JPWO2007061132A1 - Terpene compounds - Google Patents

Terpene compounds Download PDF

Info

Publication number
JPWO2007061132A1
JPWO2007061132A1 JP2007511119A JP2007511119A JPWO2007061132A1 JP WO2007061132 A1 JPWO2007061132 A1 JP WO2007061132A1 JP 2007511119 A JP2007511119 A JP 2007511119A JP 2007511119 A JP2007511119 A JP 2007511119A JP WO2007061132 A1 JPWO2007061132 A1 JP WO2007061132A1
Authority
JP
Japan
Prior art keywords
pheromone
compound represented
ethyl
formula
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007511119A
Other languages
Japanese (ja)
Other versions
JP4512133B2 (en
Inventor
貫寿 大澤
貫寿 大澤
俊介 矢嶋
俊介 矢嶋
健司 下村
健司 下村
野島 聡
聡 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture
Original Assignee
Tokyo University of Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture filed Critical Tokyo University of Agriculture
Publication of JPWO2007061132A1 publication Critical patent/JPWO2007061132A1/en
Application granted granted Critical
Publication of JP4512133B2 publication Critical patent/JP4512133B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/20Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
    • C07C47/21Unsaturated compounds having —CHO groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N49/00Biocides, pest repellants or attractants, or plant growth regulators, containing compounds containing the group, wherein m+n>=1, both X together may also mean —Y— or a direct carbon-to-carbon bond, and the carbon atoms marked with an asterisk are not part of any ring system other than that which may be formed by the atoms X, the carbon atoms in square brackets being part of any acyclic or cyclic structure, or the group, wherein A means a carbon atom or Y, n>=0, and not more than one of these carbon atoms being a member of the same ring system, e.g. juvenile insect hormones or mimics thereof

Abstract

本発明は、アズキゾウムシの性誘引フェロモン、その製造方法並びに該フェロモンを有効成分として含むアズキゾウムシの誘引剤を提供することを目的とする。本発明は、下記式(X)で表されるテルペン化合物、その製造方法並びに式(X)で表されるテルペン化合物を有効成分として含むアズキゾウムシの誘引剤である。An object of the present invention is to provide a sex attractant pheromone for azuki beetle, a method for producing the same, and an attractant for azuki beetle containing the pheromone as an active ingredient. The present invention is a weevil attractant containing, as an active ingredient, a terpene compound represented by the following formula (X), a production method thereof, and a terpene compound represented by formula (X).

Description

本発明は、新規なテルペン化合物、その製造方法および該テルペン化合物を有効成分として含むアズキゾウムシの誘引剤に関する。  The present invention relates to a novel terpene compound, a method for producing the same, and an attractant for azuki beetle containing the terpene compound as an active ingredient.

鞘翅目マメゾウムシ科に属するアズキゾウムシ(Callosobruchus chinensis)は、東南アジア、インド、オーストラリア、アフリカ等、世界各地に分布している。体長は2〜3mm程度で、宿主となる豆にはアズキ(Vigna angularis)、ササゲ(V.ungulculata)、緑豆(V.radiata)などがある。
アズキゾウムシの雌成虫は宿主となる豆の表面に産卵し、孵化した幼虫は豆の内部へ摂食しながら進入する。幼虫期を豆の内部で過ごし、羽化すると豆から脱出、再び交尾し別の豆に卵を産み付けるというサイクルを繰り返す。摂食の被害にあった豆は栄養価の変性等商品としての価値を失う。このような被害は特に豆類を主要なタンパク源としている国にとっては深刻で、アズキゾウムシをはじめとするマメゾウムシ科に属する害虫による貯蔵豆のロスは20〜60%にまで及ぶという報告もある。
アズキゾウムシに対する防除法として、殺虫剤の散布および燻蒸剤が使用されているがいずれも神経系をターゲットとしているため安全性には限界がある。また、環境に対する残留性や薬剤耐性虫を生み出すなどデメリットも多く、必ずしもニーズにあっているとは言えない。
近年、これら害虫を直接殺すことなくその行動を制御することにより作物の被害を防止する手法が開発されている。すなわち、害虫による寄主の発見や摂食行動を人為的に制御できれば食害を防ぐことができる。また交尾にいたる一連の配偶行動や、産卵行動を制御することができれば、次世代の生育密度を低く抑えることができる。
アズキゾウムシの生殖行動には、フェロモンと言われる化学的刺激が関与している。アズキゾウムシの生殖行動に関与するフェロモンとして、交尾解発フェロモンと性誘引フェロモンの2種類のフェロモンが存在すると言われている。そのうち交尾解発フェロモンは、既にその構造が明らかにされている(非特許文献1参照)。一方、性誘引フェロモンは、その存在が示唆されながら現在まで構造の決定に至っていない。
Tanaka,K.et al.,J.Pesticide Sci.(1981)6.75−82.
The weevil (Callosobruchus chinensis) belonging to the family Coleoptera is distributed throughout the world, such as Southeast Asia, India, Australia and Africa. The body length is about 2 to 3 mm, and examples of beans used as a host include azuki bean (Vigna angularis), cowpea (V. ungulculata), and mung beans (V. radiata).
The adult female weevil lays eggs on the surface of the host bean, and the hatched larva enters the bean while feeding. The larva stage is spent inside the beans, and when they emerge, they escape from the beans, mate again and lay eggs on other beans. Beans that were damaged by eating lose their value as a product such as nutritional value modification. Such damage is particularly serious in countries where beans are the main protein source, and there is a report that the loss of stored beans by pests belonging to the weevil family including Azuki beetles ranges from 20 to 60%.
Insecticide sprays and fumigants are used as a control method against weevil weevil, but they are targeted at the nervous system and have limited safety. In addition, there are many disadvantages, such as the persistence to the environment and the creation of drug-resistant insects.
In recent years, methods have been developed to prevent crop damage by controlling the behavior of these pests without directly killing them. That is, if the host's discovery by a pest and feeding behavior can be artificially controlled, the food damage can be prevented. Moreover, if a series of mating behavior and spawning behavior leading to mating can be controlled, the next-generation growth density can be kept low.
A chemical stimulus called pheromone is involved in the reproductive behavior of the weevil weevil. It is said that there are two types of pheromones that are involved in the reproductive behavior of Azuki beetle: a copulation-resolved pheromone and a sex attracting pheromone. Among them, the structure of the copulation-resolved pheromone has already been clarified (see Non-Patent Document 1). On the other hand, the sex-attracting pheromone has not been determined to date, although its existence is suggested.
Tanaka, K .; et al. , J .; Pesticide Sci. (1981) 6.75-82.

そこで、本発明は、現在まで構造の決定に至っていない、アズキゾウムシの性誘引フェロモンの化学構造を明らかにし、新規化合物を提供することを目的とする。また本発明は、該新規化合物の製造方法を提供することを目的とする。さらに本発明は、該新規化合物を有効成分として含むアズキゾウムシの誘引剤を提供することを目的とする。
本発明者は、アズキゾウムシの分泌物を、高度に精製し、GC−EAD(Gas Chromatographic−Electroantennographic Detector)によりスクリーニングを行うことにより、性誘引フェロモンを効率的に分離できることを見出し本発明を完成した。ここで、GC−EADとは、活性物質を感知したとき、触角に発生する生物電位を測定するための触角電位検出器を装着したガスクロマトグラフィーのことをいう(Nojima,S.et al.,J.Chem.Ecol.(2003)29,321−336.)。
即ち本発明は、下記式(X)

Figure 2007061132
で表されるテルペン化合物である。
また本発明は、下記式(I)
Figure 2007061132
で表される化合物を還元し、下記式(II)
Figure 2007061132
で表される化合物とした後、酸化することからなる
下記式(X)
Figure 2007061132
で表されるテルペン化合物の製造方法である。
さらに本発明は、下記式(X)
Figure 2007061132
で表されるテルペン化合物を有効成分として含むアズキゾウムシの誘引剤を包含する。Therefore, the object of the present invention is to elucidate the chemical structure of the sex attractant pheromone of Azuki weevil, which has not yet been determined, so as to provide a novel compound. Another object of the present invention is to provide a method for producing the novel compound. A further object of the present invention is to provide an attractant for weevil that contains the novel compound as an active ingredient.
The present inventor has found that the secretory weevil secretion can be highly purified and screened by GC-EAD (Gas Chromatographic-Electronic Tennographic Detector), thereby efficiently separating the sex-inducing pheromone and completed the present invention. . Here, GC-EAD means gas chromatography equipped with a antenna potential detector for measuring a biopotential generated at the antenna when an active substance is sensed (Nojima, S. et al.,). J. Chem. Ecol. (2003) 29, 321-336.).
That is, the present invention provides the following formula (X)
Figure 2007061132
It is a terpene compound represented by these.
The present invention also provides the following formula (I):
Figure 2007061132
A compound represented by the following formula (II):
Figure 2007061132
The compound represented by the following formula (X) consisting of oxidation after oxidation
Figure 2007061132
It is a manufacturing method of the terpene compound represented by these.
Furthermore, the present invention provides the following formula (X)
Figure 2007061132
A weevil attractant containing a terpene compound represented by the formula:

図1は、本発明の式(X)で表される化合物の合成の手順を示す。  FIG. 1 shows the procedure for synthesizing a compound represented by the formula (X) of the present invention.

符号の説明Explanation of symbols

(1) Cyclopropyl methyl ketone(シクロプロピルメチルケトン)
(2) Ethyl 3−cyclopropyl−3−oxopropanoate(3−シクロプロピル−3−オキソプロパン酸エチル)
(3) Ethyl α−(3−methyl−2−butenyl)−β−oxo−cyclopropylpropanoate(α−(3−メチル−2−ブテニル)−β−オキソ−シクロプロピルプロパン酸エチル)
(4) Cyclopropyl 4−methyl−3−pentenyl ketone(シクロプロピル4−メチル−3−ペンテニルケトン)
(5) 3−Cyclopropyl−7−methyl−6−octen−3−ol(3−シクロプロピル−7−メチル−6−オクテン−3−オール)
(6) 9−Bromo−6−ethyl−2−methyl−2,6−nonadiene(9−ブロモ−6−エチル−2−メチル−2,6−ノナジエン)
(7) 5−Ethyl−9−methyl−4,8−decadienenitrile(5−エチル−9−メチル−4,8−デカジエンニトリル)
(8) 6−Ethyl−10−methyl−5,9−undecadien−2−one(6−エチル−10−メチル−5,9−ウンデカジエン−2−オン)
(I) Methyl 7−ethyl−3,11−dimethyl−2,6,10−dodecatrienoate(7−エチル−3,11−ジメチル−2,6,10−ドデカトリエン酸メチル)
(II) 7−Ethyl−3,11−dimethyl−2,6,10−dodecatrien−1−ol(7−エチル−3,11−ジメチル−2,6,10−ドデカトリエン−1−オール)
(X) 7−Ethyl−3,11−dimethyl−2,6,10−dodecatrienal(7−エチル−3,11−ジメチル−2,6,10−ドデカトリエナール)
(1) Cyclopropyl methyl ketone (cyclopropyl methyl ketone)
(2) Ethyl 3-cyclopropyl-3-oxopropanoate (ethyl 3-cyclopropyl-3-oxopropanoate)
(3) Ethyl α- (3-methyl-2-butenyl) -β-oxo-cyclopropylpropanoate (α- (3-methyl-2-butenyl) -β-oxo-cyclopropylpropanoic acid ethyl ester)
(4) Cyclopropyl 4-methyl-3-pentenyl ketone (cyclopropyl 4-methyl-3-pentenyl ketone)
(5) 3-Cyclopropyl-7-methyl-6-octen-3-ol (3-cyclopropyl-7-methyl-6-octen-3-ol)
(6) 9-Bromo-6-ethyl-2-methyl-2,6-nonadiene (9-bromo-6-ethyl-2-methyl-2,6-nonadiene)
(7) 5-Ethyl-9-methyl-4,8-decadienenitrile (5-ethyl-9-methyl-4,8-decadienenitrile)
(8) 6-Ethyl-10-methyl-5,9-undecadien-2-one (6-ethyl-10-methyl-5,9-undecadien-2-one)
(I) Methyl 7-ethyl-3,11-dimethyl-2,6,10-dodecatrienoate (methyl 7-ethyl-3,11-dimethyl-2,6,10-dodecatrienoate)
(II) 7-Ethyl-3,11-dimethyl-2,6,10-dodecatrien-1-ol (7-ethyl-3,11-dimethyl-2,6,10-dodecatrien-1-ol)
(X) 7-Ethyl-3,11-dimethyl-2,6,10-dodecatrienal (7-ethyl-3,11-dimethyl-2,6,10-dodecatrienal)

(性誘引フェロモンの単離)
本発明の性誘引フェロモンは、未交尾雌から分泌物を捕集し、精製し、GC−EADによりスクリーニングを行うことにより、単離することができる。
分泌物の捕集は、アズキゾウムシを飼育し、性誘引フェロモンをろ紙などに捕集することにより行う。アズキゾウムシの雌は最初の交尾前にしか性誘引フェロモンを放出しないと考えられ、アズキゾウムシは羽化直後に雌雄分別する必要がある。
ろ紙などに捕集した分泌物は、n−ペンタンなどの溶媒に抽出した後、濃縮し、精製する。シリカゲルなど充填したカラムにより行うことができる。精製したサンプルについて、未交尾のオスの触角を設置しGC−EADを用いてスクリーニングし、フェロモン含有フラクションを特定した後、フェロモン含有フラクションを精製しアズキゾウムシ由来のフェロモンを得ることができる。GC−EADによるフェロモン含有フラクションの特定と精製を繰り返すことが好ましい。精製はHPLC、GCなどにより行うこと出来る。
(構造決定)
単離したフェロモンは、GC−EI−MS、GC−CI−MSおよびH−NMRによる機器分析を行い、さらに微量誘導体処理によるジメチルヒドラゾン化、オゾン酸化を行い、構造を決定することができる。
その結果、アズキゾウムシの性誘引フェロモンは、下記式(X)

Figure 2007061132
で表される7−エチル−3,11−ジメチル−2,6,10−ドデカトリエナール(7−ethyl−3,11−dimethyl−2,6,10−dodecatrienal)であることが確認された。
(合成)
同定したフェロモンは、下記式(I)
Figure 2007061132
で表される7−エチル−3,11−ジメチル−2,6,10−ドデカトリエン酸メチル(Methyl7−ethyl−3,11−dimethyl−2,6,10−dodecatrienoate)を還元し、下記式(II)
Figure 2007061132
で表される7−エチル−3,11−ジメチル−2,6,10−ドデカトリエン−1−オール(7−ethyl−3,11−dimethyl−2,6,10−dodecatrien−1−ol)とした後、酸化して製造することができる。式(I)で表される化合物は、Mori,K.et al.,Agri.Biol.Chem.(1971)35,1116−1127.に記載の化合物である。還元は水素化ジイソブチルアルミニウム(DIBAL−H)などを用いて行うことができる。また酸化は、活性MnOなどを用いて行うことができる。本発明の式(X)で表される化合物は、図1に示すような手順で非立体選択的合成することができる。
(誘引剤)
本発明のアズキゾウムシの誘引剤は、式(X)で表されるテルペン化合物を有効成分として含む。該誘引剤は、式(X)で表されるテルペン化合物を有効量含有する。該誘引剤は、他の成分として、溶媒、分散媒、担体、添加剤などを含有してもよい。(Isolation of sex attracting pheromone)
The sex-attracting pheromone of the present invention can be isolated by collecting and purifying secretions from unmated females, purifying them, and screening by GC-EAD.
The secretions are collected by raising weevil and collecting the sex attracting pheromone on filter paper. Azuki beetle females are thought to release sex-induced pheromones only before the first mating, and the weevil must be sexed immediately after emergence.
The secretion collected on a filter paper or the like is extracted with a solvent such as n-pentane, and then concentrated and purified. It can be performed by a column packed with silica gel or the like. About the refined sample, an unmating male antenna is installed and screened using GC-EAD, and after identifying a pheromone-containing fraction, a pheromone-derived pheromone can be obtained by purifying the pheromone-containing fraction. It is preferable to repeat the identification and purification of the pheromone-containing fraction by GC-EAD. Purification can be performed by HPLC, GC or the like.
(Structure determination)
The isolated pheromone can be subjected to instrumental analysis by GC-EI-MS, GC-CI-MS, and 1 H-NMR, and further subjected to dimethylhydrazone formation by ozone treatment and ozone oxidation to determine the structure.
As a result, the sex attractant pheromone of Azuki beetle has the following formula (X)
Figure 2007061132
It was confirmed that it was 7-ethyl-3,11-dimethyl-2,6,10-dodecatrienal (7-ethyl-3,11-dimethyl-2,6,10-dodecatrienal) represented by the following formula.
(Synthesis)
The identified pheromone has the following formula (I)
Figure 2007061132
7-ethyl-3,11-dimethyl-2,6,10-dodecatrienoate (Methyl7-ethyl-3,11-dimethyl-2,6,10-dodecatrienoate) represented by the following formula ( II)
Figure 2007061132
7-ethyl-3,11-dimethyl-2,6,10-dodecatrien-1-ol (7-ethyl-3,11-dimethyl-2,6,10-dodecatrien-1-ol) Then, it can be oxidized and manufactured. Compounds of formula (I) are described in Mori, K .; et al. , Agri. Biol. Chem. (1971) 35, 1116-1127. It is a compound as described in. The reduction can be performed using diisobutylaluminum hydride (DIBAL-H) or the like. The oxidation can be performed using active MnO 2 or the like. The compound represented by the formula (X) of the present invention can be synthesized non-stereoselectively by the procedure shown in FIG.
(Attractant)
The attracting agent for Azuki beetle of the present invention contains a terpene compound represented by the formula (X) as an active ingredient. The attractant contains an effective amount of a terpene compound represented by the formula (X). The attractant may contain a solvent, a dispersion medium, a carrier, an additive and the like as other components.

実施例1
以下の手順で、アズキゾウムシの性誘引フェロモンを捕集、精製し、その構造を同定した。
(アズキゾウムシの飼育)
アズキゾウムシは、タッパーの上面にステンレス網をかけ通気性を持たせた容器を用い飼育した。容器中に、一度水洗いし一晩乾燥させた小豆(V.angularis,Dainagon)を二層になるくらい引きつめ飼育した。飼育中はインキュベータ内を気温27℃、湿度50%、24時間暗期に維持した。本条件下においてアズキゾウムシはアズキの表面に卵が産卵されてからおよそ25日で成虫が羽化した。
(性誘引フェロモンの捕集)
アズキゾウムシの雌は、実験室レベルにおいて羽化後一度しか交尾行動を示さないため、雌は最初の交尾前にしか性誘引フェロモンを放出しないと考えられる。そのため、アズキゾウムシを羽化直後に雌雄分別した。分別した雌のアズキゾウムシは300〜400個体ごとに一つの腰高シャーレ(外径90mm、高さ120mm)の中に入れた。腰高シャーレ内には上底と下底それぞれにろ紙(ADVANTEC No.2,90mm)をはりつけ、さらにひだ付ろ紙状に折ったろ紙をパイル上に積み上げたものを設置し、目的フェロモンを吸着した。フェロモンは各シャーレについて14〜20日間に亘って捕集し、計32,277匹のバージン雌から捕集した。
(抽出)
性誘引フェロモンを吸着したろ紙を細かく破砕し、円筒ろ紙(ADVANTEC No.84,40×150mm)に詰め込みソックスレー抽出器により溶媒抽出した。溶媒はn−pentane HPLC grade(Aldrich)を用い、抽出時間は24時間とした。得られた粗抽出液を1サンプルあたり約1,500匹相当量分になるように調整し、計20本のサンプルS1〜S20を得た。
(濃縮)
各サンプルをクデルナ−ダニッシュ濃縮器により濃縮した。約5mlまで濃縮し、使用するまで−30℃でストックした。
(オープンカラムによる精製)
各サンプルを氷上で窒素により1mlまで濃縮し、シリカゲルを充填剤に用いたオープンカラムにより精製した。カラムは2mlのピペットを用い、充填剤はWakogel C−200(Wako)1gを用いた。溶媒はn−pentane,diethyl ether残留農薬試験grade(Kokusan chemical)を用い、ステップワイズ法でpentane/ether=10ml/0ml,9.5ml/0.5ml,9ml/1ml,8ml/2ml,5ml/5ml,0ml/10mlで溶出させた。S1について、各フラクション10mlずつ分取し、S1−1,S1−2,S1−3,S1−4,S1−5,S1−6の計6本のフラクションを得た。他のサンプルS2〜S20についても同様にフラクションを得た。
(GC−EADによるスクリーニング)
各フラクションから約1.5匹雌相当量の試料をGCにインジェクションし、GC−EADによるスクリーニングを行った。
GC−EAD(Gas Chromatographic−Electroantennographic Detector)は、HP5890 series II(Agilent)を用い、カラムはDB−5(30m×0.25mm,0.25μm;J&W)を用いた。インジェクションはスプリットレス法で行い、サンプリングタイムは1分とした。GCコンディションはインジェクター側(inj)が250℃、検出器側(det)はFID,EADとも280℃に設定し、カラムオーブンは60℃で3分保持後、10℃/minで280℃まで昇温させ10分間保持した。キャリアガスにはNを用い、カラムヘッドプレッシャーは145kPaとした。
カラムは検出器側の出口においてヒューズドシリカユニバーサル三方コネクター(J&W)を用い、ラインをスプリットした。また、コネクター直前においてキャリアーガスを追加するために、TCDキャピラリー用アダプタメークアップガスライン付(Agilent)を接続し、Nを30ml/min追加した。スプリット後のラインは不活性処理済溶融シリカキャピラリーカラム(1m×0.25mm;Alltech)により一方をFIDポートに、もう一方をカラムオーブンからNPDポートを経由して外に出し、流出物が触角に受容するようにした。カラム出口から流出物を触角上まで運ぶために、300ml/minの空気を流した。この空気は活性炭を通し、バブリング、氷による冷却により、湿度を持たせた。
オペアンプにはTL082CP(TEXAS INSTRUMENTS)を使い、0.5Hzのhigh pass filterを用いた。そしてアンプ用に±15Vの定電圧直流電源を用いた。電極はAg電極を0.2M NaCl溶液中で30分通電させAg−Clメッキした。その上に0.5% NaCl溶液のドロップをのせ、アッセイ直前に切断した未交尾のオスの触角を設置した。なお、GC−EAD用のGCの改造はNojima,S.et al.,J.Chem.Ecol.(2003)29,321−336.を参照した。
その結果、サンプルS1〜S20いずれにおいても2番目のフラクション(S1−2,S2−2,S3−2,・・・・,S20−2)にのみ活性がみられた。また、一回のアッセイでわずかにリテンションタイムの異なる2回の脱分極を検出した。しかしながら精製度が低いため夾雑物が多く、FID側でどのピークがフェロモン由来のピークであるか同定できなかった。
(High Performance Liquid Chromatography(HPLC)による精製)
GC−EADによるスクリーニングの結果、サンプルS1について活性のあったS1−2をさらにHPLCにより精製した。あらかじめフラクション中の溶媒を氷上で窒素により完全に留去させた後、pentane100μlで溶解させておいた。装置はLC−5A(Shimadzu)を用いた。検出器はSPD−2Aを用い検出波長は254nmとした。溶媒はn−pentane,diethyl etherを用い、pentane100%から1%/minでpentane/ether=50%/50%までグラジェント法で溶出させた。トータル流量は1mlで、各1mlずつ分取した。
S1−2について、S1−2−1からS1−2−50までの50本のフラクションを分取し、各フラクションをGC−EADによりスクリーニングにかけた。その結果S1−2−21〜23付近に活性が集中していた。サンプルS2−2〜S20−2についても同様に精製とスクリーニングを行なった結果、各サンプルの21〜23のフラクションに活性が集中していた。
HPLC精製により精製度が上がったため、各サンプルのフラクション21〜23をGCにかけて得られるFID上においてEADシグナルと比較しフェロモン由来の2つのピークを同定でき、それぞれを別のフラクションに分取することができた。(以下GCのFID上でリテンションタイムの早いほうからフェロモンA,Bとする)。
(GC−EI−MSによる解析)
フェロモンA,Bの各フラクションのGC−EI−MS解析を行った。装置はQP5000(Shimadzu Corporation)を用いた。カラムはDB−5(30m×0.25mm,0.25μm;J&W)を用いた。inj,detの温度はそれぞれ250℃,280℃とし、オーブン温度は60℃で3分保持後、10℃/minで280℃までの昇温プログラムを用いた。キャリアガスはHeを用い、カラムヘッドプレッシャーは100kPaとした。インジェクション法はスプリットレス法を用い、サンプリングタイムは1分とした。
その結果、どちらのフェロモンにおいても顕著な分子イオンピーク(M)を検出することができなかった。フラグメントイオンのパターンについてもフェロモンA,B間におけるパターンに顕著な差は見られなかった。また、NISTライブラリにおいてシミラリティー検索を行った結果、farnesolやcitralといったテルペン系の化合物に高い類似度を示した。以上よりフェロモンがテルペン系化合物であることが示唆された。
(GC−CI−MSによる解析)
次に分子量を決定するために各フラクションのGC−CI−MS解析を行った。
装置はQP2010(Shimadzu Corporation)により測定した。カラムはDB−5(30m×0.25mm,0.25μm;J&W)を用いた。inj,detの温度はそれぞれ250℃,280℃とし、オーブン温度は60℃、3分保持後、10℃/minで280℃までの昇温プログラムを用いた。キャリアガスはHeを用い、カラムヘッドプレッシャーは100kPaとした。反応ガスはiso−butaneを用いた。
その結果どちらのフェロモンにおいてもm/z=235にM+1の分子イオンピークを検出した。またm/z=217にM−HOと予想される顕著なフラグメントピークを検出した。以上の結果から、フェロモンA,Bの分子量が234であることがわかり、その構造中に−OHもしくは−CHO、もしくはその両方を有することが推定された。以上GC−CI−MS,GC−EI−MSの結果からフェロモンAとBは異性体であることが推定されたので、以下フェロモンAについて解析を行った。
(GCによる精製)
誘導体化、NMR等更なる解析を行っていくために、GCにより精製を行った。装置はHP5890 series II(Agilent)を用い、カラムはZB−1(30m×0.53mm,1.50μm;Phenomenex)を用いた。インジェクションはスプリットレス法で行ったが、インジェクションボリュームを増やすために、容量900μlの注入口ライナを用いた。サンプリングタイムは2分とした。カラムは検出器側にヒューズドシリカユニバーサル二方コネクター(J&W)を接続し、コレクター用に不活性処理済溶融シリカキャピラリーカラム(40cm×0.53mm;Agilent)を接続した。そして目的のリテンションタイムでカラムを引き上げ、氷により冷却した鞘を被せてカラム上に保持させ、溶媒により溶出させた。GCコンディションはinj側が250℃,det側は150℃に設定し、カラムオーブンは、60℃で3分保持後、10℃/minで280℃まで昇温させ10分保持した。キャリアガスにはNを用い、カラムヘッドプレッシャーは2psiとした。なお、GCによる分取の手法はNojima,S.et al.,J.Chem.Ecol.(2004)30,2153−2161.を参照した。
フェロモンAを含むフラクションのうち、FIDより得られたクロマトグラム上でフェロモン由来のピーク付近に夾雑物の少ないフラクションを選抜し、一つのフラクションにまとめた。その際、pentane,etherでは作業中に溶媒が留去してしまうため、溶媒を蒸留したn−hexane(Aldrich)に置換した。フェロモンAについてあらかじめ測定しておいたリテンションタイムに合わせてサンプリングを行った結果、ほぼフェロモン単一のピークを得ることができた。
H−NMRによる解析)
GCにより精製したフェロモンAをH−NMRによる解析を行った。装置はJNM−ECA 400MHz(JEOL)を用いて測定した。ミクロ試料管を用い溶媒はCDClを用いた。その結果9.90ppmにホルミル基プロトン由来のダブレット(1H)を検出した。しかしながら解析にまわすことができたフェロモン量自体がおよそ数μgと少ないことから特に高磁場側において夾雑物由来のシグナルが多くなり、単独でのシグナルの帰属はこれ以上困難であった。
そのため、これまでに得られた情報から構造が類似すると予想できたテルペン系の他種由来のフェロモンや、幼若ホルモン等の文献からH−NMRの解析データを集積し、考察した。その結果今回得られたシグナルを次のように帰属した。
0.95ppmに7位もしくは11位にエチル側鎖を有する場合の末端メチルプロトン由来のトリプレット(3H)を検出し、2.60ppmにγ位のメチレン基プロトン由来のトリプレット(2H)を検出した。そして5.05−5.14ppmに6位と10位のビニルプロトン由来のマルチプレット(2H)を検出し、5.87ppmに2位のビニルプロトン由来のダブレット(1H)を検出した。これらの結果から、フェロモンAの推定構造は、3,7,11−trimethyl−2,6,10−tridecatrienal、もしくは7−ethyl−3,11−dimethyl−2,6,10−dodecatrienalであると推定された。
(誘導体化による解析)
GCにより精製したフェロモンAに対し、誘導体処理を行いGC−EI−MSにより解析を行った。GC−EI−MSの条件は上述と同様に測定した。
アセチル化
2μl acetic anhydride in 100μl benzeneと100nl pyridine in 100μl benzeneを混ぜ、フェロモンを加え、60℃で12時間インキュベートした。その後benzene 200μlとdistilled water 200μlを加え攪拌し、水層を除去した(2回繰り返した)。その結果、全く反応が起こらなかった。
TMS化
100μl BSA(N,O−bis(trimethylsilyl)acetamide)中にフェロモンを加え、60℃で12時間インキュベートした。その結果、全く反応が起こらなかった。アセチル化およびTMS化の結果より、フェロモンAの構造中には−OHを有しないことがわかった。
ジメチルヒドラゾン化
次に構造中の−CHOの有無を確認するために、50μg N,N−dimethylhydorazine in 50μl hexane中にフェロモンAを加え、撹枠しジメチルヒドラゾン化を行った。その結果、m/z=276にM+42の分子イオンピークを検出した。この結果、フェロモンAの構造中には−CHOを有することがわかった。また、m/z=125に顕著なフラグメントピークを検出した。
直鎖のα,β−不飽和アルデヒドにおいてアリル位での開裂によりm/z=111に顕著なフラグメントピークが検出されることが報告されていたため、α,β−不飽和アルデヒドでβ位にメチル側鎖を有するcitralを用いて同様の処理を行った。その結果、同様にアリル位での開裂により直鎖のα,β−不飽和アルデヒドによるm/z=111より14多いm/z=125に顕著なフラグメントピークを検出した。この結果から、フェロモンAの末端構造はα,β−不飽和アルデヒドでβ位にメチル側鎖を有すると推定された。また、フェロモンの構造中に−OHをもたず、−CHOのみ有することから分子中のOの数は1つであると予想し、さらに分子量が234であることから不足水素指標を計算すると4となり、構造中の不飽和結合は4つであるとわかった。
オゾン酸化
フェロモンAを含有する50μlのhexaneをdry ice/acetone浴中で−78℃に冷却しながら酸素ガスを3ml/分で吹き込み、テスラ・ランプチェッカーHF−20(信光電気)を用いて10〜15kVの高電圧を20秒かけた。その後、triphenylphosphineのdichloromethane溶液(1μg/μl)を1μl加え攪拌し、オゾン酸化を行った。
それぞれの推定構造をオゾン酸化処理した場合に期待される生成物のうち比較的分子量の大きい2種の生成物に着目した。3,7,11−trimethyl−2,6,10−tridecatrienalからは4−oxopentanal(MW100)のみ生成するが、7−ethyl−3,11−dimethyl−2,6,10−dodecatrienalからは4−oxopentanalと4−oxohexanal(MW114)の両化合物が生成する。この差が生じることを期待してフェロモンAをオゾン酸化処理したところ、m/z=100の4−oxopentanalはサンプル量が少なく検出できなかったが、m/z=114の4−oxohexanalは検出した。この4−oxohexanalは3,7,11−trimethyl−2,6,10−tridecatrienalからは生成せず、7−ethyl−3,11−dimethyl−2,6,10−dodecatrienalからのみ生成する。以上の結果からフェロモンAの構造は式(X)で表される7−ethyl−3,11−dimethyl−2,6,10−dodecatrienalであることがわかった。
実施例2
以下の手順で、式(X)で表される化合物を合成した。式(II)の化合物、式(I)の化合物、式(X)の化合物はそれぞれ以下の通りである。
式(I)で表される化合物:methyl 7−ethyl−3,11−dimethyl−2,6,10−dodecatrienoate
式(II)で表される化合物:7−ethyl−3,11−dimethyl−2,6,10−dodecatrien−1−ol
式(X)で表される化合物:7−ethyl−3,11−dimethyl−2,6,10−dodecatrienal
(式(I)で表される化合物の合成)
式(I)で表される化合物は、森らの手法を参照し調製した(Mori,K.et al.,Agri.Biol.Chem.(1971)35,1116−1127.)。
(式(II)で表される化合物の合成)
式(I)で表される化合物を以下の手順で還元した。即ち、式(I)で表される化合物1.6g(6.1mmol)をdry hexane 20mlに溶解させ、dry ice/acetone浴中(−78°C)で冷却しながら1Mの水素化ジイソブチルアルミニウム(DIBAL−H)のhexane溶液16ml(16mmol)を滴下した。滴下後、10分撹枠した。反応はAr雰囲気下で行った。Methanol 4mlを加え反応を停止した。その後、5% HCl水溶液を加え室温まで戻し、etherにて抽出を行った。抽出液は、水、飽和NaHCO水溶液、飽和NaCl水溶液で洗い、MgSOで乾燥後、溶媒をエバポレータで留去、残渣をシリカゲルカラムクロマトグラフィー(hexane/ethyl acetate)で精製し、式(II)で表される化合物を合成した。収量1.4g(5.9mmol;97%)。
(式(X)で表される化合物の合成)
式(II)で表される化合物1.4g(5.9mmol)をhexane 100mlに溶解し、氷浴中0℃で活性MnO 16.5gを加え、8時間攪拌し酸化した。ろ過後、エバポレータで溶媒を留去し式(X)で表される化合物を得た。収量1.2g(5.1mmol;86%)。
(GC−EADによる確認)
合成した式(X)で表される化合物についてGC−EADによるアッセイを行ったところ、触角上で脱分極が生じ、アズキゾウムシの性誘引フェロモンであることが確認された。
発明の効果
本発明のテルペン化合物は分解されやすく人体に対する害もない。本発明のテルペン化合物を用いて大量の雄成虫を捕獲したり、雌雄の配偶行動を撹乱したりすることができる。
Example 1
In the following procedure, the sex attractant pheromone of Azuki beetle was collected and purified, and its structure was identified.
(Azuki beetle breeding)
Azuki beetle was bred using a container made of stainless steel on the upper surface of the tapper for air permeability. Azuki beans (V. angularis, Dainagon) that had been washed once in water and dried overnight were pulled and raised in two layers. During the breeding, the inside of the incubator was maintained at a temperature of 27 ° C., a humidity of 50%, and a dark period for 24 hours. Under this condition, the adult weevil emerged from an adult about 25 days after the egg was laid on the surface of the azuki bean.
(Collecting sex attracting pheromones)
Because weeping weevil females only mate once after emergence at the laboratory level, it is believed that females release sex-induced pheromones only before the first mating. For this reason, azuki beetles were sexed immediately after emergence. The sorted female weevil was placed in one low-height petri dish (outer diameter 90 mm, height 120 mm) for every 300 to 400 individuals. In the waist high petri dish, filter paper (ADVANTEC No. 2, 90 mm) was attached to each of the upper and lower bases, and filter paper folded in a pleated filter paper was stacked on a pile to adsorb the target pheromone. Pheromones were collected for 14-20 days for each petri dish and collected from a total of 32,277 virgin females.
(Extraction)
The filter paper adsorbing the sex attracting pheromone was finely crushed, packed into a cylindrical filter paper (ADVANTEC No. 84, 40 × 150 mm), and extracted with a Soxhlet extractor. The solvent was n-pentane HPLC grade (Aldrich), and the extraction time was 24 hours. The obtained crude extract was adjusted to an amount equivalent to about 1,500 animals per sample to obtain a total of 20 samples S1 to S20.
(concentrated)
Each sample was concentrated with a Kuderna-Danish concentrator. Concentrated to approximately 5 ml and stocked at −30 ° C. until use.
(Purification by open column)
Each sample was concentrated on ice to 1 ml with nitrogen and purified by an open column using silica gel as packing material. The column was a 2 ml pipette and the packing was 1 g Wakogel C-200 (Wako). Solvent was n-pentane, diethyl ether residual agricultural chemical test grade (Kokusan chemical), and stepwise method penten / ether = 10 ml / 0 ml, 9.5 ml / 0.5 ml, 9 ml / 1 ml, 8 ml / 2 ml, 5 ml / 5 ml , 0 ml / 10 ml. For S1, 10 ml of each fraction was collected to obtain a total of 6 fractions of S1-1, S1-2, S1-3, S1-4, S1-5, and S1-6. Fraction was similarly obtained for other samples S2 to S20.
(Screening by GC-EAD)
About 1.5 female samples from each fraction were injected into the GC and screened by GC-EAD.
As GC-EAD (Gas Chromatographic-Electronentronic Detector), HP5890 series II (Agilent) was used, and DB-5 (30 m × 0.25 mm, 0.25 μm; J & W) was used as a column. The injection was performed by the splitless method, and the sampling time was 1 minute. The GC condition is set to 250 ° C on the injector side (inj), 280 ° C on both the FID and EAD on the detector side (det), the column oven is held at 60 ° C for 3 minutes, and then heated to 280 ° C at 10 ° C / min. Held for 10 minutes. N 2 was used as the carrier gas, and the column head pressure was 145 kPa.
The column was split using a fused silica universal three-way connector (J & W) at the outlet on the detector side. Further, in order to add the carrier gas immediately before the connector, a TCD capillary adapter with make-up gas line (Agilent) was connected, and N 2 was added at 30 ml / min. The line after splitting is discharged through an inert-treated fused silica capillary column (1m x 0.25mm; Alltech), one on the FID port and the other on the column oven via the NPD port. I tried to do it. In order to carry the effluent from the column outlet to the antenna, 300 ml / min of air was flowed. This air was passed through activated carbon, and was humidified by bubbling and cooling with ice.
TL082CP (TEXAS INSTRUMENTS) was used for the operational amplifier, and a high pass filter of 0.5 Hz was used. A ± 15 V constant voltage DC power supply was used for the amplifier. As the electrode, Ag-Cl plating was performed by passing an Ag electrode in a 0.2 M NaCl solution for 30 minutes. A drop of 0.5% NaCl solution was placed on top of it, and an unmated male antennae cut just before the assay was placed. In addition, GC modification for GC-EAD is described in Nojima, S .; et al. , J .; Chem. Ecol. (2003) 29, 321-336. Referred to.
As a result, the activity was observed only in the second fraction (S1-2, S2-2, S3-2,..., S20-2) in any of the samples S1 to S20. Two depolarizations with slightly different retention times were detected in one assay. However, since the degree of purification was low, there were many contaminants, and it was not possible to identify which peak was derived from the pheromone on the FID side.
(Purification by High Performance Liquid Chromatography (HPLC))
As a result of screening by GC-EAD, S1-2 that was active for sample S1 was further purified by HPLC. In advance, the solvent in the fraction was completely distilled off with nitrogen on ice and then dissolved in 100 μl of pentane. The apparatus used was LC-5A (Shimadzu). The detector was SPD-2A and the detection wavelength was 254 nm. Solvents were n-pentane and diethyl ether, and were eluted by a gradient method from pentane 100% to 1% / min until pentane / ether = 50% / 50%. The total flow rate was 1 ml, and 1 ml each was collected.
For S1-2, 50 fractions from S1-2-1 to S1-2-50 were collected and each fraction was screened by GC-EAD. As a result, the activity was concentrated in the vicinity of S1-2-21 to 23. Samples S2-2 to S20-2 were similarly purified and screened. As a result, the activity was concentrated in the fractions 21 to 23 of each sample.
Since the degree of purification was improved by HPLC purification, fractions 21 to 23 of each sample were compared with the EAD signal on FID obtained by GC, and two pheromone-derived peaks could be identified, and each could be fractionated into separate fractions. did it. (Hereinafter referred to as pheromones A and B from the earlier retention time on the FID of GC).
(Analysis by GC-EI-MS)
GC-EI-MS analysis of each pheromone A and B fraction was performed. The apparatus used was QP5000 (Shimadzu Corporation). The column used was DB-5 (30 m × 0.25 mm, 0.25 μm; J & W). The inj and det temperatures were 250 ° C. and 280 ° C., respectively, and the oven temperature was held at 60 ° C. for 3 minutes, and then a temperature increase program up to 280 ° C. at 10 ° C./min was used. The carrier gas was He, and the column head pressure was 100 kPa. The injection method was a splitless method, and the sampling time was 1 minute.
As a result, no remarkable molecular ion peak (M + ) could be detected in either pheromone. Regarding the pattern of fragment ions, there was no significant difference in the pattern between pheromones A and B. In addition, as a result of the similarity search in the NIST library, a high degree of similarity was shown to terpene compounds such as farnesol and citral. From the above, it was suggested that pheromone is a terpene compound.
(Analysis by GC-CI-MS)
Next, in order to determine molecular weight, GC-CI-MS analysis of each fraction was performed.
The apparatus was measured by QP2010 (Shimadzu Corporation). The column used was DB-5 (30 m × 0.25 mm, 0.25 μm; J & W). The temperatures of inj and det were 250 ° C. and 280 ° C., respectively, and the temperature of the oven was maintained at 60 ° C. for 3 minutes, and then a temperature increase program up to 280 ° C. at 10 ° C./min was used. The carrier gas was He, and the column head pressure was 100 kPa. Iso-butane was used as the reaction gas.
As a result, a molecular ion peak of M + +1 was detected at m / z = 235 in both pheromones. A prominent fragment peak expected to be M + -H 2 O was detected at m / z = 217. From the above results, it was found that the molecular weights of pheromones A and B were 234, and it was estimated that the structure had —OH, —CHO, or both. As described above, pheromone A and B were estimated to be isomers from the results of GC-CI-MS and GC-EI-MS. Therefore, pheromone A was analyzed below.
(Purification by GC)
In order to perform further analysis such as derivatization and NMR, purification was performed by GC. The apparatus was HP5890 series II (Agilent), and the column was ZB-1 (30 m × 0.53 mm, 1.50 μm; Phenomenex). The injection was performed by the splitless method, but an injection liner having a capacity of 900 μl was used to increase the injection volume. The sampling time was 2 minutes. The column was connected to a fused silica universal two-way connector (J & W) on the detector side, and an inert treated fused silica capillary column (40 cm × 0.53 mm; Agilent) was connected to the collector. Then, the column was pulled up at the desired retention time, covered with a sheath cooled with ice, held on the column, and eluted with a solvent. The GC condition was set to 250 ° C. on the inj side and 150 ° C. on the det side, and the column oven was held at 60 ° C. for 3 minutes, then heated to 280 ° C. at 10 ° C./min and held for 10 minutes. The carrier gas was N 2 and the column head pressure was 2 psi. The GC sorting method is described in Nojima, S .; et al. , J .; Chem. Ecol. (2004) 30, 2153-2161. Referred to.
Among the fractions containing pheromone A, fractions with few impurities were selected in the vicinity of the pheromone-derived peak on the chromatogram obtained from FID, and collected into one fraction. At that time, in the case of pentane and ether, the solvent was distilled off during the operation, and thus the solvent was replaced with distilled n-hexane (Aldrich). As a result of sampling according to the retention time measured in advance for pheromone A, a single peak of pheromone could be obtained.
(Analysis by 1 H-NMR)
Pheromone A purified by GC was analyzed by 1 H-NMR. The apparatus was measured using JNM-ECA 400 MHz (JEOL). CDCl 3 was used as a solvent using a micro sample tube. As a result, doublet (1H) derived from formyl group protons was detected at 9.90 ppm. However, since the amount of pheromone that could be used for the analysis was as small as about several μg, the number of signals derived from contaminants increased especially on the high magnetic field side, making it difficult to assign the signal alone.
Therefore, 1 H-NMR analysis data were collected and considered from literatures such as pheromones derived from other species of terpene series that were predicted to have similar structures from the information obtained so far and juvenile hormones. As a result, the signals obtained this time were assigned as follows.
A triplet (3H) derived from a terminal methyl proton in the case of having an ethyl side chain at the 7-position or the 11-position at 0.95 ppm was detected, and a triplet (2H) derived from a methylene group proton at the γ-position was detected at 2.60 ppm. And the multiplet (2H) derived from the 6th and 10th position vinyl protons was detected at 5.05 to 5.14 ppm, and the doublet (1H) derived from the 2nd position vinyl proton was detected at 5.87 ppm. From these results, the estimated structure of pheromone A is presumed to be 3,7,11-trimethyl-2,6,10-tridecatrial, or 7-ethyl-3,11-dimethyl-2,6,10-dodecatrial. It was done.
(Analysis by derivatization)
Derivative treatment was performed on pheromone A purified by GC, and analysis was performed by GC-EI-MS. The conditions of GC-EI-MS were measured in the same manner as described above.
Acetylation 2 μl acetic anhydride in 100 μl benzene and 100 nl pyridine in 100 μl benzene were added, pheromone was added and incubated at 60 ° C. for 12 hours. Thereafter, 200 μl of benzone and 200 μl of dispersed water were added and stirred, and the aqueous layer was removed (repeated twice). As a result, no reaction occurred.
TMS was added pheromone in 100 μl BSA (N, O-bis (trimethylsilyl) acetamide) and incubated at 60 ° C. for 12 hours. As a result, no reaction occurred. From the results of acetylation and TMS conversion, it was found that the structure of pheromone A does not have —OH.
Next, in order to confirm the presence or absence of —CHO in the structure, pheromone A was added to 50 μg N, N-dimethylhydrazine in 50 μl hexane, and the mixture was stirred to form dimethylhydrazone. As a result, a molecular ion peak of M + +42 was detected at m / z = 276. As a result, it was found that the structure of pheromone A has —CHO. A prominent fragment peak was detected at m / z = 125.
It was reported that a significant fragment peak was detected at m / z = 111 by cleavage at the allylic position in linear α, β-unsaturated aldehydes, so methyl at the β-position with α, β-unsaturated aldehydes was reported. The same treatment was performed using citral having a side chain. As a result, a prominent fragment peak was detected at m / z = 125, which was 14 more than m / z = 111 due to the linear α, β-unsaturated aldehyde, similarly by cleavage at the allylic position. From this result, it was estimated that the terminal structure of pheromone A is an α, β-unsaturated aldehyde and has a methyl side chain at the β-position. In addition, since the pheromone structure does not have —OH and has only —CHO, the number of Os in the molecule is expected to be one, and the molecular weight is 234. Thus, it was found that there were four unsaturated bonds in the structure.
Ozone oxidation 50 μl of hexane containing pheromone A was cooled to −78 ° C. in a dry ice / acetone bath, and oxygen gas was blown at 3 ml / min, and 10 to 10 using Tesla lamp checker HF-20 (Shinko Denki). A high voltage of 15 kV was applied for 20 seconds. Thereafter, 1 μl of a dichloromethane solution of triphenylphosphine (1 μg / μl) was added and stirred to carry out ozone oxidation.
Attention was paid to two types of products having a relatively large molecular weight among products expected when the respective estimated structures were subjected to ozone oxidation treatment. From 3,7,11-trimethyl-2,6,10-tridecatrial, only 4-oxopental (MW100) is generated, but from 7-ethyl-3,11-dimethyl-2,6,10-decatatrial, 4-oxentananal And 4-oxohexanal (MW114). When pheromone A was ozone-oxidized in the hope that this difference would occur, 4-oxopental with m / z = 100 could not be detected due to a small sample amount, but 4-oxohexanal with m / z = 114 was detected. . This 4-oxohexanal is not generated from 3,7,11-trimethyl-2,6,10-tridecatrial, but is generated only from 7-ethyl-3,11-dimethyl-2,6,10-decatatrial. From the above results, it was found that the structure of pheromone A is 7-ethyl-3,11-dimethyl-2,6,10-dodecatenial represented by the formula (X).
Example 2
The compound represented by formula (X) was synthesized by the following procedure. The compound of formula (II), the compound of formula (I), and the compound of formula (X) are as follows.
Compound represented by formula (I): methyl 7-ethyl-3,11-dimethyl-2,6,10-dedecatrienoate
Compound represented by formula (II): 7-ethyl-3,11-dimethyl-2,6,10-dodecatrien-1-ol
Compound represented by formula (X): 7-ethyl-3,11-dimethyl-2,6,10-dodecatrial
(Synthesis of the compound represented by the formula (I))
The compound represented by the formula (I) was prepared with reference to the method of Mori et al. (Mori, K. et al., Agri. Biol. Chem. (1971) 35, 1116-1127.).
(Synthesis of a compound represented by the formula (II))
The compound represented by formula (I) was reduced by the following procedure. That is, 1.6 g (6.1 mmol) of the compound represented by the formula (I) was dissolved in 20 ml of dry hexane and cooled in a dry ice / acetone bath (−78 ° C.) with 1M diisobutylaluminum hydride ( 16 ml (16 mmol) of a hexane solution of DIBAL-H) was added dropwise. After dropping, the mixture was stirred for 10 minutes. The reaction was performed in an Ar atmosphere. The reaction was stopped by adding 4 ml of methanol. Then, 5% HCl aqueous solution was added, and it returned to room temperature, and extracted by ether. The extract was washed with water, saturated NaHCO 3 aqueous solution, saturated NaCl aqueous solution, dried over MgSO 4 , the solvent was distilled off with an evaporator, and the residue was purified by silica gel column chromatography (hexane / ethyl acetate). The compound represented by this was synthesized. Yield 1.4 g (5.9 mmol; 97%).
(Synthesis of the compound represented by the formula (X))
1.4 g (5.9 mmol) of the compound represented by the formula (II) was dissolved in 100 ml of hexane, and 16.5 g of active MnO 2 was added at 0 ° C. in an ice bath, followed by stirring for 8 hours to oxidize. After filtration, the solvent was distilled off with an evaporator to obtain a compound represented by the formula (X). Yield 1.2 g (5.1 mmol; 86%).
(Confirmation by GC-EAD)
When the synthesized compound represented by the formula (X) was assayed by GC-EAD, depolarization occurred on the antenna and it was confirmed that it was a sex attractant pheromone of Azuki beetle.
Effect of the Invention The terpene compound of the present invention is easily decomposed and causes no harm to the human body. A large amount of adult males can be captured using the terpene compound of the present invention, or the mating behavior of males and females can be disturbed.

本発明のテルペン化合物は、アズキゾウムシの発生予測調査へ利用したり、交信撹乱剤などに利用することができる。  The terpene compound of the present invention can be used for investigation of the occurrence of azuki bean weevil, or a communication disrupter.

Claims (3)

下記式(X)
Figure 2007061132
で表されるテルペン化合物。
The following formula (X)
Figure 2007061132
A terpene compound represented by:
下記式(I)
Figure 2007061132
で表される化合物を還元し、下記式(II)
Figure 2007061132
で表される化合物とした後、酸化することからなる
下記式(X)
Figure 2007061132
で表されるテルペン化合物の製造方法。
Formula (I)
Figure 2007061132
A compound represented by the following formula (II):
Figure 2007061132
The compound represented by the following formula (X) consisting of oxidation after oxidation
Figure 2007061132
The manufacturing method of the terpene compound represented by these.
下記式(X)
Figure 2007061132
で表されるテルペン化合物を有効成分として含むアズキゾウムシの誘引剤。
The following formula (X)
Figure 2007061132
A weevil attractant containing a terpene compound represented by the formula:
JP2007511119A 2005-11-25 2006-11-22 Terpene compounds Expired - Fee Related JP4512133B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005340045 2005-11-25
JP2005340045 2005-11-25
PCT/JP2006/324036 WO2007061132A1 (en) 2005-11-25 2006-11-22 Terpene compound

Publications (2)

Publication Number Publication Date
JPWO2007061132A1 true JPWO2007061132A1 (en) 2009-05-07
JP4512133B2 JP4512133B2 (en) 2010-07-28

Family

ID=38067347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007511119A Expired - Fee Related JP4512133B2 (en) 2005-11-25 2006-11-22 Terpene compounds

Country Status (2)

Country Link
JP (1) JP4512133B2 (en)
WO (1) WO2007061132A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2011003022A (en) * 2008-09-22 2011-04-12 Procter & Gamble Specific polybranched aldehydes, alcohols surfactants and consumer products based thereon.
KR101963974B1 (en) * 2017-10-12 2019-03-29 경상대학교산학협력단 Synthetic process of the sex pheromone of Callosobruchus chinensis, and development of attraction trap using the pheromone

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60222434A (en) * 1984-04-17 1985-11-07 Kuraray Co Ltd Preparation of (2e,6e)-3,7,11-trimethyl-2,6,10-dodecatrien-1-al

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60222434A (en) * 1984-04-17 1985-11-07 Kuraray Co Ltd Preparation of (2e,6e)-3,7,11-trimethyl-2,6,10-dodecatrien-1-al

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6010023264, Diwan S. RAWAT et al., Organic Letters, 2002, 4(18), pp.3027−3030 *
JPN6010023265, Stephanie E. SEN et al., The Journal of Organic Chemistry, 1997, 62(11), pp.3529−3536 *

Also Published As

Publication number Publication date
JP4512133B2 (en) 2010-07-28
WO2007061132A1 (en) 2007-05-31

Similar Documents

Publication Publication Date Title
Alborn et al. Identification and synthesis of volicitin and related components from beet armyworm oral secretions
Heath et al. Identification of sex pheromone produced by female sweetpotato weevil, Cylas formicarius elegantulus (Summers)
JPH01163193A (en) Hydrogenated extract of seed of azadirachta indica
Guss et al. Identification of a female-produced sex pheromone from the southern corn rootworm, Diabrotica undecimpunctata howardi Barber
Sun et al. Electrophysiological and behavioral responses of Helicoverpa assulta (Lepidoptera: Noctuidae) to tobacco volatiles
Hillbur et al. Identification of the sex pheromone of the swede midge, Contarinia nasturtii
US4732756A (en) (Z)-3-dodecen-1-ol (E)-2-butenoate and its use in monitoring and controlling the sweetpotato weevil
JP4512133B2 (en) Terpene compounds
Subchev et al. Sex pheromone of female vine bud moth, Theresimima ampellophaga comprises (2 S)-butyl (7 Z)-tetradecenoate
US7655253B2 (en) Navel orangeworm pheromone composition
Ishikawa et al. Comparative studies on the sex pheromones of Ostrinia spp. in Japan: the burdock borer, Ostrinia zealis
Zhu et al. Identification of (Z)-4-tridecene from defensive secretion of green lacewing, Chrysoperla carnea
Löfstedt et al. Identification of the sex pheromone of the currant shoot borer Lampronia capitella
Twidle et al. Synthesis and biological testing of ester pheromone analogues for two fruitworm moths (Carposinidae)
Francke et al. Major sex pheromone component of female herald moth Scoliopteryx libatrix is the novel branched alkene (6Z, 13)-methylheneicosene
Sekul et al. A Natural Inhibitor of the Corn Earworm Moth Sex Attractane
Inscoe et al. Analysis of pheromones and other compounds controlling insect behavior
Naka et al. Sex pheromone of the persimmon fruit moth, Stathmopoda masinissa: identification and laboratory bioassay of (4 E, 6 Z)-4, 6-hexadecadien-1-ol derivatives
Shimomura et al. Homofarnesals: female sex attractant pheromone components of the southern cowpea weevil, Callosobruchus chinensis
Gliszczyńska et al. Synthesis of β-damascone derivatives with a lactone ring and their feeding deterrent activity against aphids and lesser mealworms
Tóth et al. Abraxas grossulariata L.(Lepidoptera: Geometridae): Identification of (3Z, 6Z, 9Z)-3, 6, 9-heptadecatriene and (6Z, 9Z)-6, 9-cis-3, 4-epoxyheptadecadiene in the female sex pheromone
JP4017107B2 (en) Novel ester compounds and uses thereof
US20060110420A1 (en) Synthetic pheromone compositions
JP7194942B2 (en) 2-(1,2,2-trimethyl-3-cyclopentenyl)-2-oxoethyl 2-methylbutyrate, pheromone agents and pheromone preparations containing same, and methods for controlling aerial root mealy bugs
Harris et al. A new pheromone race of Acrobasis nuxvorella (Lepidoptera: Pyralidae)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622