JPWO2007029496A1 - Fluorinated sulfonic acid group-introduced amorphous carbon, its production method and its use - Google Patents

Fluorinated sulfonic acid group-introduced amorphous carbon, its production method and its use Download PDF

Info

Publication number
JPWO2007029496A1
JPWO2007029496A1 JP2007534316A JP2007534316A JPWO2007029496A1 JP WO2007029496 A1 JPWO2007029496 A1 JP WO2007029496A1 JP 2007534316 A JP2007534316 A JP 2007534316A JP 2007534316 A JP2007534316 A JP 2007534316A JP WO2007029496 A1 JPWO2007029496 A1 JP WO2007029496A1
Authority
JP
Japan
Prior art keywords
amorphous carbon
sulfonic acid
acid group
carbon
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007534316A
Other languages
Japanese (ja)
Inventor
亨和 原
亨和 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Publication of JPWO2007029496A1 publication Critical patent/JPWO2007029496A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • B01J31/10Ion-exchange resins sulfonated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8817Treatment of supports before application of the catalytic active composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

X線光電子分光法において、結合エネルギー165 eV〜175 eVにS2pの光電子ピークが少なくとも1つは検出され、結合エネルギー675 eV〜695 eVにF1sの光電子ピークが少なくとも1つは検出され、粉末X線回折において半値幅(2θ)が5〜30°である炭素(002)面の回折ピークが少なくとも検出され、酸触媒活性、プロトン伝導性を示すことを特徴とするフッ化型スルホン酸基導入無定形炭素を提供する。この物質はプロトン伝導性材料や固体酸触媒として利用することができる。In X-ray photoelectron spectroscopy, at least one S2p photoelectron peak is detected at a binding energy of 165 eV to 175 eV, and at least one F1s photoelectron peak is detected at a binding energy of 675 eV to 695 eV. Fluorinated sulfonic acid group-introduced amorphous material characterized in that at least a diffraction peak on the carbon (002) plane having a half-value width (2θ) of 5 to 30 ° is detected in diffraction, and exhibits acid catalytic activity and proton conductivity Provide carbon. This substance can be used as a proton conductive material or a solid acid catalyst.

Description

本発明は、フッ素原子及びスルホン酸基が導入された無定形炭素(以下、「フッ化型スルホン酸基導入無定形炭素」という場合がある。)に関するものである。このフッ化型スルホン酸基導入無定形炭素は、プロトン伝導性材料や固体酸触媒などとして利用できる。   The present invention relates to amorphous carbon into which a fluorine atom and a sulfonic acid group are introduced (hereinafter sometimes referred to as “fluorinated sulfonic acid group-introduced amorphous carbon”). This fluorinated sulfonic acid group-introduced amorphous carbon can be used as a proton conductive material or a solid acid catalyst.

高分子電解質型燃料電池は、燃料極と空気極との間にプロトン伝導膜を配置するタイプの燃料電池であり、小型化、軽量化が可能であるため、車搭載型の燃料電池として期待されている。   A polymer electrolyte fuel cell is a type of fuel cell in which a proton conducting membrane is arranged between a fuel electrode and an air electrode, and is expected to be a vehicle-mounted fuel cell because it can be reduced in size and weight. ing.

高分子電解質型燃料電池のプロトン伝導膜としては、ナフィオン(登録商標、デュポン社)が使用されている。しかし、ナフィオンは、熱的・化学的安定性が低いため、電池を高い温度で作動させることができない。ナフィオンを使用した燃料電池において低温でも十分な出力を得るためには、空気極に大量の白金触媒(空気極の40〜60重量%相当)を使用する必要があり、これが燃料電池のコストを高くしている。また、ナフィオンそのもののコストも高い。現在、ナフィオンに代わる新たなプロトン伝導性材料の開発が進められているが、未だ実用化には至っていない(非特許文献1、特許文献1、特許文献2)。   Nafion (registered trademark, DuPont) is used as a proton conductive membrane of a polymer electrolyte fuel cell. However, since Nafion has low thermal and chemical stability, the battery cannot be operated at a high temperature. In order to obtain a sufficient output even at a low temperature in a fuel cell using Nafion, it is necessary to use a large amount of platinum catalyst (equivalent to 40 to 60% by weight of the air electrode) in the air electrode, which increases the cost of the fuel cell. is doing. In addition, the cost of Nafion itself is high. Currently, development of a new proton conductive material to replace Nafion is in progress, but it has not yet been put into practical use (Non-patent Document 1, Patent Document 1, Patent Document 2).

ところで、固体酸触媒は、分離・回収に中和や塩の除去といったプロセスが不要であり、不必要な副産物を生産することなく省エネルギーで目的物を作ることができるため、従来から積極的にその研究が進められてきた(非特許文献2)。その結果、ゼオライト、シリカ−アルミナ、含水ニオブ等の固体酸触媒が化学工業で大きな成果を挙げ、社会に大きな恩恵をもたらしている。また、前述したナフィオンも親水性を有する非常に強い固体酸(固体超強酸)であり、液体酸を上回る酸強度をもつ超強酸として働くことが既に知られている。しかし、ナフィオンのようなポリマー性の固体酸触媒は熱に弱く、また、工業的に利用するには高価すぎるという問題点がある。このように、性能およびコストなど面から固体酸触媒が液体の酸触媒より有利な工業的プロセスの設計は難しく、現在のところほとんどの化学産業は液体の酸触媒に依存しているといえる。このような現状において性能、コスト面で液体の酸を凌ぐ固体酸触媒の出現が望まれている。   By the way, solid acid catalysts do not require processes such as neutralization and salt removal for separation / recovery, and can produce the desired product with energy savings without producing unnecessary by-products. Research has been carried out (Non-Patent Document 2). As a result, solid acid catalysts such as zeolite, silica-alumina, and hydrous niobium have achieved great results in the chemical industry and have brought great benefits to society. Nafion mentioned above is also a very strong solid acid (solid superacid) having hydrophilicity, and it is already known that it works as a superacid having an acid strength exceeding that of a liquid acid. However, polymeric solid acid catalysts such as Nafion are vulnerable to heat and are too expensive for industrial use. Thus, it is difficult to design an industrial process in which a solid acid catalyst is more advantageous than a liquid acid catalyst in terms of performance and cost, and it can be said that most chemical industries currently depend on a liquid acid catalyst. Under such circumstances, the appearance of a solid acid catalyst that surpasses liquid acid in terms of performance and cost is desired.

HIGH TEMPETATURE MEMBRANES FOR SOLID POLYMER FUEL CELLS,ETSU F/02/00189/REP ,Contractor Johnson Matthey Technology Centre,Prepared by Martin Hogarth Xavier Glipa,Crown Copyright,2001,Pi−15、特に第4ページ、Table11HIGH TEMPETATURE MEMBRANES FOR SOLID POLYMER FUEL CELLS, ETSU F / 02/00189 / REP, Contractor Johnson Matthey Technology Centre, Prepared by Martin Hogarth Xavier Glipa, Crown Copyright, 2001, Pi-15, especially page 4, Table 11 Ishihara,K;Hasegawa,A;Yamamoto,H.Angew.Chem..Int.Ed.2001,40,4077.Ishihara, K; Hasegawa, A; Yamamoto, H. Angew. Chem. .Int. Ed. 2001, 40, 4077. 特開2003−217341号公報JP 2003-217341 A 特開2003−342241号公報JP 2003-342241 A

以上のように、プロトン伝導性材料及び固体酸触媒として利用可能な物質に対する社会的要求は非常に大きい。本発明は、このような背景の下になされたものであり、プロトン伝導性材料及び固体酸触媒として利用可能な新規な物質を提供することを目的とする。   As described above, there is a great social demand for proton conductive materials and substances that can be used as solid acid catalysts. The present invention has been made under such a background, and an object thereof is to provide a novel substance that can be used as a proton conductive material and a solid acid catalyst.

本発明者は、上記課題を解決するため鋭意検討を重ねた結果、芳香族炭化水素類、あるいは無定形炭素を濃硫酸又は発煙硫酸中で加熱処理して得られる無定形炭素をF2で処理すると、プロトン伝導性及び酸触媒機能を持ち、かつ熱的・化学的に安定性が高い材料が得られることを見出し、この知見に基づき、本発明を完成するに至った。As a result of intensive studies to solve the above problems, the present inventor treated amorphous hydrocarbons or amorphous carbon obtained by heat-treating amorphous carbon in concentrated sulfuric acid or fuming sulfuric acid with F 2 . As a result, it was found that a material having proton conductivity and an acid catalyst function and having high thermal and chemical stability was obtained, and based on this finding, the present invention was completed.

即ち、本発明は、以下の(1)〜(15)を提供するものである。
(1)フッ素原子及びスルホン酸基が導入された無定形炭素。
(2)スルホン酸密度が、0.1〜8mmol/gである、(1)記載の無定形炭素。
(3)プロトン伝導度が、0.01〜10Scm-1(温度80℃、湿度100%条件下で交流インピーダンス法による)である、(1)又は(2)記載の無定形炭素。
(4)硫黄の含有量が0.3重量%〜40重量%であり、フッ素の含有量が、0.1重量%〜50重量%である、(1)乃至(3)のいずれか記載の無定形炭素。
(5)表面における硫黄の含有量が炭素に対する硫黄の元素比(S/C)で0.01〜0.2であり、表面におけるフッ素の含有量が炭素に対するフッ素の元素比(F/C)0.01〜0.5である、(1)乃至(4)のいずれか記載の無定形炭素。
(6)X線光電子分光法において、結合エネルギー165 eV〜175 eVにS2pの光電子ピークが少なくとも1つは検出され、結合エネルギー675 eV〜695 eVにF1sの光電子ピークが少なくとも1つは検出される、(1)乃至(5)のいずれか記載の無定形炭素。
That is, the present invention provides the following (1) to (15).
(1) Amorphous carbon into which a fluorine atom and a sulfonic acid group are introduced.
(2) The amorphous carbon according to (1), wherein the sulfonic acid density is 0.1 to 8 mmol / g.
(3) The amorphous carbon according to (1) or (2), wherein the proton conductivity is 0.01 to 10 Scm −1 (according to an alternating current impedance method at a temperature of 80 ° C. and a humidity of 100%).
(4) The sulfur content is 0.3 wt% to 40 wt%, and the fluorine content is 0.1 wt% to 50 wt%, according to any one of (1) to (3) Amorphous carbon.
(5) The sulfur content on the surface is 0.01 to 0.2 in terms of the elemental ratio of sulfur to carbon (S / C), and the fluorine content on the surface is the elemental ratio of fluorine to carbon (F / C) in the range of 0.01 to 0.5. The amorphous carbon according to any one of (1) to (4).
(6) In X-ray photoelectron spectroscopy, at least one S2p photoelectron peak is detected at a binding energy of 165 eV to 175 eV, and at least one F1s photoelectron peak is detected at a binding energy of 675 eV to 695 eV. The amorphous carbon according to any one of (1) to (5).

(7)粉末X線回折において半値幅(2θ)が5〜30°である炭素(002)面の回折ピークが少なくとも検出される、(1)乃至(6)のいずれか記載の無定形炭素。
(8)炭素を含む化合物を濃硫酸又は発煙硫酸中で加熱処理して得られる無定形炭素をフッ化処理して得られる、(1)乃至(7)のいずれか記載の無定形炭素。
(9)スルホン酸基が導入された無定形炭素のフッ化処理が、-70℃〜200℃においてFと接触させることである、(8)記載の無定形炭素。
(10)(1)乃至(9)のいずれか記載の無定形炭素を含有する、固体酸触媒。
(11)(1)乃至(9)のいずれか記載の無定形炭素を含有する、プロトン伝導性材料。
(7) The amorphous carbon according to any one of (1) to (6), wherein at least a diffraction peak of a carbon (002) plane having a half width (2θ) of 5 to 30 ° in powder X-ray diffraction is detected.
(8) Amorphous carbon according to any one of (1) to (7), obtained by fluorinating amorphous carbon obtained by heat-treating a compound containing carbon in concentrated sulfuric acid or fuming sulfuric acid.
(9) The amorphous carbon according to (8), wherein the fluorination treatment of the amorphous carbon into which the sulfonic acid group has been introduced is contact with F 2 at −70 ° C. to 200 ° C.
(10) A solid acid catalyst containing the amorphous carbon according to any one of (1) to (9).
(11) A proton conductive material containing the amorphous carbon according to any one of (1) to (9).

(12)炭素を含む化合物を濃硫酸又は発煙硫酸中で加熱処理する工程、及び前記工程によって得られる無定形炭素をフッ化処理する工程を含む、(1)乃至(9)のいずれか記載のフッ素原子及びスルホン酸基が導入された無定形炭素の製造方法。
(13)スルホン酸基が導入された無定形炭素をフッ化処理する工程が、-70℃〜200℃においてスルホン酸基が導入された無定形炭素をFと接触させる工程である、(12)記載のフッ素原子及びスルホン酸基が導入された無定形炭素の製造方法。
(14)炭素を含む化合物を濃硫酸又は発煙硫酸中で加熱処理する工程の後であって、無定形炭素をフッ化処理する工程の前に、加熱処理物を水洗することを特徴とする(12)又は(13)記載のフッ素原子及びスルホン酸基が導入された無定形炭素の製造方法。
(15)炭素を含む化合物を濃硫酸又は発煙硫酸中で加熱処理する工程の後であって、無定形炭素をフッ化処理する工程の前に、加熱処理物を塩基性水溶液中で陽イオン交換処理を行い、更に酸性水溶液中でプロトン交換処理を行い、その後に水洗することを特徴とする(12)又は(13)記載のフッ素原子及びスルホン酸基が導入された無定形炭素の製造方法。
(12) The method according to any one of (1) to (9), including a step of heat-treating a compound containing carbon in concentrated sulfuric acid or fuming sulfuric acid, and a step of fluorinating amorphous carbon obtained by the step. A process for producing amorphous carbon into which a fluorine atom and a sulfonic acid group are introduced.
(13) The step of fluorinating amorphous carbon into which sulfonic acid groups have been introduced is a step of bringing amorphous carbon into which sulfonic acid groups have been introduced into contact with F 2 at -70 ° C to 200 ° C. A method for producing amorphous carbon into which a fluorine atom and a sulfonic acid group are introduced.
(14) The heat-treated product is washed with water after the step of heat-treating the compound containing carbon in concentrated sulfuric acid or fuming sulfuric acid and before the step of fluorinating amorphous carbon ( A method for producing amorphous carbon into which a fluorine atom and a sulfonic acid group described in 12) or (13) are introduced.
(15) After the step of heat-treating the compound containing carbon in concentrated sulfuric acid or fuming sulfuric acid and before the step of fluorinating amorphous carbon, the heat-treated product is subjected to cation exchange in a basic aqueous solution. The method for producing amorphous carbon into which a fluorine atom and a sulfonic acid group are introduced according to (12) or (13), wherein the treatment is further performed, followed by proton exchange treatment in an acidic aqueous solution, followed by washing with water.

本発明によって提供されるフッ化型スルホン酸基導入無定形炭素は、プロトン伝導性、酸触媒機能、熱安定性、化学的安定性に優れ、また、低コストで製造可能であることから、プロトン伝導性材料、固体酸触媒として非常に有用である。   The fluorinated sulfonic acid group-introduced amorphous carbon provided by the present invention is excellent in proton conductivity, acid catalyst function, thermal stability, chemical stability, and can be produced at low cost. It is very useful as a conductive material and a solid acid catalyst.

フッ化型スルホン酸基導入無定形炭素(原料:グルコース)の光電子分光スペクトル(A:S2p、B:F1s)。Photoelectron spectroscopic spectrum (A: S2p, B: F1s) of amorphous carbon (raw material: glucose) introduced with fluorinated sulfonic acid group. フッ化型スルホン酸基導入無定形炭素(原料:グルコース)の粉末X線回折パターン。X-ray powder diffraction pattern of fluorinated sulfonic acid group-introduced amorphous carbon (raw material: glucose).

以下、本発明を詳細に説明する。
〔1〕フッ化型スルホン酸基導入無定形炭素
本発明は、フッ化型スルホン酸基導入無定形炭素に関するものである。本発明における「無定形炭素」とは、炭素からなる物質であって、ダイヤモンドや黒鉛のような明確な結晶構造を持たない物質をいい、より具体的には、粉末X線回折において、明確なピークが検出されないか、あるいは幅の広いピークが検出される物質を意味する。
Hereinafter, the present invention will be described in detail.
[1] Fluorinated sulfonic acid group-introduced amorphous carbon The present invention relates to fluorinated sulfonic acid group-introduced amorphous carbon. The “amorphous carbon” in the present invention refers to a substance composed of carbon and does not have a clear crystal structure such as diamond or graphite, and more specifically, in powder X-ray diffraction, It means a substance in which no peak is detected or a broad peak is detected.

本発明のフッ化型スルホン酸基導入無定形炭素には、以下の(A)〜(F)の性質を有するものが含まれる。
(A)スルホン酸密度が、0.1〜8mmol/gである。
(B)プロトン伝導度が、0.01〜10Scm-1(温度80℃、湿度100%条件下で交流インピーダンス法による)である。
(C)硫黄の含有量が、0.3重量%〜40重量%であり、フッ素の含有量が、0.1重量%〜50重量%である
(D)表面における硫黄の含有量が炭素に対する硫黄の元素比(S/C)で0.01〜0.2であり、表面におけるフッ素の含有量が炭素に対するフッ素の元素比(F/C)0.01〜0.5である。
(E)X線光電子分光法において、結合エネルギー165 eV〜175 eVにS2pの光電子ピークが少なくとも1つは検出され、結合エネルギー675 eV〜695 eVにF1sの光電子ピークが少なくとも1つは検出される。
(F)粉末X線回折において半値幅(2θ)が5〜30°である炭素(002)面の回折ピークが少なくとも検出される。
The fluorinated sulfonic acid group-introduced amorphous carbon of the present invention includes those having the following properties (A) to (F).
(A) The sulfonic acid density is 0.1 to 8 mmol / g.
(B) The proton conductivity is 0.01 to 10 Scm −1 (according to the AC impedance method at a temperature of 80 ° C. and a humidity of 100%).
(C) The sulfur content is 0.3 wt% to 40 wt%, and the fluorine content is 0.1 wt% to 50 wt%. (D) The sulfur content on the surface is relative to carbon. The sulfur element ratio (S / C) is 0.01 to 0.2, and the fluorine content on the surface is fluorine to carbon element ratio (F / C) 0.01 to 0.5.
(E) In X-ray photoelectron spectroscopy, at least one S2p photoelectron peak is detected at a binding energy of 165 eV to 175 eV, and at least one F1s photoelectron peak is detected at a binding energy of 675 eV to 695 eV. .
(F) In powder X-ray diffraction, at least a diffraction peak on the carbon (002) plane having a half width (2θ) of 5 to 30 ° is detected.

上記(A)の性質に関し、スルホン酸密度は0.1〜8mmol/gであればよいが、1〜8mmol/gであることが好ましく、3〜8mmol/gであることが更に好ましい。
上記(B)の性質に関して、プロトン伝導度は0.01〜10Scm-1であればよいが、0.01〜1.0Scm-1であることが好ましく、0.01〜0.11Scm-1であることが更に好ましい(前記プロトン伝導度は、温度80℃、湿度100%条件下、交流インピーダンス法によって測定される値である。)。
Regarding the property (A), the sulfonic acid density may be 0.1 to 8 mmol / g, preferably 1 to 8 mmol / g, and more preferably 3 to 8 mmol / g.
Regard to the nature of the (B), proton conductivity may be a 0.01~10Scm -1 but is preferably 0.01~1.0Scm -1, further preferably 0.01~0.11Scm -1 (the proton The conductivity is a value measured by the AC impedance method under the conditions of a temperature of 80 ° C. and a humidity of 100%.)

上記(C)の性質に関して、硫黄の含有量は0.3重量%〜40重量%であればよいが、0.5重量%〜40重量%であることが好ましく、1.0重量%〜30重量%であることが更に好ましい。またフッ素の含有量は、0.1〜50重量%であればよいが、0.2重量%〜40重量%であることが好ましく、さらに0.2重量%〜30重量%であることが更に好ましい。
上記(D)の性質に関して、検出されるS2p、F1s回折ピークは1つ以上であってもよい。
上記(E)の性質に関して、検出される回折ピークは(002)面以外のものがあってもよいが、(002)面の回折ピークのみが検出されることが好ましい。
Regarding the property (C), the sulfur content may be 0.3 wt% to 40 wt%, preferably 0.5 wt% to 40 wt%, and 1.0 wt% to 30 wt%. More preferably, it is% by weight. Further, the fluorine content may be 0.1 to 50% by weight, preferably 0.2% to 40% by weight, and more preferably 0.2% to 30% by weight. preferable.
Regarding the property (D), one or more S2p and F1s diffraction peaks may be detected.
Regarding the property (E), the detected diffraction peak may be other than the (002) plane, but it is preferable that only the (002) plane diffraction peak is detected.

〔2〕フッ化型スルホン酸基導入無定形炭素の製造方法
本発明のフッ化型スルホン酸基導入無定形炭素の製造方法は、炭素を含む化合物を濃硫酸又は発煙硫酸中で加熱処理する工程、及び前記工程によって得られる無定形炭素をフッ化処理する工程を含むものである。
炭素を含む化合物を濃硫酸又は発煙硫酸中で加熱処理すると、炭化、スルホン化、環同士の縮合が起きる。この結果、スルホン酸基が導入された無定形炭素が生成する。また、このスルホン酸基導入無定形炭素をフッ化処理することで、フッ素原子とスルホン酸基の両者が導入された無定形炭素が生成する。
[2] Method for Producing Fluorinated Sulfonic Acid Group-Introduced Amorphous Carbon The method for producing fluorinated sulfonic acid group-introduced amorphous carbon according to the present invention comprises a step of heat treating a compound containing carbon in concentrated sulfuric acid or fuming sulfuric acid And a step of fluorinating the amorphous carbon obtained by the above step.
When a compound containing carbon is heat-treated in concentrated sulfuric acid or fuming sulfuric acid, carbonization, sulfonation, and condensation between rings occur. As a result, amorphous carbon having a sulfonic acid group introduced is produced. In addition, by fluorinating this sulfonic acid group-introduced amorphous carbon, amorphous carbon having both fluorine atoms and sulfonic acid groups introduced therein is produced.

濃硫酸又は発煙硫酸中の炭素を含む化合物の加熱処理は、窒素、アルゴン等の不活性ガス気流中、あるいは乾燥空気気流中で行うことがスルホン酸密度の高い無定形炭素を製造する上で必要である。より好ましい処理は有機化合物あるいは無定形炭素を加えた濃硫酸又は発煙硫酸に窒素、アルゴン等の不活性ガス、あるいは乾燥空気を吹き込みながら加熱を行うことである。濃硫酸と芳香族化合物の反応によって芳香族スルホン酸と水が生成するが、この反応は平衡反応である。したがって反応系内の水が増えると、逆反応が早く進むため、無定形炭素に導入されるスルホン酸の量が著しく低下する。不活性ガスや乾燥空気気流中で反応を行うか、反応系にこれらのガスを吹き込みながら反応を行い、水を反応系から積極的に除去することによって高いスルホン酸密度をもつ無定形炭素を合成することができる。   Heat treatment of a compound containing carbon in concentrated sulfuric acid or fuming sulfuric acid is necessary to produce amorphous carbon with a high sulfonic acid density in an inert gas stream such as nitrogen or argon, or in a dry air stream. It is. A more preferable treatment is heating while blowing an inert gas such as nitrogen or argon or dry air into concentrated sulfuric acid or fuming sulfuric acid to which an organic compound or amorphous carbon is added. Aromatic sulfonic acid and water are produced by the reaction of concentrated sulfuric acid and an aromatic compound, and this reaction is an equilibrium reaction. Therefore, when the amount of water in the reaction system increases, the reverse reaction proceeds faster, so that the amount of sulfonic acid introduced into amorphous carbon is significantly reduced. Amorphous carbon with a high sulfonic acid density is synthesized by reacting in an inert gas or in a dry air stream, or reacting while blowing these gases into the reaction system, and actively removing water from the reaction system. can do.

加熱処理においては、炭素を含む化合物の部分炭化、環化及び縮合などを進行させると共に、スルホン化を起こさせる。従って、加熱処理温度は、前記反応を進行させる温度であれば特に限定されないが、工業的には、50℃〜350℃、好ましくは100℃〜250℃である。処理温度が50℃未満の場合、有機化合物の縮合、炭化が十分でなく、炭素の形成が不十分であることがあり、また、処理温度が350℃を超えると、スルホン酸基の熱分解が起きる場合がある。
加熱処理時間は、使用する炭素を含む化合物や処理温度などによって適宜選択できるが、通常、0.01〜500時間、好ましくは0.1〜100時間、さらに好ましくは0.5〜50時間である。
In the heat treatment, partial carbonization, cyclization, condensation and the like of the compound containing carbon are allowed to proceed, and sulfonation is caused. Therefore, the heat treatment temperature is not particularly limited as long as the reaction is allowed to proceed, but industrially, it is 50 ° C to 350 ° C, preferably 100 ° C to 250 ° C. When the treatment temperature is less than 50 ° C, the condensation and carbonization of the organic compound may not be sufficient, and carbon formation may be insufficient. When the treatment temperature exceeds 350 ° C, thermal decomposition of the sulfonic acid group may occur. It may happen.
The heat treatment time can be appropriately selected depending on the compound containing carbon to be used, the treatment temperature and the like, but is usually 0.01 to 500 hours, preferably 0.1 to 100 hours, and more preferably 0.5 to 50 hours.

使用する濃硫酸又は発煙硫酸の量は特に限定されないが、炭素を含む化合物1モルに対し、通常、0.1〜1000モルであり、好ましくは1.0〜50.0モルであり、さらに好ましくは2.0〜36.0モルである。
炭素を含む化合物としては、有機化合物や無定形炭素を使用できる。
有機化合物としては、芳香族炭化水素類を使用することができるが、それ以外の有機化合物、例えば、グルコース、砂糖(スクロース)、セルロースのような天然物、ポリエチレン、ポリアクリルアミドのような合成高分子化合物を使用してもよい。芳香族炭化水素類は、多環式芳香族炭化水素類でも単環式芳香族炭化水素類でもよく、例えば、ベンゼン、ナフタレン、アントラセン、ペリレン、コロネンなどを使用することができ、好適には、ナフタレンなどを使用することができる。有機化合物は、一種類だけを使用してもよいが、二種類以上を組み合わせて使用してもよい。また、必ずしも精製された有機化合物を使用する必要はなく、例えば、芳香族炭化水素類を含む重油、ピッチ、タール、アスファルトなどを使用してもよい。
The amount of concentrated sulfuric acid or fuming sulfuric acid to be used is not particularly limited, but is usually 0.1 to 1000 mol, preferably 1.0 to 50.0 mol, more preferably 2.0 to 36.0 mol, with respect to 1 mol of the compound containing carbon. is there.
As the compound containing carbon, an organic compound or amorphous carbon can be used.
As the organic compound, aromatic hydrocarbons can be used, but other organic compounds such as glucose, sugar (sucrose), natural products such as cellulose, synthetic polymers such as polyethylene and polyacrylamide. A compound may be used. The aromatic hydrocarbons may be polycyclic aromatic hydrocarbons or monocyclic aromatic hydrocarbons, for example, benzene, naphthalene, anthracene, perylene, coronene, etc. can be used, preferably Naphthalene or the like can be used. Only one type of organic compound may be used, but two or more types may be used in combination. Further, it is not always necessary to use a purified organic compound, and for example, heavy oil containing aromatic hydrocarbons, pitch, tar, asphalt and the like may be used.

グルコース、セルロース等の天然物や合成高分子化合物を原料とするときは、濃硫酸又は発煙硫酸中での加熱処理の前に、これらの原料を不活性ガス気流中で加熱し、部分炭化させておくことが好ましい。このときの加熱温度は、通常、100〜400℃であり、処理時間は、通常、0.1〜100時間である。部分炭化の状態は、加熱処理物の粉末X線回折パターンにおいて、半値幅(2θ)が30°の(002)面の回折ピークが検出されるような状態が好ましい。   When using natural products such as glucose and cellulose or synthetic polymer compounds as raw materials, these materials are heated in an inert gas stream and partially carbonized before heat treatment in concentrated sulfuric acid or fuming sulfuric acid. It is preferable to keep it. The heating temperature at this time is usually 100 to 400 ° C., and the treatment time is usually 0.1 to 100 hours. The state of partial carbonization is preferably such that a diffraction peak on the (002) plane having a half width (2θ) of 30 ° is detected in the powder X-ray diffraction pattern of the heat-treated product.

スルホン酸基導入無定形炭素のフッ化は、バッチ型反応容器、あるいは流通型反応容器内で上記スルホン酸基導入無定形炭素とF2の接触によって行う。接触させるF2は純粋なものでも、Ar、He等の不活性ガスで希釈したもでもよい。バッチ型の反応容器でF2と接触させる場合、1 kPa〜100 kPaのF2が好ましい。接触させる温度は-70℃〜200℃であるが、-70℃〜25℃が好ましい。
加熱処理工程後でフッ化処理工程の前に、加熱処理物を水洗することが好ましい。水洗には室温〜100℃の蒸留水、イオン交換水、水道水を使用してよい。水洗後の水と固体の分離にはデカンテーション、ろ過、遠心分離が好ましい。また、工業的には加熱処理物を一旦、塩基性水溶液中で洗浄(陽イオン交換処理)してから、酸性水溶液で洗浄(プロトン交換処理)し、その後水洗してもよい。
Fluorination of the sulfonic acid group-introduced amorphous carbon is carried out by contacting the sulfonic acid group-introduced amorphous carbon with F 2 in a batch-type reaction vessel or a flow-type reaction vessel. F 2 to be contacted may be pure or diluted with an inert gas such as Ar or He. When contacting the F 2 in the reaction vessel of a batch-type, 1 kPa~100 kPa of F 2 is preferred. The contacting temperature is -70 ° C to 200 ° C, preferably -70 ° C to 25 ° C.
It is preferable to wash the heat-treated product after the heat treatment step and before the fluorination treatment step. For washing with water, distilled water at room temperature to 100 ° C., ion exchange water, and tap water may be used. Decantation, filtration, and centrifugation are preferred for separation of water and solids after washing. Industrially, the heat-treated product may be once washed in a basic aqueous solution (cation exchange treatment), then washed with an acidic aqueous solution (proton exchange treatment), and then washed with water.

〔3〕フッ化型スルホン酸基導入無定形炭素の用途
本発明のフッ化型スルホン酸基導入無定形炭素は、高いプロトン伝導性と優れた酸触媒機能を持ち、また、耐熱性、化学的安定性、コスト性に優れていることから、プロトン伝導性材料(例えば、燃料電池用のプロトン伝導膜など)、固体酸触媒、イオン交換体、イオン選択性材料などとして非常に有用である。
[3] Use of fluorinated sulfonic acid group-introduced amorphous carbon The fluorinated sulfonic acid group-introduced amorphous carbon of the present invention has high proton conductivity and an excellent acid catalyst function, and also has heat resistance, chemical properties. Since it is excellent in stability and cost, it is very useful as a proton conductive material (for example, a proton conductive membrane for a fuel cell), a solid acid catalyst, an ion exchanger, an ion selective material, and the like.

本発明のように、無定形炭素にスルホン酸とフッ素とが両方導入されることにより、無定形炭素中の、スルホン酸基による親水性環境(固体酸性環境)がより強く形成されるものと推定される。この結果、プロトン伝導材料として用いたときには、より伝導度の高いプロトン伝導パスが形成されることにより高いプロトン伝導度が得られる。また、固体酸触媒として用いた場合には、特に含酸素有機化合物等へテロ元素を有する有機化合物の反応に有効である。フッ素の導入により強められた親水性場が、活性点への反応基質の効果的な吸着と酸触媒反応の両方に貢献するために、より高性能な触媒になる。   As in the present invention, by introducing both sulfonic acid and fluorine into amorphous carbon, it is estimated that the hydrophilic environment (solid acidic environment) due to the sulfonic acid group in amorphous carbon is formed more strongly. Is done. As a result, when used as a proton conducting material, a higher proton conductivity can be obtained by forming a proton conducting path with higher conductivity. Further, when used as a solid acid catalyst, it is particularly effective for the reaction of an organic compound having a hetero element such as an oxygen-containing organic compound. The hydrophilic field enhanced by the introduction of fluorine contributes to both effective adsorption of the reaction substrate to the active site and acid catalysis, thus making it a higher performance catalyst.

本発明のフッ化型スルホン酸基導入無定形炭素からプロトン伝導性材料や固体酸触媒を調製する場合、これらは、本発明のフッ化型スルホン酸基導入無定形炭素のみからなってもよいが、他の成分を含んでいてもよい。   When preparing a proton conductive material or a solid acid catalyst from the fluorinated sulfonic acid group-introduced amorphous carbon of the present invention, these may consist only of the fluorinated sulfonic acid group-introduced amorphous carbon of the present invention. Other components may be included.

以下、実施例により本発明を更に詳細に説明する。
最初に本実施例で用いた測定装置及び測定法について説明する。
X線光電子分光スペクトル:ESCA3200(島津製作所製)を使用して測定した。
試料の表面における元素比はX線光電子分光スペクトルによって測定した。
元素分析(硫黄):燃焼型元素分析装置CHNS-932(米国LECO社)を使用した。
元素分析(フッ素):燃焼型元素分析装置SX-Elements Micro Analyzer YS-10(yanaco)を使用した。
X線解析装置:Geigerflex RAD-B, CuKα(株式会社リガク社製)を使用した。
Hereinafter, the present invention will be described in more detail with reference to examples.
First, the measurement apparatus and measurement method used in this example will be described.
X-ray photoelectron spectroscopy spectrum: measured using ESCA3200 (manufactured by Shimadzu Corporation).
The element ratio on the surface of the sample was measured by X-ray photoelectron spectroscopy.
Elemental analysis (sulfur): A combustion elemental analyzer CHNS-932 (LECO, USA) was used.
Elemental analysis (fluorine): Combustion type elemental analyzer SX-Elements Micro Analyzer YS-10 (yanaco) was used.
X-ray analyzer: Geigerflex RAD-B, CuKα (manufactured by Rigaku Corporation) was used.

触媒反応による生成物の同定・定量はガスクロマトグラフマススペクトロメータ GCMS-QP5050A(島津製作所製)
閃光燃焼を用いた元素分析計:CHSN-932(米国LECO社製)を使用した。
プロトン伝導度の測定:交流インピーダンス法によって測定した。即ち、100%相対湿度下に置かれた直径10mmのフィルム状試料を、白金電極に挟み、密閉セルに封入し、インピーダンスアナライザー(HYP4192A)を用いて、周波数5〜13MHz、印加電圧12mV、温度20℃、50℃、100℃にてセルのインピーダンスの絶対値と位相角を測定した。得られたデータは、コンピュータを用いて発振レベル12mVにて複素インピーダンス測定を行い、プロトン伝導度を算出した。
スルホン酸密度の測定:製造した材料1gを蒸留水100mLに分散させ、0.1M水酸化ナトリウム水溶液で滴定することによって求めた。なお、中和点はpHメータを用いて決定した。
Gas chromatograph mass spectrometer GCMS-QP5050A (manufactured by Shimadzu Corporation) for product identification and quantification by catalytic reaction
Element analyzer using flash combustion: CHSN-932 (manufactured by LECO, USA) was used.
Measurement of proton conductivity: Measured by the AC impedance method. That is, a film-like sample with a diameter of 10 mm placed under 100% relative humidity is sandwiched between platinum electrodes, sealed in a sealed cell, and using an impedance analyzer (HYP4192A), frequency 5-13 MHz, applied voltage 12 mV, temperature 20 The absolute value and phase angle of the cell impedance were measured at ℃, 50 ℃ and 100 ℃. The obtained data was subjected to complex impedance measurement using a computer at an oscillation level of 12 mV, and proton conductivity was calculated.
Measurement of sulfonic acid density: It was determined by dispersing 1 g of the produced material in 100 mL of distilled water and titrating with 0.1 M aqueous sodium hydroxide. The neutralization point was determined using a pH meter.

〔実施例1〕 グルコースからのフッ化型スルホン酸基導入無定形炭素の製造
10gのD-グルコースを不活性ガス気流中、400℃で15時間加熱し、茶褐色の有機物粉末〔半値幅(2θ)が30°である(002)面の回折ピークが観察される。〕を得た。この粉末10gを150mLの15%重量SO3発煙硫酸に加え、これに窒素ガスを 30ml/minで吹き込みながら150℃で15時間加熱することによって黒色の固体を得た。この黒色固体を300mLの蒸留水で洗浄し、洗浄後の蒸留水中の硫酸が元素分析の検出限界以下になるまでこの操作を繰り返し、スルホン酸基が導入された無定形炭素を得た。この材料を300mLのステンレス製真空容器に入れ、150℃で1時間真空排気(1kPa以下)した後、室温まで温度を下げ、室温でこの容器に70kPaのF2を導入した。3時間後、容器を真空排気しながら、150℃まで昇温し、余分なフッ化水素を除去した後、この黒色固体を300mLの蒸留水で洗浄し、洗浄後の蒸留水中不純物が元素分析の検出限界以下になるまでこの操作を繰り返し、フッ化型スルホン酸基が導入された無定形炭素を得た。元素分析の結果、この材料の硫黄含有量は3重量%、フッ素の含有量は1重量%であった。この材料のX線光電子分光スペクトルでは165〜170eVにスルホン酸基によるS2pピークが検出され(図1左)、680〜690eVにはフッ素原子によるF1sピークが検出された(図1右)。この材料の表面における炭素に対する硫黄の元素比(S/C)は0.03であり、表面における炭素に対するフッ素の元素比(F/C)は0.05であった。得られたフッ化型スルホン酸基導入無定形炭素粉末の粉末X線回折パターンでは、炭素(002)面の回折ピークが確認された(図2)。(002)面の回折ピークの半値幅(2θ)は10°であった。また、このスルホン酸残基導入無定形炭素のスルホン酸密度は1.4mmol/gであった。
[Example 1] Production of fluorinated sulfonic acid group-introduced amorphous carbon from glucose
When 10 g of D-glucose is heated in an inert gas stream at 400 ° C. for 15 hours, a brown organic powder [(002) plane diffraction peak having a half-value width (2θ) of 30 ° is observed. ] Was obtained. 10 g of this powder was added to 150 mL of 15% weight SO 3 fuming sulfuric acid, and heated at 150 ° C. for 15 hours while blowing nitrogen gas at 30 ml / min to obtain a black solid. This black solid was washed with 300 mL of distilled water, and this operation was repeated until the sulfuric acid in the distilled water after washing was below the detection limit of elemental analysis to obtain amorphous carbon into which a sulfonic acid group was introduced. This material was placed in a 300 mL stainless steel vacuum vessel, evacuated at 150 ° C. for 1 hour (1 kPa or less), then cooled to room temperature, and 70 kPa of F 2 was introduced into the vessel at room temperature. After 3 hours, evacuate the container, raise the temperature to 150 ° C, remove excess hydrogen fluoride, and then wash this black solid with 300 mL of distilled water. This operation was repeated until the detection limit was reached, thereby obtaining amorphous carbon into which a fluorinated sulfonic acid group was introduced. As a result of elemental analysis, this material had a sulfur content of 3% by weight and a fluorine content of 1% by weight. In the X-ray photoelectron spectrum of this material, an S2p peak due to a sulfonic acid group was detected at 165 to 170 eV (FIG. 1 left), and an F1s peak due to a fluorine atom was detected at 680 to 690 eV (FIG. 1 right). The elemental ratio of sulfur to carbon (S / C) on the surface of this material was 0.03, and the elemental ratio of fluorine to carbon (F / C) on the surface was 0.05. In the powder X-ray diffraction pattern of the obtained fluorinated sulfonic acid group-introduced amorphous carbon powder, a diffraction peak on the carbon (002) plane was confirmed (FIG. 2). The half-value width (2θ) of the (002) plane diffraction peak was 10 °. In addition, the sulfonic acid density of the amorphous carbon into which the sulfonic acid residue was introduced was 1.4 mmol / g.

この材料の触媒能はピナコール転移反応によって調べた。上記材料0.2gを42.3mLのピナコールに入れ、130℃で2時間反応させた後、生成物(目的物:ピナコロン、副生物:2,3-ジメチル-1,3ブタジエン)をガスクロマトグラフマススペクトロメータで分析した。その結果、従来のいかなる固体酸よりも高い酸触媒活性(転化率92.5%)を示した(表1)。
このフッ化型スルホン酸基導入無定形炭素の粉末を加圧成型(日本分光社製、10mmΦ錠剤成型器、成型条件:400kg/cm2、室温、1分)することによって、厚さ0.7mm、直径10mmのディスクを作製し、ディスクの片面に白金を蒸着した後、前述した交流インピーダンス法によってプロトン伝導度を測定した。プロトン伝導度は1.1×10-1Scm-1であることが確認された。この結果は、上記スルホン酸基導入無定形炭素がナフィオンに匹敵するプロトン伝導度を有することを示している。
The catalytic ability of this material was investigated by pinacol transfer reaction. After putting 0.2g of the above material into 42.3mL of pinacol and reacting at 130 ° C for 2 hours, the product (target product: pinacolone, byproduct: 2,3-dimethyl-1,3butadiene) is gas chromatograph mass spectrometer. Analyzed with As a result, it showed higher acid catalyst activity (conversion 92.5%) than any conventional solid acid (Table 1).
By forming this fluorinated sulfonic acid group-introduced amorphous carbon powder by pressure molding (manufactured by JASCO Corporation, 10 mmΦ tablet molding machine, molding conditions: 400 kg / cm 2 , room temperature, 1 minute), a thickness of 0.7 mm, A disk having a diameter of 10 mm was prepared, platinum was vapor-deposited on one side of the disk, and proton conductivity was measured by the AC impedance method described above. The proton conductivity was confirmed to be 1.1 × 10 −1 Scm −1 . This result indicates that the sulfonic acid group-introduced amorphous carbon has proton conductivity comparable to that of Nafion.

〔実施例2〕 重油からのフッ化型スルホン酸基導入無定形炭素の製造
10gの重油に150mLの15%重量SO3発煙硫酸に加え、これに窒素ガスを30ml/minで吹き込みながら100℃で1時間加熱することによって黒色の固体を得た。この黒色固体を300mLの蒸留水で洗浄し、洗浄後の蒸留水中の硫酸が元素分析の検出限界以下になるまでこの操作を繰り返し、スルホン酸基が導入された無定形炭素を得た。この材料を300mLのステンレス製真空容器に入れ、150℃で1時間真空排気(1kPa以下)した後、室温まで温度を下げ、室温でこの容器に70KPaのF2を導入した。3時間後、容器を真空排気しながら、150℃まで昇温し、余分なフッ化水素を除去した後、この黒色固体を300mLの蒸留水で洗浄し、洗浄後の蒸留水中不純物が元素分析の検出限界以下になるまでこの操作を繰り返し、フッ化型スルホン酸基が導入された無定形炭素を得た。元素分析の結果、この材料の硫黄含有量は11重量%、フッ素の含有量は1重量%であった。この材料のX線光電子分光スペクトルでは165〜170eVにスルホン酸基によるS2pピークが検出され、680〜690eVにはF1sによるピークが検出された。この材料の表面における炭素に対する硫黄の元素比(S/C)は0.1であり、表面における炭素に対するフッ素の元素比(F/C)は0.06であった。得られたフッ化型スルホン酸基導入無定形炭素粉末の粉末X線回折パターンでは、炭素(002)面の回折ピークが確認された。(002)面の回折ピークの半値幅(2θ)は20°であった。また、このスルホン酸残基導入無定形炭素のスルホン酸密度は4.5mmol/gであった。
[Example 2] Production of amorphous fluorinated sulfonic acid group-introduced amorphous carbon from heavy oil
A black solid was obtained by adding 150 g of 15% wt SO 3 fuming sulfuric acid to 10 g of heavy oil and heating at 100 ° C. for 1 hour while blowing nitrogen gas at 30 ml / min. This black solid was washed with 300 mL of distilled water, and this operation was repeated until the sulfuric acid in the distilled water after washing was below the detection limit of elemental analysis to obtain amorphous carbon into which a sulfonic acid group was introduced. This material was placed in a 300 mL stainless steel vacuum vessel, evacuated at 150 ° C. for 1 hour (1 kPa or less), then cooled to room temperature, and 70 KPa of F 2 was introduced into the vessel at room temperature. After 3 hours, evacuate the container, raise the temperature to 150 ° C, remove excess hydrogen fluoride, and then wash this black solid with 300 mL of distilled water. This operation was repeated until the detection limit was reached, thereby obtaining amorphous carbon into which a fluorinated sulfonic acid group was introduced. As a result of elemental analysis, the sulfur content of this material was 11% by weight, and the fluorine content was 1% by weight. In the X-ray photoelectron spectrum of this material, an S2p peak due to a sulfonic acid group was detected at 165 to 170 eV, and a peak due to F1s was detected at 680 to 690 eV. The elemental ratio of sulfur to carbon (S / C) on the surface of this material was 0.1, and the elemental ratio of fluorine to carbon (F / C) on the surface was 0.06. In the powder X-ray diffraction pattern of the obtained fluorinated sulfonic acid group-introduced amorphous carbon powder, a diffraction peak on the carbon (002) plane was confirmed. The half width (2θ) of the diffraction peak on the (002) plane was 20 °. In addition, the sulfonic acid density of the sulfonic acid residue-introduced amorphous carbon was 4.5 mmol / g.

この材料の触媒能はピナコール転移反応によって調べた。上記材料0.2gを42.3mLのピナコールに入れ、130℃で2時間反応させた後、生成物(目的物:ピナコロン、副生物:2,3-ジメチル-1,3ブタジエン)をガスクロマトグラフマススペクトロメータで分析した。その結果、従来のいかなる固体酸よりも高い酸触媒活性をもつ上記の実施例1の材料より高い触媒活性(転化率98.5%、目的物ピナコロンの選択率90.0%)と選択性を示した(表1)。
このスルホン酸基導入無定形炭素の粉末を加圧成型(日本分光社製、10mmΦ錠剤成型器、成型条件:400kg/cm2、室温、1分)することによって、厚さ0.7mm、直径10mmのディスクを作製し、ディスクの片面に白金を蒸着した後、前述した交流インピーダンス法によってプロトン伝導度を測定した。プロトン伝導度は2.1×10-1Scm-1であることが確認された。この結果は、上記スルホン酸基導入無定形炭素がナフィオンを上回るプロトン伝導度を有することを示している。
The catalytic ability of this material was investigated by pinacol transfer reaction. After putting 0.2g of the above material into 42.3mL of pinacol and reacting at 130 ° C for 2 hours, the product (target product: pinacolone, byproduct: 2,3-dimethyl-1,3butadiene) is gas chromatograph mass spectrometer. Analyzed with As a result, it showed higher catalytic activity (conversion 98.5%, selectivity of target pinacolone 90.0%) and selectivity than the material of Example 1 having higher acid catalytic activity than any conventional solid acid (Table). 1).
By forming this sulfonic acid group-introduced amorphous carbon powder by pressure molding (manufactured by JASCO Corporation, 10 mmΦ tablet molding machine, molding conditions: 400 kg / cm 2 , room temperature, 1 minute), the thickness is 0.7 mm and the diameter is 10 mm. After producing a disk and depositing platinum on one side of the disk, proton conductivity was measured by the AC impedance method described above. The proton conductivity was confirmed to be 2.1 × 10 −1 Scm −1 . This result shows that the sulfonic acid group-introduced amorphous carbon has proton conductivity higher than that of Nafion.

〔比較例〕グルコースから合成したスルホン酸基導入無定形炭素
実施例1の方法で合成したスルホン酸基導入無定形炭素のX線光電子分光スペクトルでは、165〜170eVにスルホン酸基によるS2pピークが検出されたが、680〜690eVにはF1sによるピークは検出されなかった。元素分析の結果、この材料中の硫黄含有量は3重量%であった。この材料の表面における炭素に対する硫黄の元素比(S/C)は0.03であった。得られたスルホン酸基導入無定形炭素粉末の粉末X線回折パターンでは、炭素(002)面の回折ピークが確認された。(002)面の回折ピークの半値幅(2θ)は10°であった。また、このスルホン酸残基導入無定形炭素のスルホン酸密度は1.4mmol/gであった。
[Comparative Example] Sulfonic acid group-introduced amorphous carbon synthesized from glucose In the X-ray photoelectron spectrum of the sulfonic acid group-introduced amorphous carbon synthesized by the method of Example 1, an S2p peak due to the sulfonic acid group was detected at 165 to 170 eV. However, no peak due to F1s was detected between 680 and 690 eV. As a result of elemental analysis, the sulfur content in this material was 3% by weight. The elemental ratio of sulfur to carbon (S / C) on the surface of this material was 0.03. In the powder X-ray diffraction pattern of the obtained sulfonic acid group-introduced amorphous carbon powder, a diffraction peak on the carbon (002) plane was confirmed. The half-value width (2θ) of the (002) plane diffraction peak was 10 °. In addition, the sulfonic acid density of the amorphous carbon into which the sulfonic acid residue was introduced was 1.4 mmol / g.

この材料の触媒能はピナコール転移反応によって調べた。上記材料0.2gを42.3mLのピナコールに入れ、130℃で2時間反応させた後、生成物(目的物:ピナコロン、副生物:2,3-ジメチル-1,3ブタジエン)をガスクロマトグラフマススペクトロメータで分析した。その結果、実施例1、2の材料より遥かに低い酸触媒活性(転化率35.0%)を示した(表1)。
このスルホン酸基導入無定形炭素の粉末を加圧成型(日本分光社製、10mmΦ錠剤成型器、成型条件:400kg/cm2、室温、1分)することによって、厚さ0.7mm、直径10mmのディスクを作製し、ディスクの片面に白金を蒸着した後、前述した交流インピーダンス法によってプロトン伝導度を測定した。その結果この材料のプロトン伝導度は実施例1、2の材料のプロトン伝導度より低い5×10-2cm-1であることが確認された。

Figure 2007029496
The catalytic ability of this material was investigated by pinacol transfer reaction. After 0.2g of the above material was put into 42.3mL of pinacol and reacted at 130 ° C for 2 hours, the product (target product: pinacolone, byproduct: 2,3-dimethyl-1,3butadiene) was gas chromatograph mass spectrometer. Analyzed with As a result, the acid catalyst activity (conversion rate: 35.0%) was much lower than that of the materials of Examples 1 and 2 (Table 1).
By forming this sulfonic acid group-introduced amorphous carbon powder by pressure molding (manufactured by JASCO Corporation, 10 mmΦ tablet molding machine, molding conditions: 400 kg / cm 2 , room temperature, 1 minute), the thickness is 0.7 mm and the diameter is 10 mm. After producing a disk and depositing platinum on one side of the disk, proton conductivity was measured by the AC impedance method described above. As a result, it was confirmed that the proton conductivity of this material was 5 × 10 −2 cm −1 which is lower than the proton conductivity of the materials of Examples 1 and 2 .
Figure 2007029496

〔参考例〕 洗浄工程を含むスルホン酸基導入無定形炭素の製造
(1)グルコースからのスルホン酸基導入無定形炭素の製造
10gのD-グルコースを不活性ガス気流中、400℃で15時間加熱し、茶褐色の有機物粉末〔半値幅(2θ)が30°である(002)面の回折ピークが観察される。〕を得た。この粉末5gを15wt%SO3の発煙硫酸200mLに加え、これに窒素ガスを 30ml/minで流通させながら150℃で15時間加熱することによって黒色の固体を得た。この黒色固体を300mLの蒸留水で洗浄し、洗浄後の蒸留水中の硫酸が元素分析の検出限界以下になるまでこの操作を繰り返し、スルホン酸基が導入された無定形炭素を得た。得られたスルホン酸基導入無定形炭素粉末の13C核磁気共鳴スペクトルの130ppm付近には縮合芳香族炭素6員環による化学シフトが現れ、X線光電子分光法において結合エネルギー168eVにスルホン酸基の硫黄に由来するS2pの光電子ピークが検出された。得られたスルホン酸基導入無定形炭素粉末の粉末X線回折パターンでは、炭素(002)面の回折ピークが確認された。(002)面の回折ピークの半値幅(2θ)は20°であった。元素分析の結果、この材料中の硫黄含有量は3重量%であった。また、このスルホン酸残基導入無定形炭素のスルホン酸密度は3.5mmol/gあり、水素と炭素の元素比H/Cは0.29であった。
このスルホン酸残基導入無定形炭素の粉末を実施例1及び2と同一の条件で加圧成型することによって、厚さ0.7mm、直径10mmのディスクを作製し、ディスクの片面に白金を蒸着した後、前述した交流インピーダンス法によってプロトン伝導度を測定した。プロトン伝導度は7×10-2cm-1であることが確認された。この結果は、上記スルホン酸残基導入無定形炭素がナフィオンに匹敵するプロトン伝導度を有することを示している。
[Reference Example] Production of sulfonic acid group-introduced amorphous carbon including washing step (1) Production of sulfonic acid group-introduced amorphous carbon from glucose
When 10 g of D-glucose is heated in an inert gas stream at 400 ° C. for 15 hours, a brown organic powder [(002) plane diffraction peak having a half-value width (2θ) of 30 ° is observed. ] Was obtained. 5 g of this powder was added to 200 mL of 15 wt% SO 3 fuming sulfuric acid and heated at 150 ° C. for 15 hours while flowing nitrogen gas at 30 ml / min to obtain a black solid. This black solid was washed with 300 mL of distilled water, and this operation was repeated until the sulfuric acid in the distilled water after washing was below the detection limit of elemental analysis to obtain amorphous carbon into which a sulfonic acid group was introduced. A chemical shift due to a condensed aromatic carbon 6-membered ring appears near 130 ppm in the 13 C nuclear magnetic resonance spectrum of the resulting amorphous carbon powder with sulfonic acid group introduced. The X-ray photoelectron spectroscopy shows that the sulfonic acid group has a binding energy of 168 eV. S2p photoelectron peak derived from sulfur was detected. In the powder X-ray diffraction pattern of the resulting sulfonic acid group-introduced amorphous carbon powder, a diffraction peak on the carbon (002) plane was confirmed. The half width (2θ) of the diffraction peak on the (002) plane was 20 °. As a result of elemental analysis, the sulfur content in this material was 3% by weight. The sulfonic acid residue-introduced amorphous carbon had a sulfonic acid density of 3.5 mmol / g, and an elemental ratio H / C of hydrogen to carbon of 0.29.
This sulfonic acid residue-introduced amorphous carbon powder was pressure-molded under the same conditions as in Examples 1 and 2, to prepare a disk having a thickness of 0.7 mm and a diameter of 10 mm, and depositing platinum on one surface of the disk. Thereafter, proton conductivity was measured by the AC impedance method described above. The proton conductivity was confirmed to be 7 × 10 −2 cm −1 . This result indicates that the sulfonic acid residue-introduced amorphous carbon has proton conductivity comparable to that of Nafion.

(2)グルコースから製造されたスルホン酸基導入無定形炭素の固体酸としての利用
上記スルホン酸残基導入無定形炭素の粉末を150℃で1時間真空排気した後、その0.2gを触媒としてアルゴン雰囲気下の酢酸0.1molとエチルアルコール1.0molの混合溶液に添加し、70℃で6時間攪拌し、反応中に酸触媒反応によって生成する酢酸エチルの生成速度をガスクロマトグラフで調べた。その結果、酢酸エチルの生成速度は約1.3mmol min-1であり、この物質が強い固体酸触媒として機能していることがわかった。
本明細書は、本願の優先権の基礎である日本国特許出願(特願2005-259334号)の明細書および/または図面に記載されている内容を包含する。また、本発明で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
(2) Utilization of sulfonic acid group-introduced amorphous carbon produced from glucose as a solid acid After evacuating the above sulfonic acid residue-introduced amorphous carbon powder at 150 ° C. for 1 hour, 0.2 g of argon was used as a catalyst. The mixture was added to a mixed solution of 0.1 mol of acetic acid and 1.0 mol of ethyl alcohol in an atmosphere and stirred at 70 ° C. for 6 hours. As a result, the production rate of ethyl acetate was about 1.3 mmol min −1 , indicating that this substance functions as a strong solid acid catalyst.
This specification includes the contents described in the specification and / or drawings of the Japanese patent application (Japanese Patent Application No. 2005-259334) which is the basis of the priority of the present application. In addition, all publications, patents and patent applications cited in the present invention are incorporated herein by reference as they are.

Claims (15)

フッ素原子及びスルホン酸基が導入された無定形炭素。   Amorphous carbon with fluorine atoms and sulfonic acid groups introduced. スルホン酸密度が、0.1〜8mmol/gである、請求項1記載の無定形炭素。   The amorphous carbon according to claim 1, wherein the sulfonic acid density is 0.1 to 8 mmol / g. プロトン伝導度が、0.01〜10Scm-1(温度80℃、湿度100%条件下で交流インピーダンス法による)である、請求項1又は2記載の無定形炭素。The amorphous carbon according to claim 1 or 2, having a proton conductivity of 0.01 to 10 Scm -1 (according to an alternating current impedance method at a temperature of 80 ° C and a humidity of 100%). 硫黄の含有量が、0.3重量%から40重量%であり、フッ素の含有量が0.1重量%から50重量%である、請求項1乃至3のいずれか一項記載の無定形炭素。   The amorphous carbon according to any one of claims 1 to 3, wherein the sulfur content is from 0.3 wt% to 40 wt%, and the fluorine content is from 0.1 wt% to 50 wt%. . 表面における硫黄の含有量が炭素に対する硫黄の元素比(S/C)で0.01〜0.2であり、表面におけるフッ素の含有量が炭素に対するフッ素の元素比(F/C)0.01〜0.5である、請求項1乃至4のいずれか一項記載の無定形炭素。   The sulfur content on the surface is 0.01 to 0.2 in terms of the elemental ratio of sulfur to carbon (S / C), and the fluorine content in the surface is the elemental ratio of fluorine to carbon (F / C) in the range of 0.01 to 0.5. Item 5. The amorphous carbon according to any one of Items 1 to 4. X線光電子分光法において、結合エネルギー165 eV〜175 eVにS2pの光電子ピークが少なくとも1つは検出され、結合エネルギー675 eV〜695 eVにF1sの光電子ピークが少なくとも1つは検出される、請求項1乃至5のいずれか一項記載の無定形炭素。   In X-ray photoelectron spectroscopy, at least one S2p photoelectron peak is detected at a binding energy of 165 eV to 175 eV, and at least one F1s photoelectron peak is detected at a binding energy of 675 eV to 695 eV. The amorphous carbon according to any one of 1 to 5. 粉末X線回折において半値幅(2θ)が5〜30°である炭素(002)面の回折ピークが少なくとも検出される、請求項1乃至6のいずれか一項記載の無定形炭素。   Amorphous carbon according to any one of claims 1 to 6, wherein at least a diffraction peak of a carbon (002) plane having a half-value width (2θ) of 5 to 30 ° in powder X-ray diffraction is detected. 炭素を含む化合物を濃硫酸又は発煙硫酸中で加熱処理して得られる無定形炭素をフッ化処理して得られる、請求項1乃至7のいずれか一項記載の無定形炭素。   Amorphous carbon according to any one of claims 1 to 7, obtained by fluorinating amorphous carbon obtained by heat-treating a compound containing carbon in concentrated sulfuric acid or fuming sulfuric acid. スルホン酸基が導入された無定形炭素のフッ化処理が、-70℃〜200℃においてFと接触させることである、請求項8記載の無定形炭素。The amorphous carbon according to claim 8, wherein the fluorination treatment of the amorphous carbon into which the sulfonic acid group is introduced is to contact F 2 at −70 ° C. to 200 ° C. 9. 請求項1乃至9のいずれか一項記載の無定形炭素を含有する、固体酸触媒。   A solid acid catalyst containing the amorphous carbon according to any one of claims 1 to 9. 請求項1乃至9のいずれか一項記載の無定形炭素を含有する、プロトン伝導性材料。   A proton conductive material containing the amorphous carbon according to claim 1. 炭素を含む化合物を濃硫酸又は発煙硫酸中で加熱処理する工程、及び前記工程によって得られる無定形炭素をフッ化処理する工程を含む、フッ素原子及びスルホン酸基が導入された、請求項1乃至9のいずれか一項記載の無定形炭素の製造方法。   A fluorine atom and a sulfonic acid group are introduced, comprising a step of heat-treating a compound containing carbon in concentrated sulfuric acid or fuming sulfuric acid, and a step of fluorinating amorphous carbon obtained by the step. The method for producing amorphous carbon according to claim 9. スルホン酸基が導入された無定形炭素をフッ化処理する工程が、-70℃〜200℃においてスルホン酸基が導入された無定形炭素をFと接触させる工程である、請求項12記載のフッ素原子及びスルホン酸基が導入された無定形炭素の製造方法。The step of fluorinating amorphous carbon having a sulfonic acid group introduced therein is a step of bringing amorphous carbon into which a sulfonic acid group has been introduced into contact with F 2 at -70 ° C to 200 ° C. A process for producing amorphous carbon into which a fluorine atom and a sulfonic acid group are introduced. 炭素を含む化合物を濃硫酸又は発煙硫酸中で加熱処理する工程の後であって、無定形炭素をフッ化処理する工程の前に、加熱処理物を水洗することを特徴とする請求項12又は13記載のフッ素原子及びスルホン酸基が導入された無定形炭素の製造方法。   13. The heat-treated product is washed with water after the step of heat-treating the compound containing carbon in concentrated sulfuric acid or fuming sulfuric acid and before the step of fluorinating amorphous carbon. 14. A process for producing amorphous carbon into which a fluorine atom and a sulfonic acid group are introduced. 炭素を含む化合物を濃硫酸又は発煙硫酸中で加熱処理する工程の後であって、無定形炭素をフッ化処理する工程の前に、加熱処理物を塩基性水溶液中で陽イオン交換処理を行い、更に酸性水溶液中でプロトン交換処理を行い、その後に水洗することを特徴とする請求項12又は13記載のフッ素原子及びスルホン酸基が導入された無定形炭素の製造方法。   After the step of heat-treating the compound containing carbon in concentrated sulfuric acid or fuming sulfuric acid, and before the step of fluorinating amorphous carbon, the heat-treated product is subjected to cation exchange treatment in a basic aqueous solution. The method for producing amorphous carbon into which fluorine atoms and sulfonic acid groups are introduced according to claim 12 or 13, wherein proton exchange treatment is further performed in an acidic aqueous solution, followed by washing with water.
JP2007534316A 2005-09-07 2006-08-23 Fluorinated sulfonic acid group-introduced amorphous carbon, its production method and its use Pending JPWO2007029496A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005259334 2005-09-07
JP2005259334 2005-09-07
PCT/JP2006/316478 WO2007029496A1 (en) 2005-09-07 2006-08-23 Amorphous carbon with fluoro-type sulfonic acid group introduced thereinto, process for producing the same, and use thereof

Publications (1)

Publication Number Publication Date
JPWO2007029496A1 true JPWO2007029496A1 (en) 2009-03-19

Family

ID=37835620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007534316A Pending JPWO2007029496A1 (en) 2005-09-07 2006-08-23 Fluorinated sulfonic acid group-introduced amorphous carbon, its production method and its use

Country Status (2)

Country Link
JP (1) JPWO2007029496A1 (en)
WO (1) WO2007029496A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5228339B2 (en) * 2007-03-06 2013-07-03 凸版印刷株式会社 Electrode catalyst layer for fuel cell, MEA (electrolyte membrane electrode assembly) and polymer electrolyte fuel cell comprising the same
JP5182987B2 (en) * 2008-05-06 2013-04-17 株式会社豊田自動織機 Catalyst precursor, catalyst material, and catalyst production method
JP6018431B2 (en) * 2012-06-26 2016-11-02 フタムラ化学株式会社 Method for producing granular solid acid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319574A (en) * 1998-05-14 1999-11-24 Asahi Chem Ind Co Ltd Catalyst for esterification
JP2004238311A (en) * 2003-02-05 2004-08-26 Japan Science & Technology Agency Polycyclic aromatic carbon-based solid strong acid
WO2005029508A1 (en) * 2003-09-16 2005-03-31 The Circle For The Promotion Of Science And Engineering Sulfonated amorphous carbon, process for producing the same and use thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4908198A (en) * 1986-06-02 1990-03-13 The Electrosynthesis Company, Inc. Fluorinated carbons and methods of manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319574A (en) * 1998-05-14 1999-11-24 Asahi Chem Ind Co Ltd Catalyst for esterification
JP2004238311A (en) * 2003-02-05 2004-08-26 Japan Science & Technology Agency Polycyclic aromatic carbon-based solid strong acid
WO2005029508A1 (en) * 2003-09-16 2005-03-31 The Circle For The Promotion Of Science And Engineering Sulfonated amorphous carbon, process for producing the same and use thereof

Also Published As

Publication number Publication date
WO2007029496A1 (en) 2007-03-15

Similar Documents

Publication Publication Date Title
KR101063834B1 (en) Amorphous carbon introduced with sulfonic acid group, preparation method thereof, and use thereof
JP4041409B2 (en) Polycyclic aromatic carbon-based solid strong acid
Zheng et al. MOF-derived nitrogen-doped nanoporous carbon for electroreduction of CO 2 to CO: The calcining temperature effect and the mechanism
Haag et al. Metal free graphene based catalysts: a review
JP5482110B2 (en) Solid acid and process for producing the same
Jin et al. Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures
Zhang et al. Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions
Zhang et al. Mesoporous carbon materials with functional compositions
US11976078B2 (en) Synthetically modifiable ion channels
WO2007105802A1 (en) Carbon-based solid acid, catalyst comprising the solid acid, and reaction using the solid acid as catalyst
Baldovino et al. Synthesis and characterization of nitrogen-functionalized graphene oxide in high-temperature and high-pressure ammonia
JP5114712B2 (en) Solid acid catalyst
Liu et al. 2D, metal‐free electrocatalysts for the nitrogen reduction reaction
Liu et al. Nitrogen and sulfur co-doped carbon nanospheres for highly efficient oxidation of ethylbenzene
Turek et al. Propylene oxidation over poly (azomethines) doped with heteropolyacids
Ying et al. Mn-doped Bi2O3 nanosheets from a deep eutectic solvent toward enhanced electrocatalytic N2 reduction
CN114702648A (en) Iron-doped nitrogen-rich conjugated microporous polymerization and preparation method thereof, and battery anode catalyst
JPWO2007029496A1 (en) Fluorinated sulfonic acid group-introduced amorphous carbon, its production method and its use
CN108940327B (en) Preparation method of sulfur-carbon-based solid acid catalyst
CN110963477B (en) Preparation method of nitrogen-doped porous carbon material and nitrogen-doped porous carbon material
JP2009214051A (en) Diamond solid acid, and solid acid catalyst and solid electrolyte consisting of the diamond solid acid
JP4925399B2 (en) Method for producing solid acid
CN100580818C (en) Proton conductibility material, sulfonic amorphous carbon and preparation method thereof
JP2008214508A (en) Compound comprising solid acid and multi-branched polymer and use thereof
You et al. Boosting Photocatalytic Activity over Graphitic Carbon Nitride by Hydrogen-Bonding-Assisted Charge Transfer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121205