JPWO2007026595A1 - Universal base-containing polymer - Google Patents

Universal base-containing polymer Download PDF

Info

Publication number
JPWO2007026595A1
JPWO2007026595A1 JP2007533201A JP2007533201A JPWO2007026595A1 JP WO2007026595 A1 JPWO2007026595 A1 JP WO2007026595A1 JP 2007533201 A JP2007533201 A JP 2007533201A JP 2007533201 A JP2007533201 A JP 2007533201A JP WO2007026595 A1 JPWO2007026595 A1 JP WO2007026595A1
Authority
JP
Japan
Prior art keywords
universal base
natural
pna
mmol
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007533201A
Other languages
Japanese (ja)
Other versions
JP5251125B2 (en
Inventor
正典 片岡
正典 片岡
芳宏 早川
芳宏 早川
泰亮 平野
泰亮 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Inter University Research Institute Corp National Institute of Natural Sciences
Tokai National Higher Education and Research System NUC
Original Assignee
Nagoya University NUC
Inter University Research Institute Corp National Institute of Natural Sciences
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Inter University Research Institute Corp National Institute of Natural Sciences, Tokai National Higher Education and Research System NUC filed Critical Nagoya University NUC
Priority to JP2007533201A priority Critical patent/JP5251125B2/en
Publication of JPWO2007026595A1 publication Critical patent/JPWO2007026595A1/en
Application granted granted Critical
Publication of JP5251125B2 publication Critical patent/JP5251125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Polyamides (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

【課題】 DNA又は天然核酸塩基から成るオリゴヌクレオチドと非特異的に塩基対を形成するポリマーを提供する。【解決手段】 発明者らが4種のいずれの天然核酸塩基と非特異的に塩基対を形成することを確認した、ピリミド[4,5-d]ピリミジン-2,4,5,7-テトラオンに基づくユニバーサル塩基を用いて、これを重合してユニバーサル塩基含有ポリマーを合成した。このユニバーサル塩基含有ポリマーは天然型オリゴヌクレオチドと複合体を形成することが確認された。【選択図】 なしPROBLEM TO BE SOLVED: To provide a polymer which nonspecifically forms a base pair with an oligonucleotide consisting of DNA or a natural nucleobase. A pyrimido[4,5-d]pyrimidine-2,4,5,7-tetraone confirmed by the inventors to form a non-specific base pair with any of four natural nucleobases. Was used to synthesize a universal base-containing polymer. It was confirmed that this universal base-containing polymer forms a complex with a natural oligonucleotide. [Selection diagram] None

Description

この発明は、DNA又は天然核酸塩基から成るオリゴヌクレオチドと塩基対を形成することのできる新規なユニバーサル塩基含有ポリマーに関する。   This invention relates to novel universal base-containing polymers capable of forming base pairs with oligonucleotides consisting of DNA or natural nucleobases.

天然核酸塩基と非特異的に擬似塩基対を形成する人工核酸塩基、即ちユニバーサル塩基を得る試みは多く成されている。しかし、一般にユニバーサル塩基と呼ばれているものはインターカレーターの類であり、これは天然核酸塩基と疑似塩基対を形成することはない。一方、疑似塩基対を形成するユニバーサル塩基としてイノシンをベースとした誘導体が知られているが(特許文献1、2等)、グアニンとしてのみふるまうことが最近の研究で明らかとなっている(非特許文献1)。
本発明において、発明者がユニバーサル塩基のベースとして利用したピリミド[4,5-d]ピリミジン-2,4,5,7-テトラオン及びその誘導体は、天然核酸塩基と疑似塩基対を形成するとは考えられていなかった(非特許文献2)。
Many attempts have been made to obtain artificial nucleobases that form non-specific pseudobase pairs with natural nucleobases, that is, universal bases. However, what are generally called universal bases are a class of intercalators, which do not form pseudo base pairs with natural nucleobases. On the other hand, although inosine-based derivatives are known as universal bases that form pseudo-base pairs (Patent Documents 1 and 2, etc.), recent studies have revealed that they behave only as guanine (non-patent document). Reference 1).
In the present invention, it is considered that the pyrimido[4,5-d]pyrimidine-2,4,5,7-tetraone and its derivative utilized by the inventor as a base of universal base form a pseudo base pair with a natural nucleobase. It was not done (Non-patent document 2).

特表2005-511096Special table 2005-511096 特表2003-528883Special table 2003-528883 Ohtsuka, E. et al., J. Biol. Chem., 260, 2605-2608(1985)Ohtsuka, E. et al., J. Biol. Chem., 260, 2605-2608 (1985) Niess, R., Robins, R. K. J.Heterocyclic. Chem.,7, 243-244(1970)Niess, R., Robins, R. K. J. Heterocyclic. Chem., 7, 243-244(1970)

従来の核酸塩基と塩基対を形成可能なユニバーサル塩基から成るオリゴヌクレオチドは、ユニバーサル核酸としての機能の実現には至っていなかった。
本発明は、DNA又は天然核酸塩基から成るオリゴヌクレオチドと非特異的に塩基対を形成するポリマーを提供することを目的とする。
Conventional oligonucleotides composed of universal bases capable of forming base pairs with nucleobases have not yet achieved the function of universal nucleic acids.
It is an object of the present invention to provide a polymer that nonspecifically forms a base pair with an oligonucleotide composed of DNA or a natural nucleobase.

本発明者らは、既にピリミド[4,5-d]ピリミジン-2,4,5,7-テトラオンに基づいて、4種のいずれの天然核酸塩基と非特異的に塩基対を形成することが確認された下式

Figure 2007026595
(式中、Rは、水素原子を除く、一価の基を表す。)で表されるユニバーサル塩基を用いて、これをPNA(1991年にNielsenらにより開発された人工核酸で、N-2-アミノエチルグリシンを骨格単位とし、これにメチレンカルボニル基を介して核酸塩基を結合させた構造を持つ。)に結合させ単量体とし、これを重合してポリマーを合成することに成功した。The present inventors have already been able to non-specifically base pair with any of the four natural nucleobases based on pyrimido[4,5-d]pyrimidine-2,4,5,7-tetraone. Confirmed below formula
Figure 2007026595
(In the formula, R represents a monovalent group excluding a hydrogen atom.) A PNA (an artificial nucleic acid developed by Nielsen et al. -Aminoethylglycine was used as a skeleton unit, and it has a structure in which a nucleic acid base is bound to it through a methylenecarbonyl group.) to form a monomer, and this was polymerized to synthesize a polymer.

即ち、本発明は、下式

Figure 2007026595
(式中、R及びRは、それぞれ同じであっても異なってもよく、置換基を有していてもよい炭素数が1〜18の炭化水素鎖を表し、Rは天然核酸又は非天然核酸を表し、X及びXは、それぞれ同じであっても異なってもよく、−N−又は−CR−(式中、Rは水素原子又は置換基を有していてもよい炭素数1〜4のアルキル基を表す。)を表し、Xは2価のヘテロ原子を含んでもよい炭化水素基、アミノ酸残基若しくはオリゴペプチド残基、核酸残基若しくはオリゴヌクレオチド残基、Y及びZは、それぞれ同じであっても異なってもよく、一価の残基を表し、mは1以上nは0以上でm+nが約2〜50の整数を表し、lは0以上の整数を表す。)で表されるユニバーサル塩基含有ポリマーである。
更に、本発明は、DNA又は天然核酸塩基から成るオリゴヌクレオチドを含む溶液にこのユニバーサル塩基含有ポリマーを混合することによりこれらの塩基対を形成させる方法である。That is, the present invention is
Figure 2007026595
(In the formula, R 1 and R 2 may be the same or different and each represents a hydrocarbon chain having 1 to 18 carbon atoms, which may have a substituent, and R 3 is a natural nucleic acid or It represents a non-natural nucleic acid, X 1 and X 2 may be the same or different, and each is —N— or —CR 4 — (wherein R 4 may have a hydrogen atom or a substituent. Represents an alkyl group having 1 to 4 carbon atoms, and X 3 represents a hydrocarbon group which may contain a divalent hetero atom, an amino acid residue or an oligopeptide residue, a nucleic acid residue or an oligonucleotide residue, Y and Z, which may be the same or different, each represents a monovalent residue, m is 1 or more, n is 0 or more, m+n is an integer of about 2 to 50, and l is an integer of 0 or more. Is a universal base-containing polymer represented by.
Furthermore, the present invention is a method of forming these base pairs by mixing the universal base-containing polymer with a solution containing an oligonucleotide consisting of DNA or a natural nucleobase.

本発明のユニバーサル塩基含有ポリマーは下式で表される。但し、この一般式は単に組成を示し、構造を示すものではない。即ち、各単位はランダムに結合していてもよい。

Figure 2007026595
及びRは、ポリマーの主鎖にユニバーサル塩基、天然塩基又はその他の基を結合させるための2価の鎖であり、その機能を果たせば構造に特に制限はない。即ち、R及びRは、それぞれ同じであっても異なってもよく、置換基を有していてもよい炭素数が1〜18の炭化水素鎖を表す。置換基としては、水酸基、アミノ基、チオール基、アルコキシ基、カルボキシル基、カルバモイル基、エステル基、ヘテロ原子(S,O,Nなど)を含んでもよい炭化水素基、例えば、アルキル基、アルケニル基、アルキニル基、アリール基、複素環基などなどが挙げられ、また、鎖の途中にカルボニル、イミド、カーボナート、エステル、ウレタン、アミド、アミン、エーテル、スルフィド、ジスルフィド、スルホキシド、スルホン等を有していてもよい。The universal base-containing polymer of the present invention is represented by the following formula. However, this general formula merely indicates the composition and does not indicate the structure. That is, each unit may be bonded at random.
Figure 2007026595
R 1 and R 2 are divalent chains for attaching a universal base, a natural base or other groups to the main chain of the polymer, and the structure thereof is not particularly limited as long as it fulfills its function. That is, R 1 and R 2 may be the same or different and each represents a hydrocarbon chain having 1 to 18 carbon atoms, which may have a substituent. As the substituent, a hydroxyl group, an amino group, a thiol group, an alkoxy group, a carboxyl group, a carbamoyl group, an ester group, a hydrocarbon group which may contain a hetero atom (S, O, N, etc.), for example, an alkyl group, an alkenyl group , Alkynyl group, aryl group, heterocyclic group, etc., and also has carbonyl, imide, carbonate, ester, urethane, amide, amine, ether, sulfide, disulfide, sulfoxide, sulfone, etc. in the middle of the chain. May be.

このポリマーは塩基対を形成するためにユニバーサル塩基のみを有していてもよいが、天然核酸や本発明のユニバーサル塩基以外の非天然核酸を有していてもよい。
は天然核酸又は非天然核酸を表す。天然核酸としては、下式

Figure 2007026595
(式中、*は結合手を表す。)に示すようなアデニン(A)、グアニン(G)、シトシン(C)又はチミン(T)に適当な結合手を設けたものでもよい。また、非天然核酸としてイノシンをベースとしたユニバーサル塩基(特表2005-511096、特表2003-528883等)を用いてもよい。The polymer may have only universal bases to form base pairs, but may also have natural nucleic acids and non-natural nucleic acids other than the universal bases of the invention.
R 3 represents a natural nucleic acid or an unnatural nucleic acid. The natural nucleic acid has the formula
Figure 2007026595
(In the formula, * represents a bond.) Adenine (A), guanine (G), cytosine (C) or thymine (T) may be provided with a suitable bond. Moreover, you may use the universal base which uses inosine as a non-natural nucleic acid (Table 2005-511096, Table 2003-528883 etc.).

及びXは、上記のユニバーサル塩基や、天然核酸又は非天然核酸をポリマー主鎖に結合させるものであり、それぞれ同じであっても異なってもよく、−N−又は−CR−を表す。ここでRは水素原子又は置換基を有していてもよい炭素数1〜4のアルキル基を表す。このアルキル基は、枝分かれ構造であってもよい。この置換基としては、水酸基、チオール基、アミノ基、カルボキシル基、カルバモイル基、グアニジル基、アリール基、複素環基などが挙げられる。X 1 and X 2 are, above or universal bases, and in a natural nucleic acid or non-naturally occurring nucleic acid that is attached to the polymer backbone, respectively may be the same or different,-N-or -CR 4 - a Represent Here, R 4 represents a hydrogen atom or an optionally substituted alkyl group having 1 to 4 carbon atoms. The alkyl group may have a branched structure. Examples of this substituent include a hydroxyl group, a thiol group, an amino group, a carboxyl group, a carbamoyl group, a guanidyl group, an aryl group and a heterocyclic group.

は、2価のヘテロ原子を含んでもよい炭化水素基、アミノ基、アミノ酸残基若しくはオリゴペプチド残基、核酸残基若しくはオリゴヌクレオチド残基など、又はこれらの組み合わせであってもよい。
また、ポリマーの主鎖に、ポリスチレン、ポリエチレン、ポリアセチレン、ポリエーテル、ポリウレタン、ポリアミド、ポリエステルなどの合成ポリマーや天然ポリマーなどを含んでいてもよい。この場合には、上記炭化水素基としてはこれらのモノマーを用いればよい。
X 3 may be a hydrocarbon group which may contain a divalent hetero atom, an amino group, an amino acid residue or an oligopeptide residue, a nucleic acid residue or an oligonucleotide residue, or a combination thereof.
Further, the main chain of the polymer may contain a synthetic polymer such as polystyrene, polyethylene, polyacetylene, polyether, polyurethane, polyamide, polyester or a natural polymer. In this case, these monomers may be used as the above-mentioned hydrocarbon group.

Y及びZは、ポリマーの末端であり、特に制限はない。即ち、Y及びZは、それぞれ同じであっても異なってもよく、一価の残基を表す。Y及びZとしては、例えば、末端がアミノ基あるいはヒドロキシル基の1-18炭素数の直鎖あるいは分岐鎖アルキル基等が挙げられる。
またY及びZは、本発明のユニバーサル塩基含有ポリマーを個体担体に結合させて用いる場合には、固体担体であってもよい。このような固体担体としては、スチレンビーズ、ポリエチレングリコールをグラフト重合させたポリスチレンビーズ(TentaGel(R))、ポリエチレングリコール、ポリウレタン、フッ素樹脂、ポリオレフィン、ガラス、シリカゲル、ブチルゴム、シリコン樹脂、セルロース、金、カーボン等が挙げられる。
mは1以上nは0以上でm+nが約2〜50、好ましくは約5〜30、より好ましくは約10〜25の整数を表し、lは0以上の整数を表す。
Y and Z are terminals of the polymer and are not particularly limited. That is, Y and Z may be the same or different and each represents a monovalent residue. Examples of Y and Z include a linear or branched alkyl group having 1-18 carbon atoms and having an amino group or a hydroxyl group at the terminal.
Further, Y and Z may be solid carriers when the universal base-containing polymer of the present invention is used by being bound to a solid carrier. As such a solid carrier, styrene beads, polystyrene beads graft-polymerized with polyethylene glycol (TentaGel(R)), polyethylene glycol, polyurethane, fluororesin, polyolefin, glass, silica gel, butyl rubber, silicone resin, cellulose, gold, Examples thereof include carbon.
m is 1 or more, n is 0 or more, and m+n is an integer of about 2 to 50, preferably about 5 to 30, more preferably about 10 to 25, and l is an integer of 0 or more.

本発明のユニバーサル塩基含有ポリマーに含まれるユニバーサル塩基は、その結合を軸とした回転により、プリン型、ピリミジン型の両塩基になりうる。即ち、下式に示すように、相対する塩基がアミジン型の塩基であるアデニン(A)又はシトシン(C)の場合はアミド型の配置、アミド型塩基であるグアニン(G)又はチミン(T)の場合はアミジン型配置をとり、すべての天然核酸塩基と塩基対を形成することができる。

Figure 2007026595
(式中、Rは、上記と同様を表す。)
従って、本発明のユニバーサル塩基含有ポリマーはDNA又は天然核酸塩基から成るオリゴヌクレオチドと非特異的に塩基対を形成することができる。
本発明のユニバーサル塩基含有ポリマーをDNA等と塩基対を形成させる場合に用いる溶媒は、一般的には非プロトン性有機溶媒が好ましいが、生体内で使うことを想定した場合には緩衝液、オリゴヌクレオチドの合成や利用を考えた場合は水やアルコール、ヌクレオシドの吸着を考えた場合にはDMSOやDMFが好ましい。この塩基対形成においてはユニバーサル塩基含有ポリマーやDNA等の濃度は通常1mM程度である。The universal base contained in the universal base-containing polymer of the present invention can be converted into both purine-type and pyrimidine-type bases by rotation about the bond. That is, as shown in the following formula, when the opposing bases are adenine (A) or cytosine (C) which are amidine type bases, amide type arrangement, and amide type bases guanine (G) or thymine (T) In this case, it can adopt an amidine type configuration and form base pairs with all natural nucleobases.
Figure 2007026595
(In the formula, R 1 represents the same as above.)
Therefore, the universal base-containing polymer of the present invention can nonspecifically form a base pair with an oligonucleotide composed of DNA or a natural nucleobase.
As the solvent used when the universal base-containing polymer of the present invention forms a base pair with DNA or the like, an aprotic organic solvent is generally preferable, but when it is assumed to be used in a living body, a buffer solution, an oligo Water and alcohol are preferable when considering the synthesis and utilization of nucleotides, and DMSO and DMF are preferable when considering adsorption of nucleosides. In this base pair formation, the concentration of the universal base-containing polymer, DNA, etc. is usually about 1 mM.

以下、実施例にて本発明を例証するが本発明を限定することを意図するものではない。
ユニバーサル塩基含有オリゴマーを合成するため、ユニバーサル塩基(化2)をPNAに結合させて単量体とした。即ち、下式(化5)で表されるユニバーサル塩基含有モノマー(以下「PPT」という。)を用いた。このモノマーの合成法は後記の合成例1に記す。

Figure 2007026595
Hereinafter, the present invention will be illustrated by examples, but the present invention is not intended to be limited thereto.
In order to synthesize a universal base-containing oligomer, a universal base (Chemical Formula 2) was bound to PNA to give a monomer. That is, a universal base-containing monomer represented by the following formula (Formula 5) (hereinafter referred to as "PPT") was used. A method for synthesizing this monomer will be described in Synthesis Example 1 below.
Figure 2007026595

次に天然塩基として下式のPNA-A〜T(アプライドバイオシステムズジャパン社製、PNA-A:GEN063014, PNA-G:GEN063016, PNA-C:GEN063015, PNA-T:GEN063017)(以下「PNAモノマー」という。)を用いた。

Figure 2007026595
* Fmoc: fluorenylmethyloxycarbonyl, Bhoc: benzylhydroxycarbonylThen as a natural base PNA-A ~ T of the following formula (manufactured by Applied Biosystems Japan, PNA-A:GEN063014, PNA-G:GEN063016, PNA-C:GEN063015, PNA-T:GEN063017) (hereinafter "PNA monomer ".) was used.
Figure 2007026595
* Fmoc: fluorenylmethyloxycarbonyl, Bhoc: benzylhydroxycarbonyl

実施例1
ユニバーサル塩基含有オリゴマーを、マニュアル固相合成法にて合成し、固相担体は TENTA GEL S RAM(渡辺化学社製A00213、0.27 mmol/g)を用いた。合成オリゴマーの溶解性の向上と自己会合の抑制を図るためにリシンを導入した。固相担体を30% piperidine/DMF 処理後、Fmoc-Lys(Boc)-OH(渡辺化学社製、K00443)(10 equiv)、PyBOP((benzotriazol-1-yloxy)tripyrrolidino-phosphonium hexafluorophosphate、Novabiochem社製 01-62-0016)(10 equiv)、HOBt(1-hydroxybenzotriazole、Nacalai tesque社製 18513-24)(10 equiv)、Nメチルモルホリン(NMM,20 equiv)をあらかじめジメチルアセトアミド(DMA、和光純薬工業社製)中で反応させておいたものを用いてカップリングさせることによりリシンを導入した。反応の進行はKaiser test により確認した。(Kaiser test: negative)
Example 1
A universal base-containing oligomer was synthesized by a manual solid-phase synthesis method, and TENTA GEL S RAM (A00213, manufactured by Watanabe Chemical Co., Ltd., 0.27 mmol/g) was used as a solid-phase carrier. Lysine was introduced to improve the solubility of synthetic oligomers and suppress self-association. After the solid-phase carrier was treated with 30% piperidine/DMF, Fmoc-Lys(Boc)-OH (W Watanabe Chemical Co., K00443) (10 equiv), PyBOP ((benzotriazol-1-yloxy)tripyrrolidino-phosphonium hexafluorophosphate, Novabiochem 01-62-0016) (10 equiv), HOBt (1-hydroxybenzotriazole, Nacalai tesque 18513-24) (10 equiv), N-methylmorpholine (NMM, 20 equiv) in advance with dimethylacetamide (DMA, Wako Pure Chemical Industries) The lysine was introduced by coupling with the one that had been reacted in the same). The progress of the reaction was confirmed by Kaiser test. (Kaiser test: negative)

続く固相合成は表1に従って行った。反応は全て室温(25℃)で行った。

Figure 2007026595
step 1〜6を繰り返すことにより鎖長反応を行った。この鎖長反応において、PNAモノマー(PNA monomer)として、1-3サイクルは上記PNA-T、4サイクルは上記ユニバーサル塩基含有モノマー、5-7サイクルはPNA-Tを使用した。Subsequent solid phase synthesis was performed according to Table 1. All reactions were performed at room temperature (25°C).
Figure 2007026595
A chain length reaction was performed by repeating steps 1 to 6. In this chain length reaction, as the PNA monomer, the above PNA-T was used for 1-3 cycles, the above universal base-containing monomer was used for 4 cycles, and PNA-T was used for 5-7 cycles.

各反応の進行は、kaiser test により確認した。最後のモノマーを導入・Fmoc 基の脱保護後、N 末端アミノ基のアシル転位からの環状アミド生成による自己崩壊を防ぐために、Fmoc-Gly-OH(NovaBiochem社製、04-12-1001)(10 equiv)、PyBOP(10 equiv)、HOBt(10 equiv)、NMM(20 equiv)を用いてグリシンを導入した。固相担体から切り出した後の合成オリゴマーの精製を容易にするために、グリシンの Fmoc 基はそのままにしておいた。
固相担体からの切り出しにはトリフルオロ酢酸を用いた(2 h)。これによりC末端のリシンのアミノ基を保護しているBoc 基も除去できた。得られたオリゴマーを、逆相分取カラム COSMOSIL 5C18-AR-300を用いることにより精製し、下式で表されるH2N-Lys-TTT(PPT)TTT-Gly-NHFmoc(m/z 1179.66; Calcd for(C101H124N34O34)(M + 2H+): m/z 1179.45)を得た。

Figure 2007026595
The progress of each reaction was confirmed by a kaiser test. After the final monomer was introduced and after deprotection of the Fmoc group, Fmoc-Gly-OH (NovaBiochem, 04-12-1001) (10 Glycine was introduced using equiv), PyBOP (10 equiv), HOBt (10 equiv), and NMM (20 equiv). The Fmoc group of glycine was left in place to facilitate purification of the synthetic oligomer after being cleaved from the solid support.
Trifluoroacetic acid was used for excision from the solid support (2 h). As a result, the Boc group protecting the amino group of C-terminal lysine could also be removed. The obtained oligomer was purified by using a reverse phase preparative column COSMOSIL 5C 18 -AR-300, and represented by the following formula: H 2 N-Lys-TTT(PPT)TTT-Gly-NHFmoc (m/z 1179.66; Calcd for (C 101 H 124 N 34 O 34 )(M + 2H + ): m/z 1179.45) was obtained.
Figure 2007026595

さらに得られたオリゴマーを 20% piperidine/water で処理し Fmoc基を脱保護した後に、上記同様の逆相分取カラムを用いて精製することにより、目的とする PNA オリゴマー H2N-Lys-TTT(PPT)TTT- Gly-NH2(m/z 1068.63; Calcd for(C86H114N34O32)(M + 2H+): m/z 1068.42)を 47%の収率で得ることができた。
精製後のこのオリゴマーの高速液体クロマトグラフ(HPLC)を下記条件で測定した。
HPLC装置:日本分光社製Gulliver高圧グラジエントシステム
カラム:COSMOSIL 5C18-MS column
溶出液:溶出液A 0.1% TFA/water; 溶出液 B 0.1 %
trifluoroacetic acid/acetonitrile を用い、A液をB液に対して0-100% まで35分かけて直線勾配した。
溶出速度 1 mL/分
分析温度:55℃
UV検出波長UV: 260 nm
そのHPLCチャートを図1に示す。図中の大きなピークが目的のオリゴマーを示すものであり、他のピークはほとんど検出されないことから、得られたオリゴマーの純度が高いことが分かる。
The resulting oligomer was treated with 20% piperidine/water to deprotect the Fmoc group, and then purified using the same reverse-phase preparative column as described above to obtain the desired PNA oligomer H 2 N-Lys-TTT. (PPT)TTT- Gly-NH 2 (m/z 1068.63; Calcd for (C 86 H 114 N 34 O 32 )(M + 2H + ): m/z 1068.42) could be obtained in 47% yield. It was
The high performance liquid chromatograph (HPLC) of this purified oligomer was measured under the following conditions.
HPLC system: Gulliver high pressure gradient system manufactured by JASCO Corporation Column: COSMOSIL 5C18-MS column
Eluent: Eluent A 0.1% TFA/water; Eluent B 0.1%
Using trifluoroacetic acid/acetonitrile, solution A was linearly gradient from solution B to 0-100% over 35 minutes.
Elution rate 1 mL/min Analysis temperature: 55℃
UV detection wavelength UV: 260 nm
The HPLC chart is shown in FIG. The large peak in the figure shows the oligomer of interest, and the other peaks were hardly detected, indicating that the obtained oligomer has a high purity.

実施例2
本実施例では、実施例1と同様に、下式(H2N-Lys-CCT(PPT)TCC-Gly-NH2)で表されるユニバーサル塩基含有オリゴマーを合成した。

Figure 2007026595
Example 2
In this example, a universal base-containing oligomer represented by the following formula (H 2 N-Lys-CCT(PPT)TCC-Gly-NH 2 ) was synthesized in the same manner as in Example 1.
Figure 2007026595

モノマーとしては、上記PPT(ユニバーサル塩基含有モノマー)とPNAモノマーを用い、固相合成を表2に従って行った。

Figure 2007026595
1,2,6,7サイクルはPNA-C、3,5サイクルはPNA-T、4サイクルはユニバーサル塩基含有モノマーを使用した。
質量分析の結果はm/z 1038.5; Calcd for (C82H110N38O28) (M+2): m/z 1038.4であった。
このオリゴマーのHPLCを実施例1と同様に測定した。そのHPLCチャートを図2に示す。図中の大きなピークが目的のオリゴマーを示すものであり、他のピークはほとんど検出されないことから、得られたオリゴマーの純度が高いことが分かる。The above-mentioned PPT (universal base-containing monomer) and PNA monomer were used as monomers, and solid phase synthesis was performed according to Table 2.
Figure 2007026595
PNA-C was used for 1,2,6,7 cycles, PNA-T for 3,5 cycles, and universal base-containing monomer for 4 cycles.
The result of mass spectrometry was m/z 1038.5; Calcd for (C 82 H 110 N 38 O 28 )(M+2): m/z 1038.4.
The HPLC of this oligomer was measured in the same manner as in Example 1. The HPLC chart is shown in FIG. The large peak in the figure shows the oligomer of interest, and the other peaks were hardly detected, indicating that the obtained oligomer has a high purity.

実施例3
本実施例では、実施例2と同様に、下式(H2N-Lys-TGCA(PPT)(PPT)(PPT)ACGT-Gly-NH2)で表されるユニバーサル塩基含有オリゴマーを合成した。

Figure 2007026595
Example 3
In this example, a universal base-containing oligomer represented by the following formula (H 2 N-Lys-TGCA(PPT)(PPT)(PPT)ACGT-Gly-NH 2 ) was synthesized in the same manner as in Example 2.
Figure 2007026595

モノマーとしては、上記PPT(ユニバーサル塩基含有モノマー)と上記PNAモノマーを用い、固相合成を表2に従って行った。1, 11サイクルはPNA-T、2,10サイクルはPNA-G、3,9サイクルはPNA-C、4,8サイクルはPNA-C、5,6,7サイクルはユニバーサル塩基含有モノマーを使用した。
質量分析の結果はm/z 1126.74; Calcd for (C130H160N68O44) (M+3): m/z 1126.76であった。
このオリゴマーのHPLCを実施例1と同様に測定した。そのHPLCチャートを図3に示す。図中の大きなピークが目的のオリゴマーを示すものであり、他のピークはほとんど検出されないことから、得られたオリゴマーの純度が高いことが分かる。
The above-mentioned PPT (universal base-containing monomer) and the above-mentioned PNA monomer were used as monomers, and solid-phase synthesis was performed according to Table 2. PNA-T for 1, 11 cycles, PNA-G for 2,10 cycles, PNA-C for 3,9 cycles, PNA-C for 4,8 cycles, and universal base-containing monomer for 5,6,7 cycles ..
The results of the mass spectrometry m / z 1126.74; Calcd for ( C 130 H 160 N 68 O 44) (M + 3): was m / z 1126.76.
The HPLC of this oligomer was measured in the same manner as in Example 1. The HPLC chart is shown in FIG. The large peak in the figure shows the oligomer of interest, and the other peaks were hardly detected, indicating that the obtained oligomer has a high purity.

実施例4
本実施例では、実施例2で作製したユニバーサル塩基含有オリゴマー(H2N-Lys-CCT(PPT)TCC-Gly-NH2)と天然型オリゴヌクレオチドとの複合体形成実験を行った。
天然型オリゴヌクレオチドとして、デオキシリボオリゴヌクレオチドd(GGAxAGG) (x = A, G, C or T)(ODN、ジーンデザイン社より購入)を用いた。
これらを用いて、複合体形成と複合体の安定性について温度勾配UVスペクトル測定による融解曲線と変曲点の温度(融解温度、Tm)を指標として調査した。
温度勾配UVスペクトル測定はペルチェ式温度コントローラーETC-505Tを装備した日本分光社製V-550 スペクトロメータを用いて、10 mMリン酸緩衝液(pH 7.0) に4.0μMのPNA-ODN混合物(1:1)を溶解した溶液を95℃で5分間インキュベーション、8時間以上かけて室温まで戻した後に5℃に冷却、1℃/minで70℃まで昇温させて、その過程を1℃毎にサンプリングし、紫外領域の吸光度変化を下記の条件で測定した。
−測定装置 JASCO V-550 SERIAL NO. C02951260
−温度コントローラー JASCO ETC-505T
−セル GL Science Type : M25-B(光路長 10mm)
−測定波長 : 260nm
溶液温度に対して吸光度をプロットして得られるグラフを解析した。
吸光度変化を図5に示す。いずれのPNA-ODN混合溶液においても融解曲線が得られ、融解温度は32.4-20.8℃まで様々であるがPNA-ODN複合体の形成が示唆され、ユニバーサル塩基として機能していることが明らかとなった。この結果はユニバーサル塩基含有PNAが配列未特定部を含む遺伝子に対するプローブとして有効であることを示している。
Example 4
In this example, an experiment for forming a complex between the universal base-containing oligomer (H 2 N-Lys-CCT(PPT)TCC-Gly-NH 2 ) prepared in Example 2 and a natural oligonucleotide was performed.
As a natural oligonucleotide, deoxyribooligonucleotide d(GGAxAGG) (x=A, G, C or T) (ODN, purchased from Gene Design Co.) was used.
Using these, the formation of the complex and the stability of the complex were investigated using the melting curve and the temperature of the inflection point (melting temperature, Tm) by temperature gradient UV spectrum measurement as indexes.
For the temperature gradient UV spectrum measurement, a V-550 spectrometer manufactured by JASCO Corporation equipped with a Peltier temperature controller ETC-505T was used, and 4.0 μM of PNA-ODN mixture (1: was added to 10 mM phosphate buffer (pH 7.0)). Incubate the solution containing 1) at 95°C for 5 minutes, return to room temperature over 8 hours, cool to 5°C, raise the temperature to 70°C at 1°C/min, and sample the process every 1°C. Then, the change in absorbance in the ultraviolet region was measured under the following conditions.
− Measuring device JASCO V-550 SERIAL NO. C02951260
− Temperature controller JASCO ETC-505T
-Cell GL Science Type: M25-B (optical path length 10 mm)
-Measurement wavelength: 260nm
The graph obtained by plotting the absorbance against the solution temperature was analyzed.
The change in absorbance is shown in FIG. Melting curves were obtained in all PNA-ODN mixed solutions, and although melting temperatures varied from 32.4-20.8°C, formation of PNA-ODN complex was suggested, and it became clear that it functions as a universal base. It was This result indicates that the universal base-containing PNA is effective as a probe for a gene containing a sequence unspecified part.

比較例1
本比較例では、PPT(ユニバーサル塩基含有モノマー)を用いずに、実施例2と同様に、下式(H2N-Lys-CCTTTCC-Gly-NH2)で表される天然型オリゴヌクレオチドを合成した。

Figure 2007026595
モノマーとしては、上記PNAモノマーを用い、固相合成を表2に従って行った。1,2,6,7サイクルはPNA-C、3,5サイクルはPNA-Tを用いた。
質量分析の結果はm/z 1003.45; Calcd for (C82H110N38O28)(M+2): m/z 1003.43であった。
このオリゴマーのHPLCを実施例1と同様に測定した。そのHPLCチャートを図4に示す。図中の大きなピークが目的のオリゴマーを示すものであり、他のピークはほとんど検出されないことから、得られたオリゴマーの純度が高いことが分かる。 Comparative Example 1
In this comparative example, a natural oligonucleotide represented by the following formula (H 2 N-Lys-CCTTTCC-Gly-NH 2 ) was synthesized in the same manner as in Example 2 without using PPT (universal base-containing monomer). did.
Figure 2007026595
The above PNA monomer was used as a monomer, and solid phase synthesis was performed according to Table 2. PNA-C was used for 1,2,6,7 cycles and PNA-T was used for 3,5 cycles.
The result of mass spectrometry was m/z 1003.45; Calcd for (C 82 H 110 N 38 O 28 )(M+2): m/z 1003.43.
The HPLC of this oligomer was measured in the same manner as in Example 1. The HPLC chart is shown in FIG. The large peak in the figure indicates the oligomer of interest, and the other peaks are hardly detected, indicating that the oligomer obtained has a high purity.

比較例2
更に、比較例1で得た天然型オリゴヌクレオチドを用いて、実施例4と同様に複合体形成実験を行った。
天然塩基のみで構成されたPNAと配列中1カ所のみ塩基を入れ換えた4種のODNの温度勾配UVスペクトル解析において、図6に示す通り相補的な組み合わせ(マッチ)においては融解曲線が得られ、Tmが29.1℃を示すのに対して、相補的でない組み合わせ(ミスマッチ)のいずれの場合においても融解曲線は得られないことから、ミスマッチではPNA-ODN複合体が形成していないことが示唆される。
Comparative example 2
Further, using the natural type oligonucleotide obtained in Comparative Example 1, a complex formation experiment was conducted in the same manner as in Example 4.
In the temperature gradient UV spectrum analysis of PNA composed of only natural bases and four kinds of ODNs in which the bases were exchanged at only one position in the sequence, melting curves were obtained in the complementary combination (match) as shown in FIG. Tm shows 29.1℃, whereas melting curves are not obtained in any of the non-complementary combinations (mismatches), suggesting that the PNA-ODN complex is not formed in the mismatches. ..

合成例1
この合成例では、ユニバーサル塩基含有モノマーを合成した。この反応スキームを図7と図8に示す。
Synthesis example 1
In this synthesis example, a universal base-containing monomer was synthesized. This reaction scheme is shown in FIGS. 7 and 8.

1−ヒドロキシエチル−6−アミノウラシル(化合物1)の合成
フッ素樹コートした撹拌子を備えた200mLナス型フラスコに、無水エタノール90mLを加え氷浴中撹拌しながら金属ナトリウム2.8g(120mmol)を注意深く加え、完全に溶解するまで撹拌した。その後、2−ヒドロキシエチルウレア6.3g(60mmol)とシアノ酢酸エチル6.4mL(60mmol)を加え、7時間還流させた。得られた反応溶液をろ過した後、エタノールで洗い、水に溶解させて1.0M希塩酸で中和した後にろ過をし、得られる白色固体を水で再結晶させることにより、白色結晶として化合物1を得た(6.1g, 35.6mmo1、収率59.4%);1H NMR(DMSO-d6, 400 MHz): δ 3.54(t, 2H, NCH2CH2, 9.6 Hz), 3.83(t, 2H, CH20H, 9.6 Hz), 4.57(br, 1H, CHCNH2), 5.09(br, 1H, OH), 6,61(br, 2H, NH2), lO.32(br, 1H, NH); 13C NMR(DMSO-d6, 100MHz): δ 44.13(NaC2CH2), 59.28(CH20H), 76.52(CHCNH2), 151.87, 157.04, 162.89。
Synthesis of 1-hydroxyethyl-6-aminouracil (Compound 1) To a 200 mL eggplant-shaped flask equipped with a stir bar coated with fluorine resin, 90 mL of anhydrous ethanol was added, and 2.8 g (120 mmol) of metallic sodium was added while stirring in an ice bath. Add carefully and stir until completely dissolved. Then, 6.3 g (60 mmol) of 2-hydroxyethylurea and 6.4 mL (60 mmol) of ethyl cyanoacetate were added, and the mixture was refluxed for 7 hours. The obtained reaction solution was filtered, washed with ethanol, dissolved in water, neutralized with 1.0 M dilute hydrochloric acid and then filtered, and the obtained white solid was recrystallized with water to give Compound 1 as white crystals. Was obtained (6.1 g, 35.6 mmo1, yield 59.4%); 1 H NMR (DMSO-d6, 400 MHz): δ 3.54(t, 2H, NCH 2 CH 2 , 9.6 Hz), 3.83(t, 2H, CH 2 0H, 9.6 Hz ), 4.57 (br, 1H, CHCNH 2), 5.09 (br, 1H, OH), 6,61 (br, 2H, NH 2), lO.32 (br, 1H, NH ); 13C NMR (DMSO-d6, 100MHz): δ 44.13(NaC 2 CH 2 ), 59.28(CH 2 0H), 76.52(CHCNH 2 ), 151.87, 157.04, 162.89.

1-(2-t-ブチルジフェニルシラニロキシ)エチル-6-アミノウラシル(化合物2)の合成
フッ素樹脂コートした撹拌子を備えた50 mLナス型フラスコに、上記で得た化合物1を1.0 g(5.8 mmol), t-ブチルジフェニリルクロロシラン(東京化成製、1.7 mL, 6.4 mmol), イミダゾール(ナカライ製、875 mg, 12.8 mmol),ジメチルホルムアミド(キシダ製)6 mL を加え、60℃で1.5時間反応させた後、撹拌している水1L中に、パスツールピペットを用いてゆっくり滴下した。しばらく撹拌した後、ろ過し、乾燥させることにより、白色固体として化合物2を得た(2.2 g, 5.4 mmol,収率92.0%)。
1H NMR(DMSO-d6, 400 MHz): δ 0.96(s, 9H, C(CH3)3), 3.76(br, 2H, NCH2), 4.04(br, 2H, CH2OH), 4.60(br, 1H, CHCNH2), 6.70(br, 2H, NH2), 7.41(m, 6H), 7.58(m, 4H), 10.32(br, 1H, NH); 13C NMR(DMSO-d6, 100 MHz): δ 19.11(SiC(CH3)3), 26.92(SiC(CH3)3), 42.06(NCH2CH2), 61.55(NCH2CH2), 76.15(CHCNH2), 127.96, 128.33, 130.33, 130.08, 134.94, 135.48, 151.85, 158.75, 162.94
Synthesis of 1-(2-t-butyldiphenylsilanyloxy)ethyl-6-aminouracil (Compound 2)
In a 50 mL eggplant type flask equipped with a stirrer coated with a fluororesin, 1.0 g (5.8 mmol) of compound 1 obtained above, t-butyldiphenylylchlorosilane (Tokyo Kasei, 1.7 mL, 6.4 mmol), imidazole (Nakarai, 875 mg, 12.8 mmol) and 6 mL of dimethylformamide (manufactured by Kishida) were added, reacted at 60°C for 1.5 hours, and then slowly added dropwise to 1 L of stirring water using a Pasteur pipette. . After stirring for a while, it was filtered and dried to obtain compound 2 as a white solid (2.2 g, 5.4 mmol, yield 92.0%).
1 H NMR (DMSO-d6, 400 MHz): δ 0.96 (s, 9H, C(CH 3 ) 3 ), 3.76 (br, 2H, NCH 2 ), 4.04 (br, 2H, CH 2 OH), 4.60 ( br, 1H, CHCNH 2 ), 6.70 (br, 2H, NH 2 ), 7.41 (m, 6H), 7.58 (m, 4H), 10.32 (br, 1H, NH); 13 C NMR (DMSO-d6, 100 MHz): δ 19.11 (SiC(CH 3 ) 3 ), 26.92 (SiC(CH 3 ) 3 ), 42.06 (NCH 2 CH 2 ), 61.55 (NCH 2 CH 2 ), 76.15 (CHCNH 2 ), 127.96, 128.33, 130.33, 130.08, 134.94, 135.48, 151.85, 158.75, 162.94

(6-アミノ-1-[2-(t-ブチルジフェニルシラニロキシ)-エチル]-2,4-ジオキソ-1,2,3,4-テトラヒドロピリミジン-5-カルボニル)カルバミン酸エチルエステル(化合物3)の合成
フッ素樹脂コートした撹拌子を備えた 100 mL ナス型フラスコに、上記で得た化合物2を13.7 g(33.3 mmol)とジメチルホルムアミド(40 mL)を加え、室温下で撹拌しながら滴下漏斗でイソシアナトギ酸エチル3.9 g(東京化成製、33.9 mmol)を30分かけて滴下した。その後、室温で24時間撹拌し、減圧濃縮し、減圧乾燥させ、酢酸エチルで洗浄することにより白色固体として化合物3を得た(7.0 g, 13.3 mmol,収率40.1%)。
1H NMR(DMSO-d6, 400 MHz): δ 0.94(s, 9H, Si(CH3)3), 1.22(t, 3H, OCH2CH3, 7.2 Hz), 3.81(br, 2H, NCH2, 4.8 Hz), 4.12(q, 2H, OCH2CH3, 4.8 Hz), 4.18(t, 2H, NCH2CH2, 4.8 Hz), 7.42(m, 6H), 7.53(M, 4H), 8.36(br, 1H), 10.85(br, 1H), 11.35(br, 1H), 12.39(br, 1H); 13C NMR(DMSO-d6, 100 MHz): δ 14.68(OCH2CH3), 19.05(SiC(CH3)3), 26.89(SiC(CH3)3), 43.12(NCH2), 60.61(OCH2CH3), 61.12(NCH2CH2), 81.06(COCCO), 128.30, 130.39, 132.94, 135.42, 148.77, 150.77, 159.94, 164.45, 166.23
(6-Amino-1-[2-(t-butyldiphenylsilanyloxy)-ethyl]-2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carbonyl)carbamic acid ethyl ester (compound 3) To a 100 mL eggplant-shaped flask equipped with a synthetic fluororesin-coated stir bar, add 13.7 g (33.3 mmol) of compound 2 obtained above and dimethylformamide (40 mL), and add dropwise while stirring at room temperature. With a funnel, 3.9 g of ethyl isocyanatoformate (33.9 mmol, manufactured by Tokyo Kasei) was added dropwise over 30 minutes. Then, the mixture was stirred at room temperature for 24 hours, concentrated under reduced pressure, dried under reduced pressure, and washed with ethyl acetate to obtain compound 3 as a white solid (7.0 g, 13.3 mmol, yield 40.1%).
1 H NMR (DMSO-d6, 400 MHz): δ 0.94 (s, 9H, Si(CH 3 ) 3 ), 1.22 (t, 3H, OCH 2 CH 3 , 7.2 Hz), 3.81 (br, 2H, NCH 2 , 4.8 Hz), 4.12 (q, 2H, OCH 2 CH 3 ,4.8 Hz), 4.18 (t, 2H, NCH 2 CH 2 ,4.8 Hz), 7.42 (m, 6H), 7.53 (M, 4H), 8.36 (Br, 1H), 10.85 (br, 1H), 11.35 (br, 1H), 12.39 (br, 1H); 13 C NMR (DMSO-d6, 100 MHz): δ 14.68 (OCH 2 CH 3 ), 19.05 ( SiC (CH 3) 3), 26.89 (SiC (CH 3) 3), 43.12 (NCH 2), 60.61 (OCH 2 CH 3), 61.12 (NCH 2 CH 2), 81.06 (COCCO), 128.30, 130.39, 132.94 , 135.42, 148.77, 150.77, 159.94, 164.45, 166.23

1-[2-(t-ブチルジフェニルシラニロキシ)-エチル]-1H,8H-ピリミド[4,5-d]ピリミジン-2,4,5,7-テトラオン(化合物4)の合成
フッ素樹脂コートした撹拌子を備えた50 mLナス型フラスコに、無水エタノール(ナカライ製)20 mLを加え氷浴中撹拌しながら金属ナトリウム60 mg(ナカライ製、2.6 mmol)を注意深く加え、完全に溶解するまで撹拌した。その後、上記で得た化合物3を600 mg(1.1 mmol)を加え、17時間還流させた。得られた反応溶液をろ過することにより得られる固体を1.0 M希塩酸で洗い、減圧乾燥させることにより、白色固体として化合物4(PPT)を得た(500 mg, 1.0 mmol,収率91.6%)。
1H NMR(DMSO-d6, 400 MHz): δ 0.94(s, 9H, SiC(CH3)3), 3.83(t, 2H, NCH2CH2), 4.23(t, 2H, NCH2CH2), 7.38(m, 6H), 7.57(m, 4H), 9.79(br, 1H), 10.53(br, 1H); 13C NMR(DMSO-d6, 100 MHz): δ 19.16(SiC(CH3)3), 27.03(SiC(CH3)3), 42.27(NCH2), 61.12(NCH2CH2), 86.04(COCCO), 128.26, 130.14, 133.56, 135.43, 151.56, 157.86, 161.62, 162.60, 164.78; MS(ESI+)479.21(M +H+ calcd 479.17)
Synthesis of 1-[2-(t-butyldiphenylsilanyloxy)-ethyl]-1H,8H-pyrimido[4,5-d]pyrimidine-2,4,5,7-tetraone (Compound 4)
To a 50 mL eggplant-shaped flask equipped with a stir bar coated with fluororesin, add 20 mL of absolute ethanol (made by Nakarai), and carefully add 60 mg of metallic sodium (made by Nakarai, 2.6 mmol) while stirring in an ice bath to completely dissolve it. It was stirred until Then, 600 mg (1.1 mmol) of the compound 3 obtained above was added and refluxed for 17 hours. The solid obtained by filtering the obtained reaction solution was washed with 1.0 M dilute hydrochloric acid and dried under reduced pressure to obtain compound 4 (PPT) as a white solid (500 mg, 1.0 mmol, yield 91.6%).
1 H NMR (DMSO-d6, 400 MHz): δ 0.94 (s, 9H, SiC(CH 3 ) 3 ), 3.83 (t, 2H, NCH 2 CH 2 ), 4.23 (t, 2H, NCH 2 CH 2 ). , 7.38 (m, 6H), 7.57 (m, 4H), 9.79 (br, 1H), 10.53 (br, 1H); 13 C NMR (DMSO-d6, 100 MHz): δ 19.16 (SiC(CH 3 ) 3 ), 27.03 (SiC(CH 3 ) 3 ), 42.27 (NCH 2 ), 61.12 (NCH 2 CH 2 ), 86.04 (COCCO), 128.26, 130.14, 133.56, 135.43, 151.56, 157.86, 161.62, 162.60, 164.78; MS (ESI+) 479.21 (M +H+ calcd 479.17)

1-ヒドロキシエチル-1H,8H- ピリミド [4,5-d] ピリミジン -2,4,5,7- テトラオン(化合物5)の合成
フッ素樹脂コートした撹拌子を備えた 10 mL ふた付きプラスチック容器に、上記で得た化合物4(1.7 g, 3.6 mmol)とトリエチルアミン三フッ化水素酸 5 mL(30.7 mmol)を加え、室温下で 24時間撹拌させた。得られた反応溶液を、2M KOH水溶液の中に、酸性にならないように注意深く加え、最終的に2M HCl水溶液で中和した後にろ過、ジエチルエーテルで洗浄することにより、 白色固体として化合物5(700 mg, 2.9 mmol, 収率 82.1%)を得た; 1H NMR(DMSO-d6, 400 MHz): δ 3.49(br, 2H, NCH2), 4.02(br, 2H, CH2OH), 4.88(br, 1H, OH), 9.44(br, 1H), 10.20(br, 1H); 13C NMR(DMSO-d6, 100 MHz): ? 40.04(NCH2), 58.84(CH2OH), 86.05(COCCO), 151.47, 157.87, 161.30, 162.69, 164.45; MS(ESI+)241.06(M +H+ calcd 241.05)。
1-Hydroxyethyl-1H,8H-pyrimido[4,5-d]pyrimidine-2,4,5,7-tetraone (Compound 5) Synthetic Fluororesin Coated in a 10 mL plastic container with lid equipped with stir bar. The compound 4 (1.7 g, 3.6 mmol) obtained above and 5 mL (30.7 mmol) of triethylamine trihydrofluoric acid were added, and the mixture was stirred at room temperature for 24 hours. The resulting reaction solution was carefully added to 2M KOH aqueous solution so as not to become acidic, and finally neutralized with 2M HCl aqueous solution, then filtered and washed with diethyl ether to give Compound 5 (700) as a white solid. mg, 2.9 mmol, yield 82.1%) was obtained; 1 H NMR (DMSO-d6, 400 MHz): δ 3.49(br, 2H, NCH 2 ), 4.02(br, 2H, CH 2 OH), 4.88( br, 1H, OH), 9.44(br, 1H), 10.20(br, 1H); 13 C NMR(DMSO-d6, 100 MHz): ?40.04(NCH2), 58.84(CH 2 OH), 86.05(COCCO) , 151.47, 157.87, 161.30, 162.69, 164.45; MS(ESI+) 241.06 (M+H+calcd 241.05).

2,4,5,7-テトラオキソ-3,4,5,6,7,8- ヘキサヒドロ-2H-ピリミド [4,5-d] ピリミジ -1- ニル酢酸(化合物6)の合成
フッ素樹脂コートした撹拌子を備えた 300 mL ナス型フラスコに、上記で得た化合物5
(1.0 g, 4.2 mmol)、2,2,6,6-テトラメチル-1-ピペリジニロキシ、フリーラジカル(TEMPO)698 mg(4.2 mmol)と臭化ナトリウム 922 mg(8.4 mmol)を入れた後に 0.4 M 水酸化ナトリウム水溶液を加え pH を 11 に調整し、完全に TEMPO が溶解するまで室温で撹拌した後、反応溶液に次亜塩素酸ナトリウム 11% 水溶液 5.4 mL(8.4 mmol)を加え室温で 1.5 時間撹拌した。pH を 11 に維持するために時折 0.4 M 水酸化ナトリウム水溶液を加えた。反応終了後、エタノールを加えろ過することにより得られる固体を水に溶かして氷浴にうつし、 pH が 1 になるまで 2 M 塩酸を加えて 1 時間そのまま放置した。析出した固体をろ過することにより、白色固体として化合物6(530.3 mg, 2.1 mmol, 収率 50.0%)を得た; 1H NMR(DMSO-d6, 400 MHz): δ 4.71(s, 2H, CH2CO), 11.05(br, 1H, NH), 11.24(br, 1H, NH), 11.45(br, 1H, NH), 13.25(br, 1H, COOH); 13C NMR(DMSO-d6, 100 MHz): δ 44.59(NCH2), 87.45(COCCO), 149.61, 150.33, 155.40, 158.51, 159.70, 169.14(COOH); MS(ESI+)255.04(M +H+ calcd 255.03)。
Synthesis of 2,4,5,7-tetraoxo-3,4,5,6,7,8-hexahydro-2H-pyrimido[4,5-d]pyrimidin-1-nylacetic acid (Compound 6) Fluorine resin coated In a 300 mL eggplant-shaped flask equipped with a stir bar, place the compound 5 obtained above.
(1.0 g, 4.2 mmol), 2,2,6,6-tetramethyl-1-piperidinyloxy, 698 mg (4.2 mmol) free radical (TEMPO) and 922 mg (8.4 mmol) sodium bromide, then 0.4 M Adjust the pH to 11 by adding aqueous sodium hydroxide, stir at room temperature until TEMPO is completely dissolved, then add 5.4 mL (8.4 mmol) of 11% aqueous sodium hypochlorite to the reaction solution and stir at room temperature for 1.5 hours. did. Occasionally 0.4 M aqueous sodium hydroxide solution was added to maintain the pH at 11. After completion of the reaction, ethanol was added and the solid obtained by filtration was dissolved in water and transferred to an ice bath, 2 M hydrochloric acid was added until the pH reached 1, and the mixture was left as it was for 1 hour. The precipitated solid was filtered to obtain Compound 6 (530.3 mg, 2.1 mmol, yield 50.0%) as a white solid; 1 H NMR(DMSO-d6, 400 MHz): δ 4.71(s, 2H, CH 2 CO), 11.05(br, 1H, NH), 11.24(br, 1H, NH), 11.45(br, 1H, NH), 13.25(br, 1H, COOH); 13 C NMR(DMSO-d6, 100 MHz ): δ 44.59(NCH 2 ), 87.45(COCCO), 149.61, 150.33, 155.40, 158.51, 159.70, 169.14(COOH); MS(ESI+)255.04(M +H+ calcd 255.03).

tert-ブチル N-[2-(N-9-フルオレニルメトキシカルボニル)アミノエチル]-N-[(2,4,5,7-テトラオキソ-3,4,5,6,7,8- ヘキサヒドロ-2H-ピリミド [4,5-d] ピリミジ -1- ニル酢酸(化合物9)の合成
フッ素樹脂コートした撹拌子を備えた 50 mL ナス型フラスコに、上記で得た化合物6(723 mg, 2.8 mmol)、tert-ブチル N-[2-(N-9-フルオレニルメトキシカルボニル)アミノエチル] グリシネート(化合物7)1.1 g(2.8 mmol)と 1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(化合物8)1.1 g(5.6 mmol)を加え、DMF(ナカライ製)中室温で 24 時間撹拌した。得られた反応溶液を減圧濃縮した後、水を加えろ過することにより得られる白色固体をシリカゲルクロマトグラフィーで精製することにより、白色固体としてブチルエステル体(化合物9)(1.3 g, 2.1 mmol, 収率 73.5%)を得た; 1H NMR(DMSO-d6, 500 MHz): δ 1.37-1.45(m, 9H, C(CH3)3), 3.09-3.42(m, 4H, NHCH2CH2N), 3.89-3.92(br, 1H, Fmoc-H9), 4.14-4.33(m, 4H, NCH2COO and Fmoc-CH2O), 4.73-4.94(m, 2H, NCH2CON), 7.30-7.41(m, 5H, NHCOO and Fmoc-H3, H4, H5, H6), 7.66-7.68(m, 2H, Fmoc-H2, H7), 7.86-7.88(m, 2H, Fmoc-1H, 8H), 10.11-10.95(br, 2H, NH); MS(ESI+)633.29(M +H+ calcd 633.23)。
tert-Butyl N-[2-(N-9-fluorenylmethoxycarbonyl)aminoethyl]-N-[(2,4,5,7-tetraoxo-3,4,5,6,7,8-hexahydro Synthesis of -2H-pyrimido [4,5-d]pyrimidin-1-nyl acetic acid (compound 9) In a 50 mL eggplant-shaped flask equipped with a fluororesin-coated stir bar , the compound 6( 723 mg, 2.8 mmol), tert-butyl N-[2-(N-9-fluorenylmethoxycarbonyl)aminoethyl]glycinate (Compound 7) 1.1 g (2.8 mmol) and 1-(3-dimethylaminopropyl) -3-Ethylcarbodiimide hydrochloride (Compound 8) 1.1 g (5.6 mmol) was added, and the mixture was stirred in DMF (manufactured by Nakarai) for 24 hours at room temperature.The obtained reaction solution was concentrated under reduced pressure, water was added, and the mixture was filtered. The white solid obtained in (1) was purified by silica gel chromatography to obtain a butyl ester compound (Compound 9) (1.3 g, 2.1 mmol, yield 73.5%) as a white solid; 1 H NMR(DMSO-d6, 500 MHz): δ 1.37-1.45(m, 9H, C(CH3)3), 3.09-3.42(m, 4H, NHCH 2 CH 2 N), 3.89-3.92(br, 1H, Fmoc-H9), 4.14-4.33 (m, 4H, NCH 2 COO and Fmoc-CH 2 O), 4.73-4.94(m, 2H, NCH 2 CON), 7.30-7.41(m, 5H, NHCOO and Fmoc-H3, H4, H5, H6), 7.66-7.68(m, 2H, Fmoc-H2, H7), 7.86-7.88(m, 2H, Fmoc-1H, 8H), 10.11-10.95(br, 2H, NH); MS(ESI+)633.29(M +H+) calcd 633.23).

N-[2-(N-9-フルオレニルメトキシカルボニル)アミノエチル]-N-[(2,4,5,7-テトラオキソ-3,4,5,6,7,8- ヘキサヒドロ-2H-ピリミド [4,5-d] ピリミジ -1- ニル酢酸(化合物10)の合成
フッ素樹脂コートした撹拌子を備えた 100 mL ナス型フラスコに、上記で得た化合物9(1.9 g, 3.0 mmol)とジクロロメタン 10 mL を入れ撹拌しながらトリフルオロ酢酸 20 mL(250 mmol)を加え室温で 24 時間撹拌した。得られた反応溶液を減圧濃縮した粗生成物をメタノール-ジエチルエーテルで再沈澱させることにより、白色固体として化合物10(1.5 g, 2.6 mmol, 収率 86.7%)を得た; 1H NMR(DMSO-d6, 400 MHz): δ 3.10-3.64(m, 4H, NHCH2CH2N), 3.99(br, 1H, Fmoc-H9), 4.23-4.37(m, 4H, NCH2COO and Fmoc-CH2O), 4.79-4.97(m, 2H, NCH2CON), 7.28-7.46(m, 5H, NHCOO and Fmoc-H3, H4, H5, H6), 7.65-7.69(m, 2H, Fmoc-H2, H7), 7.87-7.91(m, 2H, Fmoc-1H, 8H), 10.68(br, 1H, NH), 11.16(br, 1H, NH), 12.66(br, 1H, COOH); MS(ESI+)577.19(M +H+ calcd 577.17)。
N-[2-(N-9-fluorenylmethoxycarbonyl)aminoethyl]-N-[(2,4,5,7-tetraoxo-3,4,5,6,7,8-hexahydro-2H- Synthesis of Pyrimido [4,5-d]pyrimidin-1-nylacetic acid (Compound 10) In a 100 mL eggplant-shaped flask equipped with a stir bar coated with fluororesin, the compound 9 (1.9 g, 3.0 mmol) obtained above was added. 20 mL (250 mmol) of trifluoroacetic acid was added to 10 mL of dichloromethane while stirring, and the mixture was stirred at room temperature for 24 hours.The resulting reaction solution was concentrated under reduced pressure, and the crude product was reprecipitated with methanol-diethyl ether. Compound 10 (1.5 g, 2.6 mmol, yield 86.7%) was obtained as a white solid; 1 H NMR (DMSO-d6, 400 MHz): δ 3.10-3.64 (m, 4H, NHCH 2 CH 2 N), 3.99. (br, 1H, Fmoc-H9), 4.23-4.37(m, 4H, NCH 2 COO and Fmoc-CH 2 O), 4.79-4.97(m, 2H, NCH 2 CON), 7.28-7.46(m, 5H, NHCOO and Fmoc-H3, H4, H5, H6), 7.65-7.69(m, 2H, Fmoc-H2, H7), 7.87-7.91(m, 2H, Fmoc-1H, 8H), 10.68(br, 1H, NH ), 11.16(br, 1H, NH), 12.66(br, 1H, COOH); MS(ESI+)577.19(M+H+calcd 577.17).

本発明のユニバーサル塩基含有ポリマーは、配列未特定遺伝子や不特定遺伝子のプローブ、一塩基多型(SNPs)の検出、アンチジーン法による不特定遺伝子の発現抑制、核酸成分の高選択的抽出・除去、核酸成分の精製(アフィニティーカラム)などに応用できる。   INDUSTRIAL APPLICABILITY The universal base-containing polymer of the present invention is a probe for sequence-unspecified genes and unspecified genes, detection of single nucleotide polymorphisms (SNPs), suppression of expression of unspecified genes by the antigene method, and highly selective extraction/removal of nucleic acid components. It can be applied to purification of nucleic acid components (affinity column) and the like.

実施例1で合成したPNAオリゴマーのHPLCチャートを示す。縦軸は吸光度(Abs260, 260nmにおける吸光度)、横軸は時間(分)を表す。1 shows an HPLC chart of the PNA oligomer synthesized in Example 1. The vertical axis represents absorbance (Abs 260 , absorbance at 260 nm), and the horizontal axis represents time (minutes). 実施例2で合成したPNAオリゴマーのHPLCチャートを示す。2 shows an HPLC chart of the PNA oligomer synthesized in Example 2. 実施例3で合成したPNAオリゴマーのHPLCチャートを示す。5 shows an HPLC chart of the PNA oligomer synthesized in Example 3. 比較例1で合成したPNAオリゴマーのHPLCチャートを示す。2 shows an HPLC chart of the PNA oligomer synthesized in Comparative Example 1. 実施例2のPNAオリゴマーを用いた複合体形成実験結果を示す図である。PNAオリゴマーと天然型オリゴヌクレオチドの混合溶液における吸光度を混合比に対してプロットした。FIG. 3 is a diagram showing the results of a complex formation experiment using the PNA oligomer of Example 2. The absorbance in the mixed solution of PNA oligomer and natural type oligonucleotide was plotted against the mixing ratio. 比較例1の天然型オリゴヌクレオチドを用いた複合体形成実験結果を示す図である。図1の吸光度を混合比に対してプロットした図である。FIG. 4 is a diagram showing the results of a complex formation experiment using the natural type oligonucleotide of Comparative Example 1. It is the figure which plotted the light absorbency of FIG. 1 with respect to a mixing ratio. ユニバーサル塩基含有モノマー合成の反応スキームを示す図である。It is a figure which shows the reaction scheme of a universal base containing monomer synthesis. ユニバーサル塩基含有モノマー合成の反応スキームを示す図である。It is a figure which shows the reaction scheme of a universal base containing monomer synthesis.

Claims (2)

下式
Figure 2007026595
(式中、R及びRは、それぞれ同じであっても異なってもよく、置換基を有していてもよい炭素数が1〜18の炭化水素鎖を表し、Rは天然核酸又は非天然核酸を表し、X及びXは、それぞれ同じであっても異なってもよく、−N−又は−CR−(式中、Rは水素原子又は置換基を有していてもよい炭素数1〜4のアルキル基を表す。)を表し、Xは2価のヘテロ原子を含んでもよい炭化水素基、アミノ酸残基若しくはオリゴペプチド残基、核酸残基若しくはオリゴヌクレオチド残基、Y及びZは、それぞれ同じであっても異なってもよく、一価の残基を表し、mは1以上nは0以上でm+nが約2〜50の整数を表し、lは0以上の整数を表す。)で表されるユニバーサル塩基含有ポリマー。
The following formula
Figure 2007026595
(In the formula, R 1 and R 2 may be the same or different and each represents a hydrocarbon chain having 1 to 18 carbon atoms, which may have a substituent, and R 3 is a natural nucleic acid or Represents a non-natural nucleic acid, X 1 and X 2 may be the same or different, and each is —N— or —CR 4 — (wherein R 4 may have a hydrogen atom or a substituent; Represents an alkyl group having 1 to 4 carbon atoms, and X 3 represents a hydrocarbon group which may contain a divalent hetero atom, an amino acid residue or an oligopeptide residue, a nucleic acid residue or an oligonucleotide residue, Y and Z, which may be the same or different, each represents a monovalent residue, m is 1 or more, n is 0 or more, m+n is an integer of about 2 to 50, and l is an integer of 0 or more. A universal base-containing polymer represented by.
DNA又は天然核酸塩基から成るオリゴヌクレオチドを含む溶液に請求項1に記載のユニバーサル塩基含有ポリマーを混合することによりこれらの塩基対を形成させる方法。
A method of forming these base pairs by mixing the universal base-containing polymer according to claim 1 with a solution containing an oligonucleotide consisting of DNA or a natural nucleobase.
JP2007533201A 2005-08-30 2006-08-24 Universal base-containing polymer Active JP5251125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007533201A JP5251125B2 (en) 2005-08-30 2006-08-24 Universal base-containing polymer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005248586 2005-08-30
JP2005248586 2005-08-30
JP2007533201A JP5251125B2 (en) 2005-08-30 2006-08-24 Universal base-containing polymer
PCT/JP2006/316585 WO2007026595A1 (en) 2005-08-30 2006-08-24 Universal base-containing polymer

Publications (2)

Publication Number Publication Date
JPWO2007026595A1 true JPWO2007026595A1 (en) 2009-03-05
JP5251125B2 JP5251125B2 (en) 2013-07-31

Family

ID=37808689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007533201A Active JP5251125B2 (en) 2005-08-30 2006-08-24 Universal base-containing polymer

Country Status (2)

Country Link
JP (1) JP5251125B2 (en)
WO (1) WO2007026595A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8211899B2 (en) * 2005-08-30 2012-07-03 Inter-University Research Institute Corporation National Institute Of Natural Sciences Artificial nucleic acid bases and their use in base pairing natural nucleic acid bases
WO2017007925A1 (en) * 2015-07-07 2017-01-12 Thermo Fisher Scientific Geneart Gmbh Enzymatic synthesis of nucleic acid sequences

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1138689A1 (en) * 2000-03-28 2001-10-04 Roche Diagnostics GmbH N8- and C8-linked purine bases as universal nucleosides used for oligonucleotide hybridization
US8211899B2 (en) * 2005-08-30 2012-07-03 Inter-University Research Institute Corporation National Institute Of Natural Sciences Artificial nucleic acid bases and their use in base pairing natural nucleic acid bases

Also Published As

Publication number Publication date
WO2007026595A1 (en) 2007-03-08
JP5251125B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
US10793605B2 (en) Conformationally-preorganized, miniPEG-containing γ-peptide nucleic acids
US7910726B2 (en) Amidite for synthesizing modified nucleic acid and method for synthesizing modified nucleic acid
AU2022287635A1 (en) DisuIfide bond containing compounds and uses thereof
JP5251125B2 (en) Universal base-containing polymer
JP5137118B2 (en) Universal base
US6716961B2 (en) Chiral peptide nucleic acids with a N-aminoethyl-d-proline backbone
EP4083054A1 (en) Method for producing pna oligomer in solution process
US6388061B1 (en) Monomeric building blocks for labeling peptide nucleic acids
Lonkar et al. Chimeric (aeg-pyrrolidine) PNAs: synthesis and stereo-discriminative duplex binding with DNA/RNA
JP2023541091A (en) Method for preparing oligonucleotides
Hirano et al. Peptide-nucleic acids (PNAs) with pyrimido [4, 5-d] pyrimidine-2, 4, 5, 7-(1 H, 3 H, 6 H, 8 H)-tetraone (PPT) as a universal base: their synthesis and binding affinity for oligodeoxyribonucleotides
Abdelbaky et al. Synthesis of α-(R)-/γ-(S)-Dimethyl Substituted Peptide Nucleic Acid Submonomer Using Mitsunobu Reaction
KR20030042180A (en) A Method for Producing a Backbone of Peptide Nucleic Acid
WO2023127918A1 (en) Method for producing oligonucleic acid compound
Slaitas Development of a new PNA analogue as a potential antisense drug and tool for life-science studies
Vilaivan et al. Synthesis and Properties of Novel Peptide Nucleic Acids with Hydrophilic Serine Spacers
Gourishankar et al. with cDNA relative to isosequential RNA
JP2005500391A (en) CNA manufacturing method
KR20120058699A (en) Oligomer and the synthesis of the oligomer
JP2014177480A (en) Protecting group for indole group, and amidide for automatic nucleic acid synthesis and nucleic acid synthesis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120724

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5251125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250