JPWO2007102572A1 - Cell aging inhibitor - Google Patents

Cell aging inhibitor Download PDF

Info

Publication number
JPWO2007102572A1
JPWO2007102572A1 JP2008503904A JP2008503904A JPWO2007102572A1 JP WO2007102572 A1 JPWO2007102572 A1 JP WO2007102572A1 JP 2008503904 A JP2008503904 A JP 2008503904A JP 2008503904 A JP2008503904 A JP 2008503904A JP WO2007102572 A1 JPWO2007102572 A1 JP WO2007102572A1
Authority
JP
Japan
Prior art keywords
cell
protein
gng11
gene
cell aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008503904A
Other languages
Japanese (ja)
Inventor
大 鮎沢
大 鮎沢
モハマド ナジル ホサイン
モハマド ナジル ホサイン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama City University
Original Assignee
Yokohama City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama City University filed Critical Yokohama City University
Publication of JPWO2007102572A1 publication Critical patent/JPWO2007102572A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/13Nucleic acids or derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/18Antioxidants, e.g. antiradicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • C12N2310/111Antisense spanning the whole gene, or a large part of it

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Dermatology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Birds (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Cosmetics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

要約効果的かつ根本的に細胞老化を抑制することができる新規な細胞老化抑制剤が開示されている。該細胞老化抑制剤は、Gタンパク質γサブユニット11をコードする遺伝子の発現を阻害する物質又はGタンパク質γサブユニット11の細胞老化作用を阻害する物質を有効成分として含有する。該細胞老化抑制剤によれば、酸化ストレスによる細胞老化の誘導を防止できるので、細胞の若返りを基盤とする種々の応用が可能である。とくに、老化防止に効果のある化粧品、健康食品の開発、医薬品等として適用できる。SUMMARY A novel cell aging inhibitor capable of effectively and fundamentally suppressing cell aging has been disclosed. The cell aging inhibitor contains, as an active ingredient, a substance that inhibits the expression of a gene encoding G protein γ subunit 11 or a substance that inhibits the cell aging action of G protein γ subunit 11. According to the cell aging inhibitor, since induction of cell aging due to oxidative stress can be prevented, various applications based on cell rejuvenation are possible. In particular, it can be applied to the development of cosmetics, health foods, and pharmaceuticals that are effective in preventing aging.

Description

本発明は、細胞の老化を抑制する細胞老化抑制剤に関する。   The present invention relates to a cell aging inhibitor that suppresses cellular aging.

ヒト正常細胞は、分裂能力を失い、老化する(replicative senescence)。老化細胞は特定の形態学上及び生理学的な変化を経て、特定の遺伝子を誘導する。また、正常細胞は様々な処理によって上と同様な現象を示す(premature senescence)。この二つの現象は本質的に同等である。細胞老化は器官・組織の機能低下をもたらし、成人病やヒトの老化の直接原因となることが明らかになりつつある。実験的には種々の手段によって細胞老化を誘導できるが、生体内における主要な原因は活性酸素による細胞障害の蓄積であることに疑いはない。従来、活性酸素は多くの生体物質に障害を与え、それがストレスとなり、シグナル伝達経路(MAPキナーゼカスケード)を活性化し、細胞老化を誘導すると考えられて来た。しかし、活性酸素がなぜ細胞老化を効果的に誘導するかはまったく分かっていない。   Normal human cells lose their ability to divide and age (replicative senescence). Senescent cells induce specific genes through specific morphological and physiological changes. Moreover, normal cells show the same phenomenon as above by various treatments (premature senescence). These two phenomena are essentially equivalent. It is becoming clear that cellular aging causes a decrease in organ / tissue function and is a direct cause of adult disease and human aging. Experimentally, cell senescence can be induced by various means, but there is no doubt that the main cause in the body is the accumulation of cell damage due to active oxygen. Traditionally, reactive oxygen has been thought to damage many biological materials, causing stress, activating signal transduction pathways (MAP kinase cascade) and inducing cellular senescence. However, it is completely unknown why reactive oxygen effectively induces cellular senescence.

細胞の分裂寿命の延長に関しては、抗酸化物質の投与、MAPキナーゼ活性の抑制、細胞周期調節因子p21の破壊等が知られている。しかしながら、これらの公知技術は、老化の主要因子である酸化ストレスの作用機序には触れていない。   Regarding the extension of the mitotic life of cells, administration of antioxidants, suppression of MAP kinase activity, destruction of cell cycle regulator p21, etc. are known. However, these known techniques do not mention the mechanism of action of oxidative stress, which is a major factor of aging.

Hayflick, L., Moorehead P.S. The serial cultivation of human diploid cell strains. Exp cell Res 25, 585-621 (1961).Hayflick, L., Moorehead P.S.The serial cultivation of human diploid cell strains.Exp cell Res 25, 585-621 (1961). Herbig, U. & Sedivy, J. M. Regulation of growth arrest in senescence: Telomere damage is not the end of the story. Mech Ageing Dev (2005).Herbig, U. & Sedivy, J. M. Regulation of growth arrest in senescence: Telomere damage is not the end of the story.Mech Ageing Dev (2005). Lin, A. W. et al. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 12, 3008-19 (1998).Lin, A. W. et al. Premature senescence involving p53 and p16 is activated in response to constitutive MEK / MAPK mitogenic signaling.Genes Dev 12, 3008-19 (1998). Wang, W. et al. Sequential activation of the MEK-extracellular signal-regulated kinase and MKK3/6-p38 mitogen-activated protein kinase pathways mediates oncogenic ras-induced premature senescence. Mol Cell Biol 22, 3389-403 (2002).Wang, W. et al. Sequential activation of the MEK-extracellular signal-regulated kinase and MKK3 / 6-p38 mitogen-activated protein kinase pathways mediates oncogenic ras-induced premature senescence. Mol Cell Biol 22, 3389-403 (2002). Sumikawa, E., Matsumoto, Y., Sakemura, R., Fujii, M. & Ayusawa, D. Prolonged unbalanced growth induces cellular senescence markers linked with mechano transduction in normal and tumor cells. Biochem Biophys Res Commun 335, 558-65 (2005).Sumikawa, E., Matsumoto, Y., Sakemura, R., Fujii, M. & Ayusawa, D. Prolonged unbalanced growth induces cellular senescence markers linked with mechano transduction in normal and tumor cells.Biochem Biophys Res Commun 335, 558-65 (2005). Jakab, M. et al. Mechanisms sensing and modulating signals arising from cell swelling. Cell Physiol Biochem 12, 235-58 (2002).Jakab, M. et al. Mechanisms sensing and modulating signals arising from cell swelling.Cell Physiol Biochem 12, 235-58 (2002). Samarakoon, R. & Higgins, P. J. MEK/ERK pathway mediates cell-shape-dependent plasminogen activator inhibitor type 1 gene expression upon drug-induced disruption of the microfilament and microtubule networks. J Cell Sci 115, 3093-103 (2002).Samarakoon, R. & Higgins, P. J. MEK / ERK pathway mediates cell-shape-dependent plasminogen activator inhibitor type 1 gene expression upon drug-induced disruption of the microfilament and microtubule networks.J Cell Sci 115, 3093-103 (2002). Harman, D. Prolongation of the normal life span by radiation protection chemicals. J Gerontol 12, 257-63 (1957).Harman, D. Prolongation of the normal life span by radiation protection chemicals.J Gerontol 12, 257-63 (1957). Suzuki, T. et al. Induction of senescence-associated genes by 5-bromodeoxyuridine in HeLa cells. Exp Gerontol 36, 465-74 (2001).Suzuki, T. et al. Induction of senescence-associated genes by 5-bromodeoxyuridine in HeLa cells.Exp Gerontol 36, 465-74 (2001). Minagawa, S., Fujii, M., Scherer, S. W. & Ayusawa, D. Functional and chromosomal clustering of genes responsive to 5-bromodeoxyuridine in human cells. Exp Gerontol in press (2004).Minagawa, S., Fujii, M., Scherer, S. W. & Ayusawa, D. Functional and chromosomal clustering of genes responsive to 5-bromodeoxyuridine in human cells.Exp Gerontol in press (2004). Michishita, E. et al. 5-Bromodeoxyuridine induces senescence-like phenomena in mammalian cells regardless of cell type or species. J Biochem (Tokyo) 126, 1052-9 (1999).Michishita, E. et al. 5-Bromodeoxyuridine induces senescence-like phenomena in mammalian cells regardless of cell type or species.J Biochem (Tokyo) 126, 1052-9 (1999). Gilman, A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56, 615-49 (1987).Gilman, A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56, 615-49 (1987). Simon, M. I., Strathmann, M. P. & Gautam, N. Diversity of G proteins in signal transduction. Science 252, 802-8 (1991).Simon, M. I., Strathmann, M. P. & Gautam, N. Diversity of G proteins in signal transduction. Science 252, 802-8 (1991). Birnbaumer, L. Receptor-to-effector signaling through G proteins: roles for beta gamma dimers as well as alpha subunits. Cell 71, 1069-72 (1992).Birnbaumer, L. Receptor-to-effector signaling through G proteins: roles for beta gamma dimers as well as alpha subunits.Cell 71, 1069-72 (1992). Wickman, K. D. et al. Recombinant G-protein beta gamma-subunits activate the muscarinic-gated atrial potassium channel. Nature 368, 255-7 (1994).Wickman, K. D. et al. Recombinant G-protein beta gamma-subunits activate the muscarinic-gated atrial potassium channel.Nature 368, 255-7 (1994). Clapham, D. E. & Neer, E. J. New roles for G-protein beta gamma-dimers in transmembrane signalling. Nature 365, 403-6 (1993).Clapham, D. E. & Neer, E. J. New roles for G-protein beta gamma-dimers in transmembrane signaling.Nature 365, 403-6 (1993). Pitcher, J. A. et al. Role of beta gamma subunits of G proteins in targeting the beta-adrenergic receptor kinase to membrane-bound receptors. Science 257, 1264-7 (1992).Pitcher, J. A. et al. Role of beta gamma subunits of G proteins in targeting the beta-adrenergic receptor kinase to membrane-bound receptors. Science 257, 1264-7 (1992). Haga, K. & Haga, T. Activation by G protein beta gamma subunits of agonist- or light-dependent phosphorylation of muscarinic acetylcholine receptors and rhodopsin. J Biol Chem 267, 2222-7 (1992).Haga, K. & Haga, T. Activation by G protein beta gamma subunits of agonist- or light-dependent phosphorylation of muscarinic acetylcholine receptors and rhodopsin.J Biol Chem 267, 2222-7 (1992). Balcueva, E. A. et al. Human G protein gamma(11) and gamma(14) subtypes define a new functional subclass. Exp Cell Res 257, 310-9 (2000).Balcueva, E. A. et al. Human G protein gamma (11) and gamma (14) subtypes define a new functional subclass.Exp Cell Res 257, 310-9 (2000). Ray, K., Kunsch, C., Bonner, L. M. & Robishaw, J. D. Isolation of cDNA clones encoding eight different human G protein gamma subunits, including three novel forms designated the gamma 4, gamma 10, and gamma 11 subunits. J Biol Chem 270, 21765-71 (1995).Ray, K., Kunsch, C., Bonner, LM & Robishaw, JD Isolation of cDNA clones encoding eight different human G protein gamma subunits, including three novel forms designated the gamma 4, gamma 10, and gamma 11 subunits.J Biol Chem 270, 21765-71 (1995). Lim, W. K., Myung, C. S., Garrison, J. C. & Neubig, R. R. Receptor-G protein gamma specificity: gamma11 shows unique potency for A(1) adenosine and 5-HT(1A) receptors. Biochemistry 40, 10532-41 (2001).Lim, WK, Myung, CS, Garrison, JC & Neubig, RR Receptor-G protein gamma specificity: gamma11 shows unique potency for A (1) adenosine and 5-HT (1A) receptors. Biochemistry 40, 10532-41 (2001) . Ide, A., Fujii, M., Nakababashi, K. & Ayusawa, D. Suppression of senescence in normal human fibroblasts by introduction of dominant-negative p53 mutants or human papilloma virus type 16 E6 protein. Biosci Biotechnol Biochem 62, 1458-60 (1998).Ide, A., Fujii, M., Nakababashi, K. & Ayusawa, D. Suppression of senescence in normal human fibroblasts by introduction of dominant-negative p53 mutants or human papilloma virus type 16 E6 protein.Biosci Biotechnol Biochem 62, 1458- 60 (1998). Brown, J. P., Wei, W. & Sedivy, J. M. Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277, 831-4 (1997).Brown, J. P., Wei, W. & Sedivy, J. M. Bypass of senescence after disruption of p21CIP1 / WAF1 gene in normal diploid human fibroblasts. Science 277, 831-4 (1997). Wei, W., Herbig, U., Wei, S., Dutriaux, A. & Sedivy, J. M. Loss of retinoblastoma but not p16 function allows bypass of replicative senescence in human fibroblasts. EMBO Rep 4, 1061-6 (2003).Wei, W., Herbig, U., Wei, S., Dutriaux, A. & Sedivy, J. M. Loss of retinoblastoma but not p16 function allows bypass of replicative senescence in human fibroblasts.EMBO Rep 4, 1061-6 (2003). Chen, Q. M. et al. Molecular analysis of H2O2-induced senescent-like growth arrest in normal human fibroblasts: p53 and Rb control G1 arrest but not cell replication. Biochem J 332 ( Pt 1), 43-50 (1998).Chen, Q. M. et al. Molecular analysis of H2O2-induced senescent-like growth arrest in normal human fibroblasts: p53 and Rb control G1 arrest but not cell replication.Biochem J 332 (Pt 1), 43-50 (1998). DeYulia, G. J., Jr., Carcamo, J. M., Borquez-Ojeda, O., Shelton, C. C. & Golde, D. W. Hydrogen peroxide generated extracellularly by receptor-ligand interaction facilitates cell signaling. Proc Natl Acad Sci U S A 102, 5044-9 (2005).DeYulia, GJ, Jr., Carcamo, JM, Borquez-Ojeda, O., Shelton, CC & Golde, DW Hydrogen peroxide generated extracellularly by receptor-ligand interaction facilitates cell signaling.Proc Natl Acad Sci USA 102, 5044-9 (2005 ). Mukhin, Y. V. et al. 5-Hydroxytryptamine1A receptor/Gibetagamma stimulates mitogen-activated protein kinase via NAD(P)H oxidase and reactive oxygen species upstream of src in chinese hamster ovary fibroblasts. Biochem J 347 Pt 1, 61-7 (2000).Mukhin, YV et al. 5-Hydroxytryptamine1A receptor / Gibetagamma stimulates mitogen-activated protein kinase via NAD (P) H oxidase and reactive oxygen species upstream of src in chinese hamster ovary fibroblasts.Biochem J 347 Pt 1, 61-7 (2000) . Matsukawa, J., Matsuzawa, A., Takeda, K. & Ichijo, H. The ASK1-MAP kinase cascades in mammalian stress response. J Biochem (Tokyo) 136, 261-5 (2004).Matsukawa, J., Matsuzawa, A., Takeda, K. & Ichijo, H. The ASK1-MAP kinase cascades in mammalian stress response.J Biochem (Tokyo) 136, 261-5 (2004).

本発明の目的は、効果的かつ根本的に細胞老化を抑制することができる新規な細胞老化抑制剤を提供することである。   An object of the present invention is to provide a novel cell aging inhibitor capable of effectively and fundamentally suppressing cell aging.

本願発明者らは、老化した細胞内で発現が増える遺伝子を、遺伝子アレー解析によって種々検索した結果、種々の遺伝子が見出された。それらのうち、Gタンパク質のγサブユニット11の遺伝子に着目した。そして、(1)正常なヒト線維芽細胞中でGタンパク質のγサブユニット11遺伝子を過剰発現させると直ちに細胞老化が誘導される、(2)Gタンパク質γサブユニット11遺伝子に対するアンチセンスcDNAにより該遺伝子の発現を抑制することにより細胞寿命が延長される、(3) Gタンパク質γサブユニット11遺伝子は、過酸化水素のような老化誘導剤により極めて迅速に誘導されることを実験的に確認し、それによってGタンパク質γサブユニット11又はその遺伝子を阻害することにより細胞老化を抑制できることを見出し本発明を完成した。   As a result of searching various genes by gene array analysis, the present inventors have found various genes whose expression is increased in aging cells. Of these, attention was paid to the gene of γ subunit 11 of G protein. And (1) cell senescence is induced immediately when the G protein γ subunit 11 gene is overexpressed in normal human fibroblasts, and (2) the antisense cDNA for the G protein γ subunit 11 gene (3) Experimentally confirmed that the G protein γ subunit 11 gene is induced very rapidly by an aging inducer such as hydrogen peroxide. Thus, the present inventors have found that cell senescence can be suppressed by inhibiting G protein γ subunit 11 or its gene.

すなわち、本発明は、Gタンパク質γサブユニット11をコードする遺伝子の発現を阻害する物質又はGタンパク質γサブユニット11の細胞老化作用を阻害する物質を有効成分として含有する細胞老化抑制剤を提供する。また、本発明は、Gタンパク質γサブユニット11をコードする遺伝子の発現を阻害する物質又はGタンパク質γサブユニット11の細胞老化作用を阻害する物質の、細胞老化抑制剤の製造のための使用を提供する。さらに、本発明は、Gタンパク質γサブユニット11をコードする遺伝子の発現を阻害する物質又はGタンパク質γサブユニット11の細胞老化作用を阻害する物質の有効量を個体に投与することを含む細胞老化抑制方法を提供する。   That is, the present invention provides a cell aging inhibitor containing, as an active ingredient, a substance that inhibits the expression of a gene encoding G protein γ subunit 11 or a substance that inhibits the cellular aging action of G protein γ subunit 11. . The present invention also relates to the use of a substance that inhibits the expression of a gene encoding G protein γ subunit 11 or a substance that inhibits the cellular aging action of G protein γ subunit 11 for the production of a cell aging inhibitor. provide. Furthermore, the present invention relates to cell aging comprising administering to an individual an effective amount of a substance that inhibits the expression of a gene encoding G protein γ subunit 11 or a substance that inhibits the cellular aging action of G protein γ subunit 11. Provide a suppression method.

本発明により、効果的かつ根本的に細胞老化を抑制することができる新規な細胞老化抑制剤が提供された。本発明の細胞老化抑制剤によれば、酸化ストレスによる細胞老化の誘導を防止できるので、細胞の若返りを基盤とする種々の応用が可能である。とくに、老化防止に効果のある化粧品、健康食品の開発、医薬品等として適用できる。   According to the present invention, a novel cell aging inhibitor capable of effectively and fundamentally suppressing cell aging has been provided. According to the cell aging inhibitor of the present invention, induction of cell aging due to oxidative stress can be prevented, and thus various applications based on cell rejuvenation are possible. In particular, it can be applied to the development of cosmetics, health foods, and pharmaceuticals that are effective in preventing aging.

老化したヒト正常線維芽細胞TIG-7におけるGNG-11 遺伝子の発現上昇を示す図である。若いヒト正常線維芽細胞TIG-7(32 PDL)、休止細胞(5日間血清飢餓)、老化細胞(75 PDL)から全mRNAサンプルを調製し、ノザンブロット解析によってGNG-11 mRNAレベルを定量した。It is a figure which shows the expression increase of GNG-11 gene in aged human normal fibroblast TIG-7. Total mRNA samples were prepared from young human normal fibroblasts TIG-7 (32 PDL), resting cells (5 days serum starved), and senescent cells (75 PDL), and GNG-11 mRNA levels were quantified by Northern blot analysis. 過酸化水素よるGNG-11遺伝子の発現誘導を示す図である。若いヒト正常線維芽細胞TIG-7(42PDL)の培養液に過酸化水素を添加し、全mRNAサンプルを調製した。ノザンブロット解析によりGNG-11mRNAレベルの変化を定量した。It is a figure which shows the expression induction of the GNG-11 gene by hydrogen peroxide. Hydrogen peroxide was added to the culture solution of young human normal fibroblast TIG-7 (42PDL) to prepare a total mRNA sample. Changes in GNG-11 mRNA levels were quantified by Northern blot analysis. 細胞老化マーカー遺伝子の発現誘導を示す図である。若いヒト正常線維芽細胞(32PDL)へGNG-11 発現ベクターを導入し、培養3日後に調製した全mRNAサンプルについてノザンブロット解析を行った。It is a figure which shows the expression induction of a cell aging marker gene. A GNG-11 expression vector was introduced into young human normal fibroblasts (32PDL), and Northern blot analysis was performed on all mRNA samples prepared after 3 days of culture. アンチセンスcDNAの導入による分裂寿命の延長老化を示す図である。直前のヒト正常線維芽細胞TIG-7(PDL62)へアンチセンスGNG-11 cDNA発現ベクターを導入し、遺伝子導入細胞をG418選択培地で選択た。コロニーを染色し、その数を計測した。It is a figure which shows the prolongation aging of the division life by introduction | transduction of antisense cDNA. An antisense GNG-11 cDNA expression vector was introduced into the immediately preceding human normal fibroblast TIG-7 (PDL62), and the gene-transferred cells were selected with a G418 selection medium. Colonies were stained and the number was counted. GNG-11発現プラスミドの導入による分裂寿命の変化を示す図である。若いヒト正常線維芽細胞TIG-7(PDL32 、矢印)へセンスGNG-11 cDNAまたはアンチセンスGNG-11 cDNA発現ベクターを導入し、遺伝子導入細胞をG418選択培地で選択した。コロニーを単離し、その分裂寿命を測定した。It is a figure which shows the change of the division life by the introduction | transduction of a GNG-11 expression plasmid. Sense GNG-11 cDNA or antisense GNG-11 cDNA expression vector was introduced into young human normal fibroblast TIG-7 (PDL32, arrow), and the gene-transferred cells were selected with G418 selection medium. Colonies were isolated and their mitotic life was measured.

Gタンパク質γサブユニット11(以下、「GNG11」と略記することがある)は、Gタンパク質のγサブユニットファミリー(十数個が知られている)に属する。Gタンパク質はα、β、γのサブユニットから構成される。細胞膜レセプターへリガンドが結合すると、Gタンパク質は活性化され、αとβγまたγサブユニットへ解離する。GTPの結合したαサブユニット、βγ、γサブユニットが多くの酵素やイオン化チャネルの活性を制御することが示された。GNG11は他のサブユニットとは違い、farnesylグループによって修飾され、β2サブユニットと相互作用できないなどの特徴をもつ。GNG11はすべての組織で発現されているが、機能はまったく不明である。シグナリング伝達の分流器として機能する可能性があるが、その下流には近年細胞老化への関与が高まっているRasタンパク質が位置する。なお、GNG11遺伝子の塩基配列及びそれがコードするGNG11のアミノ酸配列は公知であり、例えばヒトのGNG11遺伝子のcDNAの塩基配列及びそれがコードするGNG11のアミノ酸配列は、GenBank Accession No. NM_004126に記載されている(配列表の配列番号1及び2)。   The G protein γ subunit 11 (hereinafter sometimes abbreviated as “GNG11”) belongs to the γ subunit family of G proteins (ten are known). G protein is composed of α, β and γ subunits. When a ligand binds to a cell membrane receptor, the G protein is activated and dissociates into α, βγ, and γ subunits. It was shown that α subunit, βγ, and γ subunit bound to GTP regulate the activity of many enzymes and ionization channels. Unlike other subunits, GNG11 is modified by the farnesyl group and has features such as inability to interact with β2 subunits. GNG11 is expressed in all tissues, but its function is completely unknown. The Ras protein, which has the potential to function as a shunt for signaling transmission, has recently been increasingly involved in cellular senescence. The base sequence of GNG11 gene and the amino acid sequence of GNG11 encoded by it are known. For example, the base sequence of cDNA of human GNG11 gene and the amino acid sequence of GNG11 encoded by it are described in GenBank Accession No. NM_004126. (SEQ ID NOS: 1 and 2 in the sequence listing).

下記実施例に具体的に記載するように、(1)正常なヒト線維芽細胞中でGNG11遺伝子を過剰発現させると直ちに細胞老化が誘導される、(2)GNG11遺伝子に対するアンチセンスcDNAにより該遺伝子の発現を抑制することにより細胞寿命が延長される、(3)GNG11遺伝子は、過酸化水素のような老化誘導剤により極めて迅速に誘導されることが実験的に確認された。これらの実験的事実は、GNG11が細胞老化を促進する遺伝子であり、GNG11の作用又はGNG11遺伝子の発現を阻害することにより細胞老化を抑制できることを示している。特に、上記(2)の知見から、GNG11遺伝子の発現を阻害する物質又はGNG11の細胞老化作用を阻害する物質が、細胞老化抑制作用を有することが明らかになった。   As specifically described in the Examples below, (1) cell senescence is induced immediately when the GNG11 gene is overexpressed in normal human fibroblasts, and (2) the gene is detected by an antisense cDNA against the GNG11 gene. It has been experimentally confirmed that (3) the GNG11 gene is induced very rapidly by an aging inducer such as hydrogen peroxide. These experimental facts indicate that GNG11 is a gene that promotes cell senescence, and cell senescence can be suppressed by inhibiting the action of GNG11 or expression of the GNG11 gene. In particular, from the findings of (2) above, it has been clarified that a substance that inhibits the expression of the GNG11 gene or a substance that inhibits the cell aging action of GNG11 has a cell aging inhibitory action.

なお、細胞の老化の程度は、細胞の形態観察(細胞は老化すると扁平化、肥大化が起きる)及び老化マーカーとして知られるβ−ガラクトシダーゼの染色像(老化が進むとβ−ガラクトシダーゼの染色像が大きくなる)を観察することにより調べることができる。   It should be noted that the degree of cell aging is determined by observation of cell morphology (flattening and hypertrophy occurs when cells age) and β-galactosidase staining image known as an aging marker (β-galactosidase staining image as aging progresses). Can be examined by observing

本発明の細胞老化抑制剤は、GNG11遺伝子の発現を阻害する物質又はGNG11の細胞老化作用を阻害する物質を有効成分として含有する。GNG11遺伝子の発現を阻害する物質としては、GNG11遺伝子に対するアンチセンス核酸、干渉RNA、ペプチド、植物成分を挙げることができる。   The cell aging inhibitor of the present invention contains a substance that inhibits the expression of the GNG11 gene or a substance that inhibits the cell aging action of GNG11 as an active ingredient. Examples of substances that inhibit the expression of the GNG11 gene include antisense nucleic acids, interfering RNAs, peptides, and plant components for the GNG11 gene.

上記の通り、GNG11遺伝子の塩基配列は公知である(GenBank Accession No. NM_004126、配列番号1)ので、アンチセンス核酸は常法に基づき容易に作製することができる。アンチセンス核酸は、アンチセンスRNAであってもよいし、細胞内での転写によりアンチセンスRNAを生じるアンチセンスcDNAであってもよい。GNG11遺伝子に対するアンチセンスRNAとは、GNG11遺伝子から転写されたmRNAとハイブリダイズして該mRNAの翻訳を阻害するRNAである。アンチセンスRNAは、GNG11のmRNAと完全に相補的なものが最も好ましいが、細胞内でmRNAとハイブリダイズすることが可能な程度の相補性があれば、多少のミスマッチを有するものも用いることができる。この場合、アンチセンスRNAの、GNG11のmRNAの相補鎖に対する塩基配列の同一性は、90%以上が好ましく、さらには95%以上が好ましい。ここで、塩基配列の同一性は、一致する塩基の数が最も多くなるように配列を整列し、一致している塩基の数を全体の塩基の数(全体の塩基の数が異なる場合には短い方の塩基の数)で除したものを百分率で表したものであり、BLASTのような周知のソフトにより容易に算出できる。アンチセンスRNAのサイズは、GNG11のcDNAの全長又は全長の70%以上のサイズを有することが好ましいが、GNG11のmRNAと特異的にハイブリダイズできるサイズ、好ましくは18塩基以上のサイズであれば利用可能である。配列番号1に示す塩基配列のうち、コード領域は、352nt〜573ntであるので、このコード領域の全長を含む領域又はコード領域内の領域にハイブリダイズするアンチセンスRNAが好ましい。アンチセンスRNAに代えて、アンチセンスcDNAを組み込んだ、細胞内で該アンチセンスcDNAが転写されてアンチセンスRNAを生じる組換えベクターを用いることもできる(下記実施例参照)。哺乳動物用の発現ベクターは、周知であり、種々のものが市販されているので、市販の発現ベクターを用いることができる。好ましくは、遺伝子治療や遺伝子ワクチンのベクターとして用いられている各種プラスミドベクター及びウイルスベクターを用いることができる。これらの市販の発現ベクターに、転写により上記したGNG11遺伝子に対するアンチセンスRNAを生じるDNAを組み込んだ組換えベクターを本発明の細胞老化抑制剤の有効成分として好ましく用いることができる。   As described above, since the base sequence of the GNG11 gene is known (GenBank Accession No. NM_004126, SEQ ID NO: 1), an antisense nucleic acid can be easily prepared based on a conventional method. The antisense nucleic acid may be an antisense RNA, or an antisense cDNA that generates an antisense RNA by transcription in a cell. Antisense RNA for the GNG11 gene is RNA that hybridizes with mRNA transcribed from the GNG11 gene and inhibits translation of the mRNA. Antisense RNA is most preferably completely complementary to GNG11 mRNA, but if there is a degree of complementarity that allows it to hybridize with mRNA in the cell, one with a slight mismatch may be used. it can. In this case, the identity of the base sequence of the antisense RNA to the complementary strand of the mRNA of GNG11 is preferably 90% or more, and more preferably 95% or more. Here, the identity of the base sequence is determined by aligning the sequences so that the number of matching bases is the largest, and the number of matching bases is the total number of bases (if the total number of bases is different). The number divided by the number of shorter bases) is expressed as a percentage, and can be easily calculated by known software such as BLAST. The size of the antisense RNA preferably has a full length of GNG11 cDNA or 70% or more of the full length, but can be used if it can specifically hybridize with mRNA of GNG11, preferably 18 bases or more. Is possible. Since the coding region of the base sequence shown in SEQ ID NO: 1 is 352 nt to 573 nt, an antisense RNA that hybridizes to a region including the entire length of the coding region or a region within the coding region is preferable. Instead of the antisense RNA, a recombinant vector in which an antisense cDNA is incorporated and the antisense cDNA is transcribed in the cell to produce the antisense RNA can also be used (see Examples below). Since expression vectors for mammals are well known and various types are commercially available, commercially available expression vectors can be used. Preferably, various plasmid vectors and virus vectors used as vectors for gene therapy and gene vaccines can be used. Recombinant vectors obtained by incorporating DNA that produces the above-described antisense RNA against the GNG11 gene by transcription into these commercially available expression vectors can be preferably used as the active ingredient of the cell aging inhibitor of the present invention.

GNG11遺伝子の塩基配列はわかっているので、GNG11遺伝子の発現は、RNA干渉法(RNAi)によっても阻害することができる。RNAiは、標的とするRNAの部分領域と同一の塩基配列を有する二本鎖RNAが、標的とするRNAの前記部分領域を切断する作用を利用した技術である。ヒト細胞では、塩基数21〜23の、二本鎖の短鎖RNA(siRNA)が、該siRNAのうちの一本の鎖と同じ塩基配列を有するRNAを切断することがわかっているので、このようなsiRNAを利用してGNG11遺伝子の発現を阻害することが可能である。この場合、siRNAは、GNG11のcDNAの(配列番号1)任意の部分領域と同一の塩基配列を有する二本鎖RNAであればよいが、mRNAの切断によって確実にmRNAの翻訳を阻害できるように、配列番号1に示す塩基配列のうち、352nt〜573ntのコード領域内の領域と同じ塩基配列を有する干渉RNAが好ましい。   Since the base sequence of the GNG11 gene is known, the expression of the GNG11 gene can also be inhibited by RNA interference method (RNAi). RNAi is a technique that utilizes the action of a double-stranded RNA having the same base sequence as a partial region of a target RNA that cleaves the partial region of the target RNA. In human cells, it is known that double-stranded short RNA (siRNA) having 21 to 23 bases cleaves RNA having the same base sequence as one strand of the siRNA. Such siRNA can be used to inhibit the expression of the GNG11 gene. In this case, the siRNA may be a double-stranded RNA having the same base sequence as an arbitrary partial region of the cDNA of GNG11 (SEQ ID NO: 1), but the mRNA translation can be reliably inhibited by cleavage of the mRNA. Among the base sequences shown in SEQ ID NO: 1, an interfering RNA having the same base sequence as the region in the coding region of 352nt to 573nt is preferable.

GNG11遺伝子の発現を阻害することにより細胞老化を抑制できることが明らかになったので、GNG11自体の細胞老化作用を阻害する物質も当然ながら本発明の細胞老化抑制剤の有効成分として用いることができる。このような物質として、GNG11に対する抗体を挙げることができる。抗体はモノクローナル抗体でもポリクローナル抗体でもよいが、ポリクローナル抗体であれば、露出しているGNG11の全てのエピトープに対する抗体が含まれるので、GNG11の細胞老化作用を確実に阻害することができる。また、GNG11は、Gタンパク質の他のサブユニットと特異的に結合するので、Gタンパク質のα又はβサブユニットの結合ドメインも抗体と同様に用いることができる。GNG11は、Gタンパク質のα又はβサブユニットの結合ドメインと結合すると、もはやGタンパク質のα又はβサブユニットとは結合できなくなるので、生理活性を発現することができなくなり、細胞老化作用も阻害されると考えられる。   Since it became clear that cell aging can be suppressed by inhibiting the expression of the GNG11 gene, a substance that inhibits the cell aging action of GNG11 itself can of course be used as an active ingredient of the cell aging inhibitor of the present invention. As such a substance, an antibody against GNG11 can be mentioned. The antibody may be a monoclonal antibody or a polyclonal antibody, but if it is a polyclonal antibody, antibodies against all exposed epitopes of GNG11 are included, so that the cellular senescence action of GNG11 can be reliably inhibited. Moreover, since GNG11 specifically binds to other subunits of the G protein, the binding domain of the α or β subunit of the G protein can be used in the same manner as the antibody. When GNG11 binds to the binding domain of the α or β subunit of G protein, it can no longer bind to the α or β subunit of G protein, so that it cannot express physiological activity and cell aging is also inhibited. It is thought.

本発明の細胞老化抑制剤は、医薬品として、また、化粧品や健康食品の成分として用いることができる。医薬品としては、より具体的には、老人性皮膚疾患、アレルギー、アトピー、動脈硬化症、高血圧症等の疾患に対する医薬が挙げられる。また、皮膚細胞の老化抑制成分として、化粧品の中に含めることもできる。さらに、体全体の老化を防止するために飲食品の成分として用いることもできる。   The cell aging inhibitor of the present invention can be used as a pharmaceutical and a component of cosmetics and health foods. More specifically, examples of the drug include drugs for diseases such as senile skin diseases, allergies, atopy, arteriosclerosis, and hypertension. Moreover, it can also be included in cosmetics as a skin cell aging inhibitory component. Furthermore, in order to prevent aging of the whole body, it can also be used as a component of food and drink.

有効成分がGNG11遺伝子に対するアンチセンスRNA又は干渉RNAの場合、アンチセンスRNA又は干渉RNAを生理緩衝食塩液等の媒体に溶解した溶液を、細胞老化の抑制が望まれる組織に直接注射することができる。電気パルス法や超音波法に組織に導入することもできる。この場合の投与量は、症状等に応じて適宜選択されるが、通常、標的とする組織1g当りアンチセンスRNA又は干渉RNA1pmol〜1 nmol程度でよい。また、アンチセンスcDNAを組み込んだ組換えベクターの場合、該組換えベクターを生理緩衝食塩液等の媒体に溶解した溶液を、細胞老化の抑制が望まれる組織や、筋肉内、皮下に直接注射することができる。この場合の投与量は、症状等に応じて適宜選択されるが、通常、標的とする組織1g当り組み換えベクター1 pmol〜1 nmol程度でよい。また、有効成分が抗GNG11抗体の場合、生理緩衝食塩液等の媒体に溶解した溶液を、細胞老化の抑制が望まれる組織に直接注射することが好ましい。この場合の投与量は、症状等に応じて適宜選択されるが、通常、標的とする組織1g当り抗体1μg〜100μg程度でよい。なお、アンチセンスRNA、アンチセンスcDNAを組み込んだ組換えベクター、抗GNG11抗体等の有効成分は、静脈内投与、筋肉内投与、皮下投与等の非経口投与や経口投与により全身投与することも可能である。全身投与の場合の投与量は、症状等に応じて適宜選択されるが、通常、体重1gあたりの投与量が、上記した直接注射の場合の投与量の1/1000から同程度となるような量でよい。また、アンチセンスRNAや抗体の場合には、化粧品成分等として皮膚に塗布することもできる。この場合の化粧品中の含有量は、適宜選択されるが、化粧品製剤1gあたり1μg〜1mg程度でよい。   When the active ingredient is antisense RNA or interfering RNA for GNG11 gene, a solution in which antisense RNA or interfering RNA is dissolved in a medium such as physiological buffer saline can be directly injected into a tissue where suppression of cell aging is desired. . It can also be introduced into tissues by electric pulse method or ultrasonic method. The dose in this case is appropriately selected according to the symptoms and the like, but usually it may be about 1 pmol to 1 nmol of antisense RNA or interfering RNA per 1 g of the target tissue. In addition, in the case of a recombinant vector incorporating an antisense cDNA, a solution obtained by dissolving the recombinant vector in a medium such as physiological buffer saline is directly injected into a tissue, muscle, or subcutaneous where cell aging is desired to be suppressed. be able to. The dose in this case is appropriately selected according to the symptoms and the like, but usually it may be about 1 pmol to 1 nmol of recombinant vector per 1 g of the target tissue. Further, when the active ingredient is an anti-GNG11 antibody, it is preferable to directly inject a solution dissolved in a medium such as physiological buffer saline into a tissue in which suppression of cell aging is desired. The dose in this case is appropriately selected according to the symptoms and the like, but usually it may be about 1 μg to 100 μg of antibody per 1 g of the target tissue. Active ingredients such as antisense RNA, recombinant vector incorporating antisense cDNA, and anti-GNG11 antibody can be administered systemically by parenteral or oral administration such as intravenous administration, intramuscular administration, and subcutaneous administration. It is. The dose in the case of systemic administration is appropriately selected according to the symptoms and the like, but usually the dose per 1 g body weight is about 1/1000 to the same dose as in the case of direct injection described above. The amount is sufficient. In the case of antisense RNA or antibody, it can be applied to the skin as a cosmetic ingredient. In this case, the content in the cosmetic is appropriately selected, but may be about 1 μg to 1 mg per 1 g of the cosmetic preparation.

医薬や化粧品として用いる場合、本発明の細胞老化抑制剤は、常法に従い製剤することができる。医薬の場合、有効成分を単に生理緩衝食塩液等の薬剤として許容できる媒体に溶解又は懸濁したものでよいが、これに常用される添加剤を添加してもよい。化粧品の場合は、皮膚に塗布する化粧品組成物中に単に本発明の細胞老化抑制剤の有効成分を溶解又は懸濁すればよい。電気パルス法や超音波法の併用も可能である。なお、細胞老化抑制剤の有効成分が、アンチセンスRNA、干渉RNA、アンチセンスcDNAを組み込んだ組換えベクター等の核酸である場合には、細胞内への核酸の取り込みを増加させるため、遺伝子導入用脂質を添加することが好ましい。これにより、細胞膜を構成している脂質二重膜を核酸が通過しやすくなる。遺伝子導入用脂質としては、種々のものが市販されており、例えば、Transfectin(商品名、Bio-Rad社製)やLipofectamine(商品名、Invitrogen社製)等を用いることができる。これらの遺伝子導入用脂質の添加量は、特に限定されないが、通常、導入する核酸の重量(1μg)を基準として、1μl〜100μl程度である。   When used as a medicine or cosmetic, the cell aging inhibitor of the present invention can be formulated according to a conventional method. In the case of a medicine, the active ingredient may be simply dissolved or suspended in a pharmaceutically acceptable medium such as physiological buffer saline, but additives commonly used for this may be added. In the case of cosmetics, the active ingredient of the cell aging inhibitor of the present invention may be simply dissolved or suspended in the cosmetic composition applied to the skin. An electric pulse method or an ultrasonic method can be used in combination. If the active ingredient of the cell aging inhibitor is a nucleic acid such as a recombinant vector incorporating antisense RNA, interfering RNA, or antisense cDNA, gene transfer is performed to increase the uptake of the nucleic acid into the cell. It is preferable to add lipids for use. This makes it easier for the nucleic acid to pass through the lipid bilayer constituting the cell membrane. Various lipids for gene introduction are commercially available. For example, Transfectin (trade name, manufactured by Bio-Rad), Lipofectamine (trade name, manufactured by Invitrogen), and the like can be used. The addition amount of these lipids for gene transfer is not particularly limited, but is usually about 1 μl to 100 μl based on the weight of the nucleic acid to be introduced (1 μg).

以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.

1.材料及び方法
1)細胞培養
ヒト正常線維芽細胞TIG-7(ヒューマンサイエンス研究資源バンクより入手可能)を本研究で用いた。細胞は、37℃、5%の二酸化炭素、95%の湿気の下、ダルベッコ改変イーグル培地に10%のウシ胎仔血清を添加し、プラスチックデッシュで培養した。本実験では、集団倍加レベル(Population doubling level、PDL)32のTIG-7細胞を若い細胞として用いた。TIG-7細胞はPDL72付近で分裂を停止し、老化する。
1. Materials and methods
1) Cell culture Normal human fibroblast TIG-7 (available from Human Science Research Resource Bank) was used in this study. The cells were cultured in a plastic dish by adding 10% fetal calf serum to Dulbecco's modified Eagle medium under 37 ° C, 5% carbon dioxide, and 95% humidity. In this experiment, TIG-7 cells having a population doubling level (PDL) of 32 were used as young cells. TIG-7 cells cease dividing near PDL72 and age.

2)トランスフェクション
GNG-11 cDNA (Genbank NM_004126)はTIG-7細胞の全RNAからプライマー対(5'-tggacccagtctcaaacttaac-3'(配列番号3)、5'-cccaagacaaaactttatttgaa-3'(配列番号4))を用いて増幅した。cDNA(812 bp)はpGEM-T easyベクター(プロメガ社から市販)に組み込み、配列確認後、pCDNA 3.1(-)(Invitrogen社から市販)にセンスとアンチセンスの向きでクローン化した。プラスミド(10μg)はTransfectin(30μL)(商品名、Bio-Radから市販)を用いて細胞へ導入した。ベクターはネオマイシン抵抗性遺伝子を含むので、安定なトランスフェクタントはG418(400μg/ml)(A.G. Scientific, Inc.より市販)を含む培地で選択した。
2) Transfection
GNG-11 cDNA (Genbank NM_004126) is amplified from total RNA of TIG-7 cells using a primer pair (5'-tggacccagtctcaaacttaac-3 '(SEQ ID NO: 3), 5'-cccaagacaaaactttatttgaa-3' (SEQ ID NO: 4)) did. cDNA (812 bp) was incorporated into pGEM-T easy vector (commercially available from Promega), and after sequencing, it was cloned into pCDNA 3.1 (-) (commercially available from Invitrogen) in the sense and antisense orientations. The plasmid (10 μg) was introduced into the cells using Transfectin (30 μL) (trade name, commercially available from Bio-Rad). Since the vector contains a neomycin resistance gene, stable transfectants were selected on media containing G418 (400 μg / ml) (commercially available from AG Scientific, Inc.).

3)ノザンブロット解析
細胞から全RNAサンプルを抽出キットを用いて調製した。サンプル(1レーンにつき15μg)を1%のホルムアルデヒド・アガロースゲルで電気泳動を行い、ナイロン膜(Hybond-N、アマシャム)に転写した。膜は、32Pで標識したhnRNPhnRNP(heterogeneous nuclear ribonucleo-protein)C1/C2またはGAPDH cDNA とハイブルダイゼーションを行った。次いで、0.1%SDSを含む0.1XSSC溶液と0.1%SDSを含む2X SSC溶液で二回ずつ洗い(65℃、30分)、オートラジオグラフィー(FUJI X線フィルム)を作成した。
3) Northern blot analysis Total RNA samples were prepared from cells using an extraction kit. Samples (15 μg per lane) were electrophoresed on a 1% formaldehyde-agarose gel and transferred to a nylon membrane (Hybond-N, Amersham). The membrane was hybridized with hnRNPhnRNP (heterogeneous nuclear ribonucleo-protein) C1 / C2 or GAPDH cDNA labeled with 32P. Subsequently, it was washed twice with a 0.1XSSC solution containing 0.1% SDS and a 2X SSC solution containing 0.1% SDS (65 ° C., 30 minutes) to prepare an autoradiography (FUJI X-ray film).

4)DNA合成試験
DNA合成能の検定にはBrdU標識と検出キットII(RocheDiagnostics)を用いた。細胞をカバーガラス上で50%飽和密度まで培養した。細胞は37℃で30分間BrdUで標識し、-20℃で30分間エチルアルコールで固定した。細胞は、37℃で30分間BrdU抗体と反応させ、次いで37℃で2時間Alexa Flour 546と保温し、蛍光顕微鏡で観察した。
4) DNA synthesis test
For the DNA synthesis ability test, BrdU labeling and detection kit II (RocheDiagnostics) were used. Cells were cultured to 50% saturation density on coverslips. Cells were labeled with BrdU for 30 minutes at 37 ° C and fixed with ethyl alcohol for 30 minutes at -20 ° C. The cells were reacted with BrdU antibody for 30 minutes at 37 ° C, then incubated with Alexa Fluor 546 for 2 hours at 37 ° C and observed with a fluorescence microscope.

5)老化特異的β-ガラクトシダーゼアッセイ
細胞は2%のホルムアルデヒド/0.2%のグルタールアルデヒドで固定し、染色溶液[1mg/mlの5-ブロモ-4-クロロ-3-インドリル-β-D-ガラクトシド、40mMのクエン酸リン酸ナトリウム(pH 6.0)、5mMのフェリシアン化カリウム、5mMのフェロシアン化カリウム、150mMの塩化ナトリウムと2mMの塩化マグネシウム]を加え、35℃で保温した。
5) Aging-specific β-galactosidase assay Cells were fixed with 2% formaldehyde / 0.2% glutaraldehyde and stained solution [1 mg / ml 5-bromo-4-chloro-3-indolyl-β-D-galactoside , 40 mM sodium citrate phosphate (pH 6.0), 5 mM potassium ferricyanide, 5 mM potassium ferrocyanide, 150 mM sodium chloride and 2 mM magnesium chloride] were added, and the mixture was kept at 35 ° C.

6)コロニー形成試験
細胞をディッシュに撒き。コロニーを形成させた。メチレンブルーで染色し、50細胞以上を含むコロニーを計測した。
6) Colony formation test Seed cells in a dish. Colonies were formed. Colonies containing 50 cells or more were counted after staining with methylene blue.

2.結果
1)GNG11遺伝子の発現解析
GNG11遺伝子の発現は、老化したTIG-7細胞(図1)細胞で顕著に誘導され、休止細胞でも有意に誘導された(図1)。BrdUを投与したHeLa細胞で顕著に誘導された。この事実は、GNG11が細胞老化の情報伝達に関与することを示唆する。細胞老化の主要原因である酸化ストレスに対する応答性を調べた(図2)。若いTIG-7細胞(PDL32)に種々の条件で過酸化素の処理を行い、GNG11遺伝子発現を調べた。その結果、低濃度と高濃度で強い発現誘導が見られた。また、処理後2時間以内に顕著な発現誘導が見られた。したがって、GNG11遺伝子は酸化ストレスに対する初期応答遺伝子であるといえる。
2. result
1) GNG11 gene expression analysis
GNG11 gene expression was significantly induced in aged TIG-7 cells (FIG. 1) and significantly induced in resting cells (FIG. 1). It was remarkably induced in HeLa cells administered with BrdU. This fact suggests that GNG11 is involved in signal transmission of cellular senescence. Responsiveness to oxidative stress, which is the main cause of cell aging, was examined (FIG. 2). Young TIG-7 cells (PDL32) were treated with peroxygen peroxide under various conditions and examined for GNG11 gene expression. As a result, strong expression induction was observed at low and high concentrations. In addition, significant expression induction was observed within 2 hours after treatment. Therefore, it can be said that the GNG11 gene is an early response gene to oxidative stress.

2)GNG 11遺伝子の強制発現による細胞老化の誘導
若いTIG-7細胞(PDL32)へGNG11を発現するプラスミドを導入し、GNG11の過剰発現が細胞老化に及ぼす効果を解析した。遺伝子を安定に組み込んだクローンG418抵抗性細胞は、コロニー形成段階で細胞の肥大化と扁平化を示し、分裂を停止した。代表的な細胞老化マーカーである老化特異的β-ガラクトシダーゼ(SA-βGal)の強い染色像が見られた。細胞の形態変化と分裂停止は他の細胞老化誘導系より顕著で早かった。このため、老化マーカーの解析のために老化細胞を集めることは困難であった。そこで、GNG11発現ラスミドを細胞へ導入し、薬剤の選択を施さず、3日後に細胞を回収した。この細胞から全RNAサンプルを調製し、ノザンブロット解析を行った。その結果、細胞老化マーカー(コラーゲナーゼ-1)の誘導が観察された(図3)。
2) Induction of cell aging by forced expression of GNG 11 gene A plasmid expressing GNG11 was introduced into young TIG-7 cells (PDL32), and the effect of overexpression of GNG11 on cell aging was analyzed. Clone G418 resistant cells stably incorporating the gene showed cell hypertrophy and flattening at the colony formation stage and stopped dividing. A strong staining image of aging-specific β-galactosidase (SA-βGal), which is a typical cell aging marker, was observed. Cell morphological changes and mitotic arrest were marked and faster than other cell senescence induction systems. For this reason, it was difficult to collect senescent cells for analysis of aging markers. Therefore, GNG11-expressing rasmid was introduced into the cells, and the cells were collected after 3 days without selecting a drug. Total RNA samples were prepared from these cells and Northern blot analysis was performed. As a result, induction of a cell aging marker (collagenase-1) was observed (FIG. 3).

3)GNG11遺伝子発現の抑制による細胞老化の防止
GNG11 のアンチセンスRNAを発現するプラスミドを老化直前のTIG-7細胞(62 PDL)へ導入し、細胞老化への影響を調べた。まず、コロニー形成を観察した。GNG11遺伝子発現を抑制すると、細胞は正常なコロニーを形成した(図4)。また、アンチセンスRNAを発現させた細胞では、老化マーカーの消失とDNA合成能の上昇(BrdU標識キットを用いて測定)が観察された。一方、プラスミドを若いTIG-7細胞(32 PDL)へ導入後、G418抵抗性クローンを選択し、その分裂寿命を追跡した(図5)。その結果、アンチセンスRNA発現細胞では、20回程度の分裂寿の延長が見られた。以上から、GNG11の発現を減少させれば、細胞老化が抑制され、寿命延長が見られることが示された。
3) Prevention of cellular senescence by suppressing GNG11 gene expression
A plasmid expressing GNG11 antisense RNA was introduced into TIG-7 cells (62 PDL) just before senescence, and the effect on cell senescence was examined. First, colony formation was observed. When GNG11 gene expression was suppressed, the cells formed normal colonies (FIG. 4). In cells expressing antisense RNA, disappearance of aging markers and increase in DNA synthesis ability (measured using BrdU labeling kit) were observed. On the other hand, after introducing the plasmid into young TIG-7 cells (32 PDL), G418 resistant clones were selected and their mitotic life was followed (FIG. 5). As a result, in the antisense RNA-expressing cells, prolongation of mitotic life was observed about 20 times. From the above, it was shown that if the expression of GNG11 is decreased, cell senescence is suppressed and life extension is observed.

4.考察
本研究によって、GNG11の上昇は最も速やかに細胞老化を誘導し、アンチセンスRNAは細胞老化を抑制した。細胞老化の誘導にはRas やMAPキナーゼ(ERK、p38、JNKがおもな構成因子)の活性化が見られる。したがって、GNG11の下流に位置するエフェクター分子はRasかその上流に位置するMAPキナーゼ活性化因子である可能性が高い。酸化ストレスはMAPキナーゼを活性化し、細胞老化を誘導すると考えられる。最近、膜受容体が働くと活性酸素を発生し、これがG−タンパク質を活性化させることが報告されている。GNG11が活性酸素に応答するので、GNG11が細胞老化における最も重要な制御因子であることを示し、酸化ストレスから細胞老化に到る分子基盤が解明されたことになる。GNG11から派生するDNA、RNA、ペプチドなどや GNG11を標的とする天然および人造化合物を用いることによって、細胞老化を制御することが可能となった。これは美容健康をも目的とする医薬品、化粧品、健康サプリメントなどの商品化をもたらす。
Four. Discussion According to this study, the increase in GNG11 most rapidly induced cell senescence, and antisense RNA inhibited cell senescence. Activation of Ras and MAP kinase (ERK, p38, JNK is a major component) can be seen in the induction of cellular senescence. Therefore, an effector molecule located downstream of GNG11 is likely to be Ras or a MAP kinase activator located upstream of it. Oxidative stress is thought to activate MAP kinase and induce cellular senescence. Recently, it has been reported that when a membrane receptor works, it generates active oxygen, which activates G-protein. Since GNG11 responds to active oxygen, it indicates that GNG11 is the most important regulator of cellular senescence, and the molecular basis from oxidative stress to cellular senescence has been elucidated. Cell senescence can be controlled by using DNA, RNA, peptides, etc. derived from GNG11 and natural and artificial compounds targeting GNG11. This will lead to the commercialization of pharmaceuticals, cosmetics and health supplements for the purpose of beauty health.

GNG11サブユニットのN末領域は他の成分と共通性が乏しく、サブユニット間相互作用も特異的であり、G蛋白質の新しい機能を示唆する。GNG11とGNG1は塩基相同性が高いが、前者は脳以外のすべて組織で発現が見られるのに対し、後者は網膜での光伝達への関与が示唆されている。各種の刺激によってG蛋白質は解離し、GTP結合型αサブユニットは下流のエフェクター分子の活性を制御する。最近、強固なβγ複合体が下流のエフェクター分子(アデニルシクラーゼサブユニットIIおよびIV、ホスホリパーゼ A2、ホスホリパーゼ C サブタイプ、Ca2+チャネル等)を制御することが明らかになっている。The N-terminal region of the GNG11 subunit lacks commonality with other components, and the interaction between subunits is also specific, suggesting a new function of the G protein. GNG11 and GNG1 have high base homology, but the former is expressed in all tissues except the brain, while the latter is suggested to be involved in light transmission in the retina. G protein is dissociated by various stimuli, and GTP-binding α subunit controls the activity of downstream effector molecules. Recently, it has been shown that a robust βγ complex regulates downstream effector molecules (adenyl cyclase subunits II and IV, phospholipase A2, phospholipase C subtype, Ca 2+ channel, etc.).

Claims (6)

Gタンパク質γサブユニット11をコードする遺伝子の発現を阻害する物質又はGタンパク質γサブユニット11の細胞老化作用を阻害する物質を有効成分として含有する細胞老化抑制剤。   A cell aging inhibitor comprising, as an active ingredient, a substance that inhibits the expression of a gene encoding G protein γ subunit 11 or a substance that inhibits the cell aging action of G protein γ subunit 11. 前記Gタンパク質γサブユニット遺伝子に対するアンチセンス核酸若しくは該アンチセンス核酸を含むベクター又は干渉RNAを有効成分として含有する請求項1記載の細胞老化抑制剤。   The cell aging inhibitor according to claim 1, comprising an antisense nucleic acid against the G protein γ subunit gene, a vector containing the antisense nucleic acid, or an interference RNA as an active ingredient. Gタンパク質γサブユニット11をコードする遺伝子の発現を阻害する物質又はGタンパク質γサブユニット11の細胞老化作用を阻害する物質の、細胞老化抑制剤の製造のための使用。   Use of a substance that inhibits expression of a gene encoding G protein γ subunit 11 or a substance that inhibits cell aging action of G protein γ subunit 11 for the production of a cell aging inhibitor. 前記Gタンパク質γサブユニット遺伝子に対するアンチセンス核酸若しくは該アンチセンス核酸を含むベクター又は干渉RNAの、請求項3記載の使用。   The use according to claim 3, wherein an antisense nucleic acid against the G protein γ subunit gene, a vector containing the antisense nucleic acid, or an interference RNA is used. Gタンパク質γサブユニット11をコードする遺伝子の発現を阻害する物質又はGタンパク質γサブユニット11の細胞老化作用を阻害する物質の有効量を個体に投与することを含む細胞老化抑制方法。   A method for inhibiting cell aging, comprising administering to an individual an effective amount of a substance that inhibits expression of a gene encoding G protein γ subunit 11 or a substance that inhibits cell aging action of G protein γ subunit 11. 前記Gタンパク質γサブユニット遺伝子に対するアンチセンス核酸若しくは該アンチセンス核酸を含むベクター又は干渉RNAの有効量を個体に投与することを含む請求項5記載の方法。   The method according to claim 5, comprising administering an effective amount of an antisense nucleic acid against the G protein γ subunit gene, a vector containing the antisense nucleic acid, or an interfering RNA to an individual.
JP2008503904A 2006-03-09 2007-03-08 Cell aging inhibitor Pending JPWO2007102572A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006064955 2006-03-09
JP2006064955 2006-03-09
PCT/JP2007/054513 WO2007102572A1 (en) 2006-03-09 2007-03-08 Inhibitor for cellular aging

Publications (1)

Publication Number Publication Date
JPWO2007102572A1 true JPWO2007102572A1 (en) 2009-07-23

Family

ID=38474991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008503904A Pending JPWO2007102572A1 (en) 2006-03-09 2007-03-08 Cell aging inhibitor

Country Status (2)

Country Link
JP (1) JPWO2007102572A1 (en)
WO (1) WO2007102572A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113699182A (en) * 2021-08-31 2021-11-26 西南大学 Silencing vector for silencing cupula mori G protein gamma subunit coding gene CsG gamma, and application and method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011045334A (en) * 2009-08-28 2011-03-10 Kyushu Univ Factor associated with cellular aging
US10226441B2 (en) 2014-12-09 2019-03-12 Nihon Sizen Hakkoh Co., Ltd. Aging inhibitor
KR101933497B1 (en) * 2017-01-04 2018-12-28 연세대학교 산학협력단 Composition for inhibiting cellular senescenece or improving skin aging

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113699182A (en) * 2021-08-31 2021-11-26 西南大学 Silencing vector for silencing cupula mori G protein gamma subunit coding gene CsG gamma, and application and method thereof
CN113699182B (en) * 2021-08-31 2023-09-15 西南大学 Silencing vector for silencing gamma subunit encoding gene CsG gamma of calix mori G protein, application and method thereof

Also Published As

Publication number Publication date
WO2007102572A1 (en) 2007-09-13

Similar Documents

Publication Publication Date Title
Santoro et al. TRIP8b splice variants form a family of auxiliary subunits that regulate gating and trafficking of HCN channels in the brain
AU673992B2 (en) Senescent cell derived inhibitors of DNA synthesis
Kurose et al. Functional interactions of recombinant. alpha. 2 adrenergic receptor subtypes and G proteins in reconstituted phospholipid vesicles
Mahraoui et al. Regulation of expression of the human fructose transporter (GLUT5) by cyclic AMP
Trottein et al. Schistosoma mansoni schistosomula reduce E‐selectin and VCAM‐1 expression in TNF‐α‐stimulated lung microvascular endothelial cells by interfering with the NF‐κB pathway
JPWO2007102572A1 (en) Cell aging inhibitor
Kizaki et al. β2-Adrenergic receptor regulate Toll-like receptor 4-induced late-phase NF-κB activation
KR20060013428A (en) Inhibition of apoptosis-specific eif-5a( eif-5a1 ) with antisense oligonucleotides and sirans as anti-inflammatory therapeutics
US20170002352A1 (en) Inhibitors of thioredoxin-interacting protein (TXNIP) for therapy
TWI324070B (en) Nucleic acids, polypeptides, and methods for modulating apoptosis
Jin et al. Babam2 negatively regulates osteoclastogenesis by interacting with Hey1 to inhibit Nfatc1 transcription
US20210052551A1 (en) MC4R Agonist Efficacy in Subjects with MC4R Deficiencies and Impaired NFAT Signaling
TW200800274A (en) Use of eIF-5A to kill multiple myeloma cells
US8524661B2 (en) Inhibiting serum response factor (SRF) to improve glycemic control
KR20200124038A (en) Pharmaceutical composition for prevention or treatment of peripheral neuropathy caused by overexpression of PMP22 comprising miR-381 as an effective ingredient
US20170333522A1 (en) Expression and function of gpr64/adgrg2 in endocrine systems and methods to target it therapeutically
WO2000015845A1 (en) T-type calcium channel
WO2007024097A1 (en) PHARMACEUTICAL COMPOSITION, COMPOSITION FOR SCREENING THERAPEUTICS PREVENTING AND TREATING BETA AMYLOID ACCUMULATION IN BRAIN COMPRISING GCPn(GLUTAMATE CARBOXYPEPTIDASE Π) AS AN ACTIVE INGREDIENT AND METHOD FOR SCREENING USING THE SAME
US20100130585A1 (en) Methods and compositions for investigation and treatment of cancer using a g-protein coupled eicosanoid receptor
US20070231812A1 (en) Method of Screening Antidiabetic Agents
US8815799B2 (en) Inhibiting striated muscle activator of RHO (stars) to improve glycemic control
CN115944740A (en) Application of targeted HIF-1/CBS in triple negative breast cancer
KR101127566B1 (en) Method for the enhancement of chemical sensitivity or radiosensitivity of cancer cells by inhibiting the expression of transgelin
US20080096228A1 (en) Compositions And Methods Relating To Mammalian Internal Ribosome Entry Sites
WO2005093068A1 (en) Novel protein and promoter