JPWO2008004550A1 - Liquid analyzer - Google Patents

Liquid analyzer Download PDF

Info

Publication number
JPWO2008004550A1
JPWO2008004550A1 JP2008523689A JP2008523689A JPWO2008004550A1 JP WO2008004550 A1 JPWO2008004550 A1 JP WO2008004550A1 JP 2008523689 A JP2008523689 A JP 2008523689A JP 2008523689 A JP2008523689 A JP 2008523689A JP WO2008004550 A1 JPWO2008004550 A1 JP WO2008004550A1
Authority
JP
Japan
Prior art keywords
liquid
transported
flow
electrode
capturing means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008523689A
Other languages
Japanese (ja)
Other versions
JP4651715B2 (en
Inventor
原田 邦男
邦男 原田
足立 作一郎
作一郎 足立
英雄 榎
英雄 榎
寛展 山川
寛展 山川
修大 塚田
修大 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Publication of JPWO2008004550A1 publication Critical patent/JPWO2008004550A1/en
Application granted granted Critical
Publication of JP4651715B2 publication Critical patent/JP4651715B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4317Profiled elements, e.g. profiled blades, bars, pillars, columns or chevrons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/43197Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor characterised by the mounting of the baffles or obstructions
    • B01F25/431971Mounted on the wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0673Handling of plugs of fluid surrounded by immiscible fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

微小液体を搬送用媒体の流れにより駆動し、微小液体の混合、攪拌、所望の位置での捕捉による計測等を行うようにして、搬送が困難な微小液体を的確に搬送が可能で、かつ、試料と試薬の融合体を計測位置で捕捉し、分析できるようにした液体分析装置。By driving the micro liquid by the flow of the transport medium, mixing the micro liquid, stirring, measuring by capturing at a desired position, etc., it is possible to accurately transport the micro liquid that is difficult to transport, and A liquid analyzer that captures and analyzes the fusion of the sample and reagent at the measurement position.

Description

参照による取り込みImport by reference

本出願は、2006年7月5日に出願された日本特許出願第2006−185106号の優先権を主張し、その内容を参照することにより本出願に取り込む。   This application claims the priority of Japanese Patent Application No. 2006-185106 filed on Jul. 5, 2006, and is incorporated herein by reference.

本発明は、試料中に含まれる成分量を検出する分析装置に関する。特に、微少量の試料での分析技術に関する。   The present invention relates to an analyzer that detects the amount of a component contained in a sample. In particular, the present invention relates to an analysis technique using a very small amount of sample.

試料中に含まれる成分量を検出する分析においては、ハロゲンランプ等からの白色光を試料溶液に照射し、試料溶液を透過してきた光を回折格子で分光して必要な波長成分を取り出し、その吸光度を割り出すことで目的の成分量を測定する分光分析技術が広く用いられている。また光照射系については、白色光を回折格子で分光した後、試料溶液に照射する手法や、多波長光度計を用いる手法も使用されている。これらの技術に基づく分析装置においては、従来、プラスチックやガラスの反応容器内に試料と試薬を分注し、これらを混合して試料溶液とした物に光を照射し、成分量を測定していた。しかし、近年、試薬コストの削減や、環境への負荷低減のため、分析に用いる試料溶液の微少量化が求められている。   In the analysis to detect the amount of components contained in the sample, the sample solution is irradiated with white light from a halogen lamp, etc., the light transmitted through the sample solution is dispersed with a diffraction grating, and the necessary wavelength component is extracted. A spectroscopic technique for measuring the amount of a target component by determining the absorbance is widely used. As for the light irradiation system, a method of irradiating a sample solution after separating white light with a diffraction grating and a method using a multiwavelength photometer are also used. In analyzers based on these technologies, samples and reagents are conventionally dispensed into a plastic or glass reaction vessel, and these components are mixed to irradiate light into a sample solution to measure the amount of components. It was. However, in recent years, in order to reduce reagent costs and reduce the burden on the environment, there has been a demand for a small amount of sample solution used for analysis.

微少量の液体を搬送する方式としては、マイクロチャネル内に液体とセグメント化したオイルを注入し、液体の伝搬を制御する技術がある(例えば、特許文献1)。また、導管に不混和性液体のセグメントと空気のセグメントと試料のセグメントをピストンなどを用いて導入し、水溶液試料の混合を防止する技術がある(例えば、特許文献2)。さらに、疎水性液体に液滴を導入し、液滴を静電誘導して液滴を選別などする技術がある(例えば特許文献3)。   As a method for transporting a minute amount of liquid, there is a technique for injecting liquid and segmented oil into a microchannel to control the propagation of the liquid (for example, Patent Document 1). Also, there is a technique for preventing mixing of an aqueous solution sample by introducing an immiscible liquid segment, an air segment, and a sample segment into a conduit using a piston or the like (for example, Patent Document 2). Further, there is a technique for introducing a droplet into a hydrophobic liquid and electrostatically inducing the droplet to sort the droplet (for example, Patent Document 3).

微小量の液体を操作する方式としては、複数の電極間に電圧を印加して生じた電界において電界中の物質を分極させ、静電力により電界の集中する方向に移動させる現象(Dielectrophoresis)を利用する技術がある(例えば、特許文献4)。   As a method of manipulating a minute amount of liquid, a phenomenon (Dielectrophoresis) in which a substance in an electric field is polarized in an electric field generated by applying a voltage between a plurality of electrodes and moved in a direction in which the electric field is concentrated by electrostatic force is used. There is a technique (for example, Patent Document 4).

特開2003−200041号公報JP 2003-200041 A 米国特許4259291号U.S. Pat. No. 4,259,291 特開2005−37346号公報JP-A-2005-37346 米国特許4390403号US Pat. No. 4,390,403

従来のプラスチックやガラスの反応容器に試薬や試料を分注する液体分析装置では、試料溶液を微少量化すると、液の取り扱いが困難になり、また分注、混合時に発生しうる気泡等により測定の精度が落ちるおそれがあった。   In conventional liquid analyzers that dispense reagents and samples into reaction containers made of plastic or glass, if the sample solution is made very small, it becomes difficult to handle the liquid, and measurement may be caused by bubbles that may occur during dispensing and mixing. There was a risk that the accuracy would drop.

また、マイクロチャネルなどにオイルなどや試料を導入する場合には、マイクロチャネルなどの内部で試料を捕捉すると、当該内部のオイルなどの流れも遮られてしまい、試料などの制御が困難となる。さらに、特許文献2のように試料などの移送にピストンなどを用いる場合、ピストンを押して圧力を加えるため予めピストンを引いて導管に負圧を与えると、その内部に気泡が発生しうるという問題がある。この場合には、正確な試料溶液の搬送を妨害、試料溶液に光を照射して成分量を測定するときの気泡の悪影響等の問題が生じうる。   In addition, when oil or a sample is introduced into a microchannel or the like, if the sample is captured inside the microchannel or the like, the flow of the oil or the like inside the microchannel is blocked, making it difficult to control the sample or the like. Furthermore, when using a piston or the like for transferring a sample or the like as in Patent Document 2, in order to apply pressure by pushing the piston, if a negative pressure is applied to the conduit by pulling the piston in advance, bubbles may be generated therein. is there. In this case, the conveyance of the sample solution may be hindered, and problems such as an adverse effect of bubbles may occur when measuring the amount of components by irradiating the sample solution with light.

本発明では、微小液体を的確に搬送し、かつ試料等を的確に計測位置で捕捉し、分析をすることを目的としている。   An object of the present invention is to accurately transport a minute liquid and accurately capture a sample or the like at a measurement position for analysis.

上記課題を解決するために、微小液体を搬送用媒体の流れにより駆動し、微小液体を所望の位置で停止させるときに液体捕捉手段を用いる。   In order to solve the above problem, the liquid capturing means is used when the micro liquid is driven by the flow of the transport medium and the micro liquid is stopped at a desired position.

液体分析装置としては、被搬送液体を導入するための導入口と、前記被搬送液体を搬送させるための搬送用媒体について、循環の流れを生じさせる媒体流発生部と、前記被搬送液体と前記搬送用媒体とが流れる流路と、前記流路の少なくとも一部に設けられ、かつ、前記被搬送液体を捕捉する被搬送液体捕捉手段と、前記被搬送液体捕捉手段に捕捉された被搬送液体について計測する計測部とを有し、前記被搬送液体捕捉手段は前記搬送用媒体の流れの方向と実質的に垂直な面での最大幅が、前記流路の前記搬送用媒体の流れの方向と実質的に垂直な面での最大幅よりも小さいことを特徴とする。   The liquid analyzer includes an inlet for introducing the liquid to be transported, a medium flow generating unit that generates a circulation flow for the transport medium for transporting the liquid to be transported, the liquid to be transported, and the liquid A flow path through which the transport medium flows, a transported liquid capture means that captures the transported liquid provided in at least a part of the flow path, and a transported liquid captured by the transported liquid capture means A measuring section for measuring the flow direction of the transport medium in the flow path, wherein the transported liquid capture means has a maximum width in a plane substantially perpendicular to the flow direction of the transport medium. It is characterized by being smaller than the maximum width in a substantially vertical plane.

液体分析方法としては、導入口より第1の被搬送液体を導入する第1の工程と、搬送媒体の循環による流れで前記第1の被搬送液体を流路内で搬送する第2の工程と、前記第1の工程の後に前記導入口より第2の被搬送液体を導入する第3の工程と、前記第3の工程の後に前記搬送媒体の前記流れによって前記第2の被搬送液体を流路内で搬送する第4の工程と、搬送された前記第1の被搬送液体もしくは搬送された前記第2の被搬送液体のいずれかを第1捕捉手段で捕捉する第5の工程と、前記第1の被搬送液体もしくは前記第2の被搬送液体のいずれかの一方であって前記被搬送液体捕捉手段が捕捉したものと、前記いずれかの他方とを接触させて混合液体とする第6の工程と、前記混合液体を前記第1捕捉手段もしくは第2被搬送液体捕捉手段で捕捉して計測する第7の工程とを有することを特徴とする。   As a liquid analysis method, a first step of introducing a first liquid to be transported from an inlet, a second step of transporting the first liquid to be transported in a flow path by a flow of a transport medium, and A third step of introducing a second transported liquid from the inlet after the first step, and a flow of the second transported liquid by the flow of the transport medium after the third step. A fourth step of transporting in the path; a fifth step of capturing either the transported first transported liquid or the transported second transported liquid by a first capturing means; Sixth of the first transported liquid or the second transported liquid that has been captured by the transported liquid capturing means and the other transported liquid are brought into contact with each other to form a mixed liquid. And the mixed liquid is used as the first capturing means or the second transported liquid. And having a seventh step of measuring captures in 捉 means.

本発明によれば、微小液体を搬送用媒体の流れにより搬送するため、微小液体の液性の違いに関らずに確実な搬送が可能となる。また、試料を搬送しながら分析及び検出をするのに際し、搬送用媒体の流れを停滞させることなく試料などの微小液体を捕捉して位置を定めることができる。これにより、複数の微小液体を並列して搬送させながら、分析と検出とを並行することができる。
本発明の他の目的、特徴及び利点は添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。
According to the present invention, since the micro liquid is transported by the flow of the transport medium, it is possible to reliably transport the liquid regardless of the difference in liquid properties of the micro liquid. Further, when performing analysis and detection while transporting a sample, it is possible to determine the position by capturing a micro liquid such as a sample without stagnation of the flow of the transport medium. Thereby, analysis and detection can be performed in parallel while transporting a plurality of micro liquids in parallel.
Other objects, features and advantages of the present invention will become apparent from the following description of embodiments of the present invention with reference to the accompanying drawings.

図1から図6は液体分析装置の構成を示す略図であり、図1は第2の基板5を透過して見た平面図で、図2は図1のA−A部に沿った正面側からの断面図で、図3は図1のB−B部に沿った側面側からの断面図で、図4は図2のC−C部に沿った平面側からの断面図で表している。また、図5は全体を立体図で表しており、図6は図5に示す構成部品を分解して表した立体図である。   1 to 6 are schematic views showing the configuration of the liquid analyzer, FIG. 1 is a plan view seen through the second substrate 5, and FIG. 2 is a front side along the AA portion of FIG. 3 is a cross-sectional view from the side along the line BB in FIG. 1, and FIG. 4 is a cross-sectional view from the plane side along the line CC in FIG. . 5 is a three-dimensional view of the whole, and FIG. 6 is a three-dimensional view of the components shown in FIG.

図6により、本実施例での液体分析装置の構成を説明する。本実施例での液体分析装置は主に、図6において下側から、第1の基板1、外側スペーサ2、内側スペーサ3、攪拌機構4、第2の基板5、導入口筒6、媒体流発生部7、被搬送液体回収部枠8の部品から構成され、積層後、内部の空間から被搬送液体や搬送用媒体が漏れないように接合されている。本実施例での攪拌機構4は、搬送される液体を変形、結合などさせるための構造物(フィン)を並べて表している。超音波攪拌の機構、スクリュー機構やへら等の部材を回転させる機構などの攪拌機構でもかまわない。また、媒体流発生部7は、試料などを搬送させるための搬送用媒体について、液流を発生させるものである。一方端部から取り込んだ媒体を他方端部から吐き出し、媒体に循環する流れを発生させるポンプや水車状の部材を内部に持つ部品であり、流れを発生させる原理は問わない。流れの負荷に応じて流量を制御可能としてもよい。第1の基板1には、試料などの搬送される液体を捕捉する被搬送液体捕捉手段9と廃液を捕捉する廃液捕捉手段10を持つ。被搬送液体捕捉手段9は、搬送用媒体の流れ方向において媒体流発生部を起点とみるときに、導入口筒(導入口)6より搬送用媒体の流れ方向での下流に配置される。   The configuration of the liquid analyzer in this embodiment will be described with reference to FIG. The liquid analyzer in the present embodiment mainly includes the first substrate 1, the outer spacer 2, the inner spacer 3, the stirring mechanism 4, the second substrate 5, the inlet cylinder 6, the medium flow from the lower side in FIG. It consists of the parts of the generating unit 7 and the transported liquid recovery unit frame 8, and after being stacked, the transported liquid and the transport medium are joined so as not to leak from the internal space. The agitation mechanism 4 in the present embodiment represents structures (fins) for deforming, combining, etc., the liquid being conveyed. An agitation mechanism such as an ultrasonic agitation mechanism, a screw mechanism, or a mechanism that rotates a member such as a spatula may be used. Further, the medium flow generation unit 7 generates a liquid flow with respect to a transport medium for transporting a sample or the like. It is a part that has a pump or a waterwheel-like member inside that discharges the medium taken in from one end from the other end and generates a flow circulating in the medium, and the principle for generating the flow is not limited. The flow rate may be controllable according to the flow load. The first substrate 1 has a transported liquid capturing means 9 for capturing a transported liquid such as a sample and a waste liquid capturing means 10 for capturing a waste liquid. The transported liquid catching means 9 is disposed downstream of the introduction port tube (introduction port) 6 in the flow direction of the transport medium when the medium flow generation unit is regarded as the starting point in the flow direction of the transport medium.

第1の基板1と第2の基板5は、後述する液体搬送、及び、試料中に含まれる成分量検出のために、必要な波長の光を透過する材料を用いているが、第1の基板1と第2の基板5の、被搬送液体捕捉手段9の位置に対応する部分のみが光を透過する材料になっていても良い。また、被搬送液体捕捉手段9は、電極、エレクトレット化された領域、もしくはエレクトレット化された領域と電極の組合せにより構成されており、第1の基板1と第2の基板5と同様に光を透過する材料を用いている。本実施例1では、被搬送液体捕捉手段9に電極を用いた例で説明する。そのため、図2に示す第1の基板1の上面に第1の基板1の被搬送液体捕捉手段9として、被搬送液体捕捉手段9の位置すべてに電極がパターンニングされており、その表面を0.1μmから100μm程度の絶縁膜で覆い、さらに絶縁膜の表面を撥水処理している。絶縁物の材料としては、フッ素系などの樹脂、SiO(石英)、SiN、Al(アルミナ)、HfOを利用することができる。また、電極の材料としては、ITO、SnO、ZnO、ZnO+Al+Ga(AZOもしくはGZO)を利用することができる。各電極は、それぞれ単独に配置され、外部で配線されていてもかまわないが、本実施例では、それぞれの電極は図7に示す電極11のように接続され、同一電位になるようにパターンニングされている。また、電極の対抗電極として、図2に示す第2の基板5の第1の基板と対向する面の、当該電極の対向位置の部分、もしくは複数の当該電極の全てを含む面に対向電極12が設けられ、電極同様にその表面を0.1μmから100μm程度の絶縁膜で覆い、さらに絶縁膜の表面を撥水処理している。ここで、対向電極12を設けなくともよく、対向電極12を不使用の場合には、第1の基板上の電極のみの簡単な構成で被搬送液体の制御ができる。一方、使用の場合には、電極による搬送液体の制御の精度を高めることができる。本実施例では、わかりやすくするために図を簡略化し、電極と対向電極12がそれぞれ第1の基板1と第2の基板5に埋め込まれたように図示している。The first substrate 1 and the second substrate 5 are made of a material that transmits light having a necessary wavelength for liquid conveyance described later and detection of a component amount contained in the sample. Only portions of the substrate 1 and the second substrate 5 corresponding to the position of the transported liquid capturing means 9 may be made of a material that transmits light. Further, the transported liquid capturing means 9 is configured by an electrode, an electret region, or a combination of the electret region and the electrode, and emits light in the same manner as the first substrate 1 and the second substrate 5. A transparent material is used. In the first embodiment, an example in which an electrode is used for the transported liquid capturing means 9 will be described. Therefore, electrodes are patterned on all the positions of the transported liquid catching means 9 on the upper surface of the first substrate 1 shown in FIG. 2 as the transported liquid catching means 9 of the first substrate 1. Covered with an insulating film of about 1 μm to 100 μm, and the surface of the insulating film is subjected to water repellent treatment. As a material for the insulator, a fluorine-based resin, SiO 2 (quartz), SiN, Al 2 O 3 (alumina), or HfO 2 can be used. As the material of the electrode, ITO, may be utilized SnO 2, ZnO, ZnO + Al 2 O 3 + Ga 2 O 3 (AZO or GZO). Each electrode may be arranged independently and wired externally. However, in this embodiment, each electrode is connected like the electrode 11 shown in FIG. 7 and patterned so as to have the same potential. Has been. In addition, as a counter electrode of the electrode, the counter electrode 12 is formed on the surface of the second substrate 5 facing the first substrate shown in FIG. 2 on the surface facing the first substrate or on the surface including all of the electrodes. Like the electrode, the surface is covered with an insulating film of about 0.1 μm to 100 μm, and the surface of the insulating film is further subjected to water repellent treatment. Here, the counter electrode 12 does not need to be provided. When the counter electrode 12 is not used, the liquid to be transported can be controlled with a simple configuration using only the electrodes on the first substrate. On the other hand, in the case of use, it is possible to improve the accuracy of control of the transport liquid by the electrodes. In this embodiment, the drawing is simplified for the sake of clarity, and the electrode and the counter electrode 12 are illustrated as being embedded in the first substrate 1 and the second substrate 5, respectively.

本実施例の電極の構成は、電極が前述のように同一電位になるようにパターンニングされている。ここで、実質上電極と対向電極12の一対のみとしている。すなわち、一方の基板には分離された複数の電極であって同電位が供給されることによって同期してスイッチのオン・オフ動作される電極群が設けられ、他方の基板には当該電極群と対向する電極が設けられ、電極群と対向する電極とが一対の電極群をなしている。   The configuration of the electrodes of this example is patterned so that the electrodes have the same potential as described above. Here, substantially only a pair of the electrode and the counter electrode 12 is provided. That is, one substrate is provided with an electrode group which is a plurality of separated electrodes and the switch is turned on and off synchronously by supplying the same potential, and the other substrate is provided with the electrode group. Opposing electrodes are provided, and the electrode group and the facing electrode form a pair of electrode groups.

各部品を積層し接合して組み立てられた液体分析装置内部には、主に第1の基板1、外側スペーサ2、内側スペーサ3、第2の基板5、被搬送液体回収部枠8により図4に矢印で示すような流れを可能にする流路13が形成される。流路13は、被搬送液体回収部14と導入口15の部分以外は、流れに垂直な方向の断面が実質的に長方形の空間16になっている。流路13の空間16の内、被搬送液体の分析かつ、もしくは検出に使用される部分を図4に分析領域17として示す。分析領域17内の流路13の、流れに垂直な方向の実質的に長方形をした断面の寸法である幅Wと高さHは、それぞれ図3に示す通りである。   The liquid analyzer assembled by laminating and joining the components mainly includes the first substrate 1, the outer spacer 2, the inner spacer 3, the second substrate 5, and the transported liquid recovery unit frame 8. A flow path 13 that enables a flow as indicated by an arrow is formed. The flow path 13 is a space 16 having a substantially rectangular cross section in the direction perpendicular to the flow except for the transported liquid recovery section 14 and the introduction port 15. A portion of the space 16 of the flow path 13 used for analyzing and / or detecting the liquid to be transported is shown as an analysis region 17 in FIG. The width W and the height H, which are dimensions of a substantially rectangular cross section in the direction perpendicular to the flow, of the flow path 13 in the analysis region 17 are as shown in FIG.

次に、本実施例による液体分析装置の使用方法を説明する。   Next, a method of using the liquid analyzer according to this embodiment will be described.

最初に、分析のための準備を行う。液体分析装置の流路内には、予め搬送媒体を満たしておく。(なお、搬送媒体18の充填は、例えば廃液ポートを搬送媒体導入出口として使用し、廃液ポートから行うことができる。)その時、流路13内に気泡が残らないように、また、媒体流発生部7により搬送媒体18に流れが発生した後に流路13内に気泡が入り込まないように、流路13内及び媒体流発生部7内を搬送媒体18で満たした上で、流路13における搬送媒体18の液面よりも被搬送液体捕捉手段9の位置しない領域である被搬送液体回収部14における搬送媒体18の液面が上になるように導入する。また、被搬送液体捕捉手段9の位置しない領域である被搬送液体回収部14では、搬送媒体18で満たさず、搬送媒体18と接する気相領域が残るようにしてもよい。これにより、導入時に気泡が混入した場合に、気体を当該気相領域へ逃がして気泡を除去することができる。使用する搬送媒体は、シリコーンオイルやフッ素系オイル等で、被搬送液体と反応しない、前記被搬送液体よりも低誘電率の液体である。その後、媒体流発生部7を駆動し、図4に矢印で示すような流れを発生する。流れの速さは分析時の反応時間や計測時間により変化するが、おおよそ0.1mm/Secから50mm/Secの緩やかな流れである。   First, prepare for analysis. The flow path of the liquid analyzer is filled with a carrier medium in advance. (Note that filling of the transport medium 18 can be performed from the waste liquid port by using, for example, a waste liquid port as a transport medium introduction outlet.) At that time, no air bubbles remain in the flow path 13 and a medium flow is generated. In order to prevent bubbles from entering the flow path 13 after the flow is generated in the transfer medium 18 by the section 7, the flow path 13 and the medium flow generation section 7 are filled with the transfer medium 18 and then transferred in the flow path 13. It is introduced so that the liquid level of the transport medium 18 in the transported liquid recovery unit 14, which is a region where the transported liquid capturing means 9 is not located, is higher than the liquid level of the medium 18. Further, in the transported liquid recovery unit 14 where the transported liquid capturing unit 9 is not located, a gas phase region that is not filled with the transport medium 18 and is in contact with the transport medium 18 may remain. Thereby, when bubbles are mixed at the time of introduction, the bubbles can be removed by letting the gas escape to the gas phase region. The transport medium used is a liquid having a lower dielectric constant than that of the liquid to be transported, such as silicone oil or fluorine oil, which does not react with the liquid to be transported. Thereafter, the medium flow generator 7 is driven to generate a flow as indicated by an arrow in FIG. The speed of the flow varies depending on the reaction time and the measurement time at the time of analysis, but is a gentle flow of approximately 0.1 mm / Sec to 50 mm / Sec.

続いて、実際の分析手順の試料と試薬の導入から混合までを説明する。図8Aから図8Dは図2の導入口と被搬送液体捕捉手段9の一部までを拡大した図であり、試料と試薬の導入から混合までを時系列に並べて複数の図で表している。   Next, a description will be given of the actual analysis procedure from introduction and mixing of the sample and reagent. 8A to 8D are enlarged views of the introduction port and a part of the transported liquid capturing means 9 in FIG. 2, and the steps from the introduction of the sample and the reagent to the mixing are arranged in time series and are shown in a plurality of diagrams.

まず、図8Aのようにスイッチ(電圧印加制御手段)19をオンにし、被搬送液体捕捉手段9である電極11と対向電極12の間に電圧を印加しておく。次に、分析する試料である第1の被搬送液体20を、ピペッタ(導入手段)21等を用いて導入口15から分析領域17の流路13内に導入する。導入された第1の被搬送液体20は搬送媒体18の流れにより流されるが、電極11の静電力によって引力を受け、図8Bのように被搬送液体捕捉手段9たる電極11の上で捕捉される。続いて図8Cのように、第1の被搬送液体20を分析するための試薬である第2の被搬送液体22を、ピペッタ21等を用いて導入口15から分析領域17の流路13内に導入する。導入された第2の被搬送液体22は搬送媒体18の流れにより流されるが、「電極11の静電力によって引力を受け、図8Dのように被搬送液体捕捉手段9たる電極11で捕捉され、既に捕捉されていた第1の被搬送液体20と混合する。ここで、試料を導入するピペッタと試薬を導入するピペッタは同一のもの、異なるもののいずれであってもよい。なお、第1の被搬送液体と第2の被搬送液体との導入の順番は、いずれが先であっても良い。   First, as shown in FIG. 8A, a switch (voltage application control means) 19 is turned on, and a voltage is applied between the electrode 11 that is the transported liquid capturing means 9 and the counter electrode 12. Next, the first transported liquid 20, which is a sample to be analyzed, is introduced into the flow path 13 of the analysis region 17 from the inlet 15 using a pipetter (introducing means) 21 or the like. The introduced first transported liquid 20 is caused to flow by the flow of the transport medium 18, but is attracted by the electrostatic force of the electrode 11 and is captured on the electrode 11 as the transported liquid capturing means 9 as shown in FIG. 8B. The Subsequently, as shown in FIG. 8C, the second transported liquid 22, which is a reagent for analyzing the first transported liquid 20, is introduced from the inlet 15 into the flow path 13 in the analysis region 17 using a pipetter 21 or the like. To introduce. The introduced second liquid to be transported 22 is caused to flow by the flow of the transport medium 18, but “is attracted by the electrostatic force of the electrode 11 and is captured by the electrode 11 as the transported liquid capturing means 9 as shown in FIG. It is mixed with the first transported liquid 20 that has already been captured, where the pipettor for introducing the sample and the pipettor for introducing the reagent may be the same or different. The order of introduction of the transport liquid and the second transported liquid may be either first.

次に、実際の分析手順の試料と試薬の混合から分析までを説明する。図9A,図9Bは図2の導入口と被搬送液体捕捉手段9の一部までを拡大した図であり、試料と試薬の混合から分析までを時系列に並べて複数の図で表している。   Next, the process from the mixing of the sample and reagent in the actual analysis procedure to the analysis will be described. 9A and 9B are enlarged views of the introduction port and a part of the transported liquid capturing means 9 in FIG. 2, and the processes from the mixing of the sample and the reagent to the analysis are arranged in chronological order and represented by a plurality of diagrams.

まず、図9Aのようにスイッチ19をオフにし、被搬送液体捕捉手段9−1である電極11−1と対向電極12の間に印加されていた電圧を一旦解除し、電極11−1上から第1の被搬送液体20と第2の被搬送液体22への引力を解除し、これらの液体が電極から離れた後で、図9Bのように再度スイッチ19をオンにし、被搬送液体捕捉手段9−2である電極11−2と対向電極12の間に再度電圧を印加する。第1の被搬送液体20と第2の被搬送液体22は、搬送媒体18の流れにより流され、攪拌機構4を通過して物理的な変形を受けるなどによって攪拌され、反応液23となる。そして、第1の被搬送液体20と第2の被搬送液体22は、電極11−2の静電力によって引力を受け、図9Bのように2番目の被搬送液体捕捉手段9−2である電極11−2上に捕捉される。2番目の被搬送液体捕捉手段9−2以降の被搬送液体捕捉手段9に対応する位置には、図9Bに示すように計測部24として光源25と受光部26が対応して配置されており、光源25から第2の基板5、反応液23、及び第1の基板1を通して計測光27が照射され、受光部26で検出される。受光部26で検出した計測光27を分析することにより、反応液23の成分を分析し、その結果で、分析する試料である第1の被搬送液体20に含まれる特定の成分の量を測定することができる。   First, as shown in FIG. 9A, the switch 19 is turned off, the voltage applied between the electrode 11-1 as the transported liquid capturing means 9-1 and the counter electrode 12 is once released, and the electrode 11-1 is started. After the attractive force to the first transported liquid 20 and the second transported liquid 22 is released and these liquids are separated from the electrodes, the switch 19 is turned on again as shown in FIG. A voltage is applied again between the electrode 11-2 that is 9-2 and the counter electrode 12. The first transported liquid 20 and the second transported liquid 22 are caused to flow by the flow of the transport medium 18 and are stirred by being subjected to physical deformation through the stirring mechanism 4 to become the reaction liquid 23. The first transported liquid 20 and the second transported liquid 22 are attracted by the electrostatic force of the electrode 11-2, and are electrodes that are the second transported liquid capturing means 9-2 as shown in FIG. 9B. Captured on 11-2. As shown in FIG. 9B, a light source 25 and a light receiving unit 26 are disposed corresponding to the transported liquid capturing unit 9 after the second transported liquid capturing unit 9-2 as shown in FIG. 9B. The measurement light 27 is irradiated from the light source 25 through the second substrate 5, the reaction solution 23, and the first substrate 1, and is detected by the light receiving unit 26. By analyzing the measurement light 27 detected by the light receiving unit 26, the components of the reaction liquid 23 are analyzed, and as a result, the amount of a specific component contained in the first transported liquid 20 that is the sample to be analyzed is measured. can do.

反応結果の測定として、多くの場合、反応液23内部で進む反応の様子を経時的に測定し、最終的にその成分量を求める。そして、液体分析装置内に次々と試料と試薬を供給し、順にその成分を分析するために、スイッチ19のオン、オフを繰り返して反応液23を次々と計測部間を移動させ、計測を行う。これにより、複数の試料計測を並行して進め、装置のスループットを向上することができる。その際、複数の被搬送液体捕捉手段9各々に反応液23が存在する場合、電極11は電気的に一体であるため一斉にスイッチがオフになるが、分析領域17内の流路の場所によっては流速の違いなどにより、それぞれの反応液がそれぞれの被搬送液体捕捉手段9から同時に離れないことが考えられる。しかし、スイッチがオフになり全ての反応液23が離れた後で被搬送液体捕捉手段9に電圧が印加されれば、各反応液23が離れるタイミング、もしくは各反応液23が次の被搬送液体捕捉手段9に到達するタイミングが違っていても、各々の反応液を確実に移動、捕捉することが可能である。   As the measurement of the reaction result, in many cases, the state of the reaction proceeding in the reaction solution 23 is measured over time, and finally the component amount is obtained. Then, in order to supply the sample and the reagent one after another into the liquid analyzer and sequentially analyze the components, the switch 19 is repeatedly turned on and off, and the reaction solution 23 is moved between the measurement units one after another to perform measurement. . Thereby, several sample measurement can be advanced in parallel and the throughput of an apparatus can be improved. At that time, when the reaction liquid 23 exists in each of the plurality of transported liquid capturing means 9, the electrodes 11 are electrically integrated, so that the switches are turned off all at once, but depending on the location of the flow path in the analysis region 17 It is conceivable that the reaction liquids are not separated from the transported liquid capturing means 9 at the same time due to the difference in flow rate. However, if a voltage is applied to the transported liquid capturing means 9 after the switch is turned off and all the reaction liquids 23 are separated, the timing at which each reaction liquid 23 is separated or each reaction liquid 23 is the next transported liquid. Even if the timing of reaching the capturing means 9 is different, each reaction solution can be reliably moved and captured.

続いて、計測が終了した反応液23の回収方法について図10Aから図10Dを用いて説明する。図10A,図10Bは、図3の表示向きを水平に戻して拡大した図である。計測が終了した反応液23は、最後の被搬送液体捕捉手段9の捕捉から解放され、搬送媒体18の流れにより図10Aの位置に流されてくる。被搬送液体回収部14まで更に流されると、被搬送液体回収部14の少なくとも高さについて流路13の高さHよりも大きいことから、それまで第1の基板1と第2の基板5挟まれて円盤状につぶされていた状態から解放され、反応液23自身の表面張力により、図10Bに示すような球状へ変形する。これにより、反応液23は原則として廃液28となる。円盤状につぶされていた状態から解放され球状になった廃液28の直径dは、第1の基板1と第2の基板5の隙間である高さHよりも大きいため、流路13の閉じた空間16内に再度入り込むことはない。廃液28が搬送媒体18よりも比重が小さければ被搬送液体回収部14で浮き上がるので、図10Cに示すようにシッパー29等で吸引して回収する。廃液28が搬送媒体18よりも比重が大きければ被搬送液体回収部14で沈殿するので、図10Dに示すようにシッパー(回収手段)29等で吸引して回収する。廃液28が搬送媒体18よりも比重が大きくて沈殿する場合は、廃液28が複数集まって大きな塊になり、第1の基板1と第2の基板5の隙間である流路13の閉じた空間16内に再度入り込む可能性があるため、図10Dに示すような窪み領域である沈殿部30を設けるのが良い。廃液捕捉手段10は、被搬送液体捕捉手段9と同様の原理に基づき廃液の捕捉効果を上げるためのものであり、第1の基板1の上面の被搬送液体回収部14に位置する場所に設けられている。廃液捕捉手段10に電極を用いている場合、光透過性を持たせてかつ廃液捕捉手段10に対応する位置に上記と同様の計測部(図示せず)を設置することにより、光学的に廃液量を検出することが可能である。   Next, a method for recovering the reaction solution 23 for which measurement has been completed will be described with reference to FIGS. 10A to 10D. 10A and 10B are diagrams in which the display orientation of FIG. The reaction liquid 23 for which the measurement has been completed is released from the capture of the last transported liquid capturing means 9 and is flowed to the position of FIG. 10A by the flow of the transport medium 18. When the liquid is further flowed up to the transported liquid recovery unit 14, at least the height of the transported liquid recovery unit 14 is greater than the height H of the flow path 13. Then, it is released from the state of being crushed into a disk shape, and is deformed into a spherical shape as shown in FIG. 10B by the surface tension of the reaction solution 23 itself. Thereby, the reaction liquid 23 becomes the waste liquid 28 in principle. Since the diameter d of the waste liquid 28 released from the state of being crushed into a disk and turned into a spherical shape is larger than the height H that is the gap between the first substrate 1 and the second substrate 5, the flow path 13 is closed. It does not enter the space 16 again. If the waste liquid 28 has a specific gravity smaller than that of the transport medium 18, it rises in the transported liquid recovery unit 14, and is collected by suction with a sipper 29 or the like as shown in FIG. 10C. If the waste liquid 28 has a specific gravity greater than that of the transport medium 18, it is precipitated in the transported liquid recovery section 14, and is collected by suction with a sipper (collection means) 29 as shown in FIG. 10D. When the waste liquid 28 has a specific gravity greater than that of the transport medium 18 and precipitates, a plurality of the waste liquids 28 are gathered into a large lump, and the closed space of the flow path 13 that is a gap between the first substrate 1 and the second substrate 5. Since there is a possibility of reentering into the area 16, it is preferable to provide a precipitation section 30 that is a depression area as shown in FIG. 10D. The waste liquid capturing means 10 is for increasing the waste liquid capturing effect on the basis of the same principle as the transported liquid capturing means 9 and is provided at a position on the transported liquid recovery unit 14 on the upper surface of the first substrate 1. It has been. In the case where an electrode is used for the waste liquid capturing means 10, the waste liquid is optically disposed by providing a light transmitting property and a measuring unit (not shown) similar to the above at a position corresponding to the waste liquid capturing means 10. It is possible to detect the amount.

図11に、図4の分析領域17の一部を拡大して示す。本実施例では、分析領域17内の流路13の前記幅Wに対し、被搬送液体捕捉手段9の幅XはWよりも小さい、すなわちW>Xの関係になるように設定している。これにより、搬送用媒体の流れの方向と実質的に垂直な面において、被搬送液体捕捉手段9の最大幅が流路13の最大幅よりも小さくなる。これにより、被搬送液体捕捉手段9により被搬送液体を捕捉した際、被搬送液体が流路13を塞がないようにするためである。本実施例では、分析領域17内の流路13内に入った被搬送液体は、第1の基板1と第2の基板5に挟まれてつぶされ、直径D、高さHの円盤状になる。そのとき被搬送液体の直径Dは、分析する試料である第1の被搬送液体20の直径Dと、試薬である第2の被搬送液体22の直径Dは、被搬送液体捕捉手段9の幅Xより小さく、第1の被搬送液体20と第2の被搬送液体22が混合、攪拌した後の反応液23の直径Dとは同程度になるように、かつ流路13の幅Wよりも小さくなるように設定している。すなわち、搬送用媒体の流れの方向と実質的に垂直な面において、反応液23の最大幅が流路13の最大幅よりも小さくなる。そのため、被搬送液体捕捉手段9により被搬送液体を捕捉し、被搬送液体がその場で停滞してもその脇から搬送用媒体が流れるため搬送用媒体が滞ることがない。これにより、搬送用媒体を循環させている場合であっても、搬送用媒体が滞って流れが乱れる事態を回避できる。さらに、複数の被搬送液体が分析領域17に位置するときに一の被搬送液体が被搬送液体捕捉手段で捕捉されていることによって他の被搬送液体の搬送や捕捉等に影響が及ぶことを回避することができる。   FIG. 11 shows an enlarged part of the analysis region 17 of FIG. In this embodiment, the width X of the transported liquid capturing means 9 is set to be smaller than W with respect to the width W of the flow path 13 in the analysis region 17, that is, W> X. As a result, the maximum width of the transported liquid capturing means 9 is smaller than the maximum width of the flow path 13 on a surface substantially perpendicular to the direction of the transport medium flow. This is to prevent the transported liquid from blocking the flow path 13 when the transported liquid is captured by the transported liquid capturing unit 9. In the present embodiment, the transported liquid that has entered the flow path 13 in the analysis region 17 is crushed by being sandwiched between the first substrate 1 and the second substrate 5 and formed into a disk shape having a diameter D and a height H. Become. At this time, the diameter D of the liquid to be transported is the diameter D of the first liquid to be transported 20 as the sample to be analyzed, and the diameter D of the second liquid to be transported 22 as the reagent is the width of the liquid to be transported capturing means 9. Smaller than X, so that the diameter D of the reaction liquid 23 after the first transported liquid 20 and the second transported liquid 22 are mixed and stirred is about the same as the diameter W of the flow path 13. It is set to be smaller. That is, the maximum width of the reaction solution 23 is smaller than the maximum width of the flow path 13 on a surface substantially perpendicular to the direction of the transport medium flow. Therefore, even if the transported liquid is captured by the transported liquid capturing means 9 and the transported liquid stagnates on the spot, the transporting medium flows from the side, so that the transporting medium does not stagnate. Thereby, even when the conveyance medium is circulated, it is possible to avoid a situation in which the conveyance medium is stagnated and the flow is disturbed. Furthermore, when a plurality of liquids to be transported are located in the analysis region 17, the fact that one liquid to be transported is captured by the transported liquid capturing means affects the transport or capture of other transported liquids. It can be avoided.

分析領域17内の流路13の前記幅Wに対して被搬送液体捕捉手段9の幅Xが大きくとも、被搬送液体の直径Dが小さければ被搬送液体がその場で停滞してもその脇から搬送用媒体が流れるため搬送用媒体が滞ることはない。しかし、この場合、被搬送液体捕捉手段9の幅X内で被搬送液体が移動し、幅X方向の位置が定まらない。そのため、計測位置で計測光27が反応液23に確実に照射されず、分析精度を落とすことになる。   Even if the width X of the transported liquid capturing means 9 is larger than the width W of the flow path 13 in the analysis region 17, if the transported liquid has a small diameter D, even if the transported liquid stagnates on the spot, Since the transport medium flows from the transport medium, the transport medium does not stagnate. However, in this case, the liquid to be transported moves within the width X of the transported liquid capturing means 9, and the position in the width X direction is not determined. Therefore, the measurement light 27 is not reliably irradiated to the reaction solution 23 at the measurement position, and the analysis accuracy is lowered.

被搬送液体の直径Dが被搬送液体捕捉手段9の幅Xより小さい場合、前述のように場所が定まらないことになるが、本実施例では、通常第1の被搬送液体の直径Dは被搬送液体捕捉手段9の幅Xより小さい。しかし、第2の被搬送液体と混合し、反応液23となったときにその直径Dが幅Xと同程度になるように設定してあり、第1の被搬送液体が被搬送液体捕捉手段9上にさえあれば、第2の被搬送液体が第1の被搬送液体と接触して混合できる。   If the diameter D of the liquid to be transported is smaller than the width X of the liquid capture means 9 to be transported, the location is not fixed as described above. However, in this embodiment, the diameter D of the first transported liquid is usually It is smaller than the width X of the transport liquid capturing means 9. However, the diameter D is set to be approximately the same as the width X when the reaction liquid 23 is mixed with the second liquid to be transported, and the first liquid to be transported is the liquid transport capturing means. As long as it is above 9, the second liquid to be transported can be brought into contact with the first liquid to be mixed.

以上のように装置内部で搬送媒体を循環させ、循環の流れで被搬送液体を搬送することによって、分析対象の試薬との混合、攪拌、計測部への移動、回収部への移動を簡単な構成で高速に自動化することができる。   As described above, the transport medium is circulated inside the apparatus, and the transported liquid is transported in a circulating flow, so that mixing with the reagent to be analyzed, stirring, movement to the measurement section, and movement to the collection section can be simplified. The configuration can be automated at high speed.

本実施例では、実施例1での被搬送液体捕捉手段9に電極を用いていたのに対し、被搬送液体捕捉手段9にエレクトレット化された絶縁物を用いた例を説明する。ここでは、絶縁膜の一部がエレクトレット化された領域となっている。   In the present embodiment, an electrode is used for the transported liquid capturing means 9 in the first embodiment, but an example in which an electretized insulator is used for the transported liquid capturing means 9 will be described. Here, a part of the insulating film is an electret region.

本実施例での構成は、電極11、対向電極12及び電圧を印加するためのスイッチ19等の配線を除いて、基本的に実施例1と同じである。被搬送液体を捕捉するのは、図12Aに示すような被搬送液体捕捉手段9の範囲のみエレクトレット化した領域31である。エレクトレット化とは、磁性材料がN極とS極に磁化するように、高分子材料を加熱しながら高電圧を印加するか、コロナ放電等で半永久的に帯電させた状態である(例えば、非特許文献1)。エレクトレット化した領域を使用すれば、電源が無くとも図12Aのように分極を保った状態が実現できる。このエレクトレット化した領域31に第1の被搬送液体20、第2の被搬送液体22もしくは反応液23が搬送媒体の流れによって流れてくると、図12Bのように静電力で捕捉される。捕捉された第1の被搬送液体20、第2の被搬送液体22もしくは反応液23を解放し、次の被搬送液体捕捉手段9に移動するには、媒体流発生部7に格納する媒体流量制御部によって流量を制御し、媒体の流れ方向の引力が捕捉している静電力よりも一時的に強くなるように速い流れを一時的に発生させれば良い。ここで、媒体流量制御部は、ポンプの回転を速めるなどの制御を行う。このような速い流れは一時的であるため、複数の反応液が各々違うタイミングで被搬送液体捕捉手段9を離れたとしても、次の被搬送液体捕捉手段9は、既に第1の被搬送液体20、第2の被搬送液体22もしくは反応液23を捕捉できる状態になっているので、各第1の被搬送液体20、第2の被搬送液体22もしくは反応液23が離れるタイミング、もしくは各第1の被搬送液体20、第2の被搬送液体22もしくは反応液23が次の被搬送液体捕捉手段9に到達するタイミングが違っていても、各々の反応液を確実に移動、捕捉することが可能である。   The configuration of this embodiment is basically the same as that of the first embodiment except for the wiring such as the electrode 11, the counter electrode 12, and the switch 19 for applying a voltage. The transported liquid is captured in an area 31 that is electretized only in the range of the transported liquid capturing means 9 as shown in FIG. 12A. The electretization is a state in which a high voltage is applied to the polymer material while heating it so that the magnetic material is magnetized to the N pole and the S pole, or it is semipermanently charged by corona discharge or the like (for example, non-polarization). Patent Document 1). If the electretized region is used, a state where polarization is maintained as shown in FIG. 12A can be realized without a power source. When the first transported liquid 20, the second transported liquid 22 or the reaction liquid 23 flows in the electret region 31 by the flow of the transport medium, it is captured by electrostatic force as shown in FIG. 12B. In order to release the captured first transported liquid 20, second transported liquid 22 or reaction liquid 23 and move to the next transported liquid capturing means 9, the medium flow rate stored in the medium flow generation unit 7 The flow rate may be controlled by the control unit, and a fast flow may be temporarily generated so that the attractive force in the flow direction of the medium is temporarily stronger than the electrostatic force captured. Here, the medium flow rate control unit performs control such as speeding up the rotation of the pump. Since such a fast flow is temporary, even if the plurality of reaction liquids leave the transported liquid capturing means 9 at different timings, the next transported liquid capturing means 9 has already been in the first transported liquid. 20, since the second transported liquid 22 or the reaction liquid 23 can be captured, the timing at which the first transported liquid 20, the second transported liquid 22 or the reaction liquid 23 is separated, or Even if the timing at which one transported liquid 20, second transported liquid 22 or reaction liquid 23 arrives at the next transported liquid capturing means 9 is different, each reaction liquid can be reliably moved and captured. Is possible.

その他の攪拌、計測、廃液回収等に関しては実施例1と同様である。   Other stirring, measurement, waste liquid recovery, and the like are the same as in the first embodiment.

本実施例の構成によれば、電極や電極へ電圧を印加する電源、及びその制御の機構が不要になるため、構造を簡単にしコスト低減化が可能となる。   According to the configuration of the present embodiment, an electrode, a power source for applying a voltage to the electrode, and a control mechanism for the electrode are not required, so that the structure can be simplified and the cost can be reduced.

日本機械学会 第9回動力・エネルギー技術シンポジウム講演論文集 No.04−2Proceedings of the 9th Japan Society of Mechanical Engineers Power and Energy Technology Symposium No. 04-2

本実施例では、被搬送液体捕捉手段9にエレクトレット化された絶縁膜と電極を組合せて用いた例を説明する。   In the present embodiment, an example in which an electret insulating film and an electrode are used in combination for the transported liquid capturing means 9 will be described.

本実施例では、対向電極からみて1のエレクトレット化した領域と1の電極の占める領域とが、少なくとも一部で重なるように配置される。実施例1との違いは、実施例1では被搬送液体を捕捉している間、電極11と対向電極12間に電圧を印加し続けるが、本実施例では、図13Aに示すように、実施例2と同様にエレクトレット化した領域で被搬送液体を捕捉し、図13Bに示すように、電極11と対向電極12間に、一時的にエレクトレット化を打ち消す電圧を印加することで、捕捉した被搬送液体を解放する。   In the present embodiment, one electret region and the region occupied by one electrode are arranged so as to overlap at least partially when viewed from the counter electrode. The difference from the first embodiment is that in the first embodiment, the voltage is continuously applied between the electrode 11 and the counter electrode 12 while the liquid to be transported is captured, but in this embodiment, as shown in FIG. As in Example 2, the transported liquid is captured in the electretized region, and as shown in FIG. 13B, a voltage that temporarily cancels electretization is applied between the electrode 11 and the counter electrode 12, thereby capturing the captured target. Release the transport liquid.

複数の被搬送液体捕捉手段9各々に反応液23が存在する場合、各電極11は電気的に一体であるため、各電極11と対向電極12間には一斉に電圧が印加されるが、実施例1及び実施例2と同様に、分析領域17内の流路の場所によっては流速の違いなどにより、それぞれの反応液がそれぞれの被搬送液体捕捉手段9から同時に離れないことが考えられる。しかし、スイッチがオンになり全ての反応液23が離れた時点でスイッチがオフになれば、次の被搬送液体捕捉手段9は、既に反応液23を捕捉できる状態になっているので、各反応液23が離れるタイミング、もしくは各反応液23が次の被搬送液体捕捉手段9に到達するタイミングが違っていても、各々の反応液を確実に移動、捕捉することが可能である。   When the reaction liquid 23 is present in each of the plurality of transported liquid capturing means 9, the electrodes 11 are electrically integrated, so that a voltage is applied simultaneously between the electrodes 11 and the counter electrode 12. Similarly to Example 1 and Example 2, depending on the location of the flow path in the analysis region 17, it is conceivable that the respective reaction liquids are not separated from the respective transported liquid capturing means 9 at the same time due to the difference in flow velocity. However, if the switch is turned off at the time when the switch is turned on and all the reaction liquids 23 are separated, the next transported liquid capturing means 9 is already in a state in which the reaction liquid 23 can be captured. Even when the timing at which the liquid 23 is separated or the timing at which each reaction solution 23 reaches the next transported liquid capturing means 9 is different, each reaction solution can be reliably moved and captured.

その他の攪拌、計測、廃液回収等に関しては実施例1と同様である。   Other stirring, measurement, waste liquid recovery, and the like are the same as in the first embodiment.

本実施例の構成によれば、液滴をオイル流により搬送し、エレクトレット化領域により捕捉し、かつ電圧印加により開放するため、液滴をより正確に制御するとともに、電極へ電圧を印加する時間を低減化して電極上に配置する絶縁膜の寿命をより長くすることができる。   According to the configuration of the present embodiment, the droplet is transported by the oil flow, captured by the electretized region, and opened by applying the voltage, so that the droplet is controlled more precisely and the time for applying the voltage to the electrode Thus, the lifetime of the insulating film disposed on the electrode can be extended.

本実施例では、上記実施例1から実施例3における方式において、分析領域17が複数ある例を説明する。図14にその実施例を示す。ここで、複数の導入口と複数の分析領域17とが分岐された流路である分岐路に各々配置される。本実施例と、実施例1から実施例3との違いは、被搬送液体の分析に使用される分析領域17を複数持っていることである。被搬送液体捕捉手段9に電極11を用いる場合、電極形状は、図7の形状の物を図15Aのように分析領域17の本数だけ複数設け、分析用途に合わせ使い分けられるようにするか、もしくは図15Bのような一体型にし、並行した分析をほぼ同時に行うようにしても良い。また、電極11の被搬送液体捕捉手段9部の形状は、丸でも四角でも可能である。なお、被搬送液体捕捉手段としては、実施例1のように電極を用いてもよく、実施例2のようにエレクトレット化された領域を用いてもよく、実施例3のように電極とエレクトレット化された領域との組合せの構成を用いてもよい。   In the present embodiment, an example in which there are a plurality of analysis regions 17 in the methods in the first to third embodiments will be described. FIG. 14 shows an embodiment thereof. Here, the plurality of inlets and the plurality of analysis regions 17 are respectively arranged in branch paths that are branches. The difference between the present embodiment and the first to third embodiments is that there are a plurality of analysis regions 17 used for analyzing the liquid to be transported. When the electrode 11 is used for the transported liquid capturing means 9, the shape of the electrode as shown in FIG. 7 is provided as many as the number of the analysis regions 17 as shown in FIG. An integrated type as shown in FIG. 15B may be used, and parallel analysis may be performed almost simultaneously. Further, the shape of the transported liquid capturing means 9 part of the electrode 11 can be round or square. As the transported liquid capturing means, an electrode may be used as in the first embodiment, an electret region as in the second embodiment may be used, or an electrode and electret may be used as in the third embodiment. A combination of the above-described regions may be used.

分析領域が複数ある場合には、複数領域の各々において複数の分析を並行して進めることができる。このときに、実施例1と同様に、分析領域内の流路の幅Wに対し、被搬送液体捕捉手段の幅XはWよりも大きくするため、被搬送液体捕捉手段により被搬送液体を捕捉した際、被搬送液体が流路を塞ぐことがない。被搬送液体が流路を塞ぐと、その流路から搬送媒体が溢れ出して他の流路へ入り込み、1の流路のみでなく複数の流路での搬送媒体の流れを乱すこととなる。本実施例の構成ではこのような事態を回避し、複数の流路による複数分析の並行処理を確実に達成することができる。
上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業者に明らかである。
When there are a plurality of analysis regions, a plurality of analyzes can be performed in parallel in each of the plurality of regions. At this time, as in the first embodiment, the transported liquid capturing means captures the transported liquid by the transported liquid capturing means because the width X of the transported liquid capturing means is larger than W with respect to the width W of the flow path in the analysis region. In this case, the transported liquid does not block the flow path. When the transported liquid blocks the flow path, the transport medium overflows from the flow path and enters another flow path, disturbing the flow of the transport medium not only in one flow path but also in a plurality of flow paths. In the configuration of the present embodiment, such a situation can be avoided, and parallel processing of a plurality of analyzes by a plurality of flow paths can be reliably achieved.
While the above description has been made with reference to exemplary embodiments, it will be apparent to those skilled in the art that the invention is not limited thereto and that various changes and modifications can be made within the spirit of the invention and the scope of the appended claims.

本発明による液体分析装置の構成を示す平面図。The top view which shows the structure of the liquid analyzer by this invention. 本発明による液体分析装置の構成を示す正面側からの断面図。Sectional drawing from the front side which shows the structure of the liquid analyzer by this invention. 本発明による液体分析装置の構成を示す側面側からの断面図。Sectional drawing from the side surface which shows the structure of the liquid analyzer by this invention. 本発明による液体分析装置の平面側からの断面図。Sectional drawing from the plane side of the liquid analyzer by this invention. 本発明による液体分析装置の立体図。3 is a three-dimensional view of a liquid analyzer according to the present invention. 図5に示す構成部品を分解して表した立体図。FIG. 6 is an exploded view of the components shown in FIG. 5. 本発明による液体分析装置の電極のみを表した図。The figure showing only the electrode of the liquid analyzer by this invention. 図2の導入口から被搬送液体捕捉手段の一部までを部分拡大した図。FIG. 3 is a partially enlarged view from the inlet of FIG. 2 to a part of the transported liquid capturing unit. 図2の導入口から被搬送液体捕捉手段の一部までを部分拡大した図。FIG. 3 is a partially enlarged view from the inlet of FIG. 2 to a part of the transported liquid capturing unit. 図2の導入口から被搬送液体捕捉手段の一部までを部分拡大した図。FIG. 3 is a partially enlarged view from the inlet of FIG. 2 to a part of the transported liquid capturing unit. 図2の導入口から被搬送液体捕捉手段の一部までを部分拡大した図。FIG. 3 is a partially enlarged view from the inlet of FIG. 2 to a part of the transported liquid capturing unit. 図2の導入口から被搬送液体捕捉手段の一部までを部分拡大した図。FIG. 3 is a partially enlarged view from the inlet of FIG. 2 to a part of the transported liquid capturing unit. 図2の導入口から被搬送液体捕捉手段の一部までを部分拡大した図。FIG. 3 is a partially enlarged view from the inlet of FIG. 2 to a part of the transported liquid capturing unit. 図3の表示向きを水平に戻して拡大した図。The figure which expanded the display direction of FIG. 3 back to horizontal. 図3の表示向きを水平に戻して拡大した図。The figure which expanded the display direction of FIG. 3 back to horizontal. 図3の表示向きを水平に戻して拡大した図。The figure which expanded the display direction of FIG. 3 back to horizontal. 図3の表示向きを水平に戻して拡大した図。The figure which expanded the display direction of FIG. 3 back to horizontal. 図4の分析領域17の部分拡大図。The elements on larger scale of the analysis area | region 17 of FIG. 送液体捕捉手段にエレクトレット化された絶縁物を用いた断面の拡大図。The enlarged view of the cross section using the insulator electretized for the liquid feeding capture | acquisition means. 送液体捕捉手段にエレクトレット化された絶縁物を用いた断面の拡大図。The enlarged view of the cross section using the insulator electretized for the liquid feeding capture | acquisition means. 送液体捕捉手段にエレクトレット化された絶縁物と電極を組み合わせて用いた断面の拡大図。The enlarged view of the cross section which used the insulator and electrode which were electret-ized in the liquid feeding capture | acquisition means. 送液体捕捉手段にエレクトレット化された絶縁物と電極を組み合わせて用いた断面の拡大図。The enlarged view of the cross section which used the insulator and electrode which were electret-ized in the liquid feeding capture | acquisition means. 本発明による液体分析装置の構成を示す平面図で、分析領域が複数ある一例。It is a top view which shows the structure of the liquid analyzer by this invention, and is an example with multiple analysis area | regions. 図14による液体分析装置の電極形状の一例を現す図。The figure which shows an example of the electrode shape of the liquid analyzer by FIG. 図14による液体分析装置の電極形状の一例を現す図。The figure which shows an example of the electrode shape of the liquid analyzer by FIG.

Claims (16)

被搬送液体を導入するための導入口と、
前記被搬送液体を搬送させるための搬送用媒体について、循環の流れを生じさせる媒体流発生部と、
前記被搬送液体と前記搬送用媒体とが流れる流路と、
前記流路の少なくとも一部に設けられ、かつ、前記被搬送液体を捕捉する被搬送液体捕捉手段と、
前記被搬送液体捕捉手段に捕捉された被搬送液体について計測する計測部と、
を有し、前記被搬送液体捕捉手段は前記搬送用媒体の流れの方向と実質的に垂直な面での最大幅が、前記流路の前記搬送用媒体の流れの方向と実質的に垂直な面での最大幅よりも小さくした液体分析装置。
An inlet for introducing the liquid to be transported;
About the medium for transport for transporting the liquid to be transported, a medium flow generating unit for generating a circulation flow,
A flow path through which the transported liquid and the transport medium flow,
A transported liquid capturing means provided in at least a part of the flow path and capturing the transported liquid;
A measuring unit for measuring the transported liquid captured by the transported liquid capturing means;
And the transported liquid capturing means has a maximum width in a plane substantially perpendicular to the direction of flow of the transport medium that is substantially perpendicular to the direction of flow of the transport medium in the flow path. Liquid analyzer smaller than the maximum width on the surface.
前記被搬送液体捕捉手段は、前記搬送用媒体の流れ方向において前記媒体流発生部を起点とみるときに、前記導入口より前記搬送用媒体の流れ方向での下流に配置された請求項1記載の液体分析装置。   2. The transported liquid capturing unit is disposed downstream of the introduction port in the flow direction of the transport medium when the medium flow generation unit is regarded as a starting point in the flow direction of the transport medium. Liquid analyzer. 前記被搬送液体捕捉手段は、電極であり、前記電極への印加電圧を制御する電圧印加制御手段をさらに有する請求項1記載の液体分析装置。   The liquid analyzer according to claim 1, wherein the transported liquid capturing unit is an electrode, and further includes a voltage application control unit configured to control a voltage applied to the electrode. 前記電極は複数の第1電極である請求項3記載の液体分析装置。   The liquid analyzer according to claim 3, wherein the electrodes are a plurality of first electrodes. 前記電極は複数の第1電極と前記第1電極に対向して設置される第2電極である請求項3記載の液体分析装置。   The liquid analyzer according to claim 3, wherein the electrodes are a plurality of first electrodes and a second electrode that is disposed to face the first electrodes. 前記被搬送液体捕捉手段は、エレクトレット化領域である請求項1記載の液体分析装置。   The liquid analyzer according to claim 1, wherein the transported liquid capturing unit is an electret region. 前記被搬送液体捕捉手段は、少なくとも1つの第1電極と前記第1電極と対向する第2電極と前記第2電極からみて前記第1電極の占める領域と少なくとも一部で重なる領域に配置されるエレクトレット化領域であり、前記第1電極及び前記第2電極への印加電圧を制御する電圧印加制御手段をさらに有する請求項1記載の液体分析装置。   The transported liquid capturing means is disposed in at least one first electrode, a second electrode facing the first electrode, and a region overlapping at least partly with a region occupied by the first electrode as viewed from the second electrode. The liquid analyzer according to claim 1, further comprising a voltage application control unit that is an electret region and controls a voltage applied to the first electrode and the second electrode. 前記搬送媒体は前記搬送液体よりも誘電率の低い液体である請求項1記載の液体分析装置。   The liquid analyzer according to claim 1, wherein the transport medium is a liquid having a lower dielectric constant than the transport liquid. 前記被搬送液体を回収し、かつ前記流路よりも高さの大きい被搬送液体回収部をさらに有する請求項1記載の液体分析装置。   The liquid analyzer according to claim 1, further comprising a transported liquid recovery unit that recovers the transported liquid and has a height higher than the flow path. 前記被搬送液体回収部は、窪み領域を具備する請求項9記載の液体分析装置。   The liquid analyzer according to claim 9, wherein the transported liquid recovery unit includes a recessed region. 前記流路は、少なくとも1つの前記導入部と少なくとも1つの前記被搬送液体捕捉手段とを各々備えた複数の分岐路を有する請求項1記載の液体分析装置。   The liquid analyzer according to claim 1, wherein the flow path has a plurality of branch paths each including at least one introduction section and at least one transported liquid capturing unit. 導入口より第1の被搬送液体を導入する第1の工程と、
搬送媒体の循環による流れで前記第1の被搬送液体を流路内で搬送する第2の工程と、
前記第1の工程の後に前記導入口より第2の被搬送液体を導入する第3の工程と、
前記第3の工程の後に前記搬送媒体の前記流れによって前記第2の被搬送液体を流路内で搬送する第4の工程と、
搬送された前記第1の被搬送液体もしくは搬送された前記第2の被搬送液体のいずれかを第1捕捉手段で捕捉する第5の工程と、
前記第1の被搬送液体もしくは前記第2の被搬送液体のいずれかの一方であって前記被搬送液体捕捉手段が捕捉したものと、前記いずれかの他方とを接触させて混合液体とする第6の工程と、
前記混合液体を前記第1捕捉手段もしくは第2被搬送液体捕捉手段で捕捉して計測する第7の工程と、
を有する液体分析方法。
A first step of introducing the first transported liquid from the introduction port;
A second step of transporting the first transported liquid in the flow path by a flow of circulation of the transport medium;
A third step of introducing a second liquid to be transported from the inlet after the first step;
A fourth step of transporting the second transported liquid in the flow path by the flow of the transport medium after the third step;
A fifth step of capturing either of the transported first transported liquid or the transported second transported liquid with a first capturing means;
One of the first transported liquid and the second transported liquid, which is captured by the transported liquid capturing means, is brought into contact with the other transport liquid to form a mixed liquid. 6 steps,
A seventh step of capturing and measuring the mixed liquid by the first capturing means or the second transported liquid capturing means;
A liquid analysis method comprising:
前記混合液体の前記搬送用媒体の流れの方向と実質的に垂直な面での最大幅が、前記流路の前記搬送用媒体の流れの方向と実質的に垂直な面での最大幅よりも小さい請求項12記載の液体分析方法。   The maximum width of the mixed liquid in a plane substantially perpendicular to the direction of flow of the transport medium is greater than the maximum width of the flow path in a plane substantially perpendicular to the direction of flow of the transport medium. The liquid analysis method according to claim 12, which is small. 前記第7の工程では、複数の前記第2の捕捉手段により経時的な計測を行う請求項12記載の液体分析方法。   The liquid analysis method according to claim 12, wherein in the seventh step, measurement with time is performed by a plurality of the second capturing means. 前記第1の被搬送液体と前記第2の被搬送液体とは、いずれかが試料であり他方が試薬である請求項12記載の液体分析方法。   The liquid analysis method according to claim 12, wherein one of the first transported liquid and the second transported liquid is a sample and the other is a reagent. 前記混合液体を分析用領域から回収用領域へ搬送して回収する第8の工程をさらに有し、前記混合液体は前記分析用領域から前記回収用領域へ搬送される際に変形する請求項14に記載の液体分析方法。   15. The method according to claim 14, further comprising an eighth step of transporting and recovering the mixed liquid from the analysis region to the recovery region, wherein the mixed liquid is deformed when transported from the analysis region to the recovery region. The liquid analysis method described in 1.
JP2008523689A 2006-07-05 2007-07-03 Liquid analyzer Expired - Fee Related JP4651715B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006185106 2006-07-05
JP2006185106 2006-07-05
PCT/JP2007/063303 WO2008004550A1 (en) 2006-07-05 2007-07-03 Liquid analyzer

Publications (2)

Publication Number Publication Date
JPWO2008004550A1 true JPWO2008004550A1 (en) 2009-12-03
JP4651715B2 JP4651715B2 (en) 2011-03-16

Family

ID=38894518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008523689A Expired - Fee Related JP4651715B2 (en) 2006-07-05 2007-07-03 Liquid analyzer

Country Status (2)

Country Link
JP (1) JP4651715B2 (en)
WO (1) WO2008004550A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013334A1 (en) 2008-07-31 2010-02-04 株式会社フォスメガ Reaction device and method
WO2010013337A1 (en) * 2008-07-31 2010-02-04 株式会社フォスメガ Reaction device and method
WO2010143295A1 (en) * 2009-06-12 2010-12-16 株式会社島津製作所 Multi-step gene amplification method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315337A (en) * 2002-02-22 2003-11-06 Hitachi Ltd Circulation type biochemical reaction apparatus
JP2004533605A (en) * 2001-03-09 2004-11-04 バイオミクロ システムズ インコーポレイティッド Method and system for connecting a microfluidic interface to an array
JP2005030985A (en) * 2003-07-09 2005-02-03 Olympus Corp Liquid feed treatment method and liquid feed treatment means
JP2005510347A (en) * 2001-11-26 2005-04-21 ケック グラデュエイト インスティテュート Methods, devices, and objects for microfluidic control via electrowetting for chemical, biochemical, biological assays, etc.
JP2006500596A (en) * 2002-09-24 2006-01-05 デューク・ユニバーシティ Method and apparatus for manipulating droplets using electrowetting technology
WO2006003292A1 (en) * 2004-06-04 2006-01-12 Universite Des Sciences Et Technologies De Lille Laser radiation desorption device for manipulating a liquid sample in the form of individual drops, thereby making it possible to carry out the chemical and biological treatment thereof
JP2006504512A (en) * 2002-05-09 2006-02-09 ザ ユニバーシティー オブ シカゴ Apparatus and method for transport and reaction by pressure driven plug
JP2006058031A (en) * 2004-08-17 2006-03-02 Hitachi High-Technologies Corp Chemical analyzer
WO2006038035A2 (en) * 2004-10-08 2006-04-13 Medical Research Council In vitro evolution in microfluidic systems
JP2006317299A (en) * 2005-05-13 2006-11-24 Hitachi High-Technologies Corp Liquid conveyance device and analysis system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004533605A (en) * 2001-03-09 2004-11-04 バイオミクロ システムズ インコーポレイティッド Method and system for connecting a microfluidic interface to an array
JP2005510347A (en) * 2001-11-26 2005-04-21 ケック グラデュエイト インスティテュート Methods, devices, and objects for microfluidic control via electrowetting for chemical, biochemical, biological assays, etc.
JP2003315337A (en) * 2002-02-22 2003-11-06 Hitachi Ltd Circulation type biochemical reaction apparatus
JP2006504512A (en) * 2002-05-09 2006-02-09 ザ ユニバーシティー オブ シカゴ Apparatus and method for transport and reaction by pressure driven plug
JP2006500596A (en) * 2002-09-24 2006-01-05 デューク・ユニバーシティ Method and apparatus for manipulating droplets using electrowetting technology
JP2005030985A (en) * 2003-07-09 2005-02-03 Olympus Corp Liquid feed treatment method and liquid feed treatment means
WO2006003292A1 (en) * 2004-06-04 2006-01-12 Universite Des Sciences Et Technologies De Lille Laser radiation desorption device for manipulating a liquid sample in the form of individual drops, thereby making it possible to carry out the chemical and biological treatment thereof
JP2006058031A (en) * 2004-08-17 2006-03-02 Hitachi High-Technologies Corp Chemical analyzer
WO2006038035A2 (en) * 2004-10-08 2006-04-13 Medical Research Council In vitro evolution in microfluidic systems
JP2006317299A (en) * 2005-05-13 2006-11-24 Hitachi High-Technologies Corp Liquid conveyance device and analysis system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7010003899, Vijay Srinivasan et al., "An integrated digital microfluidic lab−on−a−chip for clinical diagnostics on human physiological flu", Lab Chip, 2004, Vol. 4, pp. 310−315 *

Also Published As

Publication number Publication date
WO2008004550A1 (en) 2008-01-10
JP4651715B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
US11959923B2 (en) Fluidic separation and detection
US10252907B2 (en) Exporting a selected group of micro-objects from a micro-fluidic device
US8940147B1 (en) Microfluidic hubs, systems, and methods for interface fluidic modules
US8783466B2 (en) Continuous biomolecule separation in a nanofilter
US11344889B2 (en) Microfluidic chip, detecting and driving method thereof, and on-chip laboratory system
JP4093740B2 (en) Fine particle sorting microchip and fine particle sorting device
EP2123358B1 (en) Microchip and channel structure for the same
US8387803B2 (en) Particle sorting
US8771933B2 (en) Continuous-flow deformability-based cell separation
JP2010025911A (en) Microchip and flow sending method of microchip
EP3473699B1 (en) Exporting a selected group of micro-objects from a micro-fluidic device
Sukhatme et al. Digital microfluidics: Techniques, their applications and advantages
JP4651715B2 (en) Liquid analyzer
JP2010117197A (en) Microparticle dispenser and microparticle dispensing method
US20220143607A1 (en) Microdroplet manipulation device
CN209451869U (en) A kind of micro fluidic device for realizing multiplicity detection based on electroosmotic flow
JP2010169701A (en) Microchip
US20090127113A1 (en) Microfluidic detector and manufacturing method
US8377277B2 (en) System and method for performing microfluidic manipulation
KR20090088758A (en) Microfluidic system for practical running with a nano-gap sensor and method for preparing the same
Li Portable High Throughput Digital Microfluidics and On-Chip Bacteria Cultures
Ung Microfluidic Methods for High-Throughput Biological Screening
Byvank Separating Magnetically Labeled and Unlabeled Biological Cells within Microfluidic Channels

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees