JPWO2007138761A1 - Temperature chamber - Google Patents

Temperature chamber Download PDF

Info

Publication number
JPWO2007138761A1
JPWO2007138761A1 JP2008517788A JP2008517788A JPWO2007138761A1 JP WO2007138761 A1 JPWO2007138761 A1 JP WO2007138761A1 JP 2008517788 A JP2008517788 A JP 2008517788A JP 2008517788 A JP2008517788 A JP 2008517788A JP WO2007138761 A1 JPWO2007138761 A1 JP WO2007138761A1
Authority
JP
Japan
Prior art keywords
temperature
thermostat
peltier element
set temperature
thermostatic chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008517788A
Other languages
Japanese (ja)
Other versions
JP4821851B2 (en
Inventor
池田 雄一郎
雄一郎 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2008517788A priority Critical patent/JP4821851B2/en
Publication of JPWO2007138761A1 publication Critical patent/JPWO2007138761A1/en
Application granted granted Critical
Publication of JP4821851B2 publication Critical patent/JP4821851B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/30Control of physical parameters of the fluid carrier of temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/193Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
    • G05D23/1932Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of a plurality of spaces
    • G05D23/1934Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of a plurality of spaces each space being provided with one sensor acting on one or more control means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/30Control of physical parameters of the fluid carrier of temperature
    • G01N2030/3084Control of physical parameters of the fluid carrier of temperature ovens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/50Conditioning of the sorbent material or stationary liquid
    • G01N30/52Physical parameters
    • G01N30/54Temperature

Landscapes

  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Control Of Temperature (AREA)

Abstract

【課題】2重構造の恒温槽の内側に配設される部品の寿命を長くする。【解決手段】第1の温度制御機構(11,12,13,15a)を備え第1の設定温度で温度制御する第1の恒温槽10と、第1の恒温槽10の内部に配設され、第2の温度制御機構(21,22,23,15b)を備え、第2の設定温度で温度制御する第2の恒温槽とからなる2重構造の恒温槽において、第2の設定温度及び恒温槽が設置される環境の温度よりも第1の設定温度が高くなるように設定する。An object of the present invention is to extend the life of a component disposed inside a thermostat having a double structure. A first thermostat 10 includes a first temperature control mechanism (11, 12, 13, 15a) and controls temperature at a first set temperature, and is disposed in the first thermostat 10. In the thermostat having a double structure including the second thermostat having the second temperature control mechanism (21, 22, 23, 15b) and controlling the temperature at the second set temperature, the second set temperature and It sets so that the 1st preset temperature may become higher than the temperature of the environment where a thermostat is installed.

Description

本発明は、分析機器を一定温度に保つ恒温槽に関する。   The present invention relates to a thermostatic bath for keeping an analytical instrument at a constant temperature.

分析機器に用いられる検出素子(ダイオードアレイやフォトマルチプライヤ等)は、分析の精度や再現性を高めるために、通常、環境温度を一定に保つ温度制御機構を備えた筐体内部に設けられる。筐体内部の温度を一定に保つことにより、分析機器自体が設置される実験室の室温(環境温度,一般的には25℃程度)が変化しても、検出素子に伝わる熱的な影響が低減される。故に、精度や再現性の良好な結果を得ることが可能となる。   Detection elements (such as a diode array and a photomultiplier) used in an analytical instrument are usually provided inside a housing having a temperature control mechanism that keeps the ambient temperature constant in order to improve the accuracy and reproducibility of analysis. By keeping the temperature inside the case constant, even if the room temperature (environmental temperature, generally about 25 ° C) of the laboratory where the analytical instrument itself is installed changes, the thermal effect transmitted to the detection element is affected. Reduced. Therefore, it is possible to obtain a result with good accuracy and reproducibility.

具体的には、検出素子と共に検出素子の温度を調整する温度制御機構を分析機器の筐体内に配設し、筐体を断熱材で被覆することで恒温槽が形成される。一例として、図3に分光光度計に用いられる従来の恒温槽の該略図を示す。この例においては、分光部1は検出素子やミラーからなり、分光部1についての温度制御を行なうものである。温度制御のために、筐体内の空気を加熱するヒータ11と、ヒータ11に対して送風し筐体内の空気を循環(矢印A)するファン12を備え、恒温槽が温められる。温度センサ13により、恒温槽内部の温度が測定され、筐体内の温度が所望の設定温度に維持されるように制御部15によりヒータのON/OFF制御が行なわれる。分析機器に形成した恒温槽により一定温度になるように温度制御を行なわれるので、良好な分析結果を得ることができる。   Specifically, a thermostat is formed by arranging a temperature control mechanism for adjusting the temperature of the detection element together with the detection element in the casing of the analytical device, and covering the casing with a heat insulating material. As an example, FIG. 3 shows a schematic diagram of a conventional thermostat used in a spectrophotometer. In this example, the spectroscopic unit 1 includes a detection element and a mirror, and controls the temperature of the spectroscopic unit 1. For temperature control, a heater 11 that heats the air in the casing and a fan 12 that blows air to the heater 11 and circulates the air in the casing (arrow A) are provided, and the thermostatic chamber is warmed. The temperature inside the thermostatic chamber is measured by the temperature sensor 13, and the heater 15 is turned ON / OFF by the controller 15 so that the temperature inside the housing is maintained at a desired set temperature. Since temperature control is performed so that the temperature is kept constant by a thermostatic chamber formed in the analytical instrument, a good analysis result can be obtained.

分析機器が置かれる環境の温度変化が大きい場合、温度制御機構の能力が不足し、温度を一定に保つことができず、恒温槽として機能しない。分析機器を設置する場所全体を一定温度に保つ恒温室に設置することも可能であるが、設備の運用や消費電力の面で効率的ではない。そこで、分析機器に形成した恒温槽の中にさらに恒温槽を形成し、恒温槽を2重構造として温度制御をするものがある。こうすると、環境の温度変化が大きくても、内側に設置された恒温槽の内部では、ほとんど影響を受けなくなる。   When the temperature change of the environment where the analytical instrument is placed is large, the ability of the temperature control mechanism is insufficient, the temperature cannot be kept constant, and the thermostat does not function. Although it is possible to install the analytical instrument in a temperature-controlled room where the temperature is kept constant, it is not efficient in terms of facility operation and power consumption. Therefore, there is a thermostat which is further formed in a thermostat formed in an analytical instrument, and the thermostat is controlled in a double structure. In this way, even if the environmental temperature change is large, the inside of the thermostat installed inside is hardly affected.

この2重構造の恒温槽は、試料自体の温度が分析結果に大きな影響を与えるような分析装置に用いる場合、例えば、液体クロマトグラフ用示差屈折率検出器の場合には非常に有効である。内側の恒温槽に検出部(フローセルと検出素子)を配設して温度制御し、外側の恒温槽でフローセルに流入する試料が通る配管を温度制御するようにしたものが知られている(特許文献1)。図4に、特許文献1の恒温槽を示す。第1の(外側)の恒温槽30内部にヒータ31、温度センサ33とを配設し、温度制御部61により第1の恒温槽内部の温度制御を行ない、第2の恒温槽40にはヒータ41、温度センサ43を配設し、温度制御部61により第2の恒温槽40の温度制御を行なっている。配管35を通って第1の恒温槽30の外から流入する試料は第1の恒温槽30で急速に加熱され、さらに第2の恒温槽40で加熱される。こうすることで、試料温度の変化を低減している。また、この例においては、第2の恒温槽40内の検出部36近傍にヒータ51と温度センサ53を配設し、検出部温度制御部62により補助的に検出部36の温度制御を行ない、分析のための所望の設定温度までの到達時間の短縮を図っている。
特開平11−201957号公報
This thermostat bath having a double structure is very effective when used in an analysis apparatus in which the temperature of the sample itself greatly affects the analysis result, for example, in the case of a differential refractive index detector for liquid chromatograph. It is known that the temperature is controlled by arranging a detection unit (flow cell and detection element) in the inner temperature chamber, and the temperature of the pipe through which the sample flowing into the flow cell passes in the outer temperature chamber (patent) Reference 1). In FIG. 4, the thermostat of patent document 1 is shown. A heater 31 and a temperature sensor 33 are disposed inside the first (outside) thermostat 30, the temperature control unit 61 controls the temperature inside the first thermostat, and the second thermostat 40 has a heater 41, a temperature sensor 43 is provided, and the temperature controller 61 controls the temperature of the second thermostatic chamber 40. The sample flowing from the outside of the first thermostat 30 through the pipe 35 is rapidly heated in the first thermostat 30 and further heated in the second thermostat 40. By doing so, the change in the sample temperature is reduced. Further, in this example, a heater 51 and a temperature sensor 53 are disposed in the vicinity of the detection unit 36 in the second constant temperature bath 40, and the temperature control of the detection unit 36 is performed supplementarily by the detection unit temperature control unit 62. The time to reach a desired set temperature for analysis is shortened.
JP-A-11-201957

検出素子には高温下より低温下での使用の方がノイズが減少するもの、つまり、使用時には冷却を要するものがある。上述のフォトマルチプライヤも冷却によりノイズを低減させるものであるので、高温下での使用ではノイズが多くなり、良好な分析結果を期待することはできない。また、温度制御対象(例えば、分光部)が大きくなれば、室温から設定温度まで到達させるために必要な熱量も増大し、それだけの熱量を移動させるために時間を要する。特許文献1のような2重の恒温槽とした場合、室温より第1の恒温槽(外側)の温度が高く、第1の恒温槽(外側)の温度より第2の恒温槽(内側)の温度が高くなる。第2の恒温槽を環境温度から熱的に隔離するため、すなわち、室温の変化の影響を緩和するためには、第1の恒温槽の温度を室温よりもかなり高めに設定される必要があり、第2の恒温槽の内部の温度は室温からは掛け離れた温度となる。また、分析機器の運転/停止を繰り返すことにより、第2の恒温槽内部は、分析を行なうときは所望の設定温度に、分析を行なわないときは室温に曝されことになり、いわゆるヒートサイクルによる部品の劣化を招くことになる。ヒートサイクルは、特に樹脂製パッキンや接着剤などに影響が大きく、分析機器の不具合の原因となる。   Some detection elements have reduced noise when used at low temperatures rather than at high temperatures, that is, some require cooling during use. Since the above-described photomultiplier also reduces noise by cooling, the use of the photomultiplier at a high temperature increases the noise, and a good analysis result cannot be expected. In addition, as the temperature control target (for example, the spectroscopic unit) increases, the amount of heat required to reach the set temperature from room temperature also increases, and it takes time to move that much heat. When it is set as the double thermostat like patent document 1, the temperature of the 1st thermostat (outside) is higher than room temperature, and the temperature of the 2nd thermostat (inside) is higher than the temperature of the 1st thermostat (outside). The temperature rises. In order to thermally isolate the second temperature chamber from the ambient temperature, that is, to mitigate the influence of changes in room temperature, the temperature of the first temperature chamber needs to be set to be considerably higher than room temperature. The temperature inside the second thermostatic chamber is a temperature far from room temperature. In addition, by repeating the operation / stop of the analytical instrument, the inside of the second thermostatic chamber is exposed to a desired set temperature when the analysis is performed, and to the room temperature when the analysis is not performed. This will cause the parts to deteriorate. The heat cycle has a great influence on the resin packing, adhesive, etc., and causes a failure of the analytical instrument.

上記課題に鑑みなされた本発明は、環境温度から検出素子を熱的に隔離するために、2重構造の恒温槽としつつ、内側の恒温槽内部の温度を室温からかけ離れないようにするためのものである。すなわち、本願発明は、第1の温度制御機構を備え第1の設定温度で温度制御する第1の恒温槽と、前記第1の恒温槽の内部に配設され、第2の温度制御機構を備え第2の設定温度で温度制御する第2の恒温槽とからなる2重構造の恒温槽において、前記第1の設定温度が前記第2の設定温度及び恒温槽が設置される環境の温度よりも高く設定されることを特徴とする。   The present invention has been made in view of the above problems, and in order to thermally isolate the detection element from the environmental temperature, the temperature inside the thermostat inside is kept away from the room temperature while being a thermostat having a double structure. Is. That is, the invention of the present application is provided with a first thermostatic chamber that is provided with a first temperature control mechanism and controls the temperature at a first set temperature, and is disposed in the first thermostatic chamber, In the thermostat bath having a double structure composed of a second thermostat bath that controls the temperature at the second set temperature, the first set temperature is higher than the second set temperature and the temperature of the environment in which the thermostat bath is installed. Is also set high.

[作用]本発明に係る恒温槽の構成を適用することで、第2の恒温槽内の温度は、室温(環境温度)に近い温度で設定することができる。第2の恒温槽を環境温度から熱的に隔離する第1の恒温槽の温度は、環境温度より高く設定される。   [Operation] By applying the configuration of the thermostatic chamber according to the present invention, the temperature in the second thermostatic chamber can be set at a temperature close to room temperature (environmental temperature). The temperature of the first thermostat that thermally isolates the second thermostat from the ambient temperature is set higher than the ambient temperature.

さらに、前記恒温槽は、第2の温度制御機構として、ペルチェ素子を含み、ペルチェ素子の一面が第2の恒温槽内側に、他面が第2の恒温槽外側に面することを特徴とする。   Further, the thermostatic chamber includes a Peltier element as a second temperature control mechanism, wherein one surface of the Peltier element faces the inside of the second thermostatic bath and the other surface faces the outside of the second thermostatic bath. .

[作用]ペルチェ素子を採用することで、印加する電圧の正/逆の切り換えのみで伝熱方向を反転させ、加熱/冷却を切り換えることができるようになる。   [Operation] By adopting a Peltier element, it becomes possible to reverse the heat transfer direction and switch between heating and cooling only by switching the applied voltage between forward and reverse.

そして、本発明の恒温槽において、温度制御機構にペルチェ素子を適用した恒温槽の制御方法において、第2の恒温槽内の温度が第2の設定温度に達するまでは、ペルチェ素子が第2の恒温槽側を加熱するように電圧を印加することを特徴とする。   In the thermostatic chamber of the present invention, in the thermostatic chamber control method in which the Peltier element is applied to the temperature control mechanism, the Peltier element is in the second state until the temperature in the second thermostatic chamber reaches the second set temperature. A voltage is applied so as to heat the thermostatic chamber side.

[作用]この制御方法によりペルチェ素子は、動作開始後、第2の恒温槽の温度が第2の設定温度以下である場合に、第2の設定温度になった状態での動作とは逆の熱伝導(加熱)を行なう。   [Operation] With this control method, the Peltier element is reverse to the operation at the second set temperature when the temperature of the second thermostatic chamber is equal to or lower than the second set temperature after the operation starts. Conducts heat conduction (heating).

恒温槽を2重構造とし、かつ、第2(内側)の恒温槽を室温に近い温度とすることで、第1(外側)の恒温槽の内容積から第2(内側)の恒温槽の体積を引いた空間部分が第1の恒温槽による主な温度制御の対象になり、設定温度に到達させるために必要な熱量を少なく抑えることができる。第2の恒温槽内の温度は、分析機器の運転開始前(停止時)に置かれていた環境温度に近い温度で恒温になるので、検出器の動作が好適な温度条件で行なわれ、良好な分析結果を得ることができる。また、分析機器の使用の際も、環境温度に近い温度で恒温になるのでヒートサイクルの影響が小さくなり、第2の恒温槽内部に配設される部品の寿命が長くなる。温度制御開始後、第2の恒温槽内の空間温度が第2の設定温度より低い間は、ペルチェ素子の熱の流れを逆転させるので、第2の恒温槽の設定温度までの到達時間、すなわち分析機器の運転開始後、好適な分析結果を得るための温度条件達するまでの時間が短縮される。   The volume of the second (inner) thermostat is changed from the inner volume of the first (outer) thermostat by setting the thermostat to a double structure and setting the second (inner) thermostat to a temperature close to room temperature. The space portion minus the target becomes the main temperature control target by the first thermostatic bath, and the amount of heat necessary to reach the set temperature can be reduced. The temperature in the second thermostatic chamber becomes constant at a temperature close to the environmental temperature that was set before the operation of the analytical instrument was started (during stoppage). Can be obtained. Also, when the analytical instrument is used, the temperature becomes constant at a temperature close to the environmental temperature, so that the influence of the heat cycle is reduced, and the life of the components disposed in the second thermostatic chamber is extended. After the temperature control is started, while the space temperature in the second thermostat is lower than the second set temperature, the flow of heat of the Peltier element is reversed, so the arrival time to the set temperature of the second thermostat, that is, After the operation of the analytical instrument is started, the time until reaching the temperature condition for obtaining a suitable analysis result is shortened.

本発明に係る恒温槽の概略図である。It is the schematic of the thermostat which concerns on this invention. 本発明に係る恒温槽の恒温化までの熱の流れを示す図である。It is a figure which shows the flow of the heat until constant temperature of the thermostat which concerns on this invention. 従来の1重構造の恒温槽の概略図である。It is the schematic of the conventional single temperature oven. 従来の2重構造の恒温槽の概略図である。It is the schematic of the conventional thermostat of a double structure.

符号の説明Explanation of symbols

1・・・分光器
10,30・・・第1の恒温槽
11,21,31,41,51・・・ヒータ
12,22・・・ファン
13,23,33,43,53・・・温度センサ
15a,b・・・制御部
20,40・・・第2の恒温槽
35・・・配管
36・・・検出部
DESCRIPTION OF SYMBOLS 1 ... Spectroscope 10, 30 ... 1st thermostat 11, 21, 31, 41, 51 ... Heater 12, 22 ... Fan 13, 23, 33, 43, 53 ... Temperature Sensors 15a, b ... Control units 20, 40 ... Second thermostatic bath 35 ... Pipe 36 ... Detection unit

以下、図面に沿って本発明を分光光度計を例に詳細に説明する。図1は、本発明に係る恒温槽の該略図である。第1の恒温槽10は断熱材(図示せず)で覆われており、加熱用のヒータ11と、ヒータ11に対して送風し筐体内の空気を循環(矢印A1)するファン12を備え、第1の恒温槽10内を温める。温度センサ13により第1の恒温槽10内部の温度が測定され、設定された第1の設定温度(室温より十分に高い温度、例えば40℃)になるように、制御部15aによりヒータ11のON/OFF制御が適宜行なわれる。こうして、第1の恒温槽10の内部の空間温度は第1の設定温度に維持される。
第2の恒温槽20は表面の殆どは断熱材(図示せず)で覆われ、第1の恒温槽10に内包される。第1の恒温槽10内の空間と第2の恒温槽20内の空間とが完全に断熱されるわけではなく、第2の恒温槽を被覆する断熱材を経る若干の熱伝導(矢印A4)が存在し、第2の恒温槽20内部の空間が加熱される。第2の恒温槽20は、その内部の熱を外部に放熱するための手段としてペルチェ素子21を備える。ペルチェ素子は電圧を印加すると一方の面(冷却面)から反対の面(放熱面)へ熱が移動する素子である。
Hereinafter, the present invention will be described in detail with reference to the drawings, taking a spectrophotometer as an example. FIG. 1 is a schematic view of a thermostatic chamber according to the present invention. The first thermostat 10 is covered with a heat insulating material (not shown), and includes a heater 11 for heating and a fan 12 that blows air to the heater 11 and circulates air in the housing (arrow A1). The inside of the first thermostat 10 is warmed. The temperature inside the first thermostat 10 is measured by the temperature sensor 13, and the controller 15a turns on the heater 11 so that the first set temperature (a temperature sufficiently higher than room temperature, for example, 40 ° C.) is set. / OFF control is appropriately performed. Thus, the space temperature inside the first thermostat 10 is maintained at the first set temperature.
Most of the surface of the second thermostatic chamber 20 is covered with a heat insulating material (not shown), and is enclosed in the first thermostatic chamber 10. The space in the first thermostatic bath 10 and the space in the second thermostatic bath 20 are not completely insulated, and some heat conduction through the heat insulating material covering the second thermostatic bath (arrow A4) And the space inside the second thermostatic bath 20 is heated. The 2nd thermostat 20 is provided with the Peltier device 21 as a means for radiating the heat of the inside to the exterior. The Peltier element is an element in which heat is transferred from one surface (cooling surface) to the opposite surface (heat radiation surface) when a voltage is applied.

ペルチェ素子21は、正電圧を印加したときに第2の恒温槽20内側が冷却面、第2の恒温槽20外側が放熱面となるように設定され、それぞれの面がそれぞれの空間に露出するように、第2の恒温槽の壁面に配設される。ペルチェ素子21へ正電圧の印加することにより、第2の恒温槽20内側の熱が第2の恒温槽20外側へ放熱される(矢印A3)。第2の恒温槽20内部の空気は、ファン22で循環(矢印A2)され、第2の恒温槽20内部の温度はほぼ均一となる。温度センサ23により第2の恒温槽20内部の温度が測定され、室温近傍に設定した第2の設定温度(室温に近い温度、例えば27℃)になるように、制御部15bによってペルチェ素子21の印加電圧の正/逆の切り換え及びON/OFF制御が適宜行なわれる。こうして、第2の恒温槽20内部の空間は第2の設定温度に維持される。なお、ペルチェ素子21の配設は、ヒータ11から遠い位置にすることで、温度センサ13の出力が安定しやすくなる。   The Peltier element 21 is set so that when a positive voltage is applied, the inside of the second thermostatic chamber 20 is a cooling surface and the outside of the second thermostatic bath 20 is a heat dissipation surface, and each surface is exposed to each space. Thus, it arrange | positions on the wall surface of a 2nd thermostat. By applying a positive voltage to the Peltier element 21, the heat inside the second thermostat 20 is radiated to the outside of the second thermostat 20 (arrow A3). The air inside the second thermostat 20 is circulated by the fan 22 (arrow A2), and the temperature inside the second thermostat 20 becomes substantially uniform. The temperature inside the second thermostatic chamber 20 is measured by the temperature sensor 23, and the control unit 15b controls the Peltier element 21 so that the second set temperature is set near room temperature (temperature close to room temperature, for example, 27 ° C.). The forward / reverse switching of the applied voltage and ON / OFF control are appropriately performed. Thus, the space inside the second thermostatic chamber 20 is maintained at the second set temperature. Note that the output of the temperature sensor 13 can be easily stabilized by disposing the Peltier element 21 at a position far from the heater 11.

第1の恒温槽10の内部空間は、ペルチェ素子21による第2の恒温槽20の外側への放熱(矢印A3)によって、若干加熱されることになる。しかし、ヒータ11のON/OFF制御により第1の恒温槽10内の空間に与えられる熱量が調整され、総熱量としては一定となるので、第1の恒温槽10内の空間の温度は、第1の設定温度に維持される。なお、ペルチェ素子21に放熱(吸熱)用のフィンを設けることで、伝熱効率は向上する。
以上のように、本発明に係る恒温槽では、第1の恒温槽10及び第2の恒温槽20の温度が、それぞれの設定温度に到達した状態では、第1の設定温度は環境温度及び第2の設定温度よりも高い温度で一定となるように制御される。分析機器が停止している間、すなわち恒温槽が温度制御されていない間、環境温度に等しい第1の恒温槽10内の空間の温度と第2の恒温槽20内の空間の温度を、最短時間で第1の設定温度及び第2の設定温度まで到達させるための制御方法を次に説明する。なお、実際には、それぞれの恒温槽の筐体の壁や断熱材があるので、境界部に温度勾配が存在するが、図2においては簡略化した。
The internal space of the first thermostat 10 is slightly heated by the heat radiation (arrow A3) to the outside of the second thermostat 20 by the Peltier element 21. However, since the amount of heat given to the space in the first thermostat 10 is adjusted by the ON / OFF control of the heater 11 and the total amount of heat becomes constant, the temperature of the space in the first thermostat 10 is 1 set temperature is maintained. In addition, heat transfer efficiency improves by providing the fin for heat radiation (heat absorption) in the Peltier device 21. FIG.
As described above, in the thermostatic chamber according to the present invention, in the state where the temperatures of the first thermostatic chamber 10 and the second thermostatic chamber 20 have reached the respective set temperatures, the first set temperature is the environmental temperature and the first temperature. The temperature is controlled to be constant at a temperature higher than the set temperature of 2. While the analytical instrument is stopped, that is, while the temperature of the thermostat is not controlled, the temperature of the space in the first thermostat 10 and the temperature of the space in the second thermostat 20 equal to the environmental temperature are the shortest. Next, a control method for reaching the first set temperature and the second set temperature in time will be described. Actually, since there is a wall of the casing of each thermostat or a heat insulating material, there is a temperature gradient at the boundary, but it is simplified in FIG.

図1におけるB−B’線に沿った断面について、装置の運転開始の温度からそれぞれの設定温度に到達するまでの温度状態と装置の動作を時系列的に図2に示す。各グラフの縦軸には温度を示し、横軸にはB−B’線に沿った位置を示している。各横軸と直交する破線は槽の境界を示す。   FIG. 2 shows the temperature state and the operation of the apparatus in time series from the temperature at the start of operation of the apparatus until the set temperature is reached for the cross section taken along line B-B ′ in FIG. 1. The vertical axis of each graph indicates temperature, and the horizontal axis indicates the position along the line B-B ′. A broken line perpendicular to each horizontal axis indicates a tank boundary.

図2(a)は、装置の停止時の温度状態である。長時間装置を停止すると、断熱材に覆われた恒温槽内の空間であっても室温と等しい温度となり、環境温度(TRT)と第1の恒温槽10の温度(T1)、第2の恒温槽20の温度(T2)は全て等しい温度となっている。
装置の運転を開始し、第1の設定温度をTOP,1(例えば40℃)、第2の設定温度をTOP,2(例えば27度)として、温度制御が開始される。
FIG. 2A shows a temperature state when the apparatus is stopped. When the apparatus is stopped for a long time, even in the space in the thermostatic chamber covered with the heat insulating material, the temperature becomes equal to the room temperature, the environmental temperature (T RT ), the temperature (T 1 ) of the first thermostatic chamber 10, the second The temperatures (T 2 ) of the constant temperature bath 20 are all equal.
The operation of the apparatus is started, and temperature control is started with the first set temperature as T OP, 1 (for example, 40 ° C.) and the second set temperature as T OP, 2 (for example, 27 degrees).

温度制御開始後、第1の恒温槽についてはヒータ11がONになり、第2の恒温槽についてはペルチェ素子21には第2の恒温槽20内側が放熱面になるように電圧(逆電圧)が印加される。ヒータ11により第1の恒温槽10の温度が上昇し、ペルチェ素子21により第2の恒温槽20内側へ伝熱される。第1の恒温槽10の空間温度の上昇後、断熱材を経た伝熱(矢印A4)により、また、ペルチェ素子21の放熱動作(矢印A3の逆向)により第2の恒温槽20の内側の空間温度が上昇し、第2の恒温槽20の空間温度が第2の設定温度TOP,2を若干超えた状態になる(図2(b))。After the temperature control is started, the heater 11 is turned on for the first thermostat, and the voltage (reverse voltage) is applied to the Peltier element 21 so that the inside of the second thermostat 20 is the heat dissipation surface for the second thermostat. Is applied. The temperature of the first thermostat 10 is increased by the heater 11, and the heat is transferred to the inside of the second thermostat 20 by the Peltier element 21. After the rise in the space temperature of the first thermostat 10, the space inside the second thermostat 20 by heat transfer through the heat insulating material (arrow A 4) and by the heat dissipation operation of the Peltier element 21 (reverse direction of the arrow A 3). The temperature rises, and the space temperature of the second thermostatic chamber 20 slightly exceeds the second set temperature T OP, 2 (FIG. 2B).

この状態で、ペルチェ素子21の逆電圧による動作が停止され、さらに正電圧でのON/OFF制御が開始される。ペルチェ素子21の正電圧による動作により空間温度が降下するので、第2の設定温度TOP,2に到達する。以降は、ペルチェ素子21への正電圧印加のON/OFF制御を行なう。ヒータ11は引き続きONである。ヒータ11が第1の恒温槽10を加熱し、断熱材を経て第2の恒温槽20へ伝熱して第2の恒温槽20を加熱する。ヒータ11による加熱で、第1の恒温槽10内の空間の温度が第1の設定温度TOP,1を若干超えた状態になる(図2(c))。In this state, the operation of the Peltier element 21 due to the reverse voltage is stopped, and ON / OFF control with a positive voltage is started. Since the space temperature drops due to the operation of the Peltier element 21 with the positive voltage, the temperature reaches the second set temperature T OP, 2 . Thereafter, ON / OFF control of applying a positive voltage to the Peltier element 21 is performed. The heater 11 is still ON. The heater 11 heats the first thermostat 10, transfers heat to the second thermostat 20 through the heat insulating material, and heats the second thermostat 20. Due to the heating by the heater 11, the temperature of the space in the first thermostat 10 slightly exceeds the first set temperature T OP, 1 (FIG. 2 (c)).

この状態で、ヒータ11を停止し、ON/OFF制御を開始する。このON/OFF制御の最初の時点ではヒータは停止の状態である。第1の恒温槽10の内側から外側への伝熱(矢印A5)によって、第1の恒温槽10内の空間温度は降下し、第1の設定温度TOP,1に到達する((図2(d)))。以降は、温度センサ13の出力に基づいてヒータ11のON/OFF制御を行なう。In this state, the heater 11 is stopped and ON / OFF control is started. At the first time of this ON / OFF control, the heater is in a stopped state. Due to heat transfer from the inside to the outside of the first thermostat 10 (arrow A5), the space temperature in the first thermostat 10 drops and reaches the first set temperature T OP, 1 ((FIG. 2 (D))). Thereafter, ON / OFF control of the heater 11 is performed based on the output of the temperature sensor 13.

以上の制御方法により、最短時間で第2の恒温槽を第2の設定温度の状態にすることができる。さらなる時間短縮は、第1の恒温槽10の容積を小さくすることで、実現される。第1の恒温槽10の容積を小さくする方が、伝熱量が少なくてすみ、ヒータやペルチェ素子の熱的効率が同じでも、目的の温度に到達させるために必要な熱を伝熱する時間が短くなる。   With the above control method, the second thermostatic chamber can be brought into the second set temperature state in the shortest time. Further time reduction is realized by reducing the volume of the first thermostat 10. If the volume of the first thermostat 10 is reduced, the amount of heat transfer can be reduced, and even if the thermal efficiency of the heater and Peltier element is the same, the time required to transfer the heat necessary to reach the target temperature is reached. Shorter.

上記実施例は本発明の単に一例にすぎず、本発明の趣旨の範囲で適宜変更や修正することも可能である。例えば、ヒータやペルチェ素子の制御について、ON/OFF制御に代えPWM(Pulse Width Modulation)制御を行なうようにすれば、より高精度な温度制御が可能になる。温度制御時に、ファンの回転速度を変更することも可能である。第2の恒温槽の温度が室温より若干高い程度に制御することが伝熱効率や電力消費の面で好ましいが、第2の恒温槽の温度が室温より若干低い程度に制御することも可能である。また、第1の恒温槽の温度を室温より高いことを例にとって説明したが、第1の恒温槽の温度が室温より低くすることも可能である。この場合は、ヒータをクーラ、加熱を冷却と読み替え、ペルチェ素子の印加電圧の正/逆または反転して配設することで同様の動作が可能である。加熱手段としてヒータを例に説明をしたが、筐体をジャケットで包み、ジャケット内に温水を流通することで加熱手段とすることができる。逆に、ジャケット内に冷水を流通することで、冷却手段とすることができる。もちろん、本発明に係る恒温槽が適用されるものは分光部を温度制御の対象とする分光光度計に限定されず、恒温槽として様々な用途に適用可能である。これら変更や修正したものも本発明に包含されることは明らかである。   The above embodiment is merely an example of the present invention, and can be appropriately changed or modified within the scope of the gist of the present invention. For example, with regard to the control of the heater and Peltier element, if PWM (Pulse Width Modulation) control is performed instead of ON / OFF control, temperature control with higher accuracy becomes possible. It is also possible to change the rotation speed of the fan during temperature control. Although it is preferable in terms of heat transfer efficiency and power consumption that the temperature of the second thermostat is slightly higher than room temperature, it is also possible to control the temperature of the second thermostat to be slightly lower than room temperature. . In addition, although the case where the temperature of the first thermostat is higher than room temperature has been described as an example, the temperature of the first thermostat can be lower than room temperature. In this case, the same operation can be performed by replacing the heater as a cooler, heating as cooling, and arranging the applied voltage of the Peltier element forward / reversely or reversely. Although a heater has been described as an example of the heating means, the casing can be wrapped with a jacket, and hot water can be circulated in the jacket to provide the heating means. On the contrary, it can be set as a cooling means by distribute | circulating cold water in a jacket. Of course, what is applied to the thermostat according to the present invention is not limited to a spectrophotometer in which the spectroscopic unit is subject to temperature control, and can be applied to various uses as a thermostat. Obviously, these changes and modifications are also included in the present invention.

環境温度を一定に保つことを要する機器を設置するための恒温槽として利用することができる。   It can be used as a thermostatic chamber for installing equipment that needs to keep the environmental temperature constant.

Claims (6)

少なくとも加熱手段を有する第1の温度制御機構を備え第1の設定温度で温度制御する第1の恒温槽と、
前記第1の恒温槽の内部に配設され、少なくとも冷却手段を有する第2の温度制御機構を備え、第2の設定温度で温度制御する第2の恒温槽とからなる二重構造の恒温槽において、
前記第1の設定温度が前記第2の設定温度及び恒温槽が設置される環境の温度よりも高く設定される
ことを特徴とする恒温槽。
A first thermostat having a first temperature control mechanism having at least a heating means and performing temperature control at a first set temperature;
A thermostat having a double structure including a second thermostat which is disposed inside the first thermostat and has a second temperature control mechanism having at least a cooling means and which controls the temperature at a second set temperature. In
The first set temperature is set higher than the second set temperature and the temperature of the environment in which the thermostat is installed.
請求項1に記載の恒温槽において、前記第2の温度制御機構はペルチェ素子を含み、前記ペルチェ素子の一面が前記第2の恒温槽内側に、他面が前記第2の恒温槽外側に面することを特徴とする恒温槽。 2. The thermostat according to claim 1, wherein the second temperature control mechanism includes a Peltier element, wherein one surface of the Peltier element faces the inside of the second thermostat and the other surface faces the outside of the second thermostat. A thermostatic bath characterized by that. 少なくとも加熱手段を有する第1の温度制御機構を備え第1の設定温度で温度制御する第1の恒温槽と、
前記第1の恒温槽の内部に配設され、冷却手段としてペルチェ素子を有する第2の温度制御機構を備え、第2の設定温度で温度制御する第2の恒温槽とからなり、
前記第1の設定温度が前記第2の設定温度及び恒温槽が設置される環境の温度よりも高く設定される恒温槽の制御方法において、
前記第2の恒温槽内の温度が第2の設定温度に達するまでは、前記ペルチェ素子が前記第2の恒温槽内側を加熱するように電圧を印加することを特徴とする制御方法。
A first thermostat having a first temperature control mechanism having at least a heating means and performing temperature control at a first set temperature;
A second thermostatic chamber disposed in the first thermostatic chamber, including a second temperature control mechanism having a Peltier element as a cooling means, and temperature-controlled at a second set temperature;
In the constant temperature bath control method in which the first set temperature is set higher than the second set temperature and the temperature of the environment in which the constant temperature bath is installed,
A control method, wherein a voltage is applied so that the Peltier element heats the inside of the second thermostat until the temperature in the second thermostat reaches a second set temperature.
少なくとも冷却手段を有する第1の温度制御機構を備え第1の設定温度で温度制御する第1の恒温槽と、
前記第1の恒温槽の内部に配設され、少なくとも加熱手段を有する第2の温度制御機構を備え、第2の設定温度で温度制御する第2の恒温槽とからなる二重構造の恒温槽において、
前記第1の設定温度が前記第2の設定温度及び恒温槽が設置される環境の温度よりも低く設定される
ことを特徴とする恒温槽。
A first thermostatic chamber having a first temperature control mechanism having at least a cooling means and performing temperature control at a first set temperature;
A thermostat having a double structure including a second thermostat which is disposed inside the first thermostat and has a second temperature control mechanism having at least a heating means and which controls the temperature at a second set temperature. In
The first set temperature is set lower than the second set temperature and the temperature of the environment in which the thermostat is installed.
請求項4に記載の恒温槽において、前記第2の温度制御機構はペルチェ素子を含み、前記ペルチェ素子の一面が前記第2の恒温槽内側に、他面が前記第2の恒温槽外側に面することを特徴とする恒温槽。 5. The thermostat according to claim 4, wherein the second temperature control mechanism includes a Peltier element, wherein one surface of the Peltier element faces the inside of the second thermostat and the other surface faces the outside of the second thermostat. A thermostatic bath characterized by that. 少なくとも冷却手段を有する第1の温度制御機構を備え第1の設定温度で温度制御する第1の恒温槽と、
前記第1の恒温槽の内部に配設され、加熱手段としてペルチェ素子を有する第2の温度制御機構を備え、第2の設定温度で温度制御する第2の恒温槽とからなり、
前記第1の設定温度が前記第2の設定温度及び恒温槽が設置される環境の温度よりも低く設定される恒温槽の制御方法において、
前記第2の恒温槽内の温度が第2の設定温度に達するまでは、前記ペルチェ素子が前記第2の恒温槽内側を冷却するように電圧を印加することを特徴とする制御方法。
A first thermostatic chamber having a first temperature control mechanism having at least a cooling means and performing temperature control at a first set temperature;
A second thermostatic chamber disposed in the first thermostatic chamber, comprising a second temperature control mechanism having a Peltier element as a heating means, and temperature-controlled at a second set temperature;
In the constant temperature bath control method in which the first set temperature is set lower than the second set temperature and the temperature of the environment in which the constant temperature bath is installed,
A control method, wherein a voltage is applied so that the Peltier element cools the inside of the second thermostat until the temperature in the second thermostat reaches a second set temperature.
JP2008517788A 2006-05-30 2007-01-29 Temperature chamber Expired - Fee Related JP4821851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008517788A JP4821851B2 (en) 2006-05-30 2007-01-29 Temperature chamber

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006150344 2006-05-30
JP2006150344 2006-05-30
JP2008517788A JP4821851B2 (en) 2006-05-30 2007-01-29 Temperature chamber
PCT/JP2007/051384 WO2007138761A1 (en) 2006-05-30 2007-01-29 Thermostatic chamber

Publications (2)

Publication Number Publication Date
JPWO2007138761A1 true JPWO2007138761A1 (en) 2009-10-01
JP4821851B2 JP4821851B2 (en) 2011-11-24

Family

ID=38778286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008517788A Expired - Fee Related JP4821851B2 (en) 2006-05-30 2007-01-29 Temperature chamber

Country Status (2)

Country Link
JP (1) JP4821851B2 (en)
WO (1) WO2007138761A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112033538A (en) * 2020-08-11 2020-12-04 华东师范大学 Ultrafast image device based on spectrum-time mapping

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101622535B (en) 2007-02-23 2013-09-11 东曹株式会社 Column oven with double temperature control
JP5703888B2 (en) * 2011-03-25 2015-04-22 凸版印刷株式会社 Method for manufacturing fluid separation flow path
JP5717497B2 (en) * 2011-03-29 2015-05-13 日本電波工業株式会社 Oscillator
JP6017410B2 (en) * 2013-12-27 2016-11-02 善郎 水野 High-precision constant temperature system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001013126A (en) * 1999-06-30 2001-01-19 Shimadzu Corp Column thermostatic oven
JP2003148850A (en) * 2001-11-06 2003-05-21 Koyo Thermo System Kk Heating and cooling unit
JP2003309432A (en) * 2002-04-17 2003-10-31 Toyo Commun Equip Co Ltd Highly stable piezoelectric oscillator
JP2004048686A (en) * 2003-04-21 2004-02-12 Toyo Commun Equip Co Ltd High stability piezoelectric oscillator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112033538A (en) * 2020-08-11 2020-12-04 华东师范大学 Ultrafast image device based on spectrum-time mapping

Also Published As

Publication number Publication date
WO2007138761A1 (en) 2007-12-06
JP4821851B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP6217113B2 (en) Column unit and gas chromatograph apparatus provided with the column unit
JP4821851B2 (en) Temperature chamber
US20100071443A1 (en) Temperature-controlled rheometer
JP5333833B2 (en) Control device for heating device independent of engine, heating system, and control method of heating device independent of engine
WO2012063547A1 (en) Internal combustion engine cooling device
CN104503508B (en) A kind of solar cell testboard temperature control system and temp. control method
JP2003328753A (en) Electronically controlled thermostat
CN202052555U (en) Constant temperature bath device
JP2023056000A (en) Spectroscopic detector
ATE417486T1 (en) HEAT SENSITIVE CONTROL FOR A LIQUID HEATING APPARATUS
JP6267164B2 (en) Laser device with temperature management function for maintenance work
JP2004360680A (en) Thermostat device for engine cooling water flow control, engine temperature control method and system
JPH07274938A (en) Temperature control device for observing cell and biological ingredient
JP6990082B2 (en) Oil pan heating device
US10065162B2 (en) Heating and cooling apparatus
JP2009097882A (en) Device for measuring amount of insulated heat
RU2476866C2 (en) Device for measuring heat-transfer resistance of building structure
CN209198969U (en) A kind of light room thermostatically-controlled equipment
WO2017061436A1 (en) Laser light source device
RU2454699C1 (en) Thermostat
CN211669077U (en) Immunofluorescence POCT instrument temperature control system based on TEC
CN111492237A (en) Sample temperature regulating device
JP2009092307A (en) Bathroom heating and drying apparatus
JP2020100359A (en) Temperature control device
JP2020176816A (en) Circulation type electric furnace

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees