JPWO2006132343A1 - Ultrasonic flow measuring device and ultrasonic flow measuring method - Google Patents

Ultrasonic flow measuring device and ultrasonic flow measuring method Download PDF

Info

Publication number
JPWO2006132343A1
JPWO2006132343A1 JP2007520173A JP2007520173A JPWO2006132343A1 JP WO2006132343 A1 JPWO2006132343 A1 JP WO2006132343A1 JP 2007520173 A JP2007520173 A JP 2007520173A JP 2007520173 A JP2007520173 A JP 2007520173A JP WO2006132343 A1 JPWO2006132343 A1 JP WO2006132343A1
Authority
JP
Japan
Prior art keywords
pipe
ultrasonic
fluid
flow rate
ultrasonic flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007520173A
Other languages
Japanese (ja)
Inventor
森 治嗣
治嗣 森
手塚 健一
健一 手塚
鈴木 武志
武志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Publication of JPWO2006132343A1 publication Critical patent/JPWO2006132343A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

超音波を配管内の流体へ照射し流体中の反射体により反射された超音波エコーを受信して配管内の流体の流速分布および流量を計測する超音波流量計を備えた超音波流量計測装置において、簡易な設備で十分な量の気泡を配管内に生じさせるとともに、攪拌作用をもつ流体機械を必要とせずに配管中に気泡を拡散させる。超音波流量計の上流側に気泡供給手段を備え、この気泡供給手段から配管内で昇華する性質を有する固体材料を供給する、または、顆粒状の固体材料を配管内の圧力よりも高い圧力の気体とともに配管内へ注入する。Ultrasonic flow measurement device equipped with an ultrasonic flowmeter that measures the flow velocity distribution and flow rate of the fluid in the pipe by irradiating the ultrasonic wave to the fluid in the pipe and receiving the ultrasonic echo reflected by the reflector in the fluid In this case, a sufficient amount of bubbles are generated in the pipe with simple equipment, and the bubbles are diffused in the pipe without requiring a fluid machine having a stirring action. A bubble supply means is provided on the upstream side of the ultrasonic flowmeter, and a solid material having a property of sublimating in the pipe is supplied from the bubble supply means, or a granular solid material is supplied at a pressure higher than the pressure in the pipe. Inject into the pipe together with gas.

Description

本発明は、流速分布とともに流体の流量を測定する超音波流量計測装置、超音波流量計測方法に係り、特に原子力発電所や火力発電所、水力発電所等の大口径配管の流量を計測する超音波流量計測装置、超音波流量計測方法に関する。   The present invention relates to an ultrasonic flow measuring device and an ultrasonic flow measuring method for measuring a flow rate of a fluid together with a flow velocity distribution, and more particularly, an ultrasonic flow measuring method for measuring a flow rate of a large-diameter pipe such as a nuclear power plant, a thermal power plant, or a hydroelectric power plant. The present invention relates to a sonic flow measurement device and an ultrasonic flow measurement method.

従来、配管内を流れる流体の流量を計測する流量計として、特許文献1に示されるように被計測流体に超音波を照射して超音波のドップラシフトを利用して流体の流量を計測するドップラ式超音波流量計と、特許文献2に示されるように反射体からのエコー信号の時間変化から相関法を利用して流体の流量を計測する相関式超音波流量計がある。
特開2000−97742号公報 特開2003−344131号公報
Conventionally, as a flow meter for measuring the flow rate of fluid flowing in a pipe, as disclosed in Patent Document 1, ultrasonic waves are applied to a fluid to be measured and the flow rate of the fluid is measured using ultrasonic Doppler shift. There are a correlation type ultrasonic flow meter and a correlation type ultrasonic flow meter that measures the flow rate of a fluid by using a correlation method from a time change of an echo signal from a reflector as disclosed in Patent Document 2.
JP 2000-97742 A JP 2003-344131 A

従来の超音波流量計は、流体中に存在する反射体により反射した超音波エコーを受信して流体の流速分布を計測し、もって流量を計測するため、流量を計測するためには、被測定流体中に十分な量の反射体が存在する必要がある。   Conventional ultrasonic flowmeters receive ultrasonic echoes reflected by reflectors present in the fluid and measure the flow velocity distribution of the fluid, thereby measuring the flow rate. There must be a sufficient amount of reflector in the fluid.

被測定流体中に十分な反射体が存在しない場合には、特許文献3に示されるようにポンプを使って直接的に気体を注入するとことにより、また特許文献4に示されるように超音波によりキャビテーションを生じさせることにより、反射体を供給している。
特開平8−62007号公報 特開平6−294670号公報
When there is not enough reflector in the fluid to be measured, gas is directly injected using a pump as shown in Patent Document 3, and ultrasonic waves are used as shown in Patent Document 4. The reflector is supplied by generating cavitation.
JP-A-8-62007 JP-A-6-294670

しかしながら、原子力発電所や火力発電所のタービン復水器冷却用の循環水配管や、水力発電所の水圧鉄管など、直径が数メートルに及ぶ配管においては、流量が大きいため(数10トン〜数1000トン/分)、十分な反射体を供給するためには、大量の空気を注入しなければならず、付帯設備が大掛かりになるという問題点があった。   However, pipes with a diameter of several meters, such as circulating water pipes for cooling turbine condensers at nuclear power plants and thermal power plants, and hydraulic iron pipes at hydroelectric power plants, have a large flow rate (several tens of tons to several In order to supply a sufficient reflector, a large amount of air has to be injected, and there is a problem that the incidental facilities become large.

また、注入した気体を配管内に一様に分布させるためには、エルボやバルブなどの攪拌作用を有するものが、注入部と測定部の間に必要となるが、これを実現するように気体注入部を設置することが難しい設備がある。   In addition, in order to uniformly distribute the injected gas in the pipe, an elbow or valve having a stirring action is required between the injection unit and the measurement unit. There are facilities that are difficult to install the injection part.

本発明は、前記課題に鑑みてなされたものであり、簡易な設備で十分な量の気泡を配管内に生じさせるとともに、攪拌作用をもつ流体機械を必要とせずに配管中に気泡を拡散させることを目的とする。   The present invention has been made in view of the above problems, and generates a sufficient amount of bubbles in the piping with simple equipment and diffuses the bubbles in the piping without requiring a fluid machine having a stirring action. For the purpose.

本発明者らは、前記課題を解決するため鋭意検討した結果、配管内の圧力・温度下で昇華する材料を注入することで、効果的に気泡を生じさせることができることを見出し、本発明をするに至った   As a result of intensive studies to solve the above problems, the present inventors have found that by injecting a material that sublimates under pressure and temperature in a pipe, bubbles can be effectively generated, and the present invention is achieved. I came to

すなわち、本発明は以下のとおりである。   That is, the present invention is as follows.

第一の発明は、超音波を配管内の流体へ照射し流体中の反射体により反射された超音波エコーを受信して配管内の流体の流速分布および流量を計測する超音波流量計を備えた超音波流量計測装置であり、
前記超音波流量計の上流側に、配管内で昇華し、前記反射体として機能する気泡となる性質を有する固体材料を供給する気泡供給手段を備えることを特徴とする。
A first invention includes an ultrasonic flowmeter that irradiates a fluid in a pipe with ultrasonic waves, receives an ultrasonic echo reflected by a reflector in the fluid, and measures a flow velocity distribution and a flow rate of the fluid in the pipe. An ultrasonic flow measuring device,
A bubble supply means is provided upstream of the ultrasonic flowmeter for supplying a solid material that has the property of sublimating in a pipe and functioning as the reflector to form bubbles.

第二の発明は、前記気泡供給手段が、前記固体材料として固体炭酸を供給する固体炭酸供給手段であることを特徴とする。   The second invention is characterized in that the bubble supplying means is a solid carbonic acid supplying means for supplying solid carbonic acid as the solid material.

第三の発明は、前記気泡供給手段が、顆粒状の固体材料を配管内の圧力よりも高い圧力の気体とともに配管内へ注入するものであることを特徴とする。
ここで、顆粒状とは、直径1μm〜30μmのものを指す。
また、混合される高い圧力の気体は、固体材料と同じ物質であることが好ましいが、異なる物質であってもよく、二酸化炭素、窒素、アルゴン、ヘリウムガスなどの不活性ガス、またはこれらの混合物、あるいは酸素、水素が広く使用できる。
A third invention is characterized in that the bubble supply means injects a granular solid material into a pipe together with a gas having a pressure higher than the pressure in the pipe.
Here, the granular form refers to those having a diameter of 1 μm to 30 μm.
The high pressure gas to be mixed is preferably the same substance as the solid material, but may be a different substance, an inert gas such as carbon dioxide, nitrogen, argon, helium gas, or a mixture thereof. Or oxygen and hydrogen can be widely used.

第四の発明は、超音波流量計により超音波を配管内の流体へ照射し流体中の反射体により反射された超音波エコーを受信して配管内の前記流体の流速分布および流量を計測する超音波流量計測方法であり、
前記超音波流量計の上流側に備えた気泡供給手段から、前記配管内に、配管内で昇華する性質を有する固体材料を供給し、これにより、流体中に気泡を生じさせ、該気泡を反射体として用いることを特徴とする。
The fourth invention measures the flow velocity distribution and the flow rate of the fluid in the pipe by irradiating the fluid in the pipe with ultrasonic waves by the ultrasonic flowmeter and receiving the ultrasonic echo reflected by the reflector in the fluid. An ultrasonic flow measurement method,
From the bubble supply means provided on the upstream side of the ultrasonic flowmeter, a solid material having the property of sublimating in the pipe is supplied into the pipe, thereby generating bubbles in the fluid and reflecting the bubbles. It is used as a body.

第五の発明は、前記固体材料は固体炭酸であることを特徴とする。   The fifth invention is characterized in that the solid material is solid carbonic acid.

第六の発明は、前記気泡供給手段から、顆粒状の固体材料を、
前記配管内の圧力よりも高い圧力の気体とともに
前記配管内へ注入することを特徴とする。
ここで、顆粒状とは、直径1μm〜30μmのものを指す。
また、高い圧力の気体は、固体材料と同じ物質であることが好ましいが、異なる物質でもよく、上記したように、窒素、酸素、水素等の不活性ガスまたはこれらの混合物などを使用できる。
A sixth invention provides a granular solid material from the bubble supply means,
It inject | pours in the said piping with the gas of the pressure higher than the pressure in the said piping.
Here, the granular form refers to those having a diameter of 1 μm to 30 μm.
The high-pressure gas is preferably the same substance as the solid material, but may be a different substance, and as described above, an inert gas such as nitrogen, oxygen, or hydrogen, or a mixture thereof can be used.

本発明の超音波流量計測装置および超音波流量計測方法によれば、大口径の配管に対しても、十分な量の気泡を偏ることなく生じさせることができ、もって高精度な流量計測が可能となる。   According to the ultrasonic flow measuring device and the ultrasonic flow measuring method of the present invention, it is possible to generate a sufficient amount of air bubbles even in a large-diameter pipe without biasing, thereby enabling highly accurate flow measurement. It becomes.

本発明にかかる超音波流量計測装置による流量計測対象の一例となる水力発電所の水圧鉄管を示す図。The figure which shows the hydraulic iron pipe of the hydroelectric power station used as an example of the flow measurement object by the ultrasonic flow measuring device concerning this invention. 本発明に係る超音波流量計測装置の第一の実施形態を示す構成図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram which shows 1st embodiment of the ultrasonic flow measuring device which concerns on this invention. 本発明に係る超音波流量計測装置の第二の実施形態を示す構成図。The block diagram which shows 2nd embodiment of the ultrasonic flow measuring device which concerns on this invention. 超音波流量計測装置を構成する超音波流量計の構成図。The block diagram of the ultrasonic flowmeter which comprises an ultrasonic flow measuring device.

以下、本発明に係る超音波流量計測装置について、図面を参照しつつ詳細に説明する。   Hereinafter, an ultrasonic flow measuring device according to the present invention will be described in detail with reference to the drawings.

図1は本発明に係る超音波流量計測装置の適用対象の一つである、水力発電所の構成を示す図である。   FIG. 1 is a diagram showing a configuration of a hydroelectric power plant, which is one of application targets of an ultrasonic flow rate measuring apparatus according to the present invention.

水力発電所20は、水槽21と放水庭22をつなぐ水圧鉄管24の間に、水車23を設けて構成される。水車23は発電機25と機械的に接続される。発電機25は河川水x1により回転した水車の運動エネルギーを電気エネルギーに変換し、発電機25によって発電された電力は、図示しないが送電系統へ送られる。   The hydroelectric power plant 20 is configured by providing a water turbine 23 between a hydraulic iron pipe 24 that connects a water tank 21 and a water discharge garden 22. The water turbine 23 is mechanically connected to the generator 25. The generator 25 converts the kinetic energy of the water turbine rotated by the river water x1 into electric energy, and the electric power generated by the generator 25 is sent to a power transmission system (not shown).

このような、水力発電所20において、水圧鉄管24の任意の部位に超音波流量計13が設けられる。水圧鉄管24は、本実施形態において、測定対象となる流体が流れる配管を構成する。   In such a hydroelectric power plant 20, the ultrasonic flowmeter 13 is provided at an arbitrary portion of the hydraulic iron pipe 24. In this embodiment, the hydraulic iron pipe 24 constitutes a pipe through which a fluid to be measured flows.

また、本発明の第一の実施形態においては気泡供給手段として固体炭酸供給手段11が水槽21に、第二の実施形態においては気泡供給手段として顆粒固体炭酸注入手段12が水圧鉄管のピトー管挿入用フランジ26に設置される。図1は、第一の実施形態で用いた固体炭酸供給手段11と、第二の実施形態で用いた顆粒固体炭酸注入手段12とを便宜的に併せて示しているが、実際には、図2及び図3に示したように、いずれか一方のみが設置され、それぞれが超音波流量計13と組み合わせて用いられる。   Further, in the first embodiment of the present invention, the solid carbonic acid supply means 11 is inserted into the water tank 21 as the bubble supply means, and in the second embodiment, the granular solid carbonic acid injection means 12 is inserted as the pitot tube of the hydraulic iron pipe as the bubble supply means. It is installed on the flange 26 for use. FIG. 1 shows the solid carbonic acid supply means 11 used in the first embodiment and the granular solid carbonic acid injection means 12 used in the second embodiment for convenience. As shown in FIG. 2 and FIG. 3, only one of them is installed, and each is used in combination with the ultrasonic flow meter 13.

図2は、本発明に係る超音波流量計測装置の第一の実施形態を示す構成図である。   FIG. 2 is a configuration diagram showing a first embodiment of the ultrasonic flow rate measuring apparatus according to the present invention.

超音波流量計測装置10は、気泡供給手段である固体炭酸供給手段11と超音波流量計13で構成される。固体炭酸供給手段11は、配管内で昇華する固体材料としての固体炭酸11cを保存しておく保温庫11aと、固体炭酸を水槽内部へ導く挿入管11bからなり、水力発電所の水槽21に設置される。   The ultrasonic flow rate measuring device 10 includes a solid carbonic acid supply unit 11 and an ultrasonic flow meter 13 which are bubble supply units. The solid carbonic acid supply means 11 includes a heat insulating chamber 11a for storing solid carbonic acid 11c as a solid material that sublimates in the pipe, and an insertion pipe 11b for introducing the solid carbonic acid into the water tank, and is installed in the water tank 21 of the hydroelectric power plant. Is done.

超音波流量計13は、前記水圧鉄管24内へ供給された固体炭酸が昇華することで生じる反射体としての気泡に超音波パルスを照射させて、反射した超音波エコーを受信することにより、水圧鉄管24の内の河川水x1の流速分布を計測し、流量を時間依存で瞬時に計測する機能を有する。   The ultrasonic flowmeter 13 irradiates bubbles as a reflector generated by sublimation of solid carbonic acid supplied into the hydraulic iron tube 24 with ultrasonic pulses, and receives reflected ultrasonic echoes. It has the function of measuring the flow velocity distribution of river water x1 in the iron pipe 24 and instantaneously measuring the flow rate in a time-dependent manner.

固体炭酸供給手段11から供給された固体炭酸は、昇華しながら流体とともに流れる。固体炭酸は体積がおよそ1000倍の二酸化炭素へ昇華するため、少量の固体炭酸により、十分な量の気泡を供給できる。この固体炭酸供給手段11で供給される固体炭酸の大きさは、40mmから120mmが好ましい。40mmよりも小さいと、測定部位に到達するかなり前にすべて昇華してしまい、気泡が偏ってしまう。また、120mmよりも大きいと、固体のままタービンまで到達するおそれがある。   The solid carbonic acid supplied from the solid carbonic acid supply means 11 flows with the fluid while sublimating. Since solid carbon dioxide sublimates to carbon dioxide whose volume is about 1000 times, a sufficient amount of bubbles can be supplied by a small amount of solid carbon dioxide. The size of the solid carbonic acid supplied by the solid carbonic acid supply means 11 is preferably 40 mm to 120 mm. If it is smaller than 40 mm, all of them sublimate well before reaching the measurement site, and the bubbles are biased. Moreover, when larger than 120 mm, there exists a possibility of reaching a turbine with a solid.

図3は、本発明に係る超音波流量計測装置の第二の実施形態を示す構成図である。   FIG. 3 is a configuration diagram showing a second embodiment of the ultrasonic flow rate measuring apparatus according to the present invention.

気泡発生手段である顆粒固体炭酸注入手段12は、顆粒状の固体炭酸のもととなる液化炭酸ガスのボンベ12a、混合すべき気体である窒素ガスのボンベ12b、混合手段12c、混合物を導入する導入手段12dからなるが、市販品(太陽日酸製「パウダーショット」等)を使用してもよい。   The granular solid carbonic acid injecting means 12, which is a bubble generating means, introduces a liquefied carbon dioxide cylinder 12a, a nitrogen gas cylinder 12b which is a gas to be mixed, a mixing means 12c, and a mixture. Although comprised of the introducing means 12d, a commercially available product (such as “Powder Shot” manufactured by Taiyo Nippon Sanso) may be used.

ここで、顆粒状の固体炭酸と気体の混合物を配管中に導入する際には、配管中の流体の水圧よりも高い圧力が必要となるが、圧力の調節は、窒素ガスのレギュレータ12eを使用してもよいし、別途混合手段がコンプレッサー12fを備えてもよい。   Here, when introducing a mixture of granular solid carbonic acid and gas into the pipe, a pressure higher than the water pressure of the fluid in the pipe is required, but the pressure is adjusted using a regulator 12e of nitrogen gas. Alternatively, a separate mixing unit may include the compressor 12f.

この顆粒状の固体炭酸と気体の混合物の導入には、配管に備えられているピトー管挿入用フランジ26を使用することができる。   For introduction of the granular solid carbonic acid and gas mixture, a pitot tube insertion flange 26 provided in the pipe can be used.

気体は流体との密度差が大きいため配管に一様に分布しにくいが、固体炭酸の状態であれば流体と密度が近いため、速やかに拡散し、そこで昇華し気泡を生じる。これにより、良く拡散した気泡を効率的に供給することができる。   The gas has a large density difference from the fluid, so it is difficult to uniformly distribute in the pipe. However, in the solid carbonic acid state, the density is close to the fluid, so that it diffuses quickly and sublimates there to generate bubbles. Thereby, it is possible to efficiently supply well-diffused bubbles.

顆粒状の固体炭酸の径は1μmから30μmが好ましい。1μmよりも小さいとすぐに昇華し気泡が偏ってしまい、30μmよりも大きいと拡散しにくい。   The diameter of the granular solid carbonic acid is preferably 1 μm to 30 μm. If it is smaller than 1 μm, it sublimates immediately and the bubbles are biased, and if it is larger than 30 μm, it is difficult to diffuse.

図4は超音波流量計13の構成を説明する図である。   FIG. 4 is a diagram for explaining the configuration of the ultrasonic flowmeter 13.

超音波トランスデューサ13aを上流側水圧鉄管24の断面方向に対し角度αだけ河川水x1の流れ方向に傾けて設置した状態で、発信器13bおよびエミッタ13cにより駆動された超音波トランスデューサ13aから所用周波数f0の超音波パルスを照射させると、この超音波パルスは河川水x1中の測定線ML上に一様に分布する気泡に当たって反射し、超音波エコーとなって超音波トランスデューサ13aに戻される。ここで、超音波トランスデューサ13aは発信機と受信機を兼ねているが、別々に備えても良い。   In a state where the ultrasonic transducer 13a is installed to be inclined in the flow direction of the river water x1 by an angle α with respect to the cross-sectional direction of the upstream side hydraulic iron pipe 24, the desired frequency f0 is obtained from the ultrasonic transducer 13a driven by the transmitter 13b and the emitter 13c. When this ultrasonic pulse is irradiated, the ultrasonic pulse hits the bubbles uniformly distributed on the measurement line ML in the river water x1 and is reflected to return to the ultrasonic transducer 13a as an ultrasonic echo. Here, the ultrasonic transducer 13a serves as a transmitter and a receiver, but may be provided separately.

そして、超音波トランスデューサ13aで受信したエコー信号は、増幅器13dおよびAD変換器13eを介して、流速分布計測回路13fによって測定線MLに沿った流速分布を算出する。   Then, the echo signal received by the ultrasonic transducer 13a calculates the flow velocity distribution along the measurement line ML by the flow velocity distribution measuring circuit 13f via the amplifier 13d and the AD converter 13e.

流速分布計測回路13fで算出された河川水x1の流速分布信号は、流量演算手段であるコンピュータ13gへ送られ、ここで流速分布信号を水圧鉄管24の半径方向に積分し、河川水x1の流量を時間依存で求める。   The flow velocity distribution signal of the river water x1 calculated by the flow velocity distribution measurement circuit 13f is sent to the computer 13g which is a flow rate calculation means, where the flow velocity distribution signal is integrated in the radial direction of the hydraulic iron pipe 24 and the flow rate of the river water x1 is obtained. Is determined in a time-dependent manner.

コンピュータ13gで演算された流量および入力値である流速分布ならびにそのほかの測定条件は、表示装置13hにより表示され、また記憶装置13iに記憶される。   The flow rate calculated by the computer 13g and the flow velocity distribution which is the input value and other measurement conditions are displayed by the display device 13h and stored in the storage device 13i.

本実施例では、水力発電所における形態を説明したが、これに限定されることなく、原子力発電所および火力発電所の配管にも同様に適用することができる。   In the present embodiment, the configuration in the hydroelectric power plant has been described. However, the present invention is not limited to this, and can be similarly applied to piping of a nuclear power plant and a thermal power plant.

Claims (6)

超音波を配管内の流体へ照射し流体中の反射体により反射された超音波エコーを受信して配管内の流体の流速分布および流量を計測する超音波流量計を備えた超音波流量計測装置であって、
前記超音波流量計の上流側に、配管内で昇華し、前記反射体として機能する気泡となる性質を有する固体材料を供給する気泡供給手段を備えることを特徴とする超音波流量計測装置。
An ultrasonic flow measuring device equipped with an ultrasonic flowmeter that irradiates the fluid in the pipe with ultrasonic waves, receives ultrasonic echoes reflected by the reflector in the fluid, and measures the flow velocity distribution and flow rate of the fluid in the pipe Because
An ultrasonic flow rate measuring apparatus comprising bubble supply means for supplying a solid material having a property of sublimating in a pipe and functioning as the reflector, upstream of the ultrasonic flow meter.
前記気泡供給手段は、前記固体材料としての固体炭酸を供給する固体炭酸供給手段であることを特徴とする請求項1記載の超音波流量計測装置。   2. The ultrasonic flow rate measuring apparatus according to claim 1, wherein the bubble supplying means is a solid carbonic acid supplying means for supplying solid carbonic acid as the solid material. 前記気泡供給手段は、
前記固体材料を顆粒状にしたものを、
前記配管内の圧力よりも高い圧力の気体とともに
前記配管内へ注入するものであることを特徴とする
請求項1記載の超音波流量計測装置。
The bubble supply means includes
What made the solid material into granules,
The ultrasonic flow rate measuring device according to claim 1, wherein the ultrasonic flow rate measuring device is injected into the pipe together with a gas having a pressure higher than the pressure in the pipe.
超音波流量計により超音波を配管内の流体へ照射し流体中の反射体により反射された超音波エコーを受信して配管内の前記流体の流速分布および流量を計測する超音波流量計測方法であって、
前記超音波流量計の上流側に備えた気泡供給手段から、前記配管内に、配管内で昇華する性質を有する固体材料を供給し、これにより、流体中に気泡を生じさせ、該気泡を前記反射体として用いることを特徴とする超音波流量計測方法。
An ultrasonic flow measurement method that measures the flow velocity distribution and flow rate of the fluid in the pipe by irradiating the fluid in the pipe with ultrasonic waves using an ultrasonic flowmeter and receiving the ultrasonic echo reflected by the reflector in the fluid. There,
From the bubble supply means provided on the upstream side of the ultrasonic flowmeter, a solid material having the property of sublimating in the pipe is supplied into the pipe, thereby generating bubbles in the fluid, and An ultrasonic flow rate measuring method characterized by being used as a reflector.
前記固体材料は固体炭酸であることを特徴とする請求項4記載の超音波流量計測方法。   The ultrasonic flow rate measuring method according to claim 4, wherein the solid material is solid carbonic acid. 前記気泡供給手段から、
前記固体材料を顆粒状にしたものを、
前記配管内の圧力よりも高い圧力の気体とともに
前記配管内へ注入することを特徴とする
請求項4記載の超音波流量計測方法。
From the bubble supply means,
What made the solid material into granules,
The ultrasonic flow rate measuring method according to claim 4, wherein a gas having a pressure higher than the pressure in the pipe is injected into the pipe.
JP2007520173A 2005-06-10 2006-06-09 Ultrasonic flow measuring device and ultrasonic flow measuring method Pending JPWO2006132343A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005170701 2005-06-10
JP2005170701 2005-06-10
PCT/JP2006/311578 WO2006132343A1 (en) 2005-06-10 2006-06-09 Ultrasonic flow rate measuring device and ultrasonic flow rate measuring method

Publications (1)

Publication Number Publication Date
JPWO2006132343A1 true JPWO2006132343A1 (en) 2009-01-08

Family

ID=37498537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007520173A Pending JPWO2006132343A1 (en) 2005-06-10 2006-06-09 Ultrasonic flow measuring device and ultrasonic flow measuring method

Country Status (2)

Country Link
JP (1) JPWO2006132343A1 (en)
WO (1) WO2006132343A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4858446B2 (en) * 2005-12-27 2012-01-18 東京電力株式会社 Reactor water system piping and ultrasonic flow meter system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3445142B2 (en) * 1998-04-10 2003-09-08 株式会社日立製作所 Flow detection method for hydraulic machinery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223541A (en) * 1998-02-05 1999-08-17 Hitachi Ltd Calibration testing device for pulse doppler type ultrasonic flowmeter
JP4183560B2 (en) * 2003-05-28 2008-11-19 東京電力株式会社 Bubble generator and Doppler type ultrasonic flowmeter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3445142B2 (en) * 1998-04-10 2003-09-08 株式会社日立製作所 Flow detection method for hydraulic machinery

Also Published As

Publication number Publication date
WO2006132343A1 (en) 2006-12-14

Similar Documents

Publication Publication Date Title
Inoue et al. A study of ultrasonic propagation for ultrasonic flow rate measurement
Nguyen et al. Producing fine drops of water by twin-fluid atomisation
Liu et al. Experimental investigation about the second-mode waves in hypersonic boundary layer over a cone at small angle of attack
JPWO2006132343A1 (en) Ultrasonic flow measuring device and ultrasonic flow measuring method
JP4183560B2 (en) Bubble generator and Doppler type ultrasonic flowmeter
JP4858446B2 (en) Reactor water system piping and ultrasonic flow meter system
JP4720192B2 (en) Ultrasonic flow measurement method
JP4720183B2 (en) Ultrasonic flow measuring device and flow measuring method thereof
Tezuka et al. Assessment of effects of pipe surface roughness and pipe elbows on the accuracy of meter factors using the ultrasonic pulse Doppler method
CN101165440A (en) Ice crystal granule gas generation device
Barbier et al. Small bubbles generation with swirl bubblers for SNS target
Florio Jr et al. Development of a periodic flow in a rigid tube
JP4581439B2 (en) Ultrasonic flow measurement system and ultrasonic flow measurement method
Im et al. The effects of the ambient pressure on self-pulsation characteristics of a gas/liquid swirl coaxial injector
NAUNG et al. Supersonic Flow Conditions for Two Connecting Two-Phase Flow Nozzle in Pressurized Dissolution Method
Maury et al. Alternative Method to LNG Flowrate Measurement
Park et al. Turbulent shear control with oscillatory bubble injection
JP2009246559A (en) Reflector generation device, and ultrasonic flowmeter using reflector generation device
El-Sallak et al. Experimental investigation of the performance of liquid gas jet pumps with inlet swirling
Pascal et al. Investigation of the influence of sprinkler fins and dissolved air on jet flow
Maron et al. APPLICATION OF NON-INTRUSIVE SONAR TECHNOLOGY TO FLOW MEASUREMENT AND CONTROL IN MINERAL PROCESSING PLANTS
JP2005195373A (en) Bubble generator and ultrasonic flowmeter
Biaohua et al. Numerical simulation of gas jet noise in the underwater blowdown process
JPS6249566B2 (en)
Zhu et al. Low-frequency oscillation flow in nitrogen jet condensation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120904