で表される化合物のうち、XがPhであるものが、テトラミソールであり、上記(3)及び(4)で表される化合物のうち、XがPhであるものが、ベンゾテトラミソールである。   Of the compounds represented by the above (1) and (2), the compound in which X is Ph is tetramisol, and among the compounds represented by (3) and (4) above, X is Ph. One is benzotetramisole.

保護基Rは、通常の化学合成に用いられる保護基であり、例えば、アルキル基等が挙げられる。これらの化合物は、市販品として入手するか、これらの置換基を側鎖として有するアミノ酸から合成することができる。   The protecting group R is a protecting group used for normal chemical synthesis, and examples thereof include an alkyl group. These compounds can be obtained as commercial products or synthesized from amino acids having these substituents as side chains.

高いエナンチオ選択率(ee)及び高い相対反応速度比(s)を得る上で、一般式(3)又は(4)で示される化合物が好ましい。   In order to obtain high enantioselectivity (ee) and high relative reaction rate ratio (s), the compound represented by formula (3) or (4) is preferable.

本発明において、安息香酸無水物及びその誘導体は、脱水縮合剤として作用する。安息香酸無水物中のフェニル環は置換基を有してもよい。高いエナンチオ選択率(ee)及び高い相対反応速度比(s)を得る上で、無置換の安息香酸無水物及びフェニル環が電子供与性基、例えば、アルキル基、アルコキシ基、アミノ基、ヒドロキシル基等で置換された安息香酸無水物が好ましい。中でも、フェニル環が、炭素数1〜3のモノ、ジ又はトリ−アルキル基及びアルコキシ基で置換された安息香酸無水物が好ましく、モノ又はジ−メチル基及びメトキシ基で置換された安息香酸無水物がより好ましい。   In the present invention, benzoic anhydride and derivatives thereof act as a dehydrating condensation agent. The phenyl ring in benzoic anhydride may have a substituent. In obtaining a high enantioselectivity (ee) and a high relative reaction rate ratio (s), an unsubstituted benzoic anhydride and a phenyl ring are electron-donating groups such as alkyl groups, alkoxy groups, amino groups, hydroxyl groups. Preferred is benzoic anhydride substituted with or the like. Among them, a benzoic acid anhydride in which the phenyl ring is substituted with a mono-, di- or tri-alkyl group having 1 to 3 carbon atoms and an alkoxy group is preferable, and benzoic acid anhydride substituted with a mono- or di-methyl group and a methoxy group. More preferred.

2級アルコールとしては、任意のものを用いることができる。ただし、2級アルコールを(R)(R)CHOHで示した場合、R及びRは異なる置換基である。R及びRとしては、例えば、アルキル基、シクロアルキル基、アリールアルキル基、アリール基、ヘテロアリール基及びヘテロ環基等が挙げられる。これらの基は、置換基を有してもよい。分子中には二重結合又は三重結合が含まれていてもよく、中でも、2級アルコールの不斉炭素原子と隣接する炭素原子の1つが、化学式(6)、(7)、及び(7a)に示すように、二重結合、三重結合といった多重結合により他の原子と結合していることが好ましい。このような2級アルコールの例を以下に示す。Any secondary alcohol can be used. However, when the secondary alcohol is represented by (R 1 ) (R 2 ) CHOH, R 1 and R 2 are different substituents. Examples of R 1 and R 2 include an alkyl group, a cycloalkyl group, an arylalkyl group, an aryl group, a heteroaryl group, and a heterocyclic group. These groups may have a substituent. The molecule may contain a double bond or a triple bond. Among them, one of the carbon atoms adjacent to the asymmetric carbon atom of the secondary alcohol is represented by the chemical formulas (6), (7), and (7a). As shown in the figure, it is preferable to be bonded to another atom by a multiple bond such as a double bond or a triple bond. Examples of such secondary alcohols are shown below.

Figure 2008140074
Figure 2008140074

Figure 2008140074
Figure 2008140074

Figure 2008140074
Figure 2008140074

また、2級アルコールとしては、ラセミの2級アルコールの不斉炭素原子に隣接する炭素原子のうち、一の原子が3重結合により他の原子と結合している原子であり、別の原子が2重結合により別の他の原子と結合している原子である2級アルコールも用いることができる。このような2級アルコールとしては、例えば、化学式(7b)に示される化合物を挙げることができる。   The secondary alcohol is an atom in which one of the carbon atoms adjacent to the asymmetric carbon atom of the racemic secondary alcohol is bonded to another atom by a triple bond, and another atom is A secondary alcohol which is an atom bonded to another atom by a double bond can also be used. Examples of such secondary alcohols include compounds represented by chemical formula (7b).

Figure 2008140074
Figure 2008140074

一分子中に2重結合と3重結合とを有する上記2級アルコールを用いる場合、3重結合にコバルト錯体が結合することにより、3重結合が保護されていることが好ましい(例えば、化合物(7c))。本発明において、不斉炭素原子に隣接する炭素原子が有する多重結合は、エステル生成反応の立体選択性に寄与するが、同一分子内の2重結合と3重結合の両者が立体選択性に寄与した場合、結果として当該分子全体における立体選択性が失われる傾向にある一方で、3重結合を保護している場合には、残る2重結合のみが立体選択性に寄与する結果、分子全体における立体選択性が向上するためである。   When the secondary alcohol having a double bond and a triple bond in one molecule is used, the triple bond is preferably protected by binding a cobalt complex to the triple bond (for example, the compound ( 7c)). In the present invention, the multiple bond of the carbon atom adjacent to the asymmetric carbon atom contributes to the stereoselectivity of the ester formation reaction, but both the double bond and triple bond in the same molecule contribute to the stereoselectivity. As a result, the stereoselectivity in the whole molecule tends to be lost. On the other hand, when the triple bond is protected, only the remaining double bond contributes to the stereoselectivity. This is because the stereoselectivity is improved.

3重結合の保護のために用いられるコバルト錯体としては、一酸化炭素を配位子とするコバルト錯体、トリフェニルホスフィンを配位子とするコバルト錯体を挙げることができる。これらのコバルト錯体の調製は、従来公知の調製方法により行えばよい。   Examples of the cobalt complex used for protecting the triple bond include a cobalt complex having carbon monoxide as a ligand and a cobalt complex having triphenylphosphine as a ligand. These cobalt complexes may be prepared by a conventionally known preparation method.

ラセミ2級アルコールとのエステル化反応に用いられるカルボン酸も、任意のものを用いることができる。例えば、RCOOHで示されるカルボン酸において、Rとして、アルキル基、シクロアルキル基、アリールアルキル基、アリール基、ヘテロアリール基、ヘテロ環基等を有するカルボン酸が挙げられる。これらの基は、置換基を有してもよく、分子中に二重結合又は三重結合が含まれていてもよい。具体的には、Rとして、C、CHCH(CH、Ph(CH、Ph(CH、CHCH(CH、CHOCH、c−C11等を有する上記カルボン酸が挙げられる。Arbitrary things can also be used for the carboxylic acid used for esterification reaction with a racemic secondary alcohol. For example, in the carboxylic acid represented by R 3 COOH, examples of R 3 include carboxylic acids having an alkyl group, a cycloalkyl group, an arylalkyl group, an aryl group, a heteroaryl group, a heterocyclic group, and the like. These groups may have a substituent, and a double bond or a triple bond may be contained in the molecule. Specifically, as R 3 , C 2 H 5 , CH 3 CH (CH 2 ) 2 , Ph (CH 2 ) 2 , Ph (CH 2 ) 3 , CH 2 CH (CH 2 ) 2 , CH 3 OCH 2 And the above carboxylic acid having c-C 6 H 11 or the like.

本発明によると、ラセミの2級アルコールの一方のエナンチオマーが、不斉エステル化触媒と脱水縮合剤の存在下で、選択的にカルボン酸と反応して光学活性エステルを生成する結果、未反応の2級アルコールが光学活性を持った2級アルコールとして光学分割される。   According to the present invention, one enantiomer of a racemic secondary alcohol selectively reacts with a carboxylic acid in the presence of an asymmetric esterification catalyst and a dehydrating condensing agent to produce an optically active ester. The secondary alcohol is optically resolved as a secondary alcohol having optical activity.

本発明の反応は、溶媒中に不斉エステル化触媒、脱水縮合剤、ラセミアルコール及びカルボン酸を投入することによって行われる。溶媒中への投入方法は任意であり、これらを順次投入してもよいし、同時に投入してもよい。溶媒は制限されないが、ジクロロメタン、クロロベンゼンが好ましい。反応温度は0℃〜50℃、反応時間は1時間〜12時間が好ましい。   The reaction of the present invention is carried out by introducing an asymmetric esterification catalyst, a dehydrating condensing agent, a racemic alcohol and a carboxylic acid into a solvent. The charging method into the solvent is arbitrary, and these may be added sequentially or simultaneously. The solvent is not limited, but dichloromethane and chlorobenzene are preferable. The reaction temperature is preferably 0 ° C. to 50 ° C., and the reaction time is preferably 1 hour to 12 hours.

限定されるものではないが、通常、2級アルコール1当量に対して、それぞれカルボン酸0.5当量〜0.75当量、触媒1モル%〜10モル%が用いられる。脱水縮合剤は、カルボン酸に対して1.0当量〜1.2当量用いられる。また、反応促進剤として、ジイソプロピルエチルアミンをカルボン酸に対して2.0当量〜2.4当量用いることができる。   Although not limited, usually 0.5 equivalent to 0.75 equivalent of carboxylic acid and 1 mol% to 10 mol% of the catalyst are used per 1 equivalent of the secondary alcohol. The dehydrating condensation agent is used in an amount of 1.0 to 1.2 equivalents relative to the carboxylic acid. Further, as a reaction accelerator, diisopropylethylamine can be used in an amount of 2.0 equivalents to 2.4 equivalents with respect to the carboxylic acid.

飽和重曹水で反応を停止させた後、有機層を分取し、水層をジエチルエーテルで抽出して有機層と混合し、無水硫酸ナトリウムで乾燥する。溶液をろ過し、減圧濃縮してシリカゲル薄層クロマトグラフィーを用いて分取することにより、対応する光学活性エステル及び未反応の光学活性アルコールが得られる。   After stopping the reaction with saturated aqueous sodium hydrogen carbonate, the organic layer is separated, the aqueous layer is extracted with diethyl ether, mixed with the organic layer, and dried over anhydrous sodium sulfate. The solution is filtered, concentrated under reduced pressure, and fractionated using silica gel thin-layer chromatography to obtain the corresponding optically active ester and unreacted optically active alcohol.

<第二の実施形態>
以下、本発明の第二の実施形態について説明するが、下記説明においては、第一の実施形態と同一の語句には同一の記号を付し、第一の実施形態と同一の構成についてはその説明を省略する。
<Second Embodiment>
Hereinafter, the second embodiment of the present invention will be described. In the following description, the same symbols are attached to the same words and phrases as in the first embodiment, and the same configurations as those in the first embodiment are described. Description is omitted.

本発明の第二の実施形態は、不斉エステル化触媒として、一般式(1)、(2)、(3)又は(4)で示される化合物を用い、安息香酸無水物又はその誘導体の存在下で、第2級水酸基を有するラセミのヒドロキシカルボン酸のいずれか一方のエナンチオマーの第2級水酸基を、分子内に存在するカルボン酸基と選択的に反応させることによって、光学活性ラクトンを製造することに特徴を有する。

Figure 2008140074
Figure 2008140074
Figure 2008140074
Figure 2008140074
上記の式中、Xは、下記化学式(5)で表される置換基のいずれかである。
Figure 2008140074
(式中、Rは保護基である。)The second embodiment of the present invention uses a compound represented by the general formula (1), (2), (3) or (4) as an asymmetric esterification catalyst, and the presence of benzoic anhydride or a derivative thereof. An optically active lactone is produced by selectively reacting the secondary hydroxyl group of any enantiomer of a racemic hydroxycarboxylic acid having a secondary hydroxyl group with a carboxylic acid group present in the molecule. It has a special feature.
Figure 2008140074
Figure 2008140074
Figure 2008140074
Figure 2008140074
In the above formula, X is any of the substituents represented by the following chemical formula (5).
Figure 2008140074
(In the formula, R is a protecting group.)

第2級水酸基を有するヒドロキシカルボン酸としては、当該第2級水酸基が結合した炭素原子を不斉中心とする不斉ヒドロキシカルボン酸であれば、任意のものを用いることができるが、第2級アルコールが結合する不斉炭素原子に隣接する炭素原子の少なくとも一つが二重結合や三重結合などの多重結合を有しているものが好ましい。このようなヒドロキシカルボン酸としては、例えば、化学式(7d)で表される化合物を挙げることができ、具体的には、12−ヒドロキシ−12−フェニルドデカン酸、15−ヒドロキシ−15−フェニルペンタデカン酸、16−ヒドロキシ−16−フェニルヘキサデカン酸を挙げることができる。   Any hydroxycarboxylic acid having a secondary hydroxyl group may be used as long as it is an asymmetric hydroxycarboxylic acid having an asymmetric center at the carbon atom to which the secondary hydroxyl group is bonded. It is preferable that at least one of the carbon atoms adjacent to the asymmetric carbon atom to which the alcohol is bonded has a multiple bond such as a double bond or a triple bond. Examples of such hydroxycarboxylic acid include a compound represented by the chemical formula (7d), specifically, 12-hydroxy-12-phenyldodecanoic acid, 15-hydroxy-15-phenylpentadecanoic acid. 16-hydroxy-16-phenylhexadecanoic acid.

Figure 2008140074
(式中、nは正の整数である。)
Figure 2008140074
(In the formula, n is a positive integer.)

以下、本発明を実施例により説明する。   Hereinafter, the present invention will be described with reference to examples.

[実施例1 安息香酸無水物の置換基の効果(1)]
不斉エステル化触媒として(−)−テトラミソールを用いて、安息香酸無水物及びその誘導体の効果を検討した。
[Example 1 Effect of Substituent of Benzoic Anhydride (1)]
Using (−)-tetramisol as an asymmetric esterification catalyst, the effects of benzoic anhydride and its derivatives were investigated.

ジクロロメタン0.2モル中に、1−フェニル−1−プロパノール1当量に対して、3−フェニルプロピオン酸0.75当量を、表1に示す安息香酸無水物及びその誘導体0.90当量、(−)−テトラミソール5モル%、ジイソプロピルエチルアミン1.8当量を加え、反応式(8)に従って室温で12時間反応させた。有機層を無水硫酸ナトリウムで乾燥した後、減圧濃縮した。生成した光学活性エステル及び未反応の光学活性アルコールをシリカゲル薄層クロマトグラフィーにより分離し、それぞれの化合物を得た。   In 0.2 mol of dichloromethane, 0.75 equivalent of 3-phenylpropionic acid, 0.90 equivalent of benzoic anhydride and derivatives thereof shown in Table 1 with respect to 1 equivalent of 1-phenyl-1-propanol, (- ) -Tetramisole 5 mol% and 1.8 equivalents of diisopropylethylamine were added and reacted at room temperature for 12 hours according to the reaction formula (8). The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The produced optically active ester and unreacted optically active alcohol were separated by silica gel thin layer chromatography to obtain respective compounds.

エナンチオ選択率(ee)は、キラルカラムによるHPLC分析法により決定した。
s値は、Kaganらの方法(Top.Stereochem.,1988,vol18,p249−330)によって、以下のように算出した。
s=[ln(1−C)(1−回収アルコールのee)]/[ln(1−C)(1+回収アルコールのee)]。
変換率C(%)=[回収アルコールのee]/[(回収アルコールのee)+(生成したエステルのee)]
Enantioselectivity (ee) was determined by HPLC analysis with a chiral column.
The s value was calculated as follows by the method of Kagan et al. (Top. Stereochem., 1988, vol 18, p249-330).
s = [ln (1-C) (1-ee of recovered alcohol)] / [ln (1-C) (1 + ee of recovered alcohol)].
Conversion C (%) = [ee of recovered alcohol] / [(ee of recovered alcohol) + (ee of produced ester)]

Figure 2008140074
Figure 2008140074

得られた結果を表1に示す。

Figure 2008140074
The obtained results are shown in Table 1.
Figure 2008140074

この表から、高いエナンチオ選択率で(S)−1−フェニルプロピル 3−フェニルプロパノエートが得られ、高いエナンチオ選択率で光学活性(R)−1−フェニル−1−プロパノールが光学分割されたことがわかる。   From this table, (S) -1-phenylpropyl 3-phenylpropanoate was obtained with high enantioselectivity, and optically active (R) -1-phenyl-1-propanol was optically resolved with high enantioselectivity. I understand that.

(S)−1−フェニルプロピル 3−フェニルプロパノエート(1a)
HPLC(CHIRALCEL AS−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min);t=10.5min(4.9%),t=11.1min(95.1%);
IR(neat):3031,1741,1604,1496,752,700cm−1
H NMR(CDCl):δ7.27−7.14(m,7H,Ph),7.13−7.07(m,3H,Ph),5.59(t,J=7.0Hz,1H,1−H),2.87(t,J=8.0Hz,2H,2’−H),2.61(ddd,J=16.0,9.0,9.0Hz,1H,3’−H),2.57(ddd,J=16.0,9.6,9.0Hz,1H,3’−H),1.86−1.66(m,2H,2−H),0.76(t,J=7.5Hz,3H,3−H);
13C NMR(CDCl):δ172.2,140.48,140.46,128.4,128.3,128.2,127.7,126.5,126.2,77.4,36.1,30.9,29.3,9.8;
HR MS:calcd for C1820Na(M+Na)291.1356,found 291.1344.
(S) -1-phenylpropyl 3-phenylpropanoate (1a)
HPLC (CHIRALCEL AS-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min); t R = 10.5 min (4.9%), t R = 11.1 min (95.1) %);
IR (neat): 3031, 1741, 1604, 1496, 752, 700 cm −1 ;
1 H NMR (CDCl 3 ): δ 7.27-7.14 (m, 7H, Ph), 7.13-7.07 (m, 3H, Ph), 5.59 (t, J = 7.0 Hz, 1H, 1-H), 2.87 (t, J = 8.0 Hz, 2H, 2′-H), 2.61 (ddd, J = 16.0, 9.0, 9.0 Hz, 1H, 3 '-H), 2.57 (ddd, J = 16.0, 9.6, 9.0 Hz, 1H, 3'-H), 1.86-1.66 (m, 2H, 2-H), 0.76 (t, J = 7.5 Hz, 3H, 3-H);
13 C NMR (CDCl 3 ): δ 172.2, 140.48, 140.46, 128.4, 128.3, 128.2, 127.7, 126.5, 126.2, 77.4, 36. 1,30.9, 29.3, 9.8;
HR MS: calcd for C 18 H 20 O 2 Na (M + Na +) 291.1356, found 291.1344.

(R)−1−フェニル−1−プロパノール(2)
HPLC(CHIRALCEL OD−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min);t=25.9min(86.6%),t=29.6min(13.4%);
H NMR(CDCl):δ7.12−6.96(m,5H,Ph),4.31(dt,J=3.0,6.6Hz,1H,1−H),1.79(d,J=3.0Hz,1H,OH),1.64−1.38(m,2H,2−H),0.65(t,J=7.5Hz,3H,3−H);
13C NMR(CDCl):δ144.5,128.3,127.4,125.9,75.9,31.8,10.1.
(R) -1-Phenyl-1-propanol (2)
HPLC (CHIRALCEL OD-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min); t R = 25.9 min (86.6%), t R = 29.6 min (13.4) %);
1 H NMR (CDCl 3 ): δ 7.12-6.96 (m, 5H, Ph), 4.31 (dt, J = 3.0, 6.6 Hz, 1H, 1-H), 1.79 ( d, J = 3.0 Hz, 1H, OH), 1.64-1.38 (m, 2H, 2-H), 0.65 (t, J = 7.5 Hz, 3H, 3-H);
13 C NMR (CDCl 3 ): δ 144.5, 128.3, 127.4, 125.9, 75.9, 31.8, 10.1.

[実施例2 安息香酸無水物の置換基の効果(2)]
不斉エステル化触媒として、(+)−ベンゾテトラミソールを用いて、一般式(9)に示す安息香酸無水物及びその誘導体を用い、実施例1と同様に、反応式(10)に従って反応させた。
[Example 2 Effect of Substituent of Benzoic Anhydride (2)]
Using (+)-benzotetramisole as the asymmetric esterification catalyst, the benzoic anhydride and derivatives thereof represented by the general formula (9) are used, and the reaction is performed according to the reaction formula (10) in the same manner as in Example 1. I let you.

Figure 2008140074
Figure 2008140074

Figure 2008140074
(10)
Figure 2008140074
(10)

結果を表2に示す。

Figure 2008140074
The results are shown in Table 2.
Figure 2008140074

表2から、(+)−ベンゾテトラミソールは、高いエナンチオ選択率を有し、(−)−テトラミソールよりも高い反応速度が得られることがわかる。   From Table 2, it can be seen that (+)-benzotetramisole has a high enantioselectivity and a higher reaction rate than (-)-tetramisole.

[実施例3 2級アルコール及びカルボン酸の効果]
不斉エステル化触媒として(+)−ベンゾテトラミソールを用いて、各種のラセミの2級アルコール及びカルボン酸とを、反応式(11)に従って、実施例1と同様の条件で反応させた。
[Example 3 Effect of secondary alcohol and carboxylic acid]
Using (+)-benzotetramisole as an asymmetric esterification catalyst, various racemic secondary alcohols and carboxylic acids were reacted under the same conditions as in Example 1 according to the reaction formula (11).

Figure 2008140074
Figure 2008140074

その結果を表3に示す。

Figure 2008140074
The results are shown in Table 3.
Figure 2008140074

(S)−1−フェニル−1−プロパノール
HPLC(CHIRALCEL OD−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min);t=26.6min(2.1%),t=30.6min(97.9%);
H NMR(CDCl):δ7.12−6.96(m,5H,Ph),4.31(dt,J=3.0,6.6Hz,1H,1−H),1.79(d,J=3.0Hz,1H,OH),1.64−1.38(m,2H,2−H),0.65(t,J=7.5Hz,3H,3−H);
13C NMR(CDCl):δ144.5,128.3,127.4,125.9,75.9,31.8,10.1.
(S) -1-phenyl-1-propanol HPLC (CHIRALCEL OD-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min); t R = 26.6 min (2.1%) , T R = 30.6 min (97.9%);
1 H NMR (CDCl 3 ): δ 7.12-6.96 (m, 5H, Ph), 4.31 (dt, J = 3.0, 6.6 Hz, 1H, 1-H), 1.79 ( d, J = 3.0 Hz, 1H, OH), 1.64-1.38 (m, 2H, 2-H), 0.65 (t, J = 7.5 Hz, 3H, 3-H);
13 C NMR (CDCl 3 ): δ 144.5, 128.3, 127.4, 125.9, 75.9, 31.8, 10.1.

(S)−2−メチル−1−フェニル−1−プロパノール
HPLC(CHIRALCEL OD−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min);t=25.7min(95.5%),t=30.0min(4.5%);
IR(neat):3398,3029,1604,1492,760,701cm−1
H NMR(CDCl):δ7.31−7.15(m,5H,Ph),4.27(dd,J=6.6,3.0Hz,1H,1−H),1.95−1.79(m,2H,2−H,OH),
(S) -2-Methyl-1-phenyl-1-propanol HPLC (CHIRALCEL OD-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min); t R = 25.7 min (95 .5%), t R = 30.0 min (4.5%);
IR (neat): 3398, 3029, 1604, 1492, 760, 701 cm −1 ;
1 H NMR (CDCl 3 ): δ 7.31-7.15 (m, 5H, Ph), 4.27 (dd, J = 6.6, 3.0 Hz, 1H, 1-H), 1.95- 1.79 (m, 2H, 2-H, OH),

(S)−2,2−ジメチル−1−フェニル−1−プロパノール
HPLC(CHIRALCEL OD−H, i−PrOH/hexane=1/50,flow rate=0.5mL/min);t=20.3min(79.1%),t=29.6min(20.9%);
H NMR(CDCl):d 7.26-7.13(m,5H,Ph),4.30(d,J=2.7Hz,1H,1−H),1.78(br s,1H,OH),0.83(s,9H,t−Bu);
13C NMR(CDCl):d142.1,127.6,127.5,127.2,82.4,35.6,25.9.
(S) -2,2-dimethyl-1-phenyl-1-propanol HPLC (CHIRALCEL OD-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min); t R = 20.3 min (79.1%), t R = 29.6 min (20.9%);
1 H NMR (CDCl 3 ): d 7.26-7.13 (m, 5H, Ph), 4.30 (d, J = 2.7 Hz, 1H, 1-H), 1.78 (br s, 1H, OH), 0.83 (s, 9H, t-Bu);
13 C NMR (CDCl 3 ): d142.1, 127.6, 127.5, 127.2, 82.4, 35.6, 25.9.

(R)−1−フェニルプロピル プロパノエート
HPLC(CHIRALCEL OJ−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min);t=17.4min(94.7%),t=22.0min(5.3%);
IR(neat):3034,1734,1604,1495,756,700cm−1
H NMR(CDCl):δ7.30−7.16(m,5H,Ph),5.60(dd,J=7.5,6.6Hz,1H,1−H),2.34−2.22(m,2H,2’−H),1.93−1.65(m,2H,2−H),1.06(t,J=7.5Hz,3H,3’−H),0.81(t,J=7.5Hz,3H,3−H);
13C NMR(CDCl):δ173.8,140.7,128.3,127.7,126.5,77.1,29.4,27.8,9.9,9.1;
HRMS:calcd for C1216Na(M+Na)215.1043,found 215.1049.
(R) -1-phenylpropyl propanoate HPLC (CHIRALCEL OJ-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min); t R = 17.4 min (94.7%), t R = 22.0 min (5.3%);
IR (neat): 3034, 1734, 1604, 1495, 756, 700 cm −1 ;
1 H NMR (CDCl 3 ): δ 7.30-7.16 (m, 5H, Ph), 5.60 (dd, J = 7.5, 6.6 Hz, 1H, 1-H), 2.34- 2.22 (m, 2H, 2′-H), 1.93-1.65 (m, 2H, 2-H), 1.06 (t, J = 7.5 Hz, 3H, 3′-H) , 0.81 (t, J = 7.5 Hz, 3H, 3-H);
13 C NMR (CDCl 3 ): δ 173.8, 140.7, 128.3, 127.7, 126.5, 77.1, 29.4, 27.8, 9.9, 9.1;
HRMS: calcd for C 12 H 16 O 2 Na (M + Na +) 215.1043, found 215.1049.

(R)−1−フェニルプロピル 3−フェニルプロパノエート
HPLC(CHIRALCEL AD−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min);t=14.5min(95.1%),t=20.3min(4.9%);
IR(neat):3031,1741,1604,1496,752,700cm−1
H NMR(CDCl):δ7.27−7.14(m,7H,Ph),7.13−7.07(m,3H,Ph),5.59(t,J=7.0Hz,1H,1−H),2.87(t,J=8.0Hz,2H,2’−H),2.61(ddd,J=16.0,9.0,9.0Hz,1H,3’−H),2.57(ddd,J=16.0,9.6,9.0Hz,1H,3’−H),1.86−1.66(m,2H,2−H),0.76(t,J=7.5Hz,3H,3−H);
13C NMR(CDCl):δ172.2,140.48,140.46,128.4,128.3,128.2,127.7,126.5,126.2,77.4,36.1,30.9,29.3,9.8;
HR MS:calcd for C1820Na(M+Na)291.1356,found 291.1344.
(R) -1-phenylpropyl 3-phenylpropanoate HPLC (CHIRALCEL AD-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min); t R = 14.5 min (95. 1%), t R = 20.3 min (4.9%);
IR (neat): 3031, 1741, 1604, 1496, 752, 700 cm −1 ;
1 H NMR (CDCl 3 ): δ 7.27-7.14 (m, 7H, Ph), 7.13-7.07 (m, 3H, Ph), 5.59 (t, J = 7.0 Hz, 1H, 1-H), 2.87 (t, J = 8.0 Hz, 2H, 2′-H), 2.61 (ddd, J = 16.0, 9.0, 9.0 Hz, 1H, 3 '-H), 2.57 (ddd, J = 16.0, 9.6, 9.0 Hz, 1H, 3'-H), 1.86-1.66 (m, 2H, 2-H), 0.76 (t, J = 7.5 Hz, 3H, 3-H);
13 C NMR (CDCl 3 ): δ 172.2, 140.48, 140.46, 128.4, 128.3, 128.2, 127.7, 126.5, 126.2, 77.4, 36. 1,30.9, 29.3, 9.8;
HR MS: calcd for C 18 H 20 O 2 Na (M + Na +) 291.1356, found 291.1344.

(R)−1−フェニルプロピル 4−フェニルブタノエート
HPLC(CHIRALCEL AD−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min);t=12.4min(94.9%),t=16.5min(5.1%);
IR(neat):3030,1734,1603,1496,749,700cm−1
H NMR(CDCl):d7.23-6.99(m,10H,Ph),5.60(t,J=7.0Hz,1H,1−H),2.53(t,J=7.5Hz,2H,2’−H),2.29(dt,J=16.2,7.5Hz,1H,4’−H),2.24(dt,J=16.2,6.6Hz,1H,4’−H),1.93-1.65(m,4H,2−H,3’−H),0.80(t,J=7.5Hz,3H,3−H);
13C NMR(CDCl):d172.7,141.4,140.6,128.4,128.3,128.3,127.7,126.5,125.9,77.2,35.0,33.8,29.3,26.5,9.9;
HR MS:calcd for C1922Na(M+Na)305.1512,found 305.1507.
(R) -1-phenylpropyl 4-phenylbutanoate HPLC (CHIRALCEL AD-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min); t R = 12.4 min (94. 9%), t R = 16.5 min (5.1%);
IR (neat): 3030, 1734, 1603, 1496, 749, 700 cm −1 ;
1 H NMR (CDCl 3 ): d 7.23-6.99 (m, 10H, Ph), 5.60 (t, J = 7.0 Hz, 1H, 1-H), 2.53 (t, J = 7.5 Hz, 2H, 2′-H), 2.29 (dt, J = 16.2, 7.5 Hz, 1H, 4′-H), 2.24 (dt, J = 16.2, 6. 6 Hz, 1H, 4′-H), 1.93-1.65 (m, 4H, 2-H, 3′-H), 0.80 (t, J = 7.5 Hz, 3H, 3-H) ;
13 C NMR (CDCl 3 ): d172.7, 141.4, 140.6, 128.4, 128.3, 128.3, 127.7, 126.5, 125.9, 77.2, 35. 0, 33.8, 29.3, 26.5, 9.9;
HR MS: calcd for C 19 H 22 O 2 Na (M + Na +) 305.1512, found 305.1507.

(R)−1−フェニルプロピル 4−メチルペンタノエート
HPLC (CHIRALCEL AD−H, i−PrOH/hexane=1/50,flow rate=0.5mL/min);t=10.0min(91.4%),t=12.0min(8.6%);
IR(neat):3033,1742,1604,1495,757,700cm−1H NMR(CDCl):d 7.31-7.13(m,5H,Ph),5.59(t,J=7.5Hz,1H, 1−H),2.33-2.17(m,2H,2’−H),1.93-1.63(m,2H,2−H),1.52-1.36(m,3H,3’−H,4’−H),0.88-0.73(m,9H,3−H,Me,Me);
13C NMR(CDCl):d 173.3,140.7,128.3,127.7,126.5,77.0,33.7,32.6,29.3,27.6,22.19,22.15,9.9;
HR MS:calcd for C1522Na (M+Na) 257.1512,found 257.1509.
(R) -1-phenylpropyl 4-methylpentanoate HPLC (CHIRALCEL AD-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min); t R = 10.0 min (91. 4%), t R = 12.0 min (8.6%);
IR (neat): 3033, 1742, 1604, 1495, 757, 700 cm −1 ; 1 H NMR (CDCl 3 ): d 7.31-7.13 (m, 5H, Ph), 5.59 (t, J = 7.5 Hz, 1H, 1-H), 2.33-2.17 (m, 2H, 2'-H), 1.93-1.63 (m, 2H, 2-H), 1.52 -1.36 (m, 3H, 3'-H, 4'-H), 0.88-0.73 (m, 9H, 3-H, Me, Me);
13 C NMR (CDCl 3 ): d 173.3, 140.7, 128.3, 127.7, 126.5, 77.0, 33.7, 32.6, 29.3, 27.6, 22 19, 22.15, 9.9;
HR MS: calcd for C 15 H 22 O 2 Na (M + Na +) 257.1512, found 257.1509.

(R)−2−メチル−1−フェニルプロピル プロパノエート
HPLC(CHIRALCEL OJ−H,i−PrOH/hexane=1/50,flow rate=1.0mL/min);t=7.3min(95.0%),t=9.1min(5.0%);
IR(neat):3033,1739,1605,1495,739,701cm−1
H NMR(CDCl):δ7.39−7.13(m,5H,Ph),5.40(d,J=7.5Hz,1H,1−H),2.37−2.18(m,2H,2’−H)2.09−1.93(m,1H,2−H),1.06(t,J=7.5Hz,1H,3’−H),0.89(d,J=6.6Hz,3H,Me)0.72(d,J=6.6Hz,3H,Me);
13C NMR(CDCl):δ173.6,139.8,128.1,127.6,126.9,80.6,33.5,27.8,18.7,18.4,9.1;
HR MS:calcd for C1318Na(M+Na)229.1199,found 229.12000.
(R) -2-methyl-1-phenylpropyl propanoate HPLC (CHIRALCEL OJ-H, i-PrOH / hexane = 1/50, flow rate = 1.0 mL / min); t R = 7.3 min (95.0 %), T R = 9.1 min (5.0%);
IR (neat): 3033, 1739, 1605, 1495, 739, 701 cm −1 ;
1 H NMR (CDCl 3 ): δ 7.39-7.13 (m, 5H, Ph), 5.40 (d, J = 7.5 Hz, 1H, 1-H), 2.37-2.18 ( m, 2H, 2′-H) 2.09-1.93 (m, 1H, 2-H), 1.06 (t, J = 7.5 Hz, 1H, 3′-H), 0.89 ( d, J = 6.6 Hz, 3H, Me) 0.72 (d, J = 6.6 Hz, 3H, Me);
13 C NMR (CDCl 3 ): δ 173.6, 139.8, 128.1, 127.6, 126.9, 80.6, 33.5, 27.8, 18.7, 18.4, 9. 1;
HR MS: calcd for C 13 H 18 O 2 Na (M + Na +) 229.1199, found 229.12000.

(R)−2−メチル−1−1フェニルプロピル 3−フェニルプロパノエート
HPLC(CHIRALCEL AD−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min);t=12.4min(96.0%),t=18.3min(4.0%);
IR (neat):3030,1734,1604,1496,751,699cm−1
H NMR(CDCl):d7.28-7.02(m,10H,Ph),5.41(d,J=7.5Hz,1H,1−H),2.88(t,J=7.5Hz,2H,2’−H),2.65-2.53(m,2H,3’−H),2.07-1.83(m,1H,2−H),0.85(d,J=7.0Hz,3H,Me),0.70(d,J=7.0Hz,3H,Me);
13C NMR(CDCl):d172.1,140.4,139.6,128.4,128.2,128.1,127.6,127.0,126.2,81.0,36.0,33.4,30.9,18.6,18.4;
HR MS:calcd for C1922Na(M+Na)305.1512,found 305.1520.
(R) -2-methyl-1-phenylpropyl 3-phenylpropanoate HPLC (CHIRALCEL AD-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min); t R = 12 .4 min (96.0%), t R = 18.3 min (4.0%);
IR (neat): 3030, 1734, 1604, 1496, 751, 699 cm −1 ;
1 H NMR (CDCl 3 ): d 7.28-7.02 (m, 10H, Ph), 5.41 (d, J = 7.5 Hz, 1H, 1-H), 2.88 (t, J = 7.5 Hz, 2H, 2'-H), 2.65-2.53 (m, 2H, 3'-H), 2.07-1.83 (m, 1H, 2-H), 0.85 (D, J = 7.0 Hz, 3H, Me), 0.70 (d, J = 7.0 Hz, 3H, Me);
13 C NMR (CDCl 3 ): d172.1, 140.4, 139.6, 128.4, 128.2, 128.1, 127.6, 127.0, 126.2, 81.0, 36. 0, 33.4, 30.9, 18.6, 18.4;
HR MS: calcd for C 19 H 22 O 2 Na (M + Na +) 305.1512, found 305.1520.

(R)−2,2−ジメチル−1−フェニルプロピル プロパノエート
HPLC(CHIRALCEL OD−H,i−PrOH/hexane=1/1000,flow rate=0.5mL/min);t=11.1min(96.4%),t=13.2min(3.6%);
IR(neat):3033,1740,1495,738,702cm−1
H NMR(CDCl):d 7.37-7.23(m,5H,Ph),5.51(s,1H,1−H),2.56-2.30(m,2H,2’−H),1.17(t,J=7.5Hz,3H,3’−H),0.94(s,9H,t−Bu);
13C NMR(CDCl):d 173.4,138.6,127.7,127.5,127.4,82.5,35.0,27.9,26.0,9.2;
HR MS:calcd for C1420Na(M+Na)234.1356,found 234.1354.
(R) -2,2-dimethyl-1-phenylpropyl propanoate HPLC (CHIRALCEL OD-H, i-PrOH / hexane = 1/1000, flow rate = 0.5 mL / min); t R = 11.1 min (96 .4%), t R = 13.2 min (3.6%);
IR (neat): 3033, 1740, 1495, 738, 702 cm −1 ;
1 H NMR (CDCl 3 ): d 7.37-7.23 (m, 5H, Ph), 5.51 (s, 1H, 1-H), 2.56-2.30 (m, 2H, 2 '-H), 1.17 (t, J = 7.5 Hz, 3H, 3'-H), 0.94 (s, 9H, t-Bu);
13 C NMR (CDCl 3 ): d 173.4, 138.6, 127.7, 127.5, 127.4, 82.5, 35.0, 27.9, 26.0, 9.2;
HR MS: calcd for C 14 H 20 O 2 Na (M + Na +) 234.1356, found 234.1354.

(R)−2,2−ジメチル−1−フェニルプロピル 3−フェニルプロパノエート
HPLC(CHIRALCEL OD−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min);t=11.9min(97.9%),t=12.9min(2.1%);
IR(neat):3030,1737,1604,1496,740,702cm−1
H NMR(CDCl):δ7.40−7.17(m,10H,Ph),5.53(s,1H,1−H),3.00(t,J=7.5Hz,2H,2’−H),2.79−2.68(m,2H,3’−H),0.93(s,9H,t−Bu);
13C NMR(CDCl):δ172.0,14.04,138.4,128.5,128.2,127.7,127.6,127.4,126.2,82.9,36.0,35.0,30.9,26.0;
HR MS:calcd for C2024Na(M+Na)319.1669,found 319.1660.
(R) -2,2-dimethyl-1-phenylpropyl 3-phenylpropanoate HPLC (CHIRALCEL OD-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min); t R = 11.9 min (97.9%), t R = 12.9 min (2.1%);
IR (neat): 3030, 1737, 1604, 1496, 740, 702 cm −1 ;
1 H NMR (CDCl 3 ): δ 7.40-7.17 (m, 10H, Ph), 5.53 (s, 1H, 1-H), 3.00 (t, J = 7.5 Hz, 2H, 2'-H), 2.79-2.68 (m, 2H, 3'-H), 0.93 (s, 9H, t-Bu);
13 C NMR (CDCl 3 ): δ 172.0, 14.04, 138.4, 128.5, 128.2, 127.7, 127.6, 127.4, 126.2, 82.9, 36. 0, 35.0, 30.9, 26.0;
HR MS: calcd for C 20 H 24 O 2 Na (M + Na +) 319.1669, found 319.1660.

[実施例4 反応溶媒の効果]
不斉エステル化触媒として(+)−ベンゾテトラミソールを用いて、溶媒を変更させて、反応式(12)に従って、実施例1と同様の条件で反応させた。
[Example 4 Effect of reaction solvent]
Using (+)-benzotetramisol as an asymmetric esterification catalyst, the solvent was changed, and the reaction was carried out under the same conditions as in Example 1 according to the reaction formula (12).

Figure 2008140074
Figure 2008140074

その結果を表4に示す。

Figure 2008140074
The results are shown in Table 4.
Figure 2008140074

[実施例5 カルボン酸上の置換基がエステル生成反応に及ぼす効果]
不斉エステル化触媒として(+)−ベンゾテトラミソールを用い、反応式(13)に従って、実施例1と同様の条件で反応させた。なお、2級アルコールと反応させるカルボン酸については、反応式(13)中、Rで示される官能基を、表5の通り変更した。
Example 5 Effect of Substituent on Carboxylic Acid on Ester Formation Reaction
Using (+)-benzotetramisole as the asymmetric esterification catalyst, the reaction was carried out under the same conditions as in Example 1 according to the reaction formula (13). As for the carboxylic acid is reacted with secondary alcohol, in the reaction formula (13), a functional group represented by R 1, were changed as shown in Table 5.

Figure 2008140074
Figure 2008140074

その結果を表5に示す。

Figure 2008140074
The results are shown in Table 5.
Figure 2008140074

(R)−1−フェニルプロピル シクロヘキサンカルボキシレート
HPLC(CHIRALCEL OJ−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min);t=11.2min(88.0%),t=13.6min(12.0%);
IR(neat):3033,1742,1452,757,700cm−1
H NMR(CDCl):δ7.29−7.12(m,5H,Ph),5.59(t,J=7.5Hz,1H,1−H),2.32−2.17(m,1H,2’−H),1.92−1.05(m,12H,2−H,3’−H,4’−H,5’−H),0.81(t,J=7.5Hz,3H,3−H);
13C NMR(CDCl):δ175.3,140.9,128.3,127.6,126.3,76.6,43.3,29.5,29.0,28.9,25.7,25.43,25.40,9.9;
HR MS:calcd for C1622Na (M+Na)269.1512,found 269.1509.
(R) -1-phenylpropyl cyclohexanecarboxylate HPLC (CHIRALCEL OJ-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min); t R = 11.2 min (88.0%) , T R = 13.6 min (12.0%);
IR (neat): 3033, 1742, 1452, 757, 700 cm −1 ;
1 H NMR (CDCl 3 ): δ 7.29-7.12 (m, 5H, Ph), 5.59 (t, J = 7.5 Hz, 1H, 1-H), 2.32-2.17 ( m, 1H, 2'-H), 1.92-1.05 (m, 12H, 2-H, 3'-H, 4'-H, 5'-H), 0.81 (t, J = 7.5Hz, 3H, 3-H);
13 C NMR (CDCl 3 ): δ 175.3, 140.9, 128.3, 127.6, 126.3, 76.6, 43.3, 29.5, 29.0, 28.9, 25. 7, 25.43, 25.40, 9.9;
HR MS: calcd for C 16 H 22 O 2 Na (M + Na +) 269.1512, found 269.1509.

[実施例6 2級アルコール上の置換基がエステル生成反応に及ぼす影響]
不斉エステル化触媒として(+)−ベンゾテトラミソールを用い、反応式(14)に従って、実施例1と同様に反応させた。なお、反応式(14)に示した2級アルコールの有するベンゼン環上の置換基は、表6の通り変更した。
Example 6 Effect of Substituent on Secondary Alcohol on Ester Formation Reaction
Using (+)-benzotetramisole as the asymmetric esterification catalyst, the reaction was carried out in the same manner as in Example 1 according to the reaction formula (14). The substituents on the benzene ring of the secondary alcohol shown in the reaction formula (14) were changed as shown in Table 6.

Figure 2008140074
Figure 2008140074

その結果を表6に示す。

Figure 2008140074
The results are shown in Table 6.
Figure 2008140074

(S)−1−フェニルエタノール
HPLC(CHIRALCEL OD−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min):t=30.5min(9.8%),t=37.8min(90.2%);
H NMR(CDCl):δ7.41−7.31(m,3H,Ph),7.28(tt,J=6.7,1.9Hz,2H,Ph),4.94−4.85(m,1H,1−H),1.86−1.74(br s,1H,OH),1.51(dd,J=6.4,0.9Hz,3H,2−H).
(S) -1-phenylethanol HPLC (CHIRALCEL OD-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min): t R = 30.5 min (9.8%), t R = 37.8 min (90.2%);
1 H NMR (CDCl 3 ): δ 7.41-7.31 (m, 3H, Ph), 7.28 (tt, J = 6.7, 1.9 Hz, 2H, Ph), 4.94-4. 85 (m, 1H, 1-H), 1.86-1.74 (brs, 1H, OH), 1.51 (dd, J = 6.4, 0.9 Hz, 3H, 2-H).

(S)−1−(4−フルオロフェニル)エタノール
HPLC(CHIRALPAK AS−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min):t=33.4min(16.3%),t=37.6min(83.7%);
H NMR(CDCl):δ7.20−7.13(m,2H,Ph),6.92−6.85(m,2H,Ph),4.68(q,J=6.5Hz,1H,1−H),3.18(br s,1H,OH),1.31(d,J=6.5Hz,3H,2−H).
(S) -1- (4-fluorophenyl) ethanol HPLC (CHIRALPAK AS-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min): t R = 33.4 min (16.3 %), T R = 37.6 min (83.7%);
1 H NMR (CDCl 3 ): δ 7.20-7.13 (m, 2H, Ph), 6.92-6.85 (m, 2H, Ph), 4.68 (q, J = 6.5 Hz, 1H, 1-H), 3.18 (brs, 1H, OH), 1.31 (d, J = 6.5 Hz, 3H, 2-H).

(S)−1−(4−ニトロフェニル)エタノール
HPLC(CHIRALPAK AS−H,i−PrOH/hexane=1/9,flow rate=1.0mL/min):t=23.2min(11.5%),t=29.2min(88.5%);
H NMR(CDCl):δ8.15(d,J=8.7Hz,2H,Ph),7.51(d,J=8.7Hz,2H,Ph),5.05−4.94(m,1H,1−H),2.34−2.15(m,1H,OH),1.49(d,J=6.3Hz,3H,2−H).
(S) -1- (4-Nitrophenyl) ethanol HPLC (CHIRALPAK AS-H, i-PrOH / hexane = 1/9, flow rate = 1.0 mL / min): t R = 23.2 min (11.5 %), T R = 29.2 min (88.5%);
1 H NMR (CDCl 3 ): δ 8.15 (d, J = 8.7 Hz, 2H, Ph), 7.51 (d, J = 8.7 Hz, 2H, Ph), 5.05-4.94 ( m, 1H, 1-H), 2.34-2.15 (m, 1H, OH), 1.49 (d, J = 6.3 Hz, 3H, 2-H).

(S)−1−(4−シアノフェニル)エタノール
HPLC(CHIRALPAK AS−H,i−PrOH/hexane=1/9,flow rate=1.0mL/min):t=29.2min(14.7%),t=42.9min(85.3%);
H NMR(CDCl):δ7.55−7.48(m,2H,Ph),7.42−7.36(m,2H,Ph),4.85(q,J=6.6Hz,1H,1−H),2.71−2.56(m,1H,OH),1.39(d,J=6.3Hz,3H,2−H).
(S) -1- (4-cyanophenyl) ethanol HPLC (CHIRALPAK AS-H, i-PrOH / hexane = 1/9, flow rate = 1.0 mL / min): t R = 29.2 min (14.7) %), T R = 42.9 min (85.3%);
1 H NMR (CDCl 3 ): δ 7.55-7.48 (m, 2H, Ph), 7.42-7.36 (m, 2H, Ph), 4.85 (q, J = 6.6 Hz, 1H, 1-H), 2.71-2.56 (m, 1H, OH), 1.39 (d, J = 6.3 Hz, 3H, 2-H).

(S)−1−(4−トリル)エタノール
HPLC(CHIRALPAK AS−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min):t=27.6min(10.1%),t=31.0min(89.9%);
H NMR(CDCl):δ7.34(d,J=8.1Hz,2H,Ph),7.25(d,J=8.1Hz,2H,Ph),4.91(dq,J=6.3,3.2Hz,1H,1−H),2.62−2.53(m,1H,OH),2.46(s,3H,Me),1.56(d,J=6.3Hz,3H,2−H).
(S) -1- (4-Tolyl) ethanol HPLC (CHIRALPAK AS-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min): t R = 27.6 min (10.1% ), T R = 31.0 min (89.9%);
1 H NMR (CDCl 3 ): δ 7.34 (d, J = 8.1 Hz, 2H, Ph), 7.25 (d, J = 8.1 Hz, 2H, Ph), 4.91 (dq, J = 6.3, 3.2 Hz, 1H, 1-H), 2.62-2.53 (m, 1H, OH), 2.46 (s, 3H, Me), 1.56 (d, J = 6) .3Hz, 3H, 2-H).

(S)−1−(4−メトキシフェニル)エタノール
HPLC(CHIRALCEL OD−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min):t=48.6min(38.3%),t=58.6min(61.7%);
H NMR(CDCl):δ7.18−7.10(m,2H,Ph),6.78−6.69(m,2H,Ph),4.66(qd,J=6.3,2.4Hz,1H,1−H),3.65(s,3H,OMe),2.63(brs,1H,OH),1.32(d,J=6.3Hz,3H,2−H).
(S) -1- (4-methoxyphenyl) ethanol HPLC (CHIRALCEL OD-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min): t R = 48.6 min (38.3 %), T R = 58.6 min (61.7%);
1 H NMR (CDCl 3 ): δ 7.18-7.10 (m, 2H, Ph), 6.78-6.69 (m, 2H, Ph), 4.66 (qd, J = 6.3) 2.4 Hz, 1H, 1-H), 3.65 (s, 3H, OMe), 2.63 (brs, 1H, OH), 1.32 (d, J = 6.3 Hz, 3H, 2-H) ).

(S)−1−(2−トリル)エタノール
HPLC(CHIRALPAK IA,i−PrOH/hexane=1/50,flow rate=0.5mL/min):t=23.4min(9.6%),t=25.9min(90.4%);
H NMR(CDCl):δ7.45(dd,J=7.8,1.5Hz,1H,Ph),7.22−7.06(m,3H,Ph),5.03(q,J=6.0Hz,1H,1−H),2.38−2.34(br s,1H,OH),2.29(s,3H,Me),1.39(d,J=7.0Hz,3H,2−H).
(S) -1- (2-Tolyl) ethanol HPLC (CHIRALPAK IA, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min): t R = 23.4 min (9.6%), t R = 25.9 min (90.4%);
1 H NMR (CDCl 3 ): δ 7.45 (dd, J = 7.8, 1.5 Hz, 1H, Ph), 7.22-7.06 (m, 3H, Ph), 5.03 (q, J = 6.0 Hz, 1H, 1-H), 2.38-2.34 (brs, 1H, OH), 2.29 (s, 3H, Me), 1.39 (d, J = 7. 0 Hz, 3H, 2-H).

(R)−1−フェニルエチル 3−フェニルプロパノエート
HPLC(CHIRALPAK AS−H,i−PrOH/hexane=1/50,flow rate=0.3mL/min):t=18.3min(94.6%),t=20.0min(5.4%);
H NMR(CDCl):δ7.28−7.05(m,10H,Ph),5.80(q,J=6.6Hz,1H,1−H),2.86(t,J=7.5Hz,2H,2’−H),2.67−2.48(m,2H,3’−H),1.41(d,J=6.6Hz,3H,2−H);
13C NMR(CDCl):δ172.1,141.6,140.4,128.4,127.8,126.2,126.0,72.3,36.1,30.9,22.1.
(R) -1-phenylethyl 3-phenylpropanoate HPLC (CHIRALPAK AS-H, i-PrOH / hexane = 1/50, flow rate = 0.3 mL / min): t R = 18.3 min (94. 6%), t R = 20.0 min (5.4%);
1 H NMR (CDCl 3 ): δ 7.28-7.05 (m, 10H, Ph), 5.80 (q, J = 6.6 Hz, 1H, 1-H), 2.86 (t, J = 7.5 Hz, 2H, 2′-H), 2.67-2.48 (m, 2H, 3′-H), 1.41 (d, J = 6.6 Hz, 3H, 2-H);
13 C NMR (CDCl 3 ): δ 172.1, 141.6, 140.4, 128.4, 127.8, 126.2, 126.0, 72.3, 36.1, 30.9, 22. 1.

(R)−1−(4−フルオロフェニル)エチル 3−フェニルプロパノエート
HPLC(CHIRALCEL OD−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min):t=13.4min(7.5%),t=16.0min(92.5%);
IR(neat):3029,1733,1605,1513,835,750,700cm−1
H NMR(CDCl):δ7.25−7.05(m,7H,Ph),6.97−6.83(m,2H,Ph),5.78(q,J=7.0Hz,1H,1−H),2.86(t,J=7.5Hz,2H,2’−H),2.64−2.51(m,2H,3’−H),1.40(d,J=7.0Hz,3H,2−H);
13C NMR(CDCl):δ172.1,162.3(d,J=246.0Hz),140.3,137.4,128.5,128.3,127.9(d,J=8.3Hz),126.2,115.3(d,J=21.7Hz),71.7,36.1,30.9,22.1;
HR MS:calcd for C1717FONa (M+Na)295.1105,found 295.1093.
(R) -1- (4-fluorophenyl) ethyl 3-phenylpropanoate HPLC (CHIRALCEL OD-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min): t R = 13 .4 min (7.5%), t R = 16.0 min (92.5%);
IR (neat): 3029, 1733, 1605, 1513, 835, 750, 700 cm −1 ;
1 H NMR (CDCl 3 ): δ 7.25-7.05 (m, 7H, Ph), 6.97-6.83 (m, 2H, Ph), 5.78 (q, J = 7.0 Hz, 1H, 1-H), 2.86 (t, J = 7.5 Hz, 2H, 2′-H), 2.64-2.51 (m, 2H, 3′-H), 1.40 (d , J = 7.0 Hz, 3H, 2-H);
13 C NMR (CDCl 3 ): δ 172.1, 162.3 (d, J = 246.0 Hz), 140.3, 137.4, 128.5, 128.3, 127.9 (d, J = 8 .3 Hz), 126.2, 115.3 (d, J = 21.7 Hz), 71.7, 36.1, 30.9, 22.1;
HR MS: calcd for C 17 H 17 FO 2 Na (M + Na +) 295.1105, found 295.1093.

(R)−1−(4−ニトロフェニル)エチル 3−フェニルプロパノエート
HPLC(CHIRALPAK AD−H,i−PrOH/hexane=1/9,flow rate=0.5mL/min):t=16.9min(91.5%),t=36.1min(8.5%);
IR(neat):3029,1734,1605,1522,1348,855,752,699cm−1
H NMR(CDCl):δ8.10−8.02(m,2H,Ph),7.33−7.25(m,2H,Ph),7.22−7.05(m,5H,Ph),5.81(q,J=6.6Hz,1H,1−H),2.87(t,J=7.5Hz,2H,2’−H),2.71−2.53(m,2H,3’−H),1.42(d,J=6.6Hz,3H,2−H);
13C NMR(CDCl):δ171.9,148.9,147.3,140.0,128.4,128.2,126.6,126.3,123.7,71.2,35.8,30.8,22.1;
HR MS:calcd for C1717NONa (M+Na)322.1050,found 322.1054.
(R) -1- (4-nitrophenyl) ethyl 3-phenylpropanoate HPLC (CHIRALPAK AD-H, i-PrOH / hexane = 1/9, flow rate = 0.5 mL / min): t R = 16 .9 min (91.5%), t R = 36.1 min (8.5%);
IR (neat): 3029, 1734, 1605, 1522, 1348, 855, 752, 699 cm −1 ;
1 H NMR (CDCl 3 ): δ 8.10-8.02 (m, 2H, Ph), 7.33-7.25 (m, 2H, Ph), 7.22-7.05 (m, 5H, Ph), 5.81 (q, J = 6.6 Hz, 1H, 1-H), 2.87 (t, J = 7.5 Hz, 2H, 2′-H), 2.71-2.53 ( m, 2H, 3'-H), 1.42 (d, J = 6.6 Hz, 3H, 2-H);
13 C NMR (CDCl 3 ): δ 171.9, 148.9, 147.3, 140.0, 128.4, 128.2, 126.6, 126.3, 123.7, 71.2, 35. 8, 30.8, 22.1;
HR MS: calcd for C 17 H 17 NO 4 Na (M + Na +) 322.1050, found 322.1054.

(R)−1−(4−シアノフェニル)エチル 3−フェニルプロパノエート
HPLC(CHIRALPAK AD−H,i−PrOH/hexane=1/9,flow rate=0.5mL/min):t=16.9min(91.4%),t=25.6min(8.6%);
IR(neat):3029,2229,1736,1609,1497,838,753,700cm−1
H NMR(CDCl):δ7.54−7.46(m,2H,Ph),7.28−7.04(m,7H,Ph),5.77(q,J=6.6Hz,1H,1−H),2.87(t,J=7.5Hz,2H,2−H),2.69−2.52(m,2H,3’−H),1.40(d,J=6.6Hz,3H,2−H);
13C NMR(CDCl):δ171.8,146.8,140.0,132.3,128.4,128.2,126.4,126.2,118.5,111.4,71.4,35.8,30.7,22.0;
HR MS:calcd for C1817NONa (M+Na)302.1151,found 302.1165.
(R) -1- (4-cyanophenyl) ethyl 3-phenylpropanoate HPLC (CHIRALPAK AD-H, i-PrOH / hexane = 1/9, flow rate = 0.5 mL / min): t R = 16 .9 min (91.4%), t R = 25.6 min (8.6%);
IR (neat): 3029, 2229, 1736, 1609, 1497, 838, 753, 700 cm −1 ;
1 H NMR (CDCl 3 ): δ 7.54-7.46 (m, 2H, Ph), 7.28-7.04 (m, 7H, Ph), 5.77 (q, J = 6.6 Hz, 1H, 1-H), 2.87 (t, J = 7.5 Hz, 2H, 2-H), 2.69-2.52 (m, 2H, 3′-H), 1.40 (d, J = 6.6 Hz, 3H, 2-H);
13 C NMR (CDCl 3 ): δ 171.8, 146.8, 140.0, 132.3, 128.4, 128.2, 126.4, 126.2, 118.5, 111.4, 71. 4, 35.8, 30.7, 22.0;
HR MS: calcd for C 18 H 17 NO 2 Na (M + Na +) 302.1151, found 302.1165.

(R)−1−(4−トリル)エチル 3−フェニルプロパノエート
HPLC(CHIRALCEL OD−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min):t=11.3min(5.4%),t=12.6min(94.6%);
IR(neat):3028,1738,1604,1517,817,750,700cm−1
H NMR(CDCl):δ7.20−7.02(m,9H,Ph),5.77(q,J=6.7Hz,1H,1−H),2.85(t, J=7.6Hz,2H,2’−H),2.60−2.49(m,2H,3’−H),2.25(s,3H,Me),1.40(dd,J=6.7,1.5Hz,3H,2−H);
13C NMR(CDCl):δ172.1,140.5,138.6,137.5,129.1,128.4,128.3,126.1,126.0,72.2,36.1,30.9,22.0,21.1;
HR MS:calcd for C1820Na (M+Na)291.1356,found 291.1364.
(R) -1- (4-Tolyl) ethyl 3-phenylpropanoate HPLC (CHIRALCEL OD-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min): t R = 11. 3 min (5.4%), t R = 12.6 min (94.6%);
IR (neat): 3028, 1738, 1604, 1517, 817, 750, 700 cm −1 ;
1 H NMR (CDCl 3 ): δ 7.20-7.02 (m, 9H, Ph), 5.77 (q, J = 6.7 Hz, 1H, 1-H), 2.85 (t, J = 7.6 Hz, 2H, 2′-H), 2.60-2.49 (m, 2H, 3′-H), 2.25 (s, 3H, Me), 1.40 (dd, J = 6) .7, 1.5 Hz, 3H, 2-H);
13 C NMR (CDCl 3 ): δ 172.1, 140.5, 138.6, 137.5, 129.1, 128.4, 128.3, 126.1, 126.0, 72.2, 36. 1,30.9, 22.0, 21.1;
HR MS: calcd for C 18 H 20 O 2 Na (M + Na + ) 291.1356, found 291.1364.

(R)−1−(4−メトキシフェニル)エチル 3−フェニルプロパノエート
HPLC(CHIRALCEL OJ−H,i−PrOH/hexane=1/4,flow rate=0.5mL/min):t=27.3min(4.0%),t=31.6min(96.0%);
IR(neat):3029,1730,1612,1516,831,751,700cm−1
H NMR(CDCl):δ7.22−7.04(m,7H,Ph),6.82−6.73(m,2H,Ph),5.77(q,J=6.6Hz,1H,1−H),3.71(s,3H,OMe),2.85(t,J=7.7Hz,2H,2’−H),2.63−2.45(m,2H,3’−H),1.40(d,J=6.6Hz,3H,2−H);
13C NMR(CDCl):δ172.1,159.2,140.4,133.6,128.4,128.3,127.5,126.1,113.7,72.0,55.2,36.1,30.9,21.9;
HR MS:calcd for C1820Na (M+Na) 307.1305,found 307.1317.
(R) -1- (4-methoxyphenyl) ethyl 3-phenylpropanoate HPLC (CHIRALCEL OJ-H, i-PrOH / hexane = 1/4, flow rate = 0.5 mL / min): t R = 27 .3 min (4.0%), t R = 31.6 min (96.0%);
IR (neat): 3029, 1730, 1612, 1516, 831, 751, 700 cm −1 ;
1 H NMR (CDCl 3 ): δ 7.22-7.04 (m, 7H, Ph), 6.82-6.73 (m, 2H, Ph), 5.77 (q, J = 6.6 Hz, 1H, 1-H), 3.71 (s, 3H, OMe), 2.85 (t, J = 7.7 Hz, 2H, 2′-H), 2.63-2.45 (m, 2H, 3'-H), 1.40 (d, J = 6.6 Hz, 3H, 2-H);
13 C NMR (CDCl 3 ): δ 172.1, 159.2, 140.4, 133.6, 128.4, 128.3, 127.5, 126.1, 113.7, 72.0, 55. 2, 36.1, 30.9, 21.9;
HR MS: calcd for C 18 H 20 O 3 Na (M + Na +) 307.1305, found 307.1317.

(R)−1−(2−トリル)エチル 3−フェニルプロパノエート
HPLC(CHIRALCEL OJ−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min):t=26.7min(4.4%),t=32.8min(95.6%);
IR(neat):3028,1733,1604,1494,761,699cm−1
H NMR(CDCl):δ7.26−7.21(m,1H,Ph),7.20−7.14(m,2H,Ph),7.12−7.01(m,6H,Ph),5.99(q,J=6.7Hz,1H,1−H),2.62−2.50(m,2H,3’−H),2.26(s,3H,3−H),1.38(d,J=6.4Hz,3H,2−H);
13C NMR(CDCl):δ172.0,140.4,140.0,134.7,130.3,128.4,128.2,127.5,126.21,126.16,125.2,69.3,36.0,30.9,21.3,19.0;
HR MS:calcd for C1820Na (M+Na)291.1356,found 291.1362.
(R) -1- (2-Tolyl) ethyl 3-phenylpropanoate HPLC (CHIRALCEL OJ-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min): t R = 26. 7 min (4.4%), t R = 32.8 min (95.6%);
IR (neat): 3028, 1733, 1604, 1494, 761, 699 cm −1 ;
1 H NMR (CDCl 3 ): δ 7.26-7.21 (m, 1H, Ph), 7.20-7.14 (m, 2H, Ph), 7.12-7.01 (m, 6H, Ph), 5.99 (q, J = 6.7 Hz, 1H, 1-H), 2.62-2.50 (m, 2H, 3′-H), 2.26 (s, 3H, 3- H), 1.38 (d, J = 6.4 Hz, 3H, 2-H);
13 C NMR (CDCl 3 ): δ 172.0, 140.4, 140.0, 134.7, 130.3, 128.4, 128.2, 127.5, 126.21, 126.16, 125. 2, 69.3, 36.0, 30.9, 21.3, 19.0;
HR MS: calcd for C 18 H 20 O 2 Na (M + Na +) 291.1356, found 291.1362.

[実施例7 2級アルコールの有する芳香族環を変化させた場合のエステル生成反応への影響]
ジクロロメタン0.2モル中に、1−(2−ナフチル)−1−エタノール1当量に対して、3−フェニルプロピオン酸0.5当量、安息香酸無水物(BzO)又はパラメトキシ安息香酸無水物(PMBA)0.60当量、(+)−ベンゾテトラミソール5モル%、ジイソプロピルエチルアミン1.2当量を加え、反応式(15)に従って室温で12時間反応させた。有機層を無水硫酸ナトリウムで乾燥した後、減圧濃縮した。生成した光学活性エステル及び未反応の光学活性アルコールをシリカゲル薄層クロマトグラフィーにより得た。
[Example 7: Effect on ester formation reaction when aromatic ring of secondary alcohol is changed]
In 0.2 mol of dichloromethane, 1 equivalent of 1- (2-naphthyl) -1-ethanol, 0.5 equivalent of 3-phenylpropionic acid, benzoic anhydride (Bz 2 O) or paramethoxybenzoic anhydride (PMBA) 0.60 equivalent, (+)-benzotetramisol 5 mol%, and diisopropylethylamine 1.2 equivalent were added, and it was made to react at room temperature for 12 hours according to Reaction formula (15). The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The produced optically active ester and unreacted optically active alcohol were obtained by silica gel thin layer chromatography.

Figure 2008140074
Figure 2008140074

また、2級アルコールである1−(2−ナフチル)−1−エタノールを、1−(1−ナフチル)−1−エタノールに変更して同様の反応を行った。以上の結果を表7に示す。

Figure 2008140074
Moreover, 1- (2-naphthyl) -1-ethanol which is a secondary alcohol was changed to 1- (1-naphthyl) -1-ethanol, and the same reaction was performed. The results are shown in Table 7.
Figure 2008140074

(S)−1−(2−ナフチル)エタノール
HPLC(CHIRALCEL OB−H,i−PrOH/hexane=1/9,flow rate=0.5mL/min):t=17.1min(90.3%),t=19.3min(9.7%);
H NMR(CDCl):δ7.79−7.69(m,4H,Ph),7.46−7.33(m,3H,Ph),4.98(q,J=6.4Hz,1H,1−H),2.00(br s,1H,OH),1.50(d,J=6.4Hz,3H,2−H).
(S) -1- (2-naphthyl) ethanol HPLC (CHIRALCEL OB-H, i-PrOH / hexane = 1/9, flow rate = 0.5 mL / min): t R = 17.1 min (90.3% ), T R = 19.3 min (9.7%);
1 H NMR (CDCl 3 ): δ 7.79-7.69 (m, 4H, Ph), 7.46-7.33 (m, 3H, Ph), 4.98 (q, J = 6.4 Hz, 1H, 1-H), 2.00 (brs, 1H, OH), 1.50 (d, J = 6.4 Hz, 3H, 2-H).

(S)−1−(1−ナフチル)エタノール
HPLC(CHIRALCEL OB−H,i−PrOH/hexane=1/9,flow rate=0.5mL/min):t=18.1min(94.3%),t=21.8min(5.7%);
H NMR(CDCl):δ8.08−8.00(m,1H,Ph),7.84−7.75(m,1H,Ph),7.70(d,J=8.3Hz,1H,Ph),7.60(d,J=7.2Hz,1H,Ph),7.50−7.36(m,3H,Ph),5.60(q,J=6.4Hz,1H,1−H),1.88(br s,1H,OH),1.60(d,J=6.4Hz,3H,2−H).
(S) -1- (1-naphthyl) ethanol HPLC (CHIRALCEL OB-H, i-PrOH / hexane = 1/9, flow rate = 0.5 mL / min): t R = 18.1 min (94.3% ), T R = 21.8 min (5.7%);
1 H NMR (CDCl 3 ): δ 8.08-8.00 (m, 1H, Ph), 7.84-7.75 (m, 1H, Ph), 7.70 (d, J = 8.3 Hz, 1H, Ph), 7.60 (d, J = 7.2 Hz, 1H, Ph), 7.50-7.36 (m, 3H, Ph), 5.60 (q, J = 6.4 Hz, 1H) , 1-H), 1.88 (brs, 1H, OH), 1.60 (d, J = 6.4 Hz, 3H, 2-H).

(R)−1−(2−ナフチル)エチル 3−フェニルプロパノエート
HPLC(CHIRALPAK AD−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min):t=17.0min(96.3%),t=26.3min(3.7%);
IR(neat):3027,1732,1603,1497,818,748,699cm−1
H NMR(CDCl):δ7.80−7.65(m,4H,Ph),7.45−7.32(m,3H,Ph),7.22−7.05(m,5H,Ph),5.97(q,J=6.6Hz,1H,1−H),2.88(t,J=7.7Hz,2H,2’−H),2.69−2.52(m,2H,3’−H),1.51(d,J=6.6Hz,3H,2−H);
13C NMR(CDCl):δ172.2,140.4,138.9,133.1,133.0,128.4,128.31,128.28,128.0,127.6,126.21,126.19,126.0,125.0,124.1,72.5,36.1,30.9,22.1;
HR MS:calcd for C2120Na (M+Na)327.1356,found 327.1368.
(R) -1- (2-Naphtyl) ethyl 3-phenylpropanoate HPLC (CHIRALPAK AD-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min): t R = 17. 0 min (96.3%), t R = 26.3 min (3.7%);
IR (neat): 3027, 1732, 1603, 1497, 818, 748, 699 cm −1 ;
1 H NMR (CDCl 3 ): δ 7.80-7.65 (m, 4H, Ph), 7.45-7.32 (m, 3H, Ph), 7.22-7.05 (m, 5H, Ph), 5.97 (q, J = 6.6 Hz, 1H, 1-H), 2.88 (t, J = 7.7 Hz, 2H, 2′-H), 2.69-2.52 ( m, 2H, 3'-H), 1.51 (d, J = 6.6 Hz, 3H, 2-H);
13 C NMR (CDCl 3 ): δ 172.2, 140.4, 138.9, 133.1, 133.0, 128.4, 128.31, 128.28, 128.0, 127.6, 126. 21, 126.19, 126.0, 125.0, 124.1, 72.5, 36.1, 30.9, 22.1;
HR MS: calcd for C 21 H 20 O 2 Na (M + Na +) 327.1356, found 327.1368.

(R)−1−(1−ナフチル)エチル 3−フェニルプロパノエート
HPLC(CHIRALPAK AD−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min):t=16.0min(95.7%),t=21.2min(4.3%);
IR(neat):3027,1732,1598,1496,800,778,699cm−1
H NMR(CDCl):δ8.01−7.93(m,1H,Ph),7.82−7.68(m,2H,Ph),7.51−7.30(m,4H,Ph),7.24−7.05(m,5H,Ph),6.57(q,J=6.6Hz,1H,1−H),2.90(t,J=7.8Hz,2H,2’−H),2.71−2.54(m,2H,3’−H),1.59(d,J=6.6Hz,3H,2−H);
13C NMR(CDCl):δ172.2,140.4,137.3,133.8,130.2,128.9,128.43,128.39,128.28,126.3,126.2,125.3,123.2,123.1,69.5,36.1,30.9,21.6;
HR MS:calcd for C2120Na (M+Na)327.1356,found 327.1365.
(R) -1- (1-naphthyl) ethyl 3-phenylpropanoate HPLC (CHIRALPAK AD-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min): t R = 16. 0 min (95.7%), t R = 21.2 min (4.3%);
IR (neat): 3027, 1732, 1598, 1496, 800, 778, 699 cm −1 ;
1 H NMR (CDCl 3 ): δ 8.01-7.93 (m, 1H, Ph), 7.82-7.68 (m, 2H, Ph), 7.51-7.30 (m, 4H, Ph), 7.24-7.05 (m, 5H, Ph), 6.57 (q, J = 6.6 Hz, 1H, 1-H), 2.90 (t, J = 7.8 Hz, 2H) , 2'-H), 2.71-2.54 (m, 2H, 3'-H), 1.59 (d, J = 6.6 Hz, 3H, 2-H);
13 C NMR (CDCl 3 ): δ 172.2, 140.4, 137.3, 133.8, 130.2, 128.9, 128.43, 128.39, 128.28, 126.3, 126. 2, 125.3, 123.2, 123.1, 69.5, 36.1, 30.9, 21.6;
HR MS: calcd for C 21 H 20 O 2 Na (M + Na +) 327.1356, found 327.1365.

[実施例8 三重結合を有する2級アルコールを用いたエステル生成反応(1)]
不斉エステル化触媒として、(+)−ベンゾテトラミソールを用い、反応式(16)に従って、実施例1と同様に反応させた。なお、酸無水物としては、安息香酸無水物(BzO)又は4−メチル安息香酸無水物(TolBA)を用いた。
[Example 8: Ester formation reaction using secondary alcohol having triple bond (1)]
Using (+)-benzotetramisol as an asymmetric esterification catalyst, the reaction was carried out in the same manner as in Example 1 according to the reaction formula (16). As the acid anhydride, benzoic anhydride (Bz 2 O) or 4-methylbenzoic anhydride (TolBA) was used.

Figure 2008140074
Figure 2008140074

その結果を表8に示す。

Figure 2008140074
The results are shown in Table 8.
Figure 2008140074

(S)−4−フェニル−3−ブチン−2−オール
HPLC(CHIRALCEL OD−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min):t=14.7min(12.6%),t=17.0min(87.4%);
H NMR(CDCl):δ7.24−6.97(m,5H,Ph),4.50(q,J=6.6Hz,1H,1−H),1.82(br s,1H,OH),1.30(d,J=6.6Hz,3H,2−H).
(S) -4-phenyl-3-butyn-2-ol HPLC (CHIRALCEL OD-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min): t R = 14.7 min (12 .6%), t R = 17.0 min (87.4%);
1 H NMR (CDCl 3 ): δ 7.24-6.97 (m, 5H, Ph), 4.50 (q, J = 6.6 Hz, 1H, 1-H), 1.82 (br s, 1H , OH), 1.30 (d, J = 6.6 Hz, 3H, 2-H).

(R)−2−(4−フェニルブタ−3−イン)イル 3−フェニルプロパノエート
HPLC(CHIRALCEL OD−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min):t=19.4min(89.2%),t=22.4min(10.8%);
H NMR(CDCl):δ7.40−7.06(m,10H,Ph),5.62(q,J=6.6Hz,1H,1−H),2.91(t,J=7.5Hz,2H,2’−H),2.70−2.51(m,2H,3’−H),1.47(d,J=6.6Hz,3H,2−H).
(R) -2- (4-Phenylbut-3-yn) yl 3-phenylpropanoate HPLC (CHIRALCEL OD-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min): t R = 19.4 min (89.2%), t R = 22.4 min (10.8%);
1 H NMR (CDCl 3 ): δ 7.40-7.06 (m, 10H, Ph), 5.62 (q, J = 6.6 Hz, 1H, 1-H), 2.91 (t, J = 7.5 Hz, 2H, 2'-H), 2.70-2.51 (m, 2H, 3'-H), 1.47 (d, J = 6.6 Hz, 3H, 2-H).

[実施例9 三重結合を有する2級アルコールを用いたエステル生成反応(2)]
不斉エステル化触媒として、(+)−ベンゾテトラミソールを用い、2級アルコールとして1−フェニル−2−ヘプチン−1−オールを用いて、反応式(17)に従って実施例1と同様に反応させた。なお、(+)−ベンゾテトラミソールの添加量は5モル%とし、ジイソプロピルエチルアミンの添加量は1.35当量とした。
Example 9 Ester Formation Reaction Using Secondary Alcohol with Triple Bond (2)
Using (+)-benzotetramisol as the asymmetric esterification catalyst and 1-phenyl-2-heptyn-1-ol as the secondary alcohol, the reaction is carried out in the same manner as in Example 1 according to the reaction formula (17). I let you. The addition amount of (+)-benzotetramisole was 5 mol%, and the addition amount of diisopropylethylamine was 1.35 equivalents.

Figure 2008140074
Figure 2008140074

また、2級アルコールの三重結合を、カルボニルコバルト錯体で保護した化合物についても、以下の要領に従って同様にエステル生成反応を行った。   Moreover, the ester production | generation reaction was similarly performed about the compound which protected the triple bond of the secondary alcohol with the carbonyl cobalt complex according to the following procedures.

(アルキニルアルコールのコバルト錯体化)
1−フェニル−2−ヘプチン−1−オール295.8mg(1.571mmol)のジエチルエーテル溶液16mLに対し、オクタカルボニルジコバルト590.9mg(1.728mmol)を室温で添加した。反応混合液を1時間室温で攪拌した後に減圧濃縮し、得られた混合物を、シリカゲル薄層クロマトグラフィーを用いて分取することにより、対応するコバルト錯体化アルコール(678.0mg、91%)が得られた。
(Cobalt complexation of alkynyl alcohol)
To 16 mL of diethyl ether solution of 295.8 mg (1.571 mmol) of 1-phenyl-2-heptyn-1-ol, 590.9 mg (1.728 mmol) of octacarbonyl dicobalt was added at room temperature. The reaction mixture was stirred for 1 hour at room temperature and then concentrated under reduced pressure. The resulting mixture was separated using silica gel thin layer chromatography to obtain the corresponding cobalt complexed alcohol (678.0 mg, 91%). Obtained.

(アルキニルアルコール−コバルト錯体の不斉エステル化)
コバルト錯体化アルコール44.8mg(0.0945mmol、1.0当量)、安息香酸無水物19.2mg(0.0850mmol、0.90当量)及び3−フェニルプロピオン酸10.6mg(0.0709mmol、0.75当量)のジクロロメタン溶液(0.9mL)に対し、ジイソプロピルエチルアミン0.022mL(0.128mmol、1.35当量)及び(+)−ベンゾテトラミソール2.4mg(9.45μmol、10モル%)をそれぞれ室温で順番に加えた。反応混合液を12時間攪拌した後、飽和重曹水で反応を停止した。有機層を分取した後、水槽をジクロロメタンで3回抽出した。有機層を混合した後、無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた混合物をシリカゲル薄層クロマトグラフィーを用いて分取することにより、対応する光学活性なコバルト錯体化エステル20.9mg(収率37%、97%ee)ならびに未反応の光学活性なコバルト錯体化アルコール15.1mg(収率34%、80%ee)が得られた。s=181であった。
(Asymmetric esterification of alkynyl alcohol-cobalt complex)
Cobalt complexed alcohol 44.8 mg (0.0945 mmol, 1.0 eq), benzoic anhydride 19.2 mg (0.0850 mmol, 0.90 eq) and 3-phenylpropionic acid 10.6 mg (0.0709 mmol, 0 eq) .75 equivalents) in dichloromethane (0.9 mL), 0.022 mL (0.128 mmol, 1.35 equivalents) of diisopropylethylamine and 2.4 mg (9.45 μmol, 10 mol%) of (+)-benzotetramisole. ) In each order at room temperature. The reaction mixture was stirred for 12 hours and then quenched with saturated aqueous sodium bicarbonate. After separating the organic layer, the water bath was extracted with dichloromethane three times. The organic layers were mixed and then dried over anhydrous sodium sulfate. The solution was filtered and then concentrated under reduced pressure, and the resulting mixture was fractionated using silica gel thin layer chromatography to obtain 20.9 mg of the corresponding optically active cobalt complexed ester (yield 37%, 97% ee). As a result, 15.1 mg of unreacted optically active cobalt complexed alcohol (yield 34%, 80% ee) was obtained. s = 181.

(脱錯体化による光学活性アルキニルエステルの合成)
コバルト錯体化エステル20.9mg(0.0345mmol)のメタノール溶液0.3mLに対し、セリウムアンモニウムニトレート75.6mg(0.138mmol)を0℃で加えた。反応混合液を1時間攪拌した後、水で反応を停止した。有機層を分取した後、水槽を酢酸エチルで3回抽出した。有機層を混合した後、無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた混合物をシリカゲル薄層クロマトグラフィーを用いて分取することによりアルキニルエステル9.1mg(収率83%、97%ee)が得られた。
(Synthesis of optically active alkynyl ester by decomplexation)
75.6 mg (0.138 mmol) of cerium ammonium nitrate was added at 0 ° C. to 0.3 mL of a methanol solution of 20.9 mg (0.0345 mmol) of the cobalt complexed ester. The reaction mixture was stirred for 1 hour and then quenched with water. After separating the organic layer, the water bath was extracted three times with ethyl acetate. The organic layers were mixed and then dried over anhydrous sodium sulfate. The solution was filtered and then concentrated under reduced pressure, and the resulting mixture was fractionated using silica gel thin layer chromatography to obtain 9.1 mg (yield 83%, 97% ee) of an alkynyl ester.

(脱錯体化による光学活性アルキニルアルコールの合成)
コバルト錯体化アルコール15.1mg(0.0318mmol)のメタノール溶液0.3mLに対し、セリウムアンモニウムニトレート69.8mg(0.127mmol)を0℃で加えた。反応混合液を1時間攪拌した後、水で反応を停止した。有機層を分取した後、水槽を酢酸エチルで3回抽出した。有機層を混合した後、無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた混合物をシリカゲル薄層クロマトグラフィーを用いて分取することによりアルキニルアルコール4.5mg(収率75%、79%ee)が得られた。
(Synthesis of optically active alkynyl alcohol by decomplexation)
60.3 mg (0.127 mmol) of cerium ammonium nitrate was added at 0 ° C. to 0.3 mL of methanol solution of 15.1 mg (0.0318 mmol) of cobalt complexed alcohol. The reaction mixture was stirred for 1 hour and then quenched with water. After separating the organic layer, the water bath was extracted three times with ethyl acetate. The organic layers were mixed and then dried over anhydrous sodium sulfate. The solution was filtered and then concentrated under reduced pressure, and the resulting mixture was fractionated using silica gel thin layer chromatography to obtain 4.5 mg of alkynyl alcohol (yield 75%, 79% ee).

以上の結果を表9に示す。

Figure 2008140074
The above results are shown in Table 9.
Figure 2008140074

表9より、2級アルコールの不斉炭素に隣接する両方の炭素が多重結合を有している場合、エステル生成反応の立体選択性が低下することが分かる。その一方で、片方の多重結合である三重結合をコバルト錯体により保護することにより、立体選択性が回復し、高いエナンチオ選択率で反応が進行することが分かる。   From Table 9, it can be seen that when both carbons adjacent to the asymmetric carbon of the secondary alcohol have multiple bonds, the stereoselectivity of the ester formation reaction is lowered. On the other hand, it can be seen that by protecting the triple bond, which is one of multiple bonds, with a cobalt complex, the stereoselectivity is restored and the reaction proceeds with a high enantioselectivity.

(R)−1−フェニル−2−ヘプチン−1−オール
HPLC(CHIRALCEL OD−H,i−PrOH/hexane=1/9,flow rate=0.5mL/min);t=12.6min(10.6%),t=16.6min(89.4%);
H NMR(CDCl):δ7.55(d,J=7.2Hz,2H,Ph),7.41−7.23(m,3H,Ph),5.47−5.45(m,1H,1−H),2.28(dt,J=6.9,2.1Hz,2H,4−H),2.07(d,J=6.0Hz,1H,OH),1.58−1.39(m,4H,5−H,6−H),0.92(t,J=6.9Hz,3H,7−H);
13C NMR(CDCl):δ141.2,128.5,128.2,126.6,87.7,79.8,64.8,30.6,21.9,18.5,13.6.
(R) -1-phenyl-2-heptin-1-ol HPLC (CHIRALCEL OD-H, i-PrOH / hexane = 1/9, flow rate = 0.5 mL / min); t R = 12.6 min (10 .6%), t R = 16.6 min (89.4%);
1 H NMR (CDCl 3 ): δ 7.55 (d, J = 7.2 Hz, 2H, Ph), 7.41-7.23 (m, 3H, Ph), 5.47-5.45 (m, 1H, 1-H), 2.28 (dt, J = 6.9, 2.1 Hz, 2H, 4-H), 2.07 (d, J = 6.0 Hz, 1H, OH), 1.58 -1.39 (m, 4H, 5-H, 6-H), 0.92 (t, J = 6.9 Hz, 3H, 7-H);
13 C NMR (CDCl 3 ): δ 141.2, 128.5, 128.2, 126.6, 87.7, 79.8, 64.8, 30.6, 21.9, 18.5, 13 . 6).

(R)−1−フェニル−2−ヘプチン−1−オール−コバルト錯体
HPLC(CHIRALCEL OD−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min);t=22.5min(10.1%),t=27.3min(89.9%);
H NMR(CDCl):δ7.45−7.29(m,5H,Ph),5.91(d,J=3.3Hz,1H,1−H),2.70(dt,J=9.0,5.7Hz,2H,4−H),2.29(d,J=3.3Hz,1H,OH),1.66−1.41(m,4H,5−H,6−H),0.67(t,J=6.9Hz,3H,7−H);
13C NMR(CDCl):δ199.6,143.8,128.5,128.1,125.3,101.7,99.1,74.2,34.0,33.2,22.7,13.8.
(R) -1-phenyl-2-heptin-1-ol-cobalt complex HPLC (CHIRALCEL OD-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min); t R = 22. 5 min (10.1%), t R = 27.3 min (89.9%);
1 H NMR (CDCl 3 ): δ 7.45-7.29 (m, 5H, Ph), 5.91 (d, J = 3.3 Hz, 1H, 1-H), 2.70 (dt, J = 9.0, 5.7 Hz, 2H, 4-H), 2.29 (d, J = 3.3 Hz, 1H, OH), 1.66-1.41 (m, 4H, 5-H, 6- H), 0.67 (t, J = 6.9 Hz, 3H, 7-H);
13 C NMR (CDCl 3 ): δ 199.6, 143.8, 128.5, 128.1, 125.3, 101.7, 99.1, 74.2, 34.0, 33.2, 22. 7, 13.8.

(S)−1−(1−フェニルヘプタ−2−イン)イル 3−フェニルプロパノエート
HPLC(CHIRALCEL OJ−H,i−PrOH/hexane=1/50,flow rate=0.5mL/min);t=21.8min(1.6%),t=24.0min(98.4%);
H NMR(CDCl):δ7.49−7.15(m,10H,Ph),6.47(t,J=2.1Hz,1H,1−H),2.96(t,J=7.8Hz,2H,3’−H),2.69(dd,J=7.8,3.9Hz,2H,2’−H),2.27(dt,J=7.2,2.1Hz,2H,4’−H),1.58−1.35(m,4H,5−H,6−H),0.91(t,J=6.9Hz,3H,7−H).
(S) -1- (1-phenylhept-2-yne) yl 3-phenylpropanoate HPLC (CHIRALCEL OJ-H, i-PrOH / hexane = 1/50, flow rate = 0.5 mL / min); t R = 21.8 min (1.6%), t R = 24.0 min (98.4%);
1 H NMR (CDCl 3 ): δ 7.49-7.15 (m, 10H, Ph), 6.47 (t, J = 2.1 Hz, 1H, 1-H), 2.96 (t, J = 7.8 Hz, 2H, 3′-H), 2.69 (dd, J = 7.8, 3.9 Hz, 2H, 2′-H), 2.27 (dt, J = 7.2, 2.. 1 Hz, 2H, 4′-H), 1.58-1.35 (m, 4H, 5-H, 6-H), 0.91 (t, J = 6.9 Hz, 3H, 7-H).

(S)−1−(1−フェニルヘプタ−2−イン)イル 3−フェニルプロパノエート−コバルト錯体
HPLC(CHIRALPAK AD−H,i−PrOH/hexane=1/300,flow rate=0.5mL/min);t=15.2min(98.7%),t=22.8min(1.3%);
H NMR(CDCl):δ7.39−7.17(m,10H,Ph),7.00(s,1H,1−H),3.00(t,J=7.6Hz,2H,3’−H),2.77(t,J=7.6Hz,1H,2’−H),2.73−2.57(m,2H,4−H),1.59−1.41(m,4H,5−H,6−H),0.96(t,J=7.2Hz,3H,7−H).
(S) -1- (1-Phenylhept-2-yne) yl 3-phenylpropanoate-cobalt complex HPLC (CHIRALPAK AD-H, i-PrOH / hexane = 1/300, flow rate = 0.5 mL / min); t R = 15.2 min (98.7%), t R = 22.8 min (1.3%);
1 H NMR (CDCl 3 ): δ 7.39-7.17 (m, 10H, Ph), 7.00 (s, 1H, 1-H), 3.00 (t, J = 7.6 Hz, 2H, 3'-H), 2.77 (t, J = 7.6 Hz, 1H, 2'-H), 2.73-2.57 (m, 2H, 4-H), 1.59-1.41. (M, 4H, 5-H, 6-H), 0.96 (t, J = 7.2 Hz, 3H, 7-H).

[実施例10 ベンゼン環以外の二重結合がエステル生成反応に与える影響(1)]
不斉エステル化触媒として、(+)−ベンゾテトラミソールを用い、反応式(18)に従って、実施例1と同様に反応させた。
[Example 10 Effect of double bond other than benzene ring on ester formation reaction (1)]
Using (+)-benzotetramisol as an asymmetric esterification catalyst, the reaction was carried out in the same manner as in Example 1 according to the reaction formula (18).

Figure 2008140074
Figure 2008140074

収率は、(S)−2−(3−フェニルプロピルオキシ)プロパノエートが39%、ベンジル(R)−2−ヒドロキシプロパノエートが46%、エナンチオ選択率は、(S)−2−(3−フェニルプロピルオキシ)プロパノエートが77%、(R)−2−ヒドロキシプロパノエートが47%、sは12であった。   The yield was 39% for (S) -2- (3-phenylpropyloxy) propanoate, 46% for benzyl (R) -2-hydroxypropanoate, and the enantioselectivity was (S) -2- (3 -Phenylpropyloxy) propanoate was 77%, (R) -2-hydroxypropanoate was 47%, and s was 12.

ベンジル(R)−2−ヒドロキシプロパノエート
HPLC(CHIRALCEL OD−H,i−PrOH/hexane=1/50,flow rate=1.0mL/min):t=19.4min(87.5%),t=21.9min(12.5%);
H NMR(CDCl):δ6.91−6.87(m,5H,Ph),4.69(s,2H,2’−H),3.80(qd,J=7.2,5.3Hz,1H,1−H),2.28(d,J=5.3Hz,1H,OH),0.92(d,J=7.2Hz,3H,2−H).
Benzyl (R) -2-hydroxypropanoate HPLC (CHIRALCEL OD-H, i-PrOH / hexane = 1/50, flow rate = 1.0 mL / min): t R = 19.4 min (87.5%) , T R = 21.9 min (12.5%);
1 H NMR (CDCl 3 ): δ 6.91-6.87 (m, 5H, Ph), 4.69 (s, 2H, 2′-H), 3.80 (qd, J = 7.2, 5 .3 Hz, 1H, 1-H), 2.28 (d, J = 5.3 Hz, 1H, OH), 0.92 (d, J = 7.2 Hz, 3H, 2-H).

ベンジル(S)−2−(3−フェニルプロピルオキシ)プロパノエート
HPLC(CHIRALCEL OJ−H,i−PrOH/hexane=1/1,flow rate=0.5mL/min):t=24.4min(11.3%),t=29.9min(88.7%);
H NMR(CDCl):δ7.58−7.31(m,10H,Ph),5.39−5.25 (m,3H),3.12(t,J=7.8Hz,2H),2.96−2.77(m,2H),1.64(d,J=7.2Hz,3H).
Benzyl (S) -2- (3-phenylpropyloxy) propanoate HPLC (CHIRALCEL OJ-H, i-PrOH / hexane = 1/1, flow rate = 0.5 mL / min): t R = 24.4 min (11 .3%), t R = 29.9 min (88.7%);
1 H NMR (CDCl 3 ): δ 7.58-7.31 (m, 10H, Ph), 5.39-5.25 (m, 3H), 3.12 (t, J = 7.8 Hz, 2H) 2.96-2.77 (m, 2H), 1.64 (d, J = 7.2 Hz, 3H).

[実施例11 ベンゼン環以外の二重結合がエステル生成反応に与える影響(2)]
不斉エステル化触媒として、(+)−ベンゾテトラミソールを用い、2級アルコールとして、下記(A)、又は(B)で示される化合物を用いて、反応式(19)に従って、実施例1と同様に反応させた。
[Example 11 Effect of double bond other than benzene ring on ester formation reaction (2)]
Example 1 according to the reaction formula (19) using (+)-benzotetramisol as an asymmetric esterification catalyst and using a compound represented by the following (A) or (B) as a secondary alcohol: It was made to react similarly.

Figure 2008140074
Figure 2008140074

Figure 2008140074
Figure 2008140074

その結果を表10に示す。

Figure 2008140074
The results are shown in Table 10.
Figure 2008140074

(S)−1−(2−チエニル)エタノール
HPLC(CHIRALCEL OJ−H,i−PrOH/hexane=1/9,flow rate=0.5mL/min):t=17.1min(58.4%),t=20.4min(41.6%);
H NMR(CDCl):δ7.16(dd,J=4.7,2.1Hz,1H,thienyl 5−H),6.98−6.86(m,2H,thienyl 3,4−H),5.13−4.99(m,1H,1−H),1.93(br s,1H,OH),1.53(d,J=6.6Hz,3H,2−H).
(S) -1- (2-thienyl) ethanol HPLC (CHIRALCEL OJ-H, i-PrOH / hexane = 1/9, flow rate = 0.5 mL / min): t R = 17.1 min (58.4% ), T R = 20.4 min (41.6%);
1 H NMR (CDCl 3 ): δ 7.16 (dd, J = 4.7, 2.1 Hz, 1H, thienyl 5-H), 6.98-6.86 (m, 2H, thienyl 3, 4-H ), 5.13-4.99 (m, 1H, 1-H), 1.93 (brs, 1H, OH), 1.53 (d, J = 6.6 Hz, 3H, 2-H).

(S)−1−(2−フリル)エタノール
HPLC(CHIRALCEL OD−H,i−PrOH/hexane=1/100,flow rate=0.5mL/min):t=14.9min(58.2%),t=17.2min(41.8%);
H NMR(CDCl):δ7.30(dd,J=2.4,1.8Hz,1H,furyl 5−H),6.25(dd,J=2.4,1.8Hz,1H,furyl 4−H),6.18−6.13(m,1H,furyl 3−H),4.81(dq,J=10.5,6.6Hz,1H,1−H),1.89(br s,1H,OH),1.47(d,J=6.6Hz,3H,2−H).
(S) -1- (2-furyl) ethanol HPLC (CHIRALCEL OD-H, i-PrOH / hexane = 1/100, flow rate = 0.5 mL / min): t R = 14.9 min (58.2% ), T R = 17.2 min (41.8%);
1 H NMR (CDCl 3 ): δ 7.30 (dd, J = 2.4, 1.8 Hz, 1H, furyl 5-H), 6.25 (dd, J = 2.4, 1.8 Hz, 1H, furyl 4-H), 6.18-6.13 (m, 1H, furyl 3-H), 4.81 (dq, J = 10.5, 6.6 Hz, 1H, 1-H), 1.89. (Br s, 1H, OH), 1.47 (d, J = 6.6 Hz, 3H, 2-H).

(R)−1−(2−チエニル)エチル 3−フェニルプロパノエート
HPLC(CHIRALCEL OJ−H,i−PrOH/hexane=1/9,flow rate=0.5mL/min):t=20.7min(15.7%),t=23.9min(84.3%);
H NMR(CDCl):δ7.24−7.06(m,6H,Ph,thienyl 5−H),6.97−6.93(m,1H,thienyl 4−H),6.88(dd,J=5.0,3.5Hz,thienyl 3−H),6.10(q,J=6.6Hz,1H,1−H),2.87(t,J=7.2Hz,2H,2’−H),2.61−2.53(m,2H,3’−H),1.53(d,J=6.6Hz,3H,2−H).
(R) -1- (2-thienyl) ethyl 3-phenylpropanoate HPLC (CHIRALCEL OJ-H, i-PrOH / hexane = 1/9, flow rate = 0.5 mL / min): t R = 20. 7 min (15.7%), t R = 23.9 min (84.3%);
1 H NMR (CDCl 3 ): δ 7.24-7.06 (m, 6H, Ph, thienyl 5-H), 6.97-6.93 (m, 1H, thienyl 4-H), 6.88 ( dd, J = 5.0, 3.5 Hz, thienyl 3-H), 6.10 (q, J = 6.6 Hz, 1H, 1-H), 2.87 (t, J = 7.2 Hz, 2H) , 2′-H), 2.61-2.53 (m, 2H, 3′-H), 1.53 (d, J = 6.6 Hz, 3H, 2-H).

(R)−1−(2−フリル)エチル 3−フェニルプロパノエート
HPLC(CHIRALCEL OD−H,i−PrOH/hexane=1/100,flow rate=0.5mL/min):t=14.5min(23.5%),t=16.3min(76.5%);
H NMR(CDCl):δ7.54−7.50(m,1H,furyl 5−H),7.45−7.28(m,5H,Ph),6.50−6.41(m,J=6.6Hz,furyl 3,4−H),6.10(q,J=6.6Hz,1H,1−H),3.08(t,J=7.8Hz,2H,2’−H),2.82−2.72(m,2H,3’−H),1.74−1.66(m,3H,2−H).
(R) -1- (2-furyl) ethyl 3-phenylpropanoate HPLC (CHIRALCEL OD-H, i-PrOH / hexane = 1/100, flow rate = 0.5 mL / min): t R = 14. 5 min (23.5%), t R = 16.3 min (76.5%);
1 H NMR (CDCl 3 ): δ 7.54-7.50 (m, 1H, furyl 5-H), 7.45-7.28 (m, 5H, Ph), 6.50-6.41 (m , J = 6.6 Hz, furyl 3,4-H), 6.10 (q, J = 6.6 Hz, 1H, 1-H), 3.08 (t, J = 7.8 Hz, 2H, 2 ′ -H), 2.82-2.72 (m, 2H, 3'-H), 1.74-1.66 (m, 3H, 2-H).

[実施例12 ヒドロキシカルボン酸を用いた光学活性ラクトンの合成反応]
安息香酸無水物15.0mg(0.0663mmol)及び(+)−ベンゾテトラミソール1.1mg(0.0044mmol)のジクロロメタン溶液4.3mLに対し、ジイソプロピルエチルアミン27.0μL(0.155mmol)及び16−フェニルヘキサデカン酸30.3mg(0.0869mmol)をそれぞれ室温で順番に加えた。反応混合液を12時間室温で攪拌した後、飽和塩化アンモニウム水溶液で反応を停止した。有機層を分取した後、水層をジエチルエーテルで3回抽出した。有機層を混合した後、無水硫酸ナトリウムで乾燥した。溶液を濾過した後に減圧濃縮し、得られた混合物をシリカゲル薄層クロマトグラフィーを用いて分取することにより、対応する光学活性ラクトン4.2mg(収率15%、100%ee)ならびに未反応の光学活性ヒドロキシカルボン酸9.3mg(収率31%、66%ee)がそれぞれ得られた。
Example 12 Synthesis Reaction of Optically Active Lactone Using Hydroxycarboxylic Acid
To 4.3 mL of dichloromethane solution of 15.0 mg (0.0663 mmol) of benzoic anhydride and 1.1 mg (0.0044 mmol) of (+)-benzotetramisole, 27.0 μL (0.155 mmol) and 16 of diisopropylethylamine were added. -30.3 mg (0.0869 mmol) of phenylhexadecanoic acid was added in turn at room temperature. The reaction mixture was stirred for 12 hours at room temperature and then quenched with saturated aqueous ammonium chloride. After separating the organic layer, the aqueous layer was extracted three times with diethyl ether. The organic layers were mixed and then dried over anhydrous sodium sulfate. The solution was filtered and then concentrated under reduced pressure, and the resulting mixture was fractionated using silica gel thin layer chromatography to obtain 4.2 mg of the corresponding optically active lactone (yield 15%, 100% ee) as well as unreacted. 9.3 mg (yield 31%, 66% ee) of optically active hydroxycarboxylic acid was obtained.

ジクロロメタンの添加量、及び添加する酸無水物の種類(パラメトキシ無水安息香酸(PMBA)、又は3,4,5−トリメトキシ安息香酸無水物(TMBA)を変化させて、同様の試験を行った。   A similar test was performed by changing the amount of dichloromethane added and the type of acid anhydride to be added (paramethoxybenzoic anhydride (PMBA) or 3,4,5-trimethoxybenzoic anhydride (TMBA)).

Figure 2008140074
Figure 2008140074

その結果を表11に示す。

Figure 2008140074
The results are shown in Table 11.
Figure 2008140074

表11より、ヒドロキシカルボン酸を基質として不斉エステル生成反応を行った場合、ヒドロキシカルボン酸のヒドロキシル基とカルボキシル基とが立体選択性をもって縮合した光学活性なラクトンを生成することが分かった。   From Table 11, it was found that when an asymmetric ester formation reaction was performed using hydroxycarboxylic acid as a substrate, an optically active lactone was formed by condensing the hydroxyl group and carboxyl group of hydroxycarboxylic acid with stereoselectivity.

(S)−16−ヒドロキシ−16−フェニルヘキサデカン酸
HPLC of the corresponding diol derived from the hydroxycarboxylic acid(CHIRALCEL OB−H,i−PrOH/hexane=1/9,flow rate=0.5mL/min);t=16.2min(82.8%),t=25.8min(17.2%);
H NMR(CDCl):δ7.35−7.15(m,5H,Ph),4.59(dd,J=7.4,6.0Hz,1H),2.26(t,J=7.5Hz,2H),1.80−1.06(m,26H).
(S) -16-hydroxy-16-phenylhexadecanoic acid HPLC of the corresponding diol derived from the hydroxycarboxylic acid (CHIRALCEL OB-H, i-PrOH / hexane = 1/9, flow rate = 0.5 mL / t) R = 16.2 min (82.8%), t R = 25.8 min (17.2%);
1 H NMR (CDCl 3 ): δ 7.35-7.15 (m, 5H, Ph), 4.59 (dd, J = 7.4, 6.0 Hz, 1H), 2.26 (t, J = 7.5 Hz, 2H), 1.80-1.06 (m, 26H).

(R)−16−フェニルヘキサデカノライド
HPLC of the corresponding diol derived from the lactone(CHIRALCEL OB−H,i−PrOH/hexane=1/9,flow rate=0.5mL/min);t=16.2min(<0.1%),t=25.8min(>99.9%);
H NMR(CDCl):δ7.41−7.13(m,5H,Ph),5.78(dd,J=9.6,3.6Hz,1H),2.42−2.17(m,2H),1.97−1.02(m,26H);
13C NMR(CDCl):δ173.3,141.3,128.4,127.6,126.2,75.5,36.8,34.7,28.3,28.0,27.8,27.7,27.0,27.0,26.9,26.8,26.7,25.1,25.0;
HR MS:calcd for C2234Na (M+Na)353.2456,found 353.2584.
(R) -16-phenylhexadecanolide HPLC of the corroding diol from the lactone (CHIRALCEL OB-H, i-PrOH / hexane = 1/9, flow rate = 0.5 mL / min); t R = 16 .2 min (<0.1%), t R = 25.8 min (>99.9%);
1 H NMR (CDCl 3 ): δ 7.41-7.13 (m, 5H, Ph), 5.78 (dd, J = 9.6, 3.6 Hz, 1H), 2.42-2.17 ( m, 2H), 1.97-1.02 (m, 26H);
13 C NMR (CDCl 3 ): δ 173.3, 141.3, 128.4, 127.6, 126.2, 75.5, 36.8, 34.7, 28.3, 28.0, 27. 8, 27.7, 27.0, 27.0, 26.9, 26.8, 26.7, 25.1, 25.0;
HR MS: calcd for C 22 H 34 O 2 Na (M + Na +) 353.2456, found 353.2584.

本発明によると、ラセミの2級アルコールとカルボン酸から光学活性カルボン酸エステルを直接、製造できる。   According to the present invention, an optically active carboxylic acid ester can be produced directly from a racemic secondary alcohol and a carboxylic acid.

得られた光学活性エステル及び分離された光学活性2級アルコールは、医薬品、生理活性物質の中間体、天然物合成の中間体等として、様々な分野に使用される。   The obtained optically active ester and the separated optically active secondary alcohol are used in various fields as pharmaceuticals, bioactive substance intermediates, natural product synthesis intermediates, and the like.

Claims (6)

不斉エステル化触媒として、下記一般式(1)、(2)、(3)又は(4)で示される化合物を用い、安息香酸無水物又はその誘導体の存在下で、ラセミの2級アルコールのいずれか一方のエナンチオマーとカルボン酸とを脱水縮合反応させて、光学活性カルボン酸エステルを製造する方法。
Figure 2008140074
Figure 2008140074
Figure 2008140074
Figure 2008140074
上記の式中、Xは、下記化学式(5)で表される置換基のいずれかである。
Figure 2008140074
(式中、Rは保護基である。)
As an asymmetric esterification catalyst, a compound represented by the following general formula (1), (2), (3) or (4) is used, and in the presence of benzoic anhydride or a derivative thereof, a racemic secondary alcohol A method of producing an optically active carboxylic acid ester by dehydrating condensation reaction of any one of enantiomers and carboxylic acid.
Figure 2008140074
Figure 2008140074
Figure 2008140074
Figure 2008140074
In the above formula, X is any of the substituents represented by the following chemical formula (5).
Figure 2008140074
(In the formula, R is a protecting group.)
前記ラセミの2級アルコールの不斉炭素原子に隣接する炭素原子の1つが、多重結合により他の原子と結合している請求項1記載の光学活性カルボン酸エステルを製造する方法。   The method for producing an optically active carboxylic acid ester according to claim 1, wherein one of the carbon atoms adjacent to the asymmetric carbon atom of the racemic secondary alcohol is bonded to another atom by a multiple bond. 前記ラセミの2級アルコールの不斉炭素原子に隣接する炭素原子のうち、一の原子が3重結合により他の原子と結合している原子であり、別の原子が2重結合により別の他の原子と結合している原子であって、前記3重結合にコバルト錯体が結合している請求項1に記載の光学活性カルボン酸エステルを製造する方法。   Of the carbon atoms adjacent to the asymmetric carbon atom of the racemic secondary alcohol, one atom is an atom bonded to another atom by a triple bond, and another atom is another atom by a double bond. The method for producing an optically active carboxylic acid ester according to claim 1, wherein a cobalt complex is bonded to the triple bond. 前記安息香酸無水物の誘導体は、フェニル環に電子供与性基が置換されたものである請求項1記載の光学活性カルボン酸エステルを製造する方法。   The method for producing an optically active carboxylic acid ester according to claim 1, wherein the derivative of benzoic anhydride is a phenyl ring substituted with an electron donating group. 不斉エステル化触媒として、一般式(1)、(2)、(3)又は(4)で示される化合物を用い、安息香酸無水物又はその誘導体の存在下で、ラセミの2級アルコールのいずれか一方のエナンチオマーとカルボン酸とを選択的に反応させることによって、ラセミの2級アルコールを光学分割する、ラセミの2級アルコールの光学分割法。
Figure 2008140074
Figure 2008140074
Figure 2008140074
Figure 2008140074
上記の式中、Xは、下記化学式(5)で表される置換基のいずれかである。
Figure 2008140074
(式中、Rは保護基である。)
As the asymmetric esterification catalyst, any of the racemic secondary alcohols is used in the presence of benzoic anhydride or a derivative thereof using the compound represented by the general formula (1), (2), (3) or (4). A method for optical resolution of racemic secondary alcohols, wherein a racemic secondary alcohol is optically resolved by selectively reacting one of the enantiomers with a carboxylic acid.
Figure 2008140074
Figure 2008140074
Figure 2008140074
Figure 2008140074
In the above formula, X is any of the substituents represented by the following chemical formula (5).
Figure 2008140074
(In the formula, R is a protecting group.)
不斉エステル化触媒として、一般式(1)、(2)、(3)又は(4)で示される化合物を用い、安息香酸無水物又はその誘導体の存在下で、第2級水酸基を有するラセミのヒドロキシカルボン酸のいずれか一方のエナンチオマーの前記第2級水酸基を、分子内に存在するカルボン酸基と選択的に反応させることによって、光学活性ラクトンを製造する方法。
Figure 2008140074
Figure 2008140074
Figure 2008140074
Figure 2008140074
上記の式中、Xは、下記化学式(5)で表される置換基のいずれかである。
Figure 2008140074
(式中、Rは保護基である。)
A racemic compound having a secondary hydroxyl group in the presence of benzoic anhydride or a derivative thereof using a compound represented by the general formula (1), (2), (3) or (4) as an asymmetric esterification catalyst A process for producing an optically active lactone by selectively reacting the secondary hydroxyl group of one of the enantiomers of a hydroxycarboxylic acid with a carboxylic acid group present in the molecule.
Figure 2008140074
Figure 2008140074
Figure 2008140074
Figure 2008140074
In the above formula, X is any of the substituents represented by the following chemical formula (5).
Figure 2008140074
(In the formula, R is a protecting group.)
JP2009514165A 2007-05-14 2008-05-12 Method for producing optically active carboxylic acid ester Expired - Fee Related JP5417560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009514165A JP5417560B2 (en) 2007-05-14 2008-05-12 Method for producing optically active carboxylic acid ester

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007128540 2007-05-14
JP2007128540 2007-05-14
JP2008061394 2008-03-11
JP2008061394 2008-03-11
PCT/JP2008/058743 WO2008140074A1 (en) 2007-05-14 2008-05-12 Method for production of optically active carboxylic acid ester
JP2009514165A JP5417560B2 (en) 2007-05-14 2008-05-12 Method for producing optically active carboxylic acid ester

Publications (2)

Publication Number Publication Date
JPWO2008140074A1 true JPWO2008140074A1 (en) 2010-08-05
JP5417560B2 JP5417560B2 (en) 2014-02-19

Family

ID=40002264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009514165A Expired - Fee Related JP5417560B2 (en) 2007-05-14 2008-05-12 Method for producing optically active carboxylic acid ester

Country Status (2)

Country Link
JP (1) JP5417560B2 (en)
WO (1) WO2008140074A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8115008B2 (en) 2008-03-11 2012-02-14 Tokyo University Of Science Education Foundation Administrative Organization Method for producing optically active ester and method for producing optically active carboxylic acid
US8552215B2 (en) 2009-03-12 2013-10-08 Tokyo University Of Science Educational Foundation Administrative Organization Method for producing optically active 2-hydroxy ester and novel intermediate compound
JP6057257B2 (en) 2011-06-10 2017-01-11 学校法人東京理科大学 Method for producing optically active carboxylic acid ester
JP5787399B2 (en) * 2011-08-12 2015-09-30 学校法人東京理科大学 Novel asymmetric catalyst, optically active carboxylic acid ester, optically active alcohol, and method for producing optically active carboxylic acid
US9796640B2 (en) 2014-02-03 2017-10-24 Tokyo University Of Science Foundation Method for producing optically active carboxylic acid ester
JP2015224227A (en) * 2014-05-28 2015-12-14 宇部興産株式会社 Method of producing (acetylene)dicobalt hexacarbonyl compound

Also Published As

Publication number Publication date
WO2008140074A1 (en) 2008-11-20
JP5417560B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
US6310248B2 (en) Process and intermediates
JP5417560B2 (en) Method for producing optically active carboxylic acid ester
KR20130142477A (en) Method for preparation of nitrocyclopropane derivatives
Kowalczyk et al. Enantioselective conjugate addition of aliphatic thiols to divergently activated electron poor alkenes and dienes
JP5435656B2 (en) Method for producing optically active ester and method for producing optically active carboxylic acid
Ruan et al. Catalytic Asymmetric Alkynylation and Arylation of Aldehydes by an H8‐Binaphthyl‐Based Amino Alcohol Ligand
Ku et al. Asymmetric synthesis of α, β-epoxysulfones via phase-transfer catalytic Darzens reaction
CN102030648A (en) Asymmetric synthesis method of 3-(3,4-dihydroxy phenyl)-2-hydracrylate
JP5622019B2 (en) Asymmetric organic molecular catalyst having amino alcohol derivative salt structure and method for producing optically active compound using said asymmetric organic molecular catalyst
JP4649645B2 (en) Process for producing optically active alcohol compounds
JPS61145160A (en) Production of optically active propionic acid derivative
KR101344077B1 (en) Method for Preparation of Beta-indolyl Esters Using Chiral Palladium Complexes
US6689916B2 (en) Phenyl propenone compounds
JP2010229097A (en) New oxazolidine derivative, new oxazolidine derivative salt and method for producing optically active compound using the oxazolidine derivative salt as asymmetric organic molecular catalyst
JP5943319B2 (en) Heteroarenesulfonylated quinaalkaloid amine compounds
US20050054877A1 (en) Enantiomerically selective cyclopropanation
JP5219204B2 (en) Novel asymmetric catalyst, and method for producing optically active ester and optically active carboxylic acid
JP3134786B2 (en) 2-Azabicyclo [3.3.0] octane derivatives, their production and optical resolution of diols or amino alcohols
CN108912077B (en) Preparation method of chiral phthalide derivative
JP5787399B2 (en) Novel asymmetric catalyst, optically active carboxylic acid ester, optically active alcohol, and method for producing optically active carboxylic acid
Jerhaoui Sulfoxydes: novel strategy for the asymmetric C (sp3)-H activation
KR101428906B1 (en) Method for preparation of chiral naphthoquinone derivatives
KR101465351B1 (en) METHOD FOR PREPARING CHIRAL β-HYDROXY THIOESTER BY CATALYTIC ENANTIOSELECTIVE ALDOL REACTION AND CHIRAL β-HYDROXY THIOESTER SYNTHESIZED BY THE METHOD
US9493492B2 (en) Compound, manufacturing method therefor, and method for manufacturing optically active α-aminophosphonate derivative
WO2012121350A1 (en) Process for producing ester derived from bulky hydroxy-group-containing compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130808

R150 Certificate of patent or registration of utility model

Ref document number: 5417560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees