JPWO2007099990A1 - Near-infrared absorbing film and optical filter for plasma display panel using the same - Google Patents

Near-infrared absorbing film and optical filter for plasma display panel using the same Download PDF

Info

Publication number
JPWO2007099990A1
JPWO2007099990A1 JP2008502815A JP2008502815A JPWO2007099990A1 JP WO2007099990 A1 JPWO2007099990 A1 JP WO2007099990A1 JP 2008502815 A JP2008502815 A JP 2008502815A JP 2008502815 A JP2008502815 A JP 2008502815A JP WO2007099990 A1 JPWO2007099990 A1 JP WO2007099990A1
Authority
JP
Japan
Prior art keywords
film
mixture
diimonium
infrared absorbing
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008502815A
Other languages
Japanese (ja)
Other versions
JP4553962B2 (en
Inventor
淳一 瀬川
淳一 瀬川
高明 倉田
高明 倉田
研二 芥
研二 芥
淳行 上原
淳行 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Publication of JPWO2007099990A1 publication Critical patent/JPWO2007099990A1/en
Application granted granted Critical
Publication of JP4553962B2 publication Critical patent/JP4553962B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/30Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having nitrogen atoms of imino groups quaternised
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/02Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to acyclic carbon atoms
    • C07C317/04Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/44Optical arrangements or shielding arrangements, e.g. filters or lenses

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Optical Filters (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

近赤外線の吸収波長域が比較的広いジイモニウム化合物を含有し、耐熱性、耐湿熱性がよく、その他諸物性も良い近赤外線吸収フィルムの開発、更にはこれを利用したPDP用光学フィルタを開発する。式(1)のnが異なるジイモニウム化合物の混合物を透明支持フィルム上に積層したり、粘着層に含有せしめた近赤外線吸収フィルムを調製し、これを使用してPDP用光学フィルタを作成する。(式(1)中、n−Prはノルマルプロピル基を、iso−Buはイソブチル基を、nは0〜8の整数をそれぞれ表す。)We will develop a near-infrared absorbing film that contains a diimonium compound having a relatively wide near-infrared absorption wavelength range, has good heat resistance, moist heat resistance, and other physical properties, and further develops an optical filter for PDPs using this film. A near-infrared absorbing film prepared by laminating a mixture of diimonium compounds having different n's of formula (1) on a transparent support film or containing in a pressure-sensitive adhesive layer is prepared, and an optical filter for PDP is prepared using this. (In Formula (1), n-Pr represents a normal propyl group, iso-Bu represents an isobutyl group, and n represents an integer of 0 to 8, respectively.)

Description

本発明は近赤外線領域における波長の光を幅広く吸収し、耐熱性、耐湿熱性及び溶剤溶解性等に優れるジイモニウム化合物を用いた近赤外線吸収フィルム及びそれを用いたプラズマディスプレイパネル(以下、PDPと記す)用光学フィルタに関する。   INDUSTRIAL APPLICABILITY The present invention absorbs light having a wavelength in the near-infrared region, and uses a near-infrared absorbing film using a diimmonium compound having excellent heat resistance, moist heat resistance and solvent solubility, and a plasma display panel (hereinafter referred to as PDP) using the same. ) Optical filter.

近赤外線は電気機器類を遠隔操作するときのビームとして使用されるため、近赤外線を放出する機器類は周辺に設置されている電気機器類を誤作動させてしまう恐れがあり、そのような機器類(例えばPDP)の前面には近赤外線を遮蔽する機能を有する光学フィルタ等を設置する必要がある。   Near-infrared rays are used as a beam for remote control of electrical equipment, so equipment that emits near-infrared rays may cause malfunction of electrical equipment installed in the vicinity. It is necessary to install an optical filter or the like having a function of shielding near-infrared rays on the front surface of a class (for example, PDP).

PDPの原理は2枚の板状ガラスで挟まれたセルに封入された希ガス(ネオン、キセノン等)に電圧をかけ、プラズマ状態になった希ガスが発する紫外線がセル壁面に塗布された発光体に当たることにより、映像に必要な可視光線を発生させるものであるが、可視光線と同時に近赤外線、電磁波、ネオンガスに起因し赤色光の色純度を下げる波長595nm近辺の橙色光線(以下、ネオン光と記す)等の人、電気機器等に有害な電磁波も一緒に放出するため、有益な可視光線は透過するが、近赤外線をはじめとする有害な電磁波は遮蔽する必要があり、PDPにはそのための光学フィルタ等が必要とされる。   The principle of PDP is that light is applied to the cell wall by applying a voltage to a rare gas (neon, xenon, etc.) enclosed in a cell sandwiched between two sheet-like glasses, and emitting ultraviolet light emitted from the rare gas in a plasma state. It hits the body to generate the visible light necessary for the image, but at the same time as the visible light, orange light near the wavelength of 595 nm (hereinafter referred to as neon light) reduces the color purity of the red light due to near infrared rays, electromagnetic waves, and neon gas. It also emits electromagnetic waves that are harmful to people, electrical devices, etc., so that useful visible light is transmitted, but harmful electromagnetic waves such as near infrared rays must be shielded. An optical filter or the like is required.

光学フィルタに使用される近赤外線吸収フィルムは近赤外線を遮蔽する目的で使用され、これには近赤外線を吸収する機能のある化合物(近赤外線吸収性化合物)が使用される。即ち、これらの近赤外線吸収性化合物を透明支持フィルム(透明基材フィルム及び減反射性フィルム又は人体に有害とされる電磁波を遮蔽するフィルム(以下、電磁波遮蔽フィルムと記す)等の透明な機能性フィルム)表面に設けられる層に含有させることにより、近赤外線吸収フィルムが作製される。ここで使用される近赤外線吸収性化合物としては、いくつかの種類があるが、近赤外線の吸収波長域が比較的広いジイモニウム化合物を単独で、或いはこれをベースとして他の一種類以上の近赤外線吸収化合物と組み合わされて多用されている。しかし、近赤外線吸収性を有する化合物は耐熱安定性や耐湿熱安定性(以下、両者を併せて単に「熱安定性」と記す)が不十分なものが多く、ジイモニウム化合物においても同様のことが言える。また、ジイモニウム化合物としては一般的に六フッ化アンチモン酸イオンを有するジイモニウム化合物が使用されてきたが、この化合物は、劇物に該当すること、環境問題から重金属等の使用規制が厳しくなりつつあることなどから、より安全なジイモニウム化合物が望まれていた。これを解決する手段として、ナフタレンジスルホン酸等の有機対イオンを使用した化合物(特許文献1)やトリフルオロメタンスルホン酸イオン等を用いた化合物(特許文献2)が開示されているが、「熱安定性」が未だ不十分で、特にこれらの化合物を粘着層に含有させた近赤外線吸収フィルムの場合、これらの化合物を含有する層が変色したり、近赤外線の吸収性が劣化したりするという難点がある。   Near-infrared absorbing films used for optical filters are used for the purpose of shielding near-infrared rays, and compounds having a function of absorbing near-infrared rays (near-infrared absorbing compounds) are used for this purpose. That is, these near-infrared absorptive compounds have transparent functionalities such as transparent support films (transparent substrate films and anti-reflection films, or films that shield electromagnetic waves harmful to the human body (hereinafter referred to as electromagnetic shielding films)). Film) A near-infrared absorbing film is produced by including in a layer provided on the surface. There are several types of near-infrared absorbing compounds used here, but a diimonium compound having a relatively wide absorption wavelength range of near-infrared is used alone or based on this one or more other types of near-infrared rays. Often used in combination with absorbent compounds. However, many compounds having near-infrared absorptivity are insufficient in heat stability and moist heat resistance (hereinafter simply referred to as “thermal stability”), and the same applies to diimonium compounds. I can say that. In addition, diimonium compounds having hexafluoroantimonate ions have generally been used as diimonium compounds, but these compounds are classified as deleterious substances, and restrictions on the use of heavy metals etc. are becoming strict due to environmental problems. For this reason, a safer diimonium compound has been desired. As means for solving this, a compound using an organic counter ion such as naphthalenedisulfonic acid (Patent Document 1) and a compound using trifluoromethanesulfonic acid ion (Patent Document 2) are disclosed. In particular, in the case of a near-infrared absorbing film containing these compounds in the adhesive layer, the layer containing these compounds is discolored or the near-infrared absorptivity is deteriorated. There is.

透明支持フィルム上に近赤外線吸収性化合物を保持させる主な具体的方法としては、溶剤中にバインダー樹脂と共に溶解及び/又は分散させて透明樹脂フィルム上に塗工し、高分子樹脂層を形成する方法、粘着層に含有させる方法の2つが挙げられるが、前者の場合は、「熱安定性」が使用したバインダー樹脂のガラス転移温度や樹脂層の残留溶剤量の影響を受けやすいという特徴があり、他方後者の方法では、「熱安定性」が低下しやすい、透明性の一つの基準であるヘーズ値や可視光線の透過度に悪い影響を与える等の懸念があるという特徴がある。   The main specific method for retaining the near-infrared absorbing compound on the transparent support film is to dissolve and / or disperse it together with the binder resin in a solvent and apply it onto the transparent resin film to form a polymer resin layer. There are two methods, the method and the method of inclusion in the adhesive layer. In the former case, “thermal stability” is characterized by being easily affected by the glass transition temperature of the binder resin used and the amount of residual solvent in the resin layer. On the other hand, the latter method is characterized in that “thermal stability” tends to be lowered, and there is a concern that the haze value which is one standard of transparency and the transmittance of visible light are adversely affected.

透明支持フィルム上に設けられる層(オ−バ−コ−ト層、粘着層、処理層等高分子樹脂類を用いて設けられた層)中のジイモニウム化合物を安定化する技術としては、特許文献3に透明支持フィルム上に設けられる層中に残存する溶剤量を一定割合以下に制御した状態でジイモニウム化合物を含有させたり、ガラス転移温度の高いバインダー樹脂を使用することにより安定化できることが開示されているが、残存溶剤量をコントロールする手間が必要であり、又使用するバインダー樹脂に制限がある等、簡便な方法とは言い難い。又、ジイモニウム化合物を透明支持フィルム上に設けられる粘着層に含有させる場合のヘーズ値や可視光線透過度への悪影響を有効に防ぐ方法は報告されていない。
いずれにしても近赤外線吸収能に比較的優れたジイモニウム化合物を用いて、近赤外線に対する吸収能力、その「熱安定性」を損なうことなく、且つ使用されるバインダー樹脂の制限がなく、光学フィルタとしての性能に優れた近赤外線吸収フィルムの簡便な製造技術の確立が要望されていた。
文献リスト
特開平10−316633号公報(第5頁) 特公平7−51555号公報(第2頁) 特開2000−227515号公報 特公昭43−25335号公報(第7−14頁)
As a technique for stabilizing a diimonium compound in a layer (a layer provided using a polymer resin such as an overcoat layer, an adhesive layer, a treatment layer) provided on a transparent support film, Patent Literature 3 discloses that the amount of the solvent remaining in the layer provided on the transparent support film can be stabilized by containing a diimonium compound in a state of being controlled to a certain ratio or less, or by using a binder resin having a high glass transition temperature. However, it is difficult to say that it is a simple method because it requires time and effort to control the amount of residual solvent and there are restrictions on the binder resin used. In addition, there has been no report on a method for effectively preventing adverse effects on the haze value and visible light transmittance when a diimonium compound is contained in an adhesive layer provided on a transparent support film.
In any case, by using a diimonium compound that is relatively excellent in near-infrared absorptivity, without impairing the near-infrared absorptivity, its "thermal stability", and there is no restriction on the binder resin used, as an optical filter The establishment of a simple manufacturing technique for a near-infrared absorbing film having excellent performance has been demanded.
Literature list
JP 10-316633 A (page 5) Japanese Patent Publication No. 7-51555 (2nd page) JP 2000-227515 A Japanese Patent Publication No. 43-25335 (pages 7-14)

近赤外線領域における吸収波長域が比較的広いジイモニウム化合物において、溶剤溶解性が良いことにより取り扱い易く、使用できるバインダー樹脂のガラス転移温度(以下、Tgと記す)の幅が広く、また、粘着層に含有させた場合でも優れた「熱安定性」を保持でき、効率よく近赤外線を吸収でき、ヘーズ値をより低く保て、低コストで合成できるジイモニウム化合物を見出すこと、これを用いた優れた性能を有する光学フィルタを提供することが本発明の課題である。   In a diimonium compound having a relatively wide absorption wavelength region in the near-infrared region, it is easy to handle due to its good solvent solubility, and the glass transition temperature (hereinafter referred to as Tg) of the binder resin that can be used is wide. Finding diimonium compounds that can retain excellent "thermal stability" even when they are contained, can absorb near infrared rays efficiently, can keep haze values lower, and can be synthesized at low cost, and have excellent performance using this It is an object of the present invention to provide an optical filter having

本発明者らは、前記課題を解決すべく、鋭意検討の結果、カチオン側に特定の置換基を有し、かつ、アニオンとして特定のものを選択したジイモニウム化合物の混合物が上記課題を解決するものであることを見出し、本発明を完成させた。   As a result of intensive studies, the present inventors have solved the above-mentioned problem by a mixture of diimonium compounds having a specific substituent on the cation side and a specific anion selected as the anion. As a result, the present invention was completed.

すなわち、本発明は
(1)下記式(1)で表され、nが異なる2種以上のジイモニウム化合物の混合物が透明支持フィルム上に形成された層に含有されることを特徴とする近赤外線吸収フィルム、
That is, the present invention is (1) a near-infrared absorption characterized in that a mixture of two or more diimonium compounds represented by the following formula (1) and different n is contained in a layer formed on a transparent support film. the film,

Figure 2007099990
(式(1)中、n−Prはノルマルプロピル基を、iso−Buはイソブチル基をそれぞれ表し、nは0〜8の整数を表す。)
(2)式(1)のnが異なる2種以上のジイモニウム化合物の混合物が、式(1)におけるnが3〜6のジイモニウム化合物を70%(マススペクトルより算出)以上98%以下含有するものである(1)に記載の近赤外線吸収フィルム、
(3)透明支持フィルム上に形成された層が粘着層である(1)又は(2)に記載の近赤外線吸収フィルム、
(4)透明支持フィルム上に形成された層に、式(1)のnが異なる2種以上のジイモニウム化合物の混合物及び波長550〜620nmに極大吸収を有する化合物が含有される(1)乃至(3)のいずれか一項に記載の近赤外線吸収フィルム、
(5)透明支持フィルムが減反射機能又は電磁波遮蔽機能を有するフィルムである(1)乃至(4)のいずれか一項に記載の近赤外線吸収フィルム、
(6)(1)乃至(5)のいずれか一項に記載の近赤外線吸収フィルムを含むプラズマディスプレイパネル用光学フィルタ、
(7)(1)乃至(5)のいずれか一項に記載の近赤外線吸収フィルムと、電磁波遮蔽能を有するフィルム及び/又は減反射機能を有するフィルムを含む(6)に記載のプラズマディスプレイパネル用光学フィルタ、
(8)式(1)で表され、nが異なる2種以上のジイモニウム化合物の混合物
Figure 2007099990
(In Formula (1), n-Pr represents a normal propyl group, iso-Bu represents an isobutyl group, and n represents an integer of 0 to 8.)
(2) A mixture of two or more diimonium compounds having different n in formula (1) contains 70% (calculated from mass spectrum) or more and 98% or less of diimonium compounds having n of 3 to 6 in formula (1) The near infrared ray absorbing film according to (1),
(3) The near-infrared absorbing film according to (1) or (2), wherein the layer formed on the transparent support film is an adhesive layer,
(4) The layer formed on the transparent support film contains a mixture of two or more diimonium compounds having different n in formula (1) and a compound having a maximum absorption at a wavelength of 550 to 620 nm (1) to ( 3) The near-infrared absorbing film according to any one of
(5) The near-infrared absorbing film according to any one of (1) to (4), wherein the transparent support film has a reduced reflection function or an electromagnetic wave shielding function.
(6) An optical filter for a plasma display panel comprising the near-infrared absorbing film according to any one of (1) to (5),
(7) The plasma display panel according to (6), comprising the near-infrared absorbing film according to any one of (1) to (5), a film having an electromagnetic wave shielding ability, and / or a film having a function of reducing reflection. Optical filters,
(8) Mixture of two or more diimonium compounds represented by formula (1) and different n

Figure 2007099990
(式(1)中、n−Prはノルマルプロピル基を、iso−Buはイソブチル基をそれぞれ表し、nは0〜8の整数を表す)
に関する。
Figure 2007099990
(In formula (1), n-Pr represents a normal propyl group, iso-Bu represents an isobutyl group, and n represents an integer of 0 to 8)
About.

本発明に使用するジイモニウム化合物の混合物は、簡便な方法で安価に合成でき、アンチモン等の重金属を含まないため、劇物に該当せず、溶剤溶解性が良いため、取り扱いやすく、これを用いて得られた近赤外線吸収フィルムは800〜1100nmの波長域の近赤外線を良好に吸収し、さらにこれを粘着層に含有させた場合でも優れたヘーズ値及び「熱安定性」を示し、近赤外線吸収性の劣化、層の変色及び面質の劣化などもなく、この近赤外線吸収フィルムと他の機能性フィルムとを複合したPDP用光学フィルタは優れた性能を示し、前記課題に充分対応できるものである。   The mixture of diimonium compounds used in the present invention can be synthesized inexpensively by a simple method, does not contain heavy metals such as antimony, is not a deleterious substance, has good solvent solubility, and is easy to handle. The obtained near-infrared absorbing film absorbs near-infrared light in the wavelength range of 800 to 1100 nm well, and even when this is contained in the adhesive layer, exhibits excellent haze value and “thermal stability”, and absorbs near-infrared light. The optical filter for PDP that combines this near-infrared absorbing film and other functional film exhibits excellent performance and can sufficiently cope with the above problems. is there.

以下本発明を詳細に説明する。
本発明の近赤外線吸収フィルムは、前記式(1)で表されるジイモニウム化合物の置換基であるノルマルプロピル基とイソブチル基の数が異なる2種類以上のジイモニウム化合物の混合物(以下、「本ジイモニウム混合物」とも記す)を透明支持フィルム上に設けられるバインダー樹脂層又は粘着層に含有させた近赤外線吸収フィルムであり、光学フィルムとしての諸物性がよく、800〜1100nmの波長域の近赤外線を良好に吸収する。
The present invention will be described in detail below.
The near-infrared absorbing film of the present invention is a mixture of two or more types of diimonium compounds having different numbers of normal propyl groups and isobutyl groups, which are substituents of the diimonium compound represented by the formula (1) (hereinafter referred to as “the present diimonium mixture”). Is also a near-infrared absorbing film containing a binder resin layer or adhesive layer provided on a transparent support film, has good physical properties as an optical film, and has good near-infrared in the wavelength range of 800 to 1100 nm. Absorb.

「本ジイモニウム混合物」を含有する層を有する近赤外線吸収フィルムは近赤外線吸収性が良く、「熱安定性」にも優れており、粘着層に含有させた場合、式(1)の置換基の全てがイソブチル基(n=0)であるジイモニウム化合物より、近赤外線吸収能力に優れ、ヘーズ値が低いことが特徴であり、又、式(1)の置換基の全てがノルマルプロピル基の(n=8)ジイモニウム化合物より溶剤溶解性が良く、塗工し易いことが分かった。又、「本ジイモニウム混合物」は製造が容易で、以下に述べるように前駆体の製造工程で添加するアルキル化剤量の割合を調整することにより従来公知の方法により容易に製造が可能である。   The near-infrared absorbing film having a layer containing “the present dimonium mixture” has good near-infrared absorptivity and excellent “thermal stability”. When included in the adhesive layer, the near-infrared absorbing film has a substituent of formula (1). It is characterized by excellent near-infrared absorption ability and low haze value than diimonium compounds, all of which are isobutyl groups (n = 0), and all of the substituents of formula (1) are (n = 8) It was found that the solvent solubility was better than that of the diimonium compound and coating was easy. The “diimonium mixture” can be easily produced, and can be easily produced by a conventionally known method by adjusting the ratio of the amount of the alkylating agent added in the precursor production process as described below.

本発明において「本ジイモニウム混合物」は、例えば、特許文献4に記載された方法に準じて得ることができる。即ち、ウルマン反応及び還元反応で得られる下記式(2)で表されるアミノ体を有機溶媒中、好ましくはジメチルホルムアミド(DMF)、ジメチルイミダゾリジノン(DMI)、N−メチルピロリドン(NMP)等の水溶性極性溶媒中、30〜160℃、好ましくは50〜140℃でハロゲン化されたノルマルプロピル化合物及びイソブチル化合物を任意の割合で混合し、反応させ式(3)で表される化合物の混合物を得ることができる。尚、ノルマルプロピル基とイソブチル基の比をコントロールする為に、先にノルマルプロピル基(或いはイソブチル基)に対応する化合物を反応させておき、後でイソブチル基(或いはノルマルプロピル基)に対応する化合物を反応させて一定の割合の化合物の混合物を合成することも可能である。   In the present invention, the “present dimonium mixture” can be obtained, for example, according to the method described in Patent Document 4. That is, an amino compound represented by the following formula (2) obtained by the Ullmann reaction and reduction reaction is preferably used in an organic solvent, such as dimethylformamide (DMF), dimethylimidazolidinone (DMI), N-methylpyrrolidone (NMP), etc. In a water-soluble polar solvent, a normal propyl compound and an isobutyl compound halogenated at 30 to 160 ° C., preferably 50 to 140 ° C., are mixed at an arbitrary ratio, and reacted to obtain a mixture of compounds represented by formula (3) Can be obtained. In order to control the ratio of normal propyl group to isobutyl group, a compound corresponding to normal propyl group (or isobutyl group) is reacted first, and then a compound corresponding to isobutyl group (or normal propyl group). It is also possible to synthesize a mixture of a certain proportion of compounds.

Figure 2007099990
Figure 2007099990

(式(3)において、nは前記式(1)におけるのと同じ意味を表す。)
上記で合成した式(3)の混合物を、有機溶媒中、好ましくはジメチルホルムアミド(DMF)、ジメチルイミダゾリジノン(DMI)、N−メチルピロリドン(NMP)等の水溶性極性溶媒中、0〜100℃、好ましくは5〜70℃でトリス(トリフルオロメチルスルホニル)カルボニウム酸を2当量添加して酸化反応を行い、本発明で使用される「本ジイモニウム混合物」を得る。
(In formula (3), n represents the same meaning as in formula (1).)
The mixture of formula (3) synthesized above is 0-100 in an organic solvent, preferably in a water-soluble polar solvent such as dimethylformamide (DMF), dimethylimidazolidinone (DMI), N-methylpyrrolidone (NMP). At 2 ° C., preferably 5 to 70 ° C., 2 equivalents of tris (trifluoromethylsulfonyl) carbonic acid is added to carry out an oxidation reaction to obtain “the present diimmonium mixture” used in the present invention.

次に「本ジイモニウム混合物」中の各ジイモニウム化合物の組成割合の求め方について述べる。
各ジイモニウム化合物(式(1)において、nが0、1、2、3、4、5、6、7又は8である9種のジイモニウム化合物)の分子イオンピーク強度を測定するための質量分析計として、マイクロマス社製LCTを使用した。各ジイモニウム化合物の組成割合を計算するための測定用サンプルはカチオン化前の式(3)の化合物(以下、前駆体と記す)に依ったが、これはカチオン化後の「本ジイモニウム混合物」の直接測定が困難で、測定値の信頼性に欠けること及び各前駆体の組成割合がカチオン化後の各成分の組成割合と極めて相関性が高いと判断できることによる。具体的には、測定用サンプルのエレクトロスプレー(ESI)イオン化マススペクトルを測定し、各前駆体の分子イオンピーク強度〔M〕を求めて組成割合を計算した。各成分の組成割合Aは、A(%)=100×〔M〕/(nが0〜8の各前駆体の〔M〕の合計)、から推定計算した。また、例えばnが3〜6の各成分の組成割合の和Bは、B(%)=100×(nが3〜6の各前駆体の〔M〕の和)/(nが0〜8の各前駆体の〔M〕の合計)で求めた。
Next, how to determine the composition ratio of each diimonium compound in the “diimonium mixture” will be described.
Mass spectrometer for measuring molecular ion peak intensity of each dimonium compound (9 kinds of dimonium compounds in which n is 0, 1, 2, 3, 4, 5, 6, 7, or 8 in formula (1)) As an example, LCT manufactured by Micromass was used. The sample for measurement for calculating the composition ratio of each diimonium compound depended on the compound of the formula (3) before the cationization (hereinafter referred to as a precursor), and this is the result of “the present dimonium mixture” after cationization. This is because direct measurement is difficult, the reliability of the measured value is lacking, and the composition ratio of each precursor can be determined to be extremely correlated with the composition ratio of each component after cationization. Specifically, the electrospray (ESI) ionization mass spectrum of the measurement sample was measured, the molecular ion peak intensity [M] + of each precursor was determined, and the composition ratio was calculated. The composition ratio A of each component was estimated and calculated from A (%) = 100 × [M] + / (total of [M] + of each precursor in which n is 0 to 8). Further, for example, the sum B of the composition ratios of the respective components having n of 3 to 6 is B (%) = 100 × (the sum of [M] + of each precursor having n of 3 to 6) / (n is 0 to 0). The total of [M] + of each of the 8 precursors).

マススペクトルのピーク強度から上記により計算したn=3〜6のジイモニウム化合物の組成割合の和が全体(nが0〜8である各ジイモニウム化合物の合計)の70%以上で98%以下になる混合物は本発明の目的の為にはより好ましい混合物である。このような組成は、前記においてアルキル化剤の添加量、反応温度、反応時間を調整することにより容易に調製が可能である。   A mixture in which the sum of the composition ratios of n = 3-6 diimonium compounds calculated from the peak intensity of the mass spectrum is 70% or more and 98% or less of the total (total of each diimonium compound where n is 0-8). Is a more preferred mixture for the purposes of the present invention. Such a composition can be easily prepared by adjusting the amount of the alkylating agent added, the reaction temperature, and the reaction time.

本発明で使用される「本ジイモニウム混合物」は単独で使用しても良いが、要望される近赤外線の吸収波長域や吸収割合を調整するために、他の1種類以上の近赤外線吸収化合物と併用してもよく、使用しうる他の近赤外線吸収化合物の具体例としては、「本ジイモニウム混合物」以外のジイモニウム化合物、ニトロソ化合物及びその金属塩、シアニン系化合物、スクワリリウム系化合物、チオールニッケル錯塩系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、トリアリルメタン系化合物、ナフトキノン系化合物又はアントラキノン系化合物等が挙げられる。本発明では、これらの化合物から波長800〜1100nmに極大吸収を有する化合物を選択して使用するのが好ましい。   The “diimonium mixture” used in the present invention may be used alone, but in order to adjust the desired near-infrared absorption wavelength region and absorption ratio, one or more other near-infrared absorbing compounds and Specific examples of other near-infrared absorbing compounds that may be used in combination include diimonium compounds other than "the present diimonium mixture", nitroso compounds and their metal salts, cyanine compounds, squarylium compounds, thiol nickel complex salts Examples thereof include compounds, phthalocyanine compounds, naphthalocyanine compounds, triallylmethane compounds, naphthoquinone compounds, and anthraquinone compounds. In the present invention, it is preferable to select and use a compound having a maximum absorption at a wavelength of 800 to 1100 nm from these compounds.

以下、「本ジイモニウム混合物」を含有する層を透明支持フィルム上に形成して近赤外線吸収フィルムを作製する方法について説明する。尚、「本ジイモニウム混合物」以外の近赤外線吸収化合物を併用する場合には、「本ジイモニウム混合物」と同じ塗工液に混合して塗工する方法が有利であるが、別層として公知の方法で同じ透明支持フィルムに保持させることもできる。 Hereinafter, a method for forming a near-infrared absorbing film by forming a layer containing “the present diimonium mixture” on a transparent support film will be described. In the case of using a near-infrared absorbing compound other than “the present diimonium mixture”, a method of mixing and coating in the same coating liquid as “the present diimonium mixture” is advantageous, but a known method as a separate layer Can also be held on the same transparent support film.

「本ジイモニウム混合物」を透明支持フィルム上に保持する方法としては、バインダー樹脂を使用して被膜層(以下、バインダー樹脂層と記す)を形成せしめ、その中に含有せしめる方法と粘着層に含有させる方法が好ましい方法として挙げられる。   As a method of holding the “diimonium mixture” on the transparent support film, a coating layer (hereinafter referred to as a binder resin layer) is formed using a binder resin, and the coating layer is contained in the coating layer and the adhesive layer. A method is mentioned as a preferable method.

本発明に使用される透明支持フィルムは透明性が高く、傷がつきにくく、光学フィルムとしての使用に耐えられるものであれば特に種類や厚さは限定されないが、厚さについては10〜500μmが作業性が良好で好ましく、フィルムの種類については、ポリエステル系、ポリカーボネート系、トリアセテート系、ノルボルネン系、アクリル系、セルロース系、ポリオレフィン系又はウレタン系等の高分子樹脂製フィルムが挙げられ、透明性等の光学フィルムとしての物性や入手のし易さ等の点からポリエチレンテレフタレート(以下、PETと記す)が好ましい。外部からの紫外線を吸収して内部部材の機能の安定化をはかるために紫外線吸収物質が含有されている透明支持フィルムを使用することもでき、フィルムの表面には塗工膜との密着性を上げるためにコロナ放電処理、プラズマ処理、グロー放電処理、粗面化処理又は薬品処理やアンカーコート剤やプライマー等のコーティングを施して易接着性を向上させたものでも良い。
また、透明支持フィルムが、例えば減反射性、防眩・減反射性、帯電防止性、防汚性、ネオン光吸収性、電磁波遮蔽性又は色調整などの機能を単独あるいは複数有する機能性を持った透明支持フィルムであってもよく、特に「本ジイモニウム混合物」をこれらの機能性透明支持フィルムの粘着層に含有させた場合は、これらの機能と近赤外線吸収性を同時に保有する光学フィルムが得られるので、合理的で、優れた形態の光学フィルタが可能となり、機能性透明支持フィルムを用いることは有利な選択である。機能性透明支持フィルムとしては、減反射機能又は電磁波遮蔽機能を有する透明支持フィルムが好ましい。
The type and thickness of the transparent support film used in the present invention is not particularly limited as long as it is highly transparent, hardly scratched, and can withstand use as an optical film, but the thickness is 10 to 500 μm. Workability is good and preferable, and the type of film includes polyester-based, polycarbonate-based, triacetate-based, norbornene-based, acrylic-based, cellulose-based, polyolefin-based or urethane-based polymer resin films, transparency, etc. Polyethylene terephthalate (hereinafter referred to as “PET”) is preferred from the standpoint of the physical properties and availability of the optical film. A transparent support film containing an ultraviolet absorbing substance can be used to absorb the ultraviolet rays from the outside and stabilize the function of the internal member, and the film surface has good adhesion to the coating film. In order to increase, easy adhesion may be improved by applying a corona discharge treatment, a plasma treatment, a glow discharge treatment, a roughening treatment, a chemical treatment, an anchor coating agent, a primer or the like.
In addition, the transparent support film has a function of having one or more functions such as anti-reflection, anti-glare / anti-reflection, antistatic, antifouling, neon light absorption, electromagnetic shielding or color adjustment. Transparent support films may be used, and in particular, when the present dimonium mixture is included in the adhesive layer of these functional transparent support films, an optical film having these functions and near-infrared absorptivity at the same time is obtained. Therefore, a rational and excellent form optical filter is possible, and the use of a functional transparent support film is an advantageous choice. As the functional transparent support film, a transparent support film having a reduced reflection function or an electromagnetic wave shielding function is preferable.

次に、前記した好ましい機能性透明支持フィルムの例について説明するが、機能性を有する透明支持フィルムの種類がこれらに限定されるものではない。
減反射機能を有する透明支持フィルム(減反射フィルム)はPETなどの透明支持フィルムの表面に、低屈折率剤をバインダー樹脂及びその他の添加剤と共にコーティングして外部からの光の反射を抑えたフィルム又は透明支持フィルムと低屈折率層との間にハードコート層及び高屈折率層を施し、各層による反射光を打ち消し合うようにコントロールして視認性を良くしたフィルムであり、防眩・減反射フィルムは減反射フィルムの高屈折率層やハードコート層に微細粒子を含有させて外部からの光を乱反射させて視認性を良くしたフィルムである。これらのフィルムは、アークトップシリーズ(旭硝子製)、カヤコートARSシリーズ(日本化薬製)、カヤコートAGRSシリーズ(日本化薬製)、リアルックシリーズ(日本油脂製)等として市場から容易に入手が可能である。
Next, although the example of an above described preferable functional transparent support film is demonstrated, the kind of transparent support film which has functionality is not limited to these.
Transparent support film (decrease reflection film) having a function of reducing reflection is a film that suppresses reflection of light from the outside by coating the surface of a transparent support film such as PET with a low refractive index agent together with a binder resin and other additives. Alternatively, a hard coat layer and a high refractive index layer are provided between the transparent support film and the low refractive index layer, and the visibility is improved by controlling the reflected light from each layer to cancel each other. The film is a film in which fine particles are contained in the high refractive index layer or hard coat layer of the anti-reflection film to diffuse the light from the outside to improve visibility. These films can be easily obtained from the market as the Arktop series (Asahi Glass), Kayacoat ARS series (Nippon Kayaku), Kayacoat AGRS series (Nippon Kayaku), Realak series (Nippon Yushi). It is.

次に、電磁波遮蔽機能を有する透明支持フィルム(電磁波遮蔽フィルム)において、電磁波を遮蔽する方法には銅などの金属の極細線を網目のような幾何学模様に透明支持フィルムに保持させたメッシュタイプと、光透過性を有する範囲で金属の極薄膜を透明基材フィルムに保持させた薄膜タイプがあるが、PDPにおいては、薄膜タイプを使用した場合(一般的には近赤外線は反射されるため透過せず)、近赤外線吸収フィルムを必要としない。従って、本発明においては、電磁波遮蔽フィルムを使用する場合は、メッシュタイプの電磁波遮蔽フィルムを透明支持フィルムとして使用するのが好ましい。又、減反射フィルムの減反射面の反対面に導電性インキをスクリーン印刷法等によりメッシュ状に電磁波遮蔽層を施して得た減反射性と電磁波遮蔽性を有するフィルムを透明支持フィルムとして使用すると、PDP用の光学フィルタを作製する上で好都合である。   Next, in a transparent support film (electromagnetic wave shielding film) having an electromagnetic wave shielding function, a method of shielding electromagnetic waves is a mesh type in which fine wires of metal such as copper are held on a transparent support film in a geometric pattern like a mesh. In addition, there is a thin film type in which a metal ultrathin film is held on a transparent base film within a range having light transmittance. However, in the PDP, when a thin film type is used (in general, near infrared rays are reflected). Does not transmit) and does not require a near-infrared absorbing film. Therefore, in the present invention, when an electromagnetic wave shielding film is used, it is preferable to use a mesh type electromagnetic wave shielding film as a transparent support film. In addition, when a film having an anti-reflection and electromagnetic wave shielding property obtained by applying an electromagnetic wave shielding layer in a mesh shape by screen printing or the like on the opposite surface of the anti-reflection surface of the anti-reflection film is used as a transparent support film It is convenient for producing an optical filter for PDP.

本発明に使用されうる、その他の機能性を有する透明支持フィルムとしては、ネオン光吸収性、紫外線吸収性、帯電防止性、防汚性、色調整等の、機能を単独あるいは複数で保持させた透明支持フィルムがあるが、これらはそれらの性能を有する各化合物を含有するバインダー樹脂組成物から成形する方法などによりそれ自体公知の方法に準じて作製することができる。   As the transparent support film having other functionalities that can be used in the present invention, neon light absorbability, ultraviolet light absorbability, antistatic properties, antifouling properties, color adjustment, and the like are retained alone or in plural. Although there exists a transparent support film, these can be produced according to a method known per se by a method of molding from a binder resin composition containing each compound having these properties.

最初に「本ジイモニウム混合物」を粘着層に含有させる方法について述べる。粘着層の主体となる樹脂は「本ジイモニウム混合物」を均一に分散でき、透明支持フィルムの表面に透明な層を形成し、光学フィルムとしての機能を損なわないものであれば特に限定されないが、アクリル系、ポリエステル系、ポリアミド系、ポリウレタン系、ポリオレフィン系、ポリカーボネート系、ゴム系又はシリコン系樹脂等の粘着材が挙げられ、透明性、接着性、耐熱性等に優れている点でアクリル系樹脂粘着材が好適である。アクリル系樹脂粘着材は、官能基(二重結合を除く)を持たないアクリル酸系アルキルエステルを主成分として、これに官能基を有するアクリル酸系アルキルエステルやアクリル酸系アルキルエステル以外の他の単量体成分を共重合させたものである。その官能基を有するアクリル酸系アルキルエステルやアクリル酸系アルキルエステル以外の他の単量体成分の共重合割合は、官能基を持たないアクリル酸系アルキルエステル成分100重量部あたり0.1〜20重量部、より好ましくは1〜10重量部である。   First, a method for incorporating the “diimonium mixture” into the adhesive layer will be described. The resin that is the main component of the adhesive layer is not particularly limited as long as it can uniformly disperse the “diimonium mixture”, forms a transparent layer on the surface of the transparent support film, and does not impair the function as an optical film. -Based, polyester-based, polyamide-based, polyurethane-based, polyolefin-based, polycarbonate-based, rubber-based or silicone-based adhesive materials, etc., and acrylic resin adhesive in terms of excellent transparency, adhesiveness, heat resistance, etc. A material is preferred. Acrylic resin adhesive is mainly composed of acrylic acid alkyl ester having no functional group (excluding double bond), and other than acrylic acid alkyl ester and acrylic acid alkyl ester having functional group in this. A monomer component is copolymerized. The copolymerization ratio of other monomer components other than the acrylic acid alkyl ester having the functional group and the acrylic acid alkyl ester is 0.1 to 20 per 100 parts by weight of the acrylic acid alkyl ester component having no functional group. Part by weight, more preferably 1 to 10 parts by weight.

官能基を持たないアクリル酸系アルキルエステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル又は(メタ)アクリル酸ドデシルなどの、アルキル基の炭素数が1〜12であるアクリル酸アルキルエステル乃至メタアクリル酸アルキルエステルが挙げられるが、これらは必要に応じ2種類以上を併用しても良い。   Examples of the acrylic acid alkyl ester having no functional group include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, (meth Alkyl) such as hexyl acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, undecyl (meth) acrylate or dodecyl (meth) acrylate Examples thereof include alkyl acrylates or methacrylic acid alkyl esters having 1 to 12 carbon atoms, and these may be used in combination of two or more.

官能基を有するアクリル酸系アルキルエステル又はアクリル酸系アルキルエステル以外の単量体としては、後記する架橋剤との架橋点などとして機能するものが用いられ、その種類について特に限定はないが、(メタ)アクリル酸2−ヒドロキシルエチル、(メタ)アクリル酸ヒドロキシプロピル等のヒドロキシ基含有(メタ)アクリル酸エステル系単量体、N,N−ジメチルアミノエチルアクリレート、N−tert−ブチルアミノエチルアクリレート等のアミノ基含有(メタ)アクリル酸系単量体、又はアクリル酸、マレイン酸などが挙げられ、これらは必要に応じて2種類以上を併用しても良い。   As a monomer other than an acrylic acid alkyl ester having a functional group or an acrylic acid alkyl ester, one that functions as a crosslinking point with a crosslinking agent to be described later is used, and the type thereof is not particularly limited. Hydroxy group-containing (meth) acrylic acid ester monomers such as 2-hydroxyethyl (meth) acrylate and hydroxypropyl (meth) acrylate, N, N-dimethylaminoethyl acrylate, N-tert-butylaminoethyl acrylate, etc. These amino group-containing (meth) acrylic acid monomers, acrylic acid, maleic acid and the like may be mentioned, and these may be used in combination of two or more.

粘着剤は架橋剤を配合することにより前記アクリル酸系樹脂等を架橋しうる組成で用いるのが好ましい。架橋剤としては前記の単量体の種類に応じて適宜用いられ、例えばヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネートのトリメチロールプロパン付加物などの脂肪族ジイソシアネート、トリレンジイソシアネート又はトリレンジイソシアネートのトリメチロールプロパン付加物等の芳香族ジイソシアネートの如きポリイソシアネート化合物、ブチルエーテル化スチロールメラミン、トリメチロールメラミンの如きメラミン化合物、ヘキサメチレンジアミン又はトリエチレンジアミン等のジアミン化合物、ビスフェノールA、エピクロルヒドリン等のエポキシ樹脂系化合物、尿素樹脂系化合物、塩化アルミニウム、塩化第二鉄又は硫酸アルミニウム等の金属塩等が用いられ、その配合量は、通常、アクリル系樹脂粘着材100重量部あたり0.005〜5重量部、好ましくは0.01〜3重量部である。   The pressure-sensitive adhesive is preferably used in a composition that can crosslink the acrylic resin and the like by blending a crosslinking agent. As a crosslinking agent, it is suitably used according to the kind of the above-mentioned monomer. Polyisocyanate compounds such as aromatic diisocyanates, butyl etherified styrol melamine, melamine compounds such as trimethylol melamine, diamine compounds such as hexamethylenediamine or triethylenediamine, epoxy resin compounds such as bisphenol A and epichlorohydrin, urea resin systems A compound, a metal salt such as aluminum chloride, ferric chloride, or aluminum sulfate is used, and its blending amount is usually 100% acrylic resin adhesive. 0.005 parts by weight per volume parts, preferably 0.01 to 3 parts by weight.

上記のアクリル樹脂系粘着材は粘着力、凝集力に優れると共に、架橋後のポリマー中には不飽和結合がないため光や酸素に対する安定性が高く、また、モノマーの種類や分子量の選択の自由度が高いという理由からも好ましく、透明支持フィルムへの密着性を保持するために分子量(重合度)の高いもの、即ち、主ポリマーの重量平均分子量(Mw)は60万〜200万程度が好ましく、より好ましくは80万〜180万程度である。   The above acrylic resin adhesives are excellent in adhesive strength and cohesive strength, and since they have no unsaturated bonds in the crosslinked polymer, they are highly stable against light and oxygen, and the type and molecular weight of the monomer can be freely selected. It is also preferable because the degree of polymerization is high, and in order to maintain adhesion to the transparent support film, the molecular weight (degree of polymerization) is high, that is, the weight average molecular weight (Mw) of the main polymer is preferably about 600,000 to 2,000,000. More preferably, it is about 800,000 to 1,800,000.

PDPにおいて、加電圧時に発生するネオンガス等に由来する波長550〜620nmの橙色のネオン光は、赤色光の色純度を下げるためディスプレー前面である程度カットする必要があるので、ネオン光吸収化合物を透明支持フィルムに保持させたネオン光吸収フィルタが通常使用されるが、近赤外線吸収能を有する層にネオン光吸収能を有する化合物を含有させることにより、近赤外線とネオン光を同時に吸収できる層を得る方法が有利である。ここで、使用しうるネオン光吸収化合物の例としては、例えばアザポルフィリン系、シアニン系、スクアリリウム系、アゾメチン系、キサンテン系、オキソノール系又はアゾ系等の化合物が挙げられるが、特に粘着層に含有させる場合には使用される「本ジイモニウム混合物」の「熱安定性」等について十分配慮する必要がある。例えばテトラアザポルフィリン系化合物は比較的安定であり、その他の化合物でも安定化がはかれれば使用可能である。   In PDP, orange neon light having a wavelength of 550 to 620 nm derived from neon gas generated at the time of applied voltage needs to be cut to some extent in front of the display in order to reduce the color purity of red light. Although a neon light absorption filter held in a film is usually used, a method of obtaining a layer capable of absorbing near infrared rays and neon light simultaneously by incorporating a compound having neon light absorption ability into a layer having near infrared absorption ability Is advantageous. Here, examples of neon light absorbing compounds that can be used include compounds such as azaporphyrin, cyanine, squarylium, azomethine, xanthene, oxonol, or azo, particularly in the adhesive layer. Therefore, it is necessary to give sufficient consideration to the “thermal stability” of the “diimonium mixture” used. For example, tetraazaporphyrin-based compounds are relatively stable, and other compounds can be used if they are stabilized.

「本ジイモニウム混合物」を、粘着剤の主成分である前記粘着材、重合開始剤、架橋剤、紫外線吸収剤、色調整色素及びその他必要とされる添加剤、例えば電磁波遮蔽のメッシュに使用される金属との接触により変色する場合は酸化防止剤、防錆剤等と共にメチルエチルケトン(MEK)等の溶剤に十分に溶解又は分散させて粘着剤液とし、透明支持フィルムの表面に、乾燥後の層厚が5〜100μm、好ましくは10〜50μmになるように塗工する。その塗工方法は特に限定されず、バーコーター、リバースコーター、コンマコーター又はグラビアコーター等によって塗布し、乾燥して粘着層を密着させる方法や、剥離フィルム上に粘着剤液をバーコーター、リバースコーター、コンマコーター、グラビアコーター等によって塗布し、乾燥した後、粘着層を透明支持フィルム上に転写する方法等が挙げられる。使用する溶剤量は塗工方法により異なるが、主ポリマーの重量平均分子量が100万前後のアクリル樹脂系粘着剤を使用し、コンマコーターで塗布する場合は、粘着剤を10〜25重量%になるように溶剤で希釈するのが好ましい。本発明の近赤外線吸収フィルムは、波長800〜1100nmの近赤外線の透過率が10%以下になるよう設計されるのが好ましく、「本ジイモニウム混合物」もそれに合わせた量を使用すれば良く、粘着層に対して概ね1〜20重量%になるように含有させればよい。   “This dimonium mixture” is used for the above-mentioned pressure-sensitive adhesive, which is the main component of the pressure-sensitive adhesive, a polymerization initiator, a crosslinking agent, an ultraviolet absorber, a color-adjusting dye, and other necessary additives such as electromagnetic shielding meshes. In the case of discoloration due to contact with metal, the layer thickness after drying on the surface of the transparent support film is obtained by sufficiently dissolving or dispersing it in a solvent such as methyl ethyl ketone (MEK) together with an antioxidant and a rust inhibitor. Is 5 to 100 μm, preferably 10 to 50 μm. The coating method is not particularly limited, and is a method of applying with a bar coater, reverse coater, comma coater or gravure coater, and drying and adhering the adhesive layer, or applying an adhesive solution on the release film to a bar coater or reverse coater For example, there may be mentioned a method in which a pressure-sensitive adhesive layer is transferred onto a transparent support film after being applied with a comma coater, a gravure coater or the like and dried. The amount of solvent to be used varies depending on the coating method, but when an acrylic resin adhesive having a main polymer weight average molecular weight of around 1 million is used and applied with a comma coater, the adhesive is 10 to 25% by weight. Thus, it is preferable to dilute with a solvent. The near-infrared absorbing film of the present invention is preferably designed so that the transmittance of near-infrared light having a wavelength of 800 to 1100 nm is 10% or less, and “the present diimonium mixture” may be used in an amount corresponding thereto, What is necessary is just to contain so that it may become 1 to 20 weight% in general with respect to a layer.

「本ジイモニウム混合物」は2種類以上のジイモニウム化合物の混合物であるが、ノルマルプロピル基が8個のジイモニウム化合物の単一品(式(1)においてn=8)では、塗工時の溶剤として多用されるMEK等の溶剤に対する溶解性が不十分で塗工面に凝集物が生じやすく、近赤外線吸収性も劣る傾向にある。nが大きいつまりノルマルプロピル基が多いジイモニウム化合物の比率が高い混合物になるに従って溶剤溶解性が劣るようになるため塗工しにくくなる。また、8個全部がイソブチル基の場合(式(1)においてn=0)は近赤外線吸収能が「本ジイモニウム混合物」より若干劣り、ヘーズ値も高めで、また、「本ジイモニウム混合物」の中でもnが小さいつまりイソブチル基が多いジイモニウム化合物の含有比率が高くなるに従ってヘーズ値が高くなる傾向にある。以上のことから、「本ジイモニウム混合物」はノルマルプロピル基が8個、及びイソブチル基が8個の単一品を使用するより物性面或いは取り扱いやすさの面で勝り、また、「本ジイモニウム混合物」でもどちらかに偏り過ぎない化合物の混合物がより適しており、前記したマススペクトルのピーク強度から計算したnが3〜6のジイモニウム化合物の組成割合の和が全体(nが0〜8の組成割合の合計)の70%以上であり、98%以下である混合物がより好ましい。   “This dimonium mixture” is a mixture of two or more kinds of dimonium compounds. However, in a single product of dimonium compounds having 8 normal propyl groups (n = 8 in formula (1)), it is frequently used as a solvent for coating. Insufficient solubility in solvents such as MEK tends to form aggregates on the coated surface, and the near infrared absorptivity tends to be poor. As n becomes larger, that is, as the ratio of the diimonium compound having a large number of normal propyl groups becomes higher, the solvent solubility becomes inferior and the coating becomes difficult. Further, when all of the eight are isobutyl groups (n = 0 in the formula (1)), the near-infrared absorption ability is slightly inferior to that of the “present dimonium mixture” and the haze value is also higher. The haze value tends to increase as the content ratio of the diimonium compound having a small n, that is, a large number of isobutyl groups, increases. From the above, the “present dimonium mixture” is superior in terms of physical properties or ease of handling than using a single product having 8 normal propyl groups and 8 isobutyl groups. Mixtures of compounds that are not too biased in either direction are more suitable, and the sum of the composition ratios of the diimonium compounds having n of 3 to 6 calculated from the peak intensity of the mass spectrum described above is the total (where n is the composition ratio of 0 to 8). A mixture that is 70% or more and 98% or less of the total) is more preferable.

次に、「本ジイモニウム混合物」を透明支持フィルム上にバインダー樹脂層として保持させる方法について述べる。
「本ジイモニウム混合物」を、バインダー樹脂と、必要に応じてネオン光吸収色素、色調整色素、レベリング剤、帯電防止剤、酸化防止剤、分散剤、難燃剤、滑剤、可塑剤、紫外線吸収剤、その他添加剤等と共に溶剤中に溶解及び/又は分散させて塗工液とし、塗工機にて塗工し、乾燥する方法が採用出来る。また、熱硬化性、活性エネルギー線硬化性などのバインダー樹脂を使用した場合は、乾燥後、硬化工程が必要であるが、硬化熱や活性エネルギー線で近赤外線やネオン光の吸収化合物の劣化が生じたり、工程が増えたりするので、特別な事情がない限り、熱可塑性のバインダー樹脂を使用するのが望ましい。
Next, a method for holding the “present dimonium mixture” as a binder resin layer on the transparent support film will be described.
`` This dimonium mixture '' is mixed with a binder resin and, if necessary, a neon light absorbing dye, a color adjusting dye, a leveling agent, an antistatic agent, an antioxidant, a dispersant, a flame retardant, a lubricant, a plasticizer, an ultraviolet absorber, In addition, it is possible to employ a method of dissolving and / or dispersing in a solvent together with additives and the like to form a coating liquid, coating with a coating machine, and drying. In addition, when a binder resin such as thermosetting or active energy ray curable is used, a curing step is required after drying. However, near infrared and neon light absorbing compounds are deteriorated by curing heat and active energy rays. As a result, it is desirable to use a thermoplastic binder resin unless there are special circumstances.

バインダー樹脂としては塗工しやすく、透明支持フィルムとの密着性がよく、可視光線透過性がよく、面質等に問題がなければ特に限定されないが、取り扱いやすさからポリエステル系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、ポリオレフィン系樹脂又はポリカーボネート系樹脂等の熱可塑性樹脂から選択されるのが好ましい。塗工してロール状に巻き取った後、保存中にブロッキング等の問題を起こさないようなガラス転移温度やその他の物性を有し、使用される「本ジイモニウム混合物」の「熱安定性」に悪影響を及ぼさない材質の選択が好ましい。   The binder resin is easy to apply, has good adhesion to a transparent support film, has good visible light transmission properties, and is not particularly limited as long as there is no problem with the surface quality, etc., but polyester resins and acrylic resins are easy to handle. It is preferably selected from thermoplastic resins such as polyamide resins, polyurethane resins, polyolefin resins or polycarbonate resins. After coating and winding up into a roll, it has a glass transition temperature and other physical properties that do not cause problems such as blocking during storage, and the "thermal stability" of the "diimonium mixture" used It is preferable to select a material that does not adversely affect the material.

溶剤としては、例えばメタノール、エタノール、イソプロパノール、ジアセトンアルコール、エチルセロソルブ又はメチルセロソルブ等のアルコール類、アセトン、メチルエチルケトン(MEK)、シクロペンタノン又はシクロヘキサノン等のケトン類、N,N−ジメチルホルムアミド又はN,N−ジメチルアセトアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、テトラヒドロフラン、ジオキサン又はエチレングリコールモノメチルエーテル等のエーテル類、酢酸メチル、酢酸エチル又は酢酸ブチル等のエステル類、クロロホルム、塩化メチレン、ジクロロエチレン又はトリクロロエチレン等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン、モノクロルベンゼン又はジクロルベンゼン等の芳香族類、又はn−へキサン、n−ヘプタン等の脂肪族炭化水素類、テトラフルオロプロピルアルコール又はペンタフルオロプロピルアルコール等のフッ素系溶剤等を用いることができ、各材料に対する溶解力が高く、塗工、乾燥等において不都合がなく、安全性についての問題がない溶剤を選択することが好ましい。   Examples of the solvent include alcohols such as methanol, ethanol, isopropanol, diacetone alcohol, ethyl cellosolve or methyl cellosolve, ketones such as acetone, methyl ethyl ketone (MEK), cyclopentanone or cyclohexanone, N, N-dimethylformamide or N Amides such as N-dimethylacetamide, sulfoxides such as dimethyl sulfoxide, ethers such as tetrahydrofuran, dioxane or ethylene glycol monomethyl ether, esters such as methyl acetate, ethyl acetate or butyl acetate, chloroform, methylene chloride, dichloroethylene or Aliphatic hydrocarbons such as trichloroethylene, aromatics such as benzene, toluene, xylene, monochlorobenzene or dichlorobenzene, or n-hexane Aliphatic hydrocarbons such as n-heptane, fluorine-based solvents such as tetrafluoropropyl alcohol or pentafluoropropyl alcohol, etc. can be used, and the solubility in each material is high, and there is no inconvenience in coating, drying, It is preferable to select a solvent that does not have a safety problem.

必要に応じて使用される添加剤のうち、ネオン光吸収化合物は上記の粘着層に含有させる場合と同様の化合物が使用され、他の添加剤については使用される「本ジイモニウム混合物」の「熱安定性」や要望される品質性能に配慮しながら溶液中に含有させて使用される。   Of the additives used as necessary, the neon light absorbing compound is the same as that used in the above-mentioned adhesive layer, and other additives are used in the “heat of the present diimonium mixture”. It is used by being included in the solution while taking into consideration the “stability” and the desired quality performance.

塗工液の塗工は、フローコート法、スプレー法、バーコート法、グラビアコート法、ロールコート法、ブレードコート法、エアーナイフコート法、リップコート法又はダイコーター法等の公知の塗工方法で、仕上がりの層厚が通常0.1〜30μm、好ましくは0.5〜10μmとなるように塗付され、乾燥することによって処理層が固定される。尚、別途硬化が必要な場合は乾燥後、硬化処理を行って処理層を固定する。近赤外線の遮蔽性としては粘着層に「本ジイモニウム混合物」を含有させる場合と同様に、波長800〜1100nmの近赤外線の透過率が10%以下になるよう設計されるのが好ましい。使用する溶剤量は塗工方法により異なるが、主ポリマーの重量平均分子量が30万前後の熱可塑性アクリル樹脂系バインダーを使用し、マイクログラビアコーターで塗布する場合は、15〜30重量%になるように溶剤で希釈するのが好ましい。   Coating of the coating liquid is a known coating method such as a flow coating method, a spray method, a bar coating method, a gravure coating method, a roll coating method, a blade coating method, an air knife coating method, a lip coating method or a die coater method. Thus, the finished layer thickness is usually 0.1 to 30 μm, preferably 0.5 to 10 μm, and the treatment layer is fixed by drying. In addition, when hardening is needed separately, after drying, a hardening process is performed and a process layer is fixed. The near-infrared shielding property is preferably designed so that the transmittance of near-infrared light having a wavelength of 800 to 1100 nm is 10% or less, as in the case where the present layer contains the “diimonium mixture”. The amount of solvent used varies depending on the coating method, but when using a thermoplastic acrylic resin binder having a weight average molecular weight of about 300,000 of the main polymer and coating with a micro gravure coater, it will be 15 to 30% by weight. It is preferable to dilute with a solvent.

ジイモニウム化合物がバインダー樹脂層に含有される場合、最も一般的に使用されている六フッ化アンチモン酸イオンをアニオンとするジイモニウム化合物、例えばカヤソルブIRG−022(商品名;日本化薬社製)や多くのジイモニウム化合物では特許文献3に記載のようにTgが85℃以下と低いバインダー樹脂を使用すると「熱安定性」が劣るが、「本ジイモニウム混合物」では85℃以下のバインダー樹脂を使用しても問題なく、また、特許文献3に開示されているようなバインダー樹脂層中の残留溶剤量の管理を要せず、通常の乾燥条件による乾燥でも支障なく使用可能である。また、「本ジイモニウム混合物」は前記式(1)において、全ての置換基がノルマルプロピル基(n=8)の単一品と比較すると、溶剤溶解性が優れているので取り扱いやすく、「本ジイモニウム混合物」はバインダー樹脂層に含有させる方法でも優れた近赤外線吸収フィルムを得ることができる。   When the diimonium compound is contained in the binder resin layer, the most commonly used diimonium compound having an anion of hexafluoroantimonate ion, such as Kayasolv IRG-022 (trade name; manufactured by Nippon Kayaku Co., Ltd.) and many As described in Patent Document 3, the use of a binder resin having a low Tg of 85 ° C. or lower results in poor “thermal stability”, but the “diimonium mixture” uses a binder resin having a temperature of 85 ° C. or lower. There is no problem, and it is not necessary to manage the amount of residual solvent in the binder resin layer as disclosed in Patent Document 3, and it can be used without any problem even in drying under normal drying conditions. In addition, “the present diimonium mixture” in the above formula (1) is easy to handle because it has superior solvent solubility compared to a single product in which all substituents are normal propyl groups (n = 8). "" Can also obtain an excellent near-infrared-absorbing film by the method of containing it in the binder resin layer.

次に、本発明の光学フィルタは、透明支持フィルム上に「本ジイモニウム混合物」を含有した層が設けられている本発明の近赤外線吸収フィルムを最低の構成要素としてこれと下記のような機能を有する透明支持フィルムとを、積層又は貼り合わせて得られる。これらの光学フィルタの好ましい用途はPDP用であり、本発明の光学フィルタはあらかじめ透明のガラス板やプラスチック板に貼合してPDPの前面に取り付けても、PDPの前面に直接貼合して使用してもよい。   Next, the optical filter of the present invention has the following functions with the near-infrared absorbing film of the present invention in which the layer containing the “diimonium mixture” is provided on the transparent support film as a minimum component. It is obtained by laminating or pasting the transparent support film having. The preferred use of these optical filters is for PDP, and the optical filter of the present invention is used by pasting directly on the front surface of the PDP even if it is pasted on a transparent glass plate or plastic plate and attached to the front surface of the PDP. May be.

本発明の光学フィルタにおける各種フィルムの構成例を挙げると下記(1)〜(13)の例が挙げられる。
下記記載において、NIRAは近赤外線吸収性を、NeAはネオン光吸収性を表し、中括弧({ })で括った部分は本発明の近赤外線吸収フィルムを、小括弧(( ))で括った部分は本発明以外の機能性フィルムをそれぞれ示す。これらの構成例から明らかなように、例えば、減反射性透明支持フィルムのような機能性を有する透明支持フィルムの粘着層に「本ジイモニウム混合物」やネオン光吸収化合物を含有せしめることにより、2種類のフィルムを貼合するのみで、PDP用の光学フィルタを作製することが可能である。更に、減反射フィルムの裏面にメッシュの電磁波遮蔽を施したフィルムを透明支持フィルムとして、そのメッシュ面に「本ジイモニウム混合物」及びネオン光吸収剤を含有するバイダー樹脂層や接着層を設けることにより、1種類のフィルムでPDP用の光学フィルタを製造することも可能である。本発明の光学フィルタとしては、本発明の近赤外線吸収フィルムと電磁波遮蔽能を有するフイルム又は減反射機能を有するフィルムを含む態様が好ましい。
Examples of configurations of various films in the optical filter of the present invention include the following (1) to (13).
In the following description, NIRA represents near-infrared absorptivity, NeA represents neon light absorptivity, and the portion enclosed in braces ({}) encloses the near-infrared absorbing film of the present invention in parentheses (()). A part shows each functional film other than this invention. As is apparent from these structural examples, for example, by adding “this diimonium mixture” or a neon light absorbing compound to the adhesive layer of a transparent support film having functionality such as a low-reflection transparent support film, It is possible to produce an optical filter for PDP simply by pasting the film. Furthermore, by providing a film with electromagnetic shielding of the mesh on the back surface of the anti-reflection film as a transparent support film, by providing a binder resin layer or an adhesive layer containing “the present diimonium mixture” and a neon light absorber on the mesh surface, It is also possible to manufacture an optical filter for PDP with one kind of film. As an optical filter of the present invention, an embodiment including the near-infrared absorbing film of the present invention and a film having an electromagnetic wave shielding ability or a film having a function of reducing reflection is preferable.

(1){減反射性フィルム/NIRA・NeA・色調整粘着層}/(電磁波遮蔽フィルム/粘着層)、
(2){減反射性フィルム/NIRA・色調整粘着層}/(電磁波遮蔽フィルム/NeA粘着層)、
(3)(減反射フィルム/粘着層)/{電磁波遮蔽フィルム/NIRA・NeA・色調整粘着層}、
(4){防眩・減反射フィルム/NIRA・NeA・色調整粘着層}/(電磁波遮蔽フィルム/粘着層)、
(5)(減反射性フィルム/粘着層)/{NIRA・NeAバインダー樹脂層/PET/色調整粘着層}/(電磁波遮蔽フィルム/粘着層)、
(6)(減反射性フィルム/粘着層)/{NeAフィルム/NIRA・色調整粘着層}/(電磁波遮蔽フィルム/粘着層)、
(7) (減反射フィルム/粘着層)/(電磁波遮蔽フィルム/粘着層)/{NeAフィルム/NIRA・色調整粘着層}、
(8) (減反射フィルム/粘着層)/(電磁波遮蔽フィルム)/{NIRA・NeA吸収粘着層/PET/色調整粘着層}、
(9)(減反射フィルム/粘着層)/{NIRA・NeAバインダー樹脂層/PET/色調整粘着層}/(電磁波遮蔽フィルム/粘着層)、
(10){減反射フィルム/NIRA・NeAバインダー樹脂層/色調整粘着層}/(電磁波遮蔽フィルム/粘着層)
(11){減反射フィルム/NIRA・NeAバインダー樹脂層/色調整粘着層}/(電磁波遮蔽フィルム/粘着層)
(12){減反射フィルム/電磁波遮蔽層/NIRAバインダー樹脂層/NeA粘着層}
(13){減反射フィルム/電磁波遮蔽層/NIRA・NeA粘着層}
(1) {Non-reflective film / NIRA / NeA / color adjusting adhesive layer} / (electromagnetic wave shielding film / adhesive layer),
(2) {Non-reflective film / NIRA / color adjusting adhesive layer} / (electromagnetic wave shielding film / NeA adhesive layer),
(3) (anti-reflection film / adhesive layer) / {electromagnetic wave shielding film / NIRA / NeA / color adjusting adhesive layer},
(4) {Anti-glare / anti-reflection film / NIRA / NeA / color adjusting adhesive layer} / (electromagnetic wave shielding film / adhesive layer),
(5) (Non-reflective film / adhesive layer) / {NIRA / NeA binder resin layer / PET / color adjusting adhesive layer} / (electromagnetic wave shielding film / adhesive layer),
(6) (Non-reflective film / adhesive layer) / {NeA film / NIRA / color adjusting adhesive layer} / (electromagnetic wave shielding film / adhesive layer),
(7) (Non-reflective film / adhesive layer) / (electromagnetic wave shielding film / adhesive layer) / {NeA film / NIRA / color adjusting adhesive layer},
(8) (Non-reflection film / adhesive layer) / (electromagnetic wave shielding film) / {NIRA / NeA absorbing adhesive layer / PET / color adjusting adhesive layer},
(9) (anti-reflection film / adhesive layer) / {NIRA / NeA binder resin layer / PET / color adjusting adhesive layer} / (electromagnetic wave shielding film / adhesive layer),
(10) {Non-reflection film / NIRA / NeA binder resin layer / color adjusting adhesive layer} / (electromagnetic wave shielding film / adhesive layer)
(11) {Non-reflection film / NIRA / NeA binder resin layer / color adjusting adhesive layer} / (electromagnetic wave shielding film / adhesive layer)
(12) {Non-reflection film / Electromagnetic wave shielding layer / NIRA binder resin layer / NeA adhesive layer}
(13) {Anti-reflection film / electromagnetic wave shielding layer / NIRA / NeA adhesive layer}

以下実施例により本発明を更に具体的に説明するが、本発明はかかる実施例に限定されるものではない。尚、実施例において部は重量部を、%は重量%をそれぞれ意味する。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples. In Examples, “part” means “part by weight” and “%” means “% by weight”.

合成例1
(置換反応)
DMF100部中にN,N,N’,N’−テトラキス(アミノフェニル)−p−フェニレンジアミン7部、炭酸カリウム27部、ヨウ化カリウム14.8部、イソブチルブロミド32部、1−ブロモプロパン3部を加え、90℃で2時間反応、その後、110℃で6時間反応させた。冷却後析出した結晶を濾別し、得られた結晶を熱DMFに溶解させる。不溶解分を除去した後、溶解液にメタノールを加え、析出した結晶を濾別し、水で洗浄した後、乾燥し、薄緑色結晶の前駆体(前記式(3)を参照)6.8部を得た。
(酸化反応)
DMF40部中に上記前駆体結晶5部を加え、60℃に加熱溶解した後、トリス(トリフルオロメタンスルホニル)カルボニウム酸の58%水溶液9部を加え、次いでDMF30部に溶解した硝酸銀1.9部を加え、30分間加熱撹拌した。不溶解分を濾別した後、反応液に水を加え生成した結晶を濾過、水洗、乾燥し、ジイモニウム化合物の混合物5.2部を得た。この混合物中の各成分の組成割合の算出は前記の方法によって行い、結果は表1に記載した。この混合物の極大吸収波長は1107nm(ジクロロメタン)であった。
Synthesis example 1
(Substitution reaction)
7 parts of N, N, N ′, N′-tetrakis (aminophenyl) -p-phenylenediamine, 27 parts of potassium carbonate, 14.8 parts of potassium iodide, 32 parts of isobutyl bromide, 1-bromopropane 3 in 100 parts of DMF Part was added and reacted at 90 ° C. for 2 hours and then at 110 ° C. for 6 hours. After cooling, the precipitated crystals are separated by filtration, and the obtained crystals are dissolved in hot DMF. After removing the insoluble matter, methanol was added to the solution, and the precipitated crystals were separated by filtration, washed with water, dried, and a precursor of light green crystals (see formula (3) above) 6.8 Got a part.
(Oxidation reaction)
5 parts of the above precursor crystals are added to 40 parts of DMF, and heated and dissolved at 60 ° C., then 9 parts of a 58% aqueous solution of tris (trifluoromethanesulfonyl) carbonic acid is added, and then 1.9 parts of silver nitrate dissolved in 30 parts of DMF are added. In addition, it was heated and stirred for 30 minutes. After filtering the insoluble matter, water was added to the reaction solution, and the resulting crystals were filtered, washed with water and dried to obtain 5.2 parts of a mixture of diimonium compounds. Calculation of the composition ratio of each component in this mixture was performed by the method described above, and the results are shown in Table 1. The maximum absorption wavelength of this mixture was 1107 nm (dichloromethane).

合成例2
(置換反応)
合成例1の1−ブロモプロパンの3部を7.3部に代える以外は合成例1と同様の方法で置換反応と精製を行い、薄緑色結晶の前駆体6.5部を得た。
(酸化反応)
合成例1で得られた前駆体を上記の前駆体に代える以外は合成例1と同様の方法で酸化反応と精製を行い、ジイモニウム化合物の混合物4.5部を得た。この混合物中の各成分の組成割合の算出は前記の方法によって行い、結果は表1に記載した。この混合物の極大吸収波長は1092nm(ジクロロメタン)であった。
Synthesis example 2
(Substitution reaction)
A substitution reaction and purification were carried out in the same manner as in Synthesis Example 1 except that 3 parts of 1-bromopropane in Synthesis Example 1 were replaced with 7.3 parts to obtain 6.5 parts of a light green crystal precursor.
(Oxidation reaction)
An oxidation reaction and purification were performed in the same manner as in Synthesis Example 1 except that the precursor obtained in Synthesis Example 1 was replaced with the above precursor to obtain 4.5 parts of a mixture of diimonium compounds. Calculation of the composition ratio of each component in this mixture was performed by the method described above, and the results are shown in Table 1. The maximum absorption wavelength of this mixture was 1092 nm (dichloromethane).

合成例3
(置換反応)
合成例1の1−ブロモプロパンの3部を10部に代える以外は合成例1と同様の方法で置換反応と精製を行い、薄緑色結晶の前駆体6.2部を得た。
(酸化反応)
合成例1の前駆体を上記の前駆体に代える以外は合成例1と同様の方法で酸化反応と精製を行い、ジイモニウム化合物の混合物6.1部を得た。この混合物中の各成分の組成割合の算出は前記の方法によって行い、結果は表1に記載した。この混合物の極大吸収波長は1103nm(ジクロロメタン)であった。
Synthesis example 3
(Substitution reaction)
A substitution reaction and purification were carried out in the same manner as in Synthesis Example 1 except that 3 parts of 1-bromopropane in Synthesis Example 1 were replaced with 10 parts to obtain 6.2 parts of a light green crystal precursor.
(Oxidation reaction)
An oxidation reaction and purification were performed in the same manner as in Synthesis Example 1 except that the precursor of Synthesis Example 1 was replaced with the above precursor, to obtain 6.1 parts of a mixture of diimonium compounds. Calculation of the composition ratio of each component in this mixture was performed by the method described above, and the results are shown in Table 1. The maximum absorption wavelength of this mixture was 1103 nm (dichloromethane).

合成例4
(置換反応)
合成例1の1−ブロモプロパンの3部を12.7部に代えて加える以外は合成例1と同様の方法で置換反応と精製を行い、薄緑色結晶の前駆体7.6部を得た。
(酸化反応)
合成例1の前駆体を上記の前駆体に代える以外は合成例1と同様の方法で酸化反応と精製を行い、ジイモニウム化合物の混合物5.4部を得た。この混合物中の各成分の組成割合の算出は前記の方法によって行い、結果は表1に記載した。この混合物の極大吸収波長は1101nm(ジクロロメタン)であった。
Synthesis example 4
(Substitution reaction)
A substitution reaction and purification were carried out in the same manner as in Synthesis Example 1 except that 3 parts of 1-bromopropane in Synthesis Example 1 was added instead of 12.7 parts to obtain 7.6 parts of a light green crystal precursor. .
(Oxidation reaction)
An oxidation reaction and purification were performed in the same manner as in Synthesis Example 1 except that the precursor of Synthesis Example 1 was replaced with the above precursor, to obtain 5.4 parts of a mixture of diimonium compounds. Calculation of the composition ratio of each component in this mixture was performed by the method described above, and the results are shown in Table 1. The maximum absorption wavelength of this mixture was 1101 nm (dichloromethane).

表1に合成例1〜4で得られたジイモニウム化合物の混合物中の各成分の割合を纏めた。   Table 1 summarizes the ratio of each component in the mixture of diimonium compounds obtained in Synthesis Examples 1 to 4.

(溶剤溶解性)
合成例1〜4で得られたジイモニウム化合物及び下記比較例1、2、3で使用したジイモニウム化合物の溶剤溶解性を次のような方法で測定した。
対象ジイモニウム化合物の5%メチルエチルケトン溶液を室温で作製し、溶解状態を観察した。その結果、合成例1〜4及び比較例2、3で使用したジイモニウム化合物は透明状態であるのに対し、比較例1で使用したジイモニウム化合物は完全には溶解せず、沈降物が見られた。
(Solvent solubility)
The solvent solubility of the diimonium compound obtained in Synthesis Examples 1 to 4 and the diimonium compound used in Comparative Examples 1, 2, and 3 below was measured by the following method.
A 5% methyl ethyl ketone solution of the target dimonium compound was prepared at room temperature, and the dissolved state was observed. As a result, the diimonium compound used in Synthesis Examples 1 to 4 and Comparative Examples 2 and 3 was in a transparent state, whereas the diimonium compound used in Comparative Example 1 was not completely dissolved, and a precipitate was observed. .

Figure 2007099990
Figure 2007099990

実施例1
(近赤外線吸収フィルム1の調製)
下記表2に示す各原料を均一になるように混合溶解した塗工液を、MRF−75(商品名、PET剥離フィルム、三菱化学ポリエステルフィルム製)上にコンマコーターで0.8m/分の塗工速度、乾燥温度110℃により、粘着層の厚さが18μmになるように塗工して粘着層を形成した。次いで、KAYACOAT ARS−D501(商品名、減反射フィルム、日本化薬製)の減反射面の反対面に、粘着層の設けられた上記PET剥離フィルムをロールにより加圧圧着し、減反射性を有し、ネオン光も吸収する本発明の近赤外線吸収フィルム1を得た。
Example 1
(Preparation of near-infrared absorbing film 1)
Apply a coating solution prepared by mixing and dissolving the raw materials shown in Table 2 below uniformly on MRF-75 (trade name, PET release film, manufactured by Mitsubishi Chemical Polyester Film) with a comma coater. The pressure-sensitive adhesive layer was formed by coating so that the thickness of the pressure-sensitive adhesive layer was 18 μm at a processing speed and a drying temperature of 110 ° C. Next, the PET release film provided with the adhesive layer is pressure-bonded with a roll on the opposite side of the anti-reflection surface of KAYACOAT ARS-D501 (trade name, anti-reflection film, manufactured by Nippon Kayaku Co., Ltd.). The near-infrared absorbing film 1 of the present invention having neon light was obtained.

Figure 2007099990
Figure 2007099990

(註)TAP−2;テトラアザポルフィリン系化合物、チヌビン109;ベンゾトリアゾール系化合物、コロネートHL;イソシアネート系硬化剤 (Ii) TAP-2; tetraazaporphyrin-based compound, tinuvin 109; benzotriazole-based compound, coronate HL; isocyanate-based curing agent

実施例2
(近赤外線吸収フィルム2の調製)
実施例1の合成例1のジイモニウム化合物の混合物の代わりに合成例2のジイモニウム化合物の混合物を使用する以外は実施例1と同様の方法で減反射性を有し、ネオン光を吸収する本発明の近赤外線吸収フィルム2を得た。
(PDP用光学フィルタ1の調製)
ES−1534U(HCD−42−02)A(商品名、電磁波遮蔽フィルム、日立化成工業製)の保護フィルムを剥がし、その上に、上記近赤外線吸収フィルム2を粘着層を介して貼合し、本発明のPDP用光学フィルタを得た。このフィルタはPDPモジュールの前面に直接貼っても、ガラス板(透明板)に貼ってモジュールの前に取り付けても、PDP用光学フィルタとして必要な性能を十分に発揮するものであった。
Example 2
(Preparation of near-infrared absorbing film 2)
The present invention absorbs neon light and has a low reflection property in the same manner as in Example 1 except that the mixture of the diimonium compound of Synthesis Example 2 is used instead of the mixture of the diimonium compound of Synthesis Example 1 of Example 1. No near infrared absorption film 2 was obtained.
(Preparation of optical filter 1 for PDP)
The protective film of ES-1534U (HCD-42-02) A (trade name, electromagnetic wave shielding film, manufactured by Hitachi Chemical Co., Ltd.) is peeled off, and the near-infrared absorbing film 2 is bonded thereon via an adhesive layer. An optical filter for PDP of the present invention was obtained. Even if this filter is directly attached to the front surface of the PDP module or attached to a glass plate (transparent plate) and attached in front of the module, the filter exhibits sufficient performance as an optical filter for PDP.

実施例3
(近赤外線吸収フィルム3の調製)
実施例1の合成例1のジイモニウム化合物の混合物の代わりに合成例3のジイモニウム化合物の混合物を使用する以外は実施例1と同様の方法で減反射性を有し、ネオン光を吸収する本発明の近赤外線吸収フィルム3を得た。
(PDP用光学フィルタ2の作製)
ES−1534U(HCD−42−02)A(商品名、電磁波遮蔽フィルム、日立化成工業製)の保護フィルムを剥がし、その上に、上記近赤外線吸収フィルム3を粘着層を介して貼合し、本発明のPDP用光学フィルタを得た。このフィルタは電磁波遮蔽フィルムの粘着層を介してPDPモジュールの前面に直接貼っても、ガラス板に貼ってモジュールの前に取り付けても、PDP用光学フィルタとして必要な性能を十分に発揮するものであった。
Example 3
(Preparation of near-infrared absorbing film 3)
The present invention absorbs neon light in the same manner as in Example 1 except that the mixture of the diimonium compound of Synthesis Example 3 is used instead of the mixture of the diimonium compound of Synthesis Example 1 of Example 1. The near-infrared absorbing film 3 was obtained.
(Production of optical filter 2 for PDP)
The protective film of ES-1534U (HCD-42-02) A (trade name, electromagnetic wave shielding film, manufactured by Hitachi Chemical Co., Ltd.) is peeled off, and the near-infrared absorbing film 3 is bonded thereon via an adhesive layer. An optical filter for PDP of the present invention was obtained. Even if this filter is affixed directly to the front surface of the PDP module via an adhesive layer of an electromagnetic wave shielding film, or is attached to the front of the module by attaching it to a glass plate, the filter can sufficiently perform the performance required as an optical filter for PDP. there were.

実施例4
(近赤外線吸収フィルムの調製4)
実施例1の合成例1のジイモニウム化合物の混合物の代わりに合成例4のジイモニウム化合物の混合物を使用する以外は実施例1と同様の方法で減反射性を有し、ネオン光を吸収する本発明の近赤外線吸収フィルム4を得た。
Example 4
(Preparation of near-infrared absorbing film 4)
The present invention absorbs neon light and has a low reflection property in the same manner as in Example 1 except that the mixture of the diimonium compound of Synthesis Example 4 is used instead of the mixture of the diimonium compound of Synthesis Example 1 of Example 1. The near-infrared absorbing film 4 was obtained.

実施例5
(近赤外線吸収フィルム5の調製)
MEK40部に合成例2のジイモニウム化合物の混合物0.5部、フォレットPAN−125(商品名、Tgが70℃のアクリル系バインダー樹脂、綜研化学製)37部を溶解させて塗工液を得た。この塗工液をコスモシャインA4300(商品名、厚さ100ミクロンのポリエステルフィルム、東洋紡績製)上にマイクログラビアコーターでマイクログラビアロールを用いて10m/分のライン速度で塗工し、70〜130℃で乾燥して、合成例2のジイモニウム化合物の混合物をバインダー樹脂層に含有する本発明の近赤外線吸収フィルム5を得た。
Example 5
(Preparation of near-infrared absorbing film 5)
In 40 parts of MEK, 0.5 part of the mixture of the diimonium compound of Synthesis Example 2 and 37 parts of foret PAN-125 (trade name, acrylic binder resin having a Tg of 70 ° C., manufactured by Soken Chemical Co., Ltd.) were dissolved to obtain a coating solution. . This coating solution was applied onto Cosmo Shine A4300 (trade name, polyester film with a thickness of 100 microns, manufactured by Toyobo Co., Ltd.) with a micro gravure coater using a micro gravure roll at a line speed of 10 m / min. It dried at ° C and obtained the near-infrared absorption film 5 of this invention which contains the mixture of the diimonium compound of the synthesis example 2 in a binder resin layer.

比較例1
合成例1のイソブチルブロミド32部と1−ブロモプロパン12.7部の代わりに1−ブロモプロパン44.7部を用いる以外は合成例1と同様の方法で式(1)における置換基8個がすべてノルマルプロピル基であるジイモニウム化合物を作製し、これを合成例1のジイモニウム化合物の混合部の代わりに使用する以外は実施例1と同様の方法で比較用の近赤外線吸収フィルムを得た。
Comparative Example 1
In the same manner as in Synthesis Example 1, except that 32 parts of isobutyl bromide in Synthesis Example 1 and 14.7 parts of 1-bromopropane were used, 4 substituents in Formula (1) were used. A comparative near-infrared absorbing film was obtained in the same manner as in Example 1 except that a diimonium compound which was all normal propyl group was prepared and used instead of the mixed part of the diimonium compound of Synthesis Example 1.

比較例2
合成例1のイソブチルブロミド32部と1−ブロモプロパン12.7部の代わりにイソブチルブロミド44.7部を用いる以外は合成例1と同様の方法で式(1)における置換基8個がすべてイソブチル基であるジイモニウム化合物を作製し、これを合成例1のジイモニウム化合物の混合部の代わりに使用する以外は実施例1と同様の方法で比較用の近赤外線吸収フィルムを得た。
Comparative Example 2
Except for using 32 parts of isobutyl bromide of Synthesis Example 1 and 44.7 parts of isobutyl bromide instead of 12.7 parts of 1-bromopropane, all 8 substituents in Formula (1) are isobutyl in the same manner as in Synthesis Example 1. A comparative near-infrared absorbing film was obtained in the same manner as in Example 1 except that a base diimonium compound was prepared and used instead of the mixed portion of the diimonium compound of Synthesis Example 1.

比較例3
実施例5の合成例2のジイモニウム化合物の混合物の代わりにカヤソルブ IRG−022(商品名、六フッ化アンチモンアニオンのジイモニウム化合物、日本化薬製)を同量使用する以外は実施例5と同様の方法でバインダー樹脂層に近赤外線吸収剤を含有する比較用近赤外線吸収フィルムを得た。
Comparative Example 3
Similar to Example 5 except that the same amount of Kayasolv IRG-022 (trade name, diimonium compound of antimony hexafluoride anion, manufactured by Nippon Kayaku Co., Ltd.) was used instead of the mixture of diimonium compounds of Synthesis Example 2 of Example 5. The comparative near-infrared absorption film which contains a near-infrared absorber in a binder resin layer by the method was obtained.

性能試験(1)(近赤外線吸収剤が粘着層に含有される近赤外線吸収フィルム)
実施例1乃至4で得られた近赤外線吸収フィルム及び各比較例1及び2で得られた比較用の近赤外線吸収フィルムの各試験片を80℃の恒温槽中に500時間保管した時の、各極大吸収波長における透過率、視感透過率(Y%)及び色度座標(x、y)の変化を測定し、各試験片の耐熱性を比較した。尚、透過率はUV−3150(商品名、分光光度計、島津製作所製)で測定し、視感透過率及び色度座標(x、y)はこの透過率からJIS Z 8701のXYZ表色系による色の表示方法に準拠して算出した。又、ヘーズ値はTC−H3DPK(商品名、ヘーズメーター、東京電色技術センター製)によって測定した。更に、外観変化は肉眼によって観察した。
性能試験(1)の結果を表3に纏めた。
Performance test (1) (Near-infrared absorbing film containing a near-infrared absorber in the adhesive layer)
When the test pieces of the near-infrared absorbing film obtained in Examples 1 to 4 and the comparative near-infrared absorbing film obtained in Comparative Examples 1 and 2 were stored in a thermostat at 80 ° C. for 500 hours, Changes in transmittance, luminous transmittance (Y%) and chromaticity coordinates (x, y) at each maximum absorption wavelength were measured, and the heat resistance of each test piece was compared. The transmittance is measured with UV-3150 (trade name, spectrophotometer, manufactured by Shimadzu Corporation), and the luminous transmittance and chromaticity coordinates (x, y) are determined based on the XYZ color system of JIS Z 8701. It was calculated in accordance with the color display method. The haze value was measured by TC-H3DPK (trade name, haze meter, manufactured by Tokyo Denshoku Technology Center). Furthermore, the appearance change was observed with the naked eye.
The results of the performance test (1) are summarized in Table 3.

Figure 2007099990
Figure 2007099990

(考察)前記式(1)においてnが8のジイモニウム化合物を使用した比較例1はヘーズ値が高く、凝集物も生じた。又、前記式(1)においてnが0のジイモニウム化合物を使用した比較例2はヘーズ値が劣り、近赤外線吸収率も劣った。それに比べ、本願発明のnが異なる2種以上のジイモニウム化合物の混合物を用いた実施例1〜4の近赤外線吸収フィルムはいずれの項目も実用性がある結果であったが、殊に式(1)におけるnが3〜6の各成分の和が70%以上のジイモニウム化合物の混合物を粘着層に有する実施例2〜4の近赤外線吸収フィルムはいずれもヘーズ値、近赤外線遮蔽率で70%以下のもの(実施例1)より優れていた。尚、耐湿熱性(60℃、RH90%、500時間)における試験結果でも、概ね上記と同様な結果であった。耐湿熱性の結果を表4に纏めた。 (Consideration) Comparative Example 1 using a diimmonium compound in which n is 8 in the formula (1) has a high haze value, and aggregates are also formed. Moreover, the comparative example 2 which uses the diimonium compound whose n is 0 in the said Formula (1) was inferior in haze value, and the near-infrared absorptivity was also inferior. In contrast, the near-infrared absorbing films of Examples 1 to 4 using a mixture of two or more kinds of diimmonium compounds having different n values in the present invention were practical results in all items. The near-infrared absorbing films of Examples 2 to 4 each having a mixture of diimonium compounds in which the sum of each component having n of 3 to 6 is 70% or more in the adhesive layer are 70% or less in haze value and near-infrared shielding rate (Example 1). In addition, the test results in the heat and humidity resistance (60 ° C., RH 90%, 500 hours) were almost the same as described above. The results of heat and humidity resistance are summarized in Table 4.

Figure 2007099990
Figure 2007099990

性能試験(2)(近赤外線吸収剤がバイダ−樹脂層に含有される近赤外線吸収フィルム)
実施例5で得られた近赤外線吸収フィルム(本発明)及び比較例3で得られた比較用の近赤外線吸収フィルムの各試験片について、性能試験(1)の場合と同様な性能試験(耐熱性)を実施して表5に示される結果をえた。
Performance test (2) (Near-infrared absorbing film containing near-infrared absorber in binder-resin layer)
About each test piece of the near-infrared absorption film obtained by Example 5 (this invention) and the comparative near-infrared absorption film obtained by the comparative example 3, the performance test (heat resistance similar to the case of a performance test (1)) The results shown in Table 5 were obtained.

Figure 2007099990
Figure 2007099990

(考察)耐熱性試験では、近赤外線の透過率はいずれも10%以下であるが、比較例3は透過率の変化が大きい。色度座標では実施例5はバインダー樹脂のTgが70℃と低いにもかかわらず変化が少なく、外観変化もなかったが、比較例3はTgに影響されて色度座標のyの変化が大きく、外観が変化し、黄色味を帯びた。尚、耐湿熱性(60℃、RH90%、500時間)における試験結果でも、概ね上記と同様な結果であった。耐湿熱性の結果を表6に纏めた。 (Consideration) In the heat resistance test, the transmittance of near infrared rays is 10% or less, but Comparative Example 3 has a large change in transmittance. In the chromaticity coordinates, Example 5 had little change despite the low Tg of the binder resin of 70 ° C., and there was no change in appearance, but Comparative Example 3 was greatly affected by Tg and the change in y of the chromaticity coordinates was large. Appearance changed, yellowish. In addition, the test results in the heat and humidity resistance (60 ° C., RH 90%, 500 hours) were almost the same as described above. The results of moisture and heat resistance are summarized in Table 6.

Figure 2007099990
Figure 2007099990

Claims (8)

下記式(1)で表され、nが異なる2種以上のジイモニウム化合物の混合物が透明支持フィルム上に形成された層に含有されることを特徴とする近赤外線吸収フィルム。
Figure 2007099990
(式(1)中、n−Prはノルマルプロピル基を、iso−Buはイソブチル基をそれぞれ表し、nは0〜8の整数を表す。)
A near-infrared absorbing film, wherein a mixture of two or more diimonium compounds represented by the following formula (1) and having different n is contained in a layer formed on a transparent support film.
Figure 2007099990
(In Formula (1), n-Pr represents a normal propyl group, iso-Bu represents an isobutyl group, and n represents an integer of 0 to 8.)
式(1)のnが異なる2種以上のジイモニウム化合物の混合物が、式(1)におけるnが3〜6のジイモニウム化合物を70%(マススペクトルより算出)以上98%以下含有するものである請求項1に記載の近赤外線吸収フィルム。   The mixture of two or more kinds of diimonium compounds having different n in formula (1) contains 70% (calculated from mass spectrum) or more and 98% or less of diimonium compounds in which n is 3 to 6 in formula (1) Item 2. The near-infrared absorbing film according to Item 1. 透明支持フィルム上に形成された層が粘着層である請求項1又は請求項2に記載の近赤外線吸収フィルム。   The near-infrared absorbing film according to claim 1 or 2, wherein the layer formed on the transparent support film is an adhesive layer. 透明支持フィルム上に形成された層に、式(1)のnが異なる2種以上のジイモニウム化合物の混合物及び波長550〜620nmに極大吸収を有する化合物が含有される請求項1乃至請求項3のいずれか一項に記載の近赤外線吸収フィルム。   The layer formed on the transparent support film contains a mixture of two or more diimonium compounds having different n in formula (1) and a compound having a maximum absorption at a wavelength of 550 to 620 nm. The near-infrared absorption film as described in any one of Claims. 透明支持フィルムが減反射機能又は電磁波遮蔽機能を有するフィルムである請求項1乃至請求項4のいずれか一項に記載の近赤外線吸収フィルム。   The near-infrared absorbing film according to any one of claims 1 to 4, wherein the transparent support film is a film having a reduced reflection function or an electromagnetic wave shielding function. 請求項1乃至請求項5のいずれか一項に記載の近赤外線吸収フィルムを含むプラズマディスプレイパネル用光学フィルタ。   The optical filter for plasma display panels containing the near-infrared absorption film as described in any one of Claims 1 thru | or 5. 請求項1乃至請求項5のいずれか一項に記載の近赤外線吸収フィルムと、電磁波遮蔽能を有するフィルム及び/又は減反射機能を有するフィルムを含む請求項6に記載のプラズマディスプレイパネル用光学フィルタ。   The optical filter for a plasma display panel according to claim 6, comprising the near-infrared absorbing film according to any one of claims 1 to 5, a film having an electromagnetic wave shielding ability and / or a film having a function of reducing reflection. . 式(1)で表され、nが異なる2種以上のジイモニウム化合物の混合物。
Figure 2007099990
(式(1)中、n−Prはノルマルプロピル基を、iso−Buはイソブチル基をそれぞれ表し、nは0〜8の整数を表す)。
A mixture of two or more diimonium compounds represented by formula (1) and different n.
Figure 2007099990
(In formula (1), n-Pr represents a normal propyl group, iso-Bu represents an isobutyl group, and n represents an integer of 0 to 8).
JP2008502815A 2006-03-01 2007-02-28 Near-infrared absorbing film and optical filter for plasma display panel using the same Expired - Fee Related JP4553962B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006054612 2006-03-01
JP2006054612 2006-03-01
PCT/JP2007/053735 WO2007099990A1 (en) 2006-03-01 2007-02-28 Near infrared ray absorbing film and optical filter for plasma display panel using the same

Publications (2)

Publication Number Publication Date
JPWO2007099990A1 true JPWO2007099990A1 (en) 2009-07-23
JP4553962B2 JP4553962B2 (en) 2010-09-29

Family

ID=38459091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008502815A Expired - Fee Related JP4553962B2 (en) 2006-03-01 2007-02-28 Near-infrared absorbing film and optical filter for plasma display panel using the same

Country Status (6)

Country Link
JP (1) JP4553962B2 (en)
KR (2) KR101164880B1 (en)
CN (1) CN101395501B (en)
HK (1) HK1129733A1 (en)
TW (1) TW200801594A (en)
WO (1) WO2007099990A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4818236B2 (en) * 2007-09-18 2011-11-16 株式会社巴川製紙所 Adhesive sheet and optical filter member using the same
JP2009084400A (en) * 2007-09-28 2009-04-23 Gunze Ltd Near-infrared absorbing pressure-sensitive adhesive composition and multilayer optical film
CN101587085A (en) * 2009-04-02 2009-11-25 常州天合光能有限公司 Method for testing temperature resistance of TPT/PET packaging material
KR20110137385A (en) * 2009-04-14 2011-12-22 니폰 쇼쿠바이 컴파니 리미티드 Near infrared ray-absorbable adhesive composition
CN102031047B (en) * 2010-11-17 2013-04-10 南京工业大学 Near-infrared absorption film material with night vision compatible characteristic and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11249576A (en) * 1998-03-06 1999-09-17 Mitsubishi Chemical Corp Filter for plasma display panel
WO2003005076A1 (en) * 2001-07-04 2003-01-16 Nippon Kayaku Kabushiki Kaisha Diimonium salt compound, and near-infrared ray absorbing filter and optical information recording medium
WO2003097580A1 (en) * 2002-05-20 2003-11-27 Nippon Kayaku Kabushiki Kaisha Diimonium salt mixtures, aminium salts mixtures and use thereof
WO2004068199A1 (en) * 2003-01-27 2004-08-12 Nippon Kayaku Kabushiki Kaisha Near-infrared absorbing compound and near-infrared absorbing filter using same
JP2005031654A (en) * 2003-06-18 2005-02-03 Toyobo Co Ltd Near infrared absorbing film and front filter for plasma display
JP2005049848A (en) * 2003-07-16 2005-02-24 Asahi Glass Co Ltd Optical film
WO2005044782A1 (en) * 2003-11-10 2005-05-19 Nippon Kayaku Kabushiki Kaisha Diimonium salt compound and use thereof
WO2006028006A1 (en) * 2004-09-06 2006-03-16 Nippon Kayaku Kabushiki Kaisha Diimmonium compound and use thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101015647B1 (en) * 2002-11-22 2011-02-22 닛뽕 카릿또 가부시키가이샤 Coloring matter absorbing near-infrared ray and filter for cutting off near-infrared ray
US7332257B2 (en) * 2003-07-11 2008-02-19 Asahi Glass Company, Limited Composition for optical film, and optical film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11249576A (en) * 1998-03-06 1999-09-17 Mitsubishi Chemical Corp Filter for plasma display panel
WO2003005076A1 (en) * 2001-07-04 2003-01-16 Nippon Kayaku Kabushiki Kaisha Diimonium salt compound, and near-infrared ray absorbing filter and optical information recording medium
WO2003097580A1 (en) * 2002-05-20 2003-11-27 Nippon Kayaku Kabushiki Kaisha Diimonium salt mixtures, aminium salts mixtures and use thereof
WO2004068199A1 (en) * 2003-01-27 2004-08-12 Nippon Kayaku Kabushiki Kaisha Near-infrared absorbing compound and near-infrared absorbing filter using same
JP2005031654A (en) * 2003-06-18 2005-02-03 Toyobo Co Ltd Near infrared absorbing film and front filter for plasma display
JP2005049848A (en) * 2003-07-16 2005-02-24 Asahi Glass Co Ltd Optical film
WO2005044782A1 (en) * 2003-11-10 2005-05-19 Nippon Kayaku Kabushiki Kaisha Diimonium salt compound and use thereof
WO2006028006A1 (en) * 2004-09-06 2006-03-16 Nippon Kayaku Kabushiki Kaisha Diimmonium compound and use thereof

Also Published As

Publication number Publication date
KR20080099265A (en) 2008-11-12
WO2007099990A1 (en) 2007-09-07
TW200801594A (en) 2008-01-01
KR101050753B1 (en) 2011-07-21
KR20110055731A (en) 2011-05-25
KR101164880B1 (en) 2012-07-19
HK1129733A1 (en) 2009-12-04
CN101395501B (en) 2011-01-26
JP4553962B2 (en) 2010-09-29
CN101395501A (en) 2009-03-25

Similar Documents

Publication Publication Date Title
JP5040645B2 (en) Adhesive composition, adhesive film and optical filter
JP5414127B2 (en) Diimonium compounds
JP4942320B2 (en) Near-infrared absorbing adhesive film and optical filter using the same
JP4918860B2 (en) Adhesive composition and optical filter
WO2005088587A1 (en) Transparent laminate
JP2009227851A (en) Adhesive composition for optical filter, and optical filter
JP4553962B2 (en) Near-infrared absorbing film and optical filter for plasma display panel using the same
JP2005514669A (en) Filter for plasma display panel
JP4697950B2 (en) Near-infrared absorption filter and optical filter using the same
JP4297898B2 (en) Film for image display device including near infrared absorption and color correction layer, and filter for image display device using the same
JP2005084475A (en) Optical filter and display using the same
JPWO2008004611A1 (en) Optical filter film and optical filter for plasma display panel using the same
JP2000227515A (en) Near infrared ray absorbing filter
JP4942540B2 (en) Near-infrared absorbing film and optical filter for plasma display panel using the same
KR20090069321A (en) Near infrared ray-absorbable dye composition, and near infrared ray-absorbable filter and adhesive agent both comprising the composition
JP2015001649A (en) Optical filter
JP2008107825A (en) Optical filter, composite filter and image display device
JPWO2010087122A1 (en) Optical filter film and optical filter for plasma display panel using the same
JP2013129701A (en) Pressure-sensitive adhesive composition, pressure-sensitive adhesive film, and optical filter
JP2008058472A (en) Near-infrared absorption film and optical filter for plasma display panel using it
JP4353024B2 (en) Color correction heat welding film and near infrared cut filter with heat welding function using the same
JP2005258170A (en) Optical film and its manufacturing method
JP2012042920A (en) Optical filter for display
WO2008010501A1 (en) Near-infrared absorbing film and optical filter for plasma display panel using the same
JP2007079462A (en) Filter for display and display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090908

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100428

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees