JPWO2006118336A1 - Health aids - Google Patents

Health aids Download PDF

Info

Publication number
JPWO2006118336A1
JPWO2006118336A1 JP2007514874A JP2007514874A JPWO2006118336A1 JP WO2006118336 A1 JPWO2006118336 A1 JP WO2006118336A1 JP 2007514874 A JP2007514874 A JP 2007514874A JP 2007514874 A JP2007514874 A JP 2007514874A JP WO2006118336 A1 JPWO2006118336 A1 JP WO2006118336A1
Authority
JP
Japan
Prior art keywords
heat source
far
infrared radiation
plate
secondary heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007514874A
Other languages
Japanese (ja)
Inventor
武原 敏夫
敏夫 武原
Original Assignee
武原 力
武原 力
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武原 力, 武原 力 filed Critical 武原 力
Publication of JPWO2006118336A1 publication Critical patent/JPWO2006118336A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H33/00Bathing devices for special therapeutic or hygienic purposes
    • A61H33/06Artificial hot-air or cold-air baths; Steam or gas baths or douches, e.g. sauna or Finnish baths
    • A61H33/063Heaters specifically designed therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H33/00Bathing devices for special therapeutic or hygienic purposes
    • A61H33/06Artificial hot-air or cold-air baths; Steam or gas baths or douches, e.g. sauna or Finnish baths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/10Characteristics of apparatus not provided for in the preceding codes with further special therapeutic means, e.g. electrotherapy, magneto therapy or radiation therapy, chromo therapy, infrared or ultraviolet therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0659Radiation therapy using light characterised by the wavelength of light used infrared
    • A61N2005/066Radiation therapy using light characterised by the wavelength of light used infrared far infrared

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)
  • Devices For Medical Bathing And Washing (AREA)

Abstract

例えば、一般住宅の居間や寝室内等でも簡便に搬入、組立、設置して、手軽に岩盤浴等することができる健康補助装置を提供する。中空ケース状の外枠体12と、外枠体12の内部に配置され略全体から外部に向けて熱を作用させる二次熱源管14と、外枠体12の内部に嵌合され二次熱源管14を受ける受凹部を有するとともに、荷重受部を有する断熱構造体16と、上面側に人が載る平面状の載面Rを形成しつつ下面は二次熱源管14の上端部Uに接するように断熱構造体16上に載置されて二次熱源管14からの熱作用を受けてその熱を直接に人に伝達する遠赤外線放射板18と、二次熱源管14に熱源流体を強制循環通流させるポンプと流体加熱装置とを含む熱源供給ユニット20と、二次熱源管14と熱源供給ユニット20とを接続する可撓接続管22と、を備えた健康補助装置10から構成される。For example, the present invention provides a health assistance device that can be easily carried in, assembled, and installed in a living room or a bedroom of a general house to easily bathe in a bedrock. A hollow case-shaped outer frame body 12, a secondary heat source pipe 14 arranged inside the outer frame body 12 to apply heat from the substantially whole to the outside, and a secondary heat source fitted inside the outer frame body 12 A heat insulating structure 16 having a receiving portion for receiving the tube 14 and a load receiving portion, and a flat mounting surface R on which a person rests are formed while the lower surface contacts the upper end U of the secondary heat source tube 14. As described above, the far-infrared radiation plate 18 that is placed on the heat insulating structure 16 and receives the heat action from the secondary heat source tube 14 to directly transfer the heat to a person, and the heat source fluid is forced to the secondary heat source tube 14. The heat assisting device 10 includes a heat source supply unit 20 including a pump for circulating circulation and a fluid heating device, and a flexible connection pipe 22 connecting the secondary heat source pipe 14 and the heat source supply unit 20. ..

Description

本発明は、遠赤外線を利用した健康補助装置であって、例えば、一般住宅内等でも簡単に組み立て、設置でき、手軽にいわゆる岩盤浴等を利用できる健康補助装置に関する。   The present invention relates to a health assistance device that uses far infrared rays, for example, a health assistance device that can be easily assembled and installed even in a general house or the like and can easily use a so-called bedrock bath or the like.

温められた岩盤等の上に横になり、岩盤等から放射される遠赤外線作用によって体を温める、いわゆる岩盤浴が知られている。近時では、岩盤から放射される遠赤外線作用により発汗が促され、老廃物が排出される等の健康に良好な効果をもたらすことが報告されており広く注目されている。従来では、各地に構造物内に岩盤浴を行える施設が人工的に構築されており、例えば、コンクリートの床に石または岩盤等を敷設しそれらを床下に配管した温水パイプからの熱で温めるような岩盤浴構造が利用されている(例えば、特許文献1参照)。特許文献1に開示された石風呂装置では、建物A内に下側から、断熱材(1)、コンクリート層(2)、温水管(4)を埋設したモルタル層(3)、最上層として砂利及び炭を混合した温浴層(5)の順に積層した床を設けて構成されている。さらに、ボイラーからの温水を上記温水管(4)に循環させて床最上層の温浴層(5)を適温に加温して遠赤外線を照射させると共に、建物内部に設けられた蒸気吹出口から蒸気の噴出によって建物A内を適温・適湿度に保つものであった。
特許第3396775号公報
A so-called bedrock bath is known, which lies on a heated bedrock and warms the body by the action of far infrared rays emitted from the bedrock. Recently, it has been widely noticed that perspiration is promoted by the action of far-infrared rays radiated from bedrock, and good effects on health such as discharge of waste products are brought about, which is good for health. In the past, facilities where baths of rocks can be artificially built in various structures in various places, for example, stones or rocks are laid on a concrete floor and they are heated by the heat from a hot water pipe installed under the floor. Various rock bath structures are used (for example, refer to Patent Document 1). In the stone bath apparatus disclosed in Patent Document 1, the heat insulating material (1), the concrete layer (2), the mortar layer (3) in which the hot water pipe (4) is embedded, and the gravel as the uppermost layer are arranged from the lower side in the building A. And a hot bath layer (5) in which charcoal is mixed are laminated in this order. Furthermore, the hot water from the boiler is circulated through the hot water pipe (4) to heat the hot bath layer (5) at the top of the floor to an appropriate temperature to irradiate far infrared rays, and from the steam outlet provided inside the building. The inside of the building A was kept at an appropriate temperature and an appropriate humidity by the jet of steam.
Patent No. 3396775

上記のような従来の岩盤浴は主として業務用として構築されているが、岩盤浴を一般家庭内でも手軽に利用したい要望が高まりつつある。しかしながら、特許文献1の石風呂装置の構造は、コンクリート層等を含む構成であるから、専用の構築物内に作り付けの構造となり、設置場所が限定され、自由に持ち運びすることは困難であった。仮に、個人で利用できるように小型化して製造したとしても、小型化には限度があるとともに屋外のボイラーから室内への配管が制限されることから一般家庭用としては実用的ではなかった。さらに、施工する際にも労力、時間がかかり、コストも高いという問題があった。また、汗、埃や汚れ等が付着した際の洗浄等も困難でありメンテナンスも煩雑なものであった。
本発明は上記従来の課題に鑑みてなされたものであり、その一つの目的は、遠赤外線を体に照射して健康補助効果を期待できる健康補助装置であって、例えば、一般住宅の居間や寝室内等でも簡便に搬入、組立、設置、利用等することができる健康補助装置を提供することにある。さらに、他の目的は、部品の交換、洗浄、点検等を含むメンテナンスも簡単にできる健康補助装置を提供することにある。
Although the conventional bedrock bath as described above is mainly constructed for commercial use, there is an increasing demand for easy use of the bedrock bath even in a general household. However, since the structure of the stone bath device of Patent Document 1 has a structure including a concrete layer and the like, it has a built-in structure in a dedicated structure, the installation place is limited, and it is difficult to carry freely. Even if it is manufactured by miniaturizing it for personal use, it is not practical for general household use because there is a limit to miniaturization and piping from the outdoor boiler to the room is limited. Further, there is a problem that it requires labor, time, and cost when performing the construction. In addition, it is difficult to wash when sweat, dust, dirt and the like adhere, and maintenance is complicated.
The present invention has been made in view of the above conventional problems, and one of the objects thereof is a health assistance device that can expect a health assistance effect by irradiating the body with far infrared rays, for example, a living room of a general house or An object of the present invention is to provide a health assistance device that can be easily carried in, assembled, installed, and used even in a bedroom or the like. Another object of the present invention is to provide a health assistance device that can easily perform maintenance including replacement, cleaning, and inspection of parts.

上記課題を解決するために本発明は、上面側を開口した中空ケース状の外枠体12と、外枠体12の内部に配置され内部に熱源流体を通流させることにより長手方向の略全体から外部に向けて熱を作用させる二次熱源管14と、外枠体12の内部に嵌合され二次熱源管14を安定的に受ける受凹部26を有するとともに、上からの人の荷重を受ける荷重受部(32)を有する軽量素材の断熱構造体16と、加熱時に遠赤外線を放射する遠赤外線放射板であって、上面側に人が載る平面状の載面Rを形成しつつ下面は二次熱源管の上端部に接するように断熱構造体上16に載置されて二次熱源管14からの熱作用を受けてその熱を直接に人に伝達する遠赤外線放射板18と、二次熱源管14に熱源流体を強制循環通流させるポンプ36と流体加熱装置38とを含む熱源供給ユニット20と、熱源流体の循環通流を保持しつつ自在に撓みながら二次熱源管14と熱源供給ユニット20とを接続する可撓接続管22と、を備えたことを特徴とする健康補助装置10から構成される。外枠体12は、任意の大きさ形状でよく、例えば、人が横になった楽な状態で利用できるような形態で設けられると良い。同時に、遠赤外線放射板18が形成する載面Rも人が横になれる大きさに設定されると好適である。遠赤外線放射板18は、例えば、天然岩盤、セラミックでもよく、または、任意素材の板材に遠赤外線放射機能をもつ粒子を固着させたものでもよい。断熱構造体16は、一体的に構成されていても良く、複数の部材を組合せて構成されることとしてもよい。
また、断熱構造体16の上面側は複数の凹凸部を有し、凸部32を荷重受部とするとともに所要の凹部30を受凹部26として二次熱源管14を受けることとしてもよい。
また、断熱構造体16の凹部30内に密着嵌合状に係合し、嵌合時に凸部32の上面と略面一な上面を形成するとともに、複数の遠赤外線放射板18の平面状の載面Rを保持させるように該遠赤外線放射板18を支持する脱着支持部材42を有することとしてもよい。
また、遠赤外線放射板18の周りの断熱構造体16上に敷設されて遠赤外線放射板18と面一な平面を形成する表面板28を有することとしてもよい。表面板28は、一体的に形成されていてもよく、分割された組み合わせ構成でもよい。
また、表面板28と断熱構造体16との間には、二次熱源管14に接して該二次熱源管14からの熱を表面板全体に略均等に熱伝導させる均等伝熱板44が配置されたこととしてもよい。均等伝熱板44は、例えば、アルミニウム等の熱伝導性が高い金属、合金等の板から形成してもよい。また、金属板と木製板との積層板、または金属板と合成樹脂製板との積層板で構成してもよい。
また、遠赤外線放射板18には、その外周縁に切削加工可能な木製の縁枠部材40が密着状に取り付けられ、縁枠部材40の外形部分(Q)を必要に応じて切削して縁枠部材40の外形輪郭を所要の規格形状(Sq)に設定することとしてもよい。枠縁部材40の外形輪郭形状は、例えば、正方形、長方形等その他任意形状でよい。外枠体12や表面板28等の他の構成部材の形態に応じて設定するとよい。
また、縁枠部材40は、均等伝熱板44上に当着するように配置されたこととしてもよい。
また、遠赤外線放射板18は、少なくとも遠赤外線を放射しうる天然土成分を有する焼結成型板からなることとしてもよい。
また、断熱構造体18の凹部30には少なくとも遠赤外線を放射しうる天然土、天然鉱石、サンゴ、炭又はそれらの加工物(46)のいずれか一種或いはそれらの複数の組み合わせが充填されることとしてもよい。すなわち、遠赤外線を多く放射する天然物質、又はサンゴ等のマイナスイオンを多く放出する天然物質、それらの加工物等を断熱構造体18の凹部30内に充填してもよい。加工物は、例えば、粉体、粒体等に加工されたものや、焼成等の加熱、その他種々の人工的に又は自然に加工、処理された物等を含む。
さらに、熱源供給ユニット(20)は、流体冷却装置を含む加熱、冷却兼用の熱源供給ユニットからなるとともに、二次熱源管(14)は二重管式熱サイホンからなり、遠赤外線放射板の加熱、冷却を選択的に切替可能なこととしてもよい。流体加熱装置と流体冷却装置は、それぞれ別構成でもよいが、ヒートポンプのように一つの装置で兼用させる構成だと、ユニットをコンパクトに構成できる。
In order to solve the above problems, the present invention provides a hollow case-shaped outer frame body 12 having an open upper surface side, and a heat source fluid that is disposed inside the outer frame body 12 to flow substantially entirely in the longitudinal direction. The secondary heat source tube 14 that applies heat from the outside to the outside, and the receiving recess 26 that is fitted inside the outer frame 12 and stably receives the secondary heat source tube 14 are provided. A heat-insulating structure 16 made of a lightweight material having a load receiving portion (32) for receiving and a far-infrared radiation plate that radiates far-infrared rays when heated, while forming a flat mounting surface R on which a person rests while forming a lower surface Is a far-infrared radiation plate 18 that is placed on the heat insulating structure 16 so as to be in contact with the upper end of the secondary heat source tube and receives heat from the secondary heat source tube 14 to directly transfer the heat to a person; A heat source supply unit 20 including a pump 36 for forcibly circulating a heat source fluid through the secondary heat source tube 14 and a fluid heating device 38; A flexible connection pipe 22 for connecting to the heat source supply unit 20, and a health assistance device 10 characterized by the above. The outer frame body 12 may have any size and shape, and may be provided, for example, in a form that can be used by a person lying down comfortably. At the same time, it is preferable that the mounting surface R formed by the far-infrared radiation plate 18 is also set to a size that allows a person to lie down. The far-infrared radiation plate 18 may be, for example, natural rock or ceramic, or may be a plate material of any material in which particles having a far-infrared radiation function are fixed. The heat insulating structure 16 may be integrally configured, or may be configured by combining a plurality of members.
Further, the upper surface side of the heat insulating structure 16 may have a plurality of concave and convex portions, and the convex portion 32 may be a load receiving portion and the required concave portion 30 may be a receiving concave portion 26 to receive the secondary heat source pipe 14.
In addition, it engages in the concave portion 30 of the heat insulating structure 16 in a close fitting manner to form an upper surface that is substantially flush with the upper surface of the convex portion 32 at the time of fitting, and also has a planar shape for the plurality of far infrared radiation plates 18. A detachable support member 42 that supports the far infrared radiation plate 18 so as to hold the mounting surface R may be provided.
Further, a surface plate 28 that is laid on the heat insulating structure 16 around the far-infrared radiation plate 18 and forms a flat surface flush with the far-infrared radiation plate 18 may be provided. The surface plate 28 may be integrally formed or may have a divided combined structure.
Further, between the surface plate 28 and the heat insulating structure 16, there is a uniform heat transfer plate 44 which is in contact with the secondary heat source pipe 14 and conducts heat from the secondary heat source pipe 14 to the entire surface plate substantially evenly. It may be arranged. The uniform heat transfer plate 44 may be formed of, for example, a plate of a metal having a high thermal conductivity such as aluminum or an alloy. Further, it may be configured by a laminated plate of a metal plate and a wooden plate or a laminated plate of a metal plate and a synthetic resin plate.
Further, a wooden edge frame member 40 capable of being machined is attached to the far-infrared radiation plate 18 so as to be closely attached to the far-infrared radiation plate 18. The outer contour of the frame member 40 may be set to a required standard shape (Sq). The outer contour shape of the frame edge member 40 may be, for example, a square, a rectangle, or any other arbitrary shape. It may be set according to the form of other components such as the outer frame 12 and the surface plate 28.
Further, the edge frame member 40 may be arranged so as to contact the uniform heat transfer plate 44.
Further, the far-infrared radiation plate 18 may be made of at least a sintered molding plate having a natural soil component capable of radiating far-infrared rays.
In addition, at least one of natural soil, natural ore, coral, charcoal, or a processed product thereof (46) capable of emitting far infrared rays or a combination thereof is filled in the recess 30 of the heat insulating structure 18. May be That is, the recess 30 of the heat insulating structure 18 may be filled with a natural substance that emits a large amount of far infrared rays, a natural substance that emits a large amount of negative ions such as coral, or a processed product thereof. The processed products include, for example, products processed into powders, granules, etc., heating such as firing, and various other products artificially or naturally processed and treated.
Further, the heat source supply unit (20) comprises a heat source supply unit for heating and cooling including a fluid cooling device, and the secondary heat source tube (14) comprises a double tube type thermosyphon for heating the far infrared radiation plate. The cooling may be selectively switchable. The fluid heating device and the fluid cooling device may have different configurations, but if the configuration is such that a single device is used in common like a heat pump, the unit can be made compact.

本発明の健康補助装置によれば、上面側を開口した中空ケース状の外枠体と、外枠体の内部に配置され内部に熱源流体を通流させることにより長手方向の略全体から外部に向けて熱を作用させる二次熱源管と、外枠体の内部に嵌合され二次熱源管を安定的に受ける受凹部を有するとともに、上からの人の荷重を受ける荷重受部を有する軽量素材の断熱構造体と、加熱時に遠赤外線を放射する遠赤外線放射板であって、上面側に人が載る平面状の載面を形成しつつ下面は二次熱源管の上端部に接するように断熱構造体上に載置されて二次熱源管からの熱作用を受けてその熱を直接に人に伝達する遠赤外線放射板と、二次熱源管に熱源流体を強制循環通流させるポンプと流体加熱装置とを含む熱源供給ユニットと、熱源流体の循環通流を保持しつつ自在に撓みながら二次熱源管と熱源供給ユニットとを接続する可撓接続管と、を備えた構成であるから、岩盤浴のように遠赤外線を体に照射して体を温める健康補助装置を、例えば、一般住宅の部屋内に、簡便に搬入、設置して、手軽に利用することができる。さらに、構造が簡単で安価に製造できる。また、構成部材ごとに現場に搬入して簡単に組立てるだけで施工できる。よって、熟練した技術を必要とせず、省力、短時間で室内に設置できる。同時に、各構成部材の点検、交換、又は清掃等を含むメンテナンスも簡単に行なえる。
また、断熱構造体の上面側は複数の凹凸部を有し、凸部を荷重受部とするとともに所要の凹部を受凹部として二次熱源管を受ける構成とすることにより、簡単な構成で荷重受部と受凹部とを構成できる。さらに、遠赤外線放射板の配置態様に応じて熱を効率良く伝達できるように二次熱源管の位置を設定させて、良好に装置を運転することができる。また、組立作業を簡単に行なえる。
また、断熱構造体の凹部内に密着嵌合状に係合し、嵌合時に凸部の上面と略面一な上面を形成するとともに、複数の遠赤外線放射板の平面状の載面を保持させるように該遠赤外線放射板を支持する脱着支持部材を有する構成とすることにより、遠赤外線放射板の段差やガタつき等が生じるのを確実に防止して、載面上に載る利用者が快適に利用することができる。また、断熱構造体の形態を遠赤外線放射板の配置位置が異なるごとに製造しなおす必要がなく、一形態の断熱構造体の所要の凹部に必要に応じて脱着支持部材を配置させることにより、確実に平面状の載面を保持させることができる。さらに、メンテナンスや再利用等ができる。
また、遠赤外線放射板の周りの断熱構造体上に敷設されて遠赤外線放射板と面一な平面を形成する表面板を有する構成とすることにより、遠赤外線放射板以外の部分に形成されて、利用者が装置上で寝返りできたり、載面からの落下を防止できるような余裕の有る広い平面を形成して有効に利用できる。その際、人体を温める遠赤外線放射板を必要な部分だけとし、装置全体の軽量化、低コスト化を図れる。
また、表面板と断熱構造体との間には、二次熱源管に接して該二次熱源管からの熱を表面板全体に略均等に熱伝導させる均等伝熱板が配置された構成とすることにより、遠赤外線放射板と表面板との温度差や温度むらを低減し、利用者が違和感や不快感等を感じるのを防止できる。
また、遠赤外線放射板には、その外周縁に切削加工可能な木製の縁枠部材が密着状に取り付けられ、縁枠部材の外形部分を必要に応じて切削して縁枠部材の外形輪郭を所要の規格形状に設定する構成とすることにより、遠赤外線放射板が不均一に成型される場合でも工場等で予め縁枠部材の外形輪郭形状を揃えておくことができる結果、装置組立時の切削や隙間のコーキング等の調整作業を削減でき、現場での施工作業を省力、短時間で行なえる。また、縁枠部材により意匠感の向上を期待できる。
また、縁枠部材は、均等伝熱板上に当着するように配置された構成とすることにより、遠赤外線放射板と縁枠部材との温度差を低減し、縁枠部材を設けた構成でも載面上に載る利用者が快適な載面を実現できる。
また、遠赤外線放射板は、少なくとも遠赤外線を放射しうる天然土成分を有する焼結成型板からなる構成とすることにより、高い蓄熱作用や強い遠赤外線放射作用を期待できる遠赤外線放射板を安価に製造することができる。
また、断熱構造体の凹部には少なくとも遠赤外線を放射しうる天然土、天然鉱石サンゴ、炭又はそれらの加工物のいずれか一種或いはそれらの複数の組み合わせが充填される構成とすることにより、例えば、遠赤外線を多く放射しうる天然土や天然鉱石等を凹部内に充填することで凹部に放射される二次熱源管からの熱を遠赤外線放射作用や蓄熱等に有効に利用できる。その際、遠赤外線放射板による人体への熱伝達に加えて補助的な加温効果を図れる。また、例えばマイナスイオンを大量に発生しやすいサンゴ等や天然鉱石等を凹部に充填することにより、遠赤外線による体を温める効果に加えて、マイナスイオンによる心身に対する効果も合わさって、血流の改善、新陳代謝の増進等の種々の健康補助効果をより向上させうる。
さらに、熱源供給ユニットは、流体冷却装置を含む加熱、冷却兼用の熱源供給ユニットからなるとともに、二次熱源管は、二重管式熱サイホンからなり、遠赤外線放射板の加熱、冷却を選択的に切替可能な構成とすることにより、加熱による人体の加温効果だけでなく、例えば、気温が高い夏季などに必要に応じて人体を冷却して、快適かつ有効に利用することができる。特に二重管式熱サイホンを用いることにより、加温冷却いずれの利用態様でも効率良く熱交換でき、加熱、冷却兼用の二次熱源管を具体的に実現できる。また、加熱、冷熱の熱源流体を切り替えるだけの簡単な操作で、一つの装置による有効な使い方ができる。
According to the health assistance device of the present invention, a hollow case-shaped outer frame body having an opening on the upper surface side, and a heat source fluid that is disposed inside the outer frame body and flows through the outer frame body to the outside from substantially the entire longitudinal direction. Light weight with a secondary heat source tube that applies heat toward it, a receiving recess that is fitted inside the outer frame and that stably receives the secondary heat source tube, and a load receiving portion that receives a load from above. A far-infrared radiation plate that radiates far-infrared rays when heated with the heat insulating structure of the material, so that the lower surface contacts the upper end of the secondary heat source tube while forming a flat mounting surface on which the person rests. A far-infrared radiation plate that is placed on the heat insulating structure and receives heat from the secondary heat source tube to directly transfer the heat to a person; and a pump that forcibly circulates the heat source fluid through the secondary heat source tube. A heat source supply unit including a fluid heating device, and a flexible connection pipe that connects the secondary heat source pipe and the heat source supply unit while flexibly flexing while maintaining the circulation flow of the heat source fluid. A health assistance device that heats the body by irradiating the body with far infrared rays, such as a bedrock bath, can be conveniently carried in and installed, for example, in a room of a general house for easy use. Further, the structure is simple and the manufacturing cost is low. In addition, construction can be performed simply by bringing in each component to the site and simply assembling it. Therefore, it can be installed indoors in a short time without labor, requiring no skilled technique. At the same time, maintenance including inspection, replacement, cleaning, etc. of each component can be easily performed.
In addition, the upper surface side of the heat insulating structure has a plurality of concave and convex portions, and the convex portion serves as a load receiving portion and the required concave portion serves as a receiving concave portion to receive the secondary heat source pipe, so that the load can be applied with a simple configuration. The receiving portion and the receiving recess can be configured. Furthermore, the position of the secondary heat source tube is set so that heat can be efficiently transferred according to the arrangement mode of the far-infrared radiation plate, and the device can be satisfactorily operated. Also, the assembly work can be easily performed.
In addition, it engages in a concave shape of the heat insulating structure in a close-fitting manner to form an upper surface that is substantially flush with the upper surface of the convex portion during fitting, and holds the planar mounting surfaces of the far-infrared radiation plates. By adopting a configuration having a detachable support member for supporting the far-infrared radiation plate as described above, it is possible to reliably prevent a step or rattling of the far-infrared radiation plate from occurring, and a user who is to rest on the mounting surface It can be used comfortably. Further, it is not necessary to remanufacture the form of the heat insulating structure each time the arrangement position of the far-infrared radiation plate is different, and by arranging the detachable support member in a required concave portion of the heat insulating structure of one form, if necessary, The flat mounting surface can be reliably held. Furthermore, maintenance and reuse can be performed.
Further, by being configured to have a surface plate that is laid on the heat insulating structure around the far-infrared radiation plate and forms a plane flush with the far-infrared radiation plate, it is formed in a portion other than the far-infrared radiation plate. It is possible to effectively use by forming a wide flat surface with a margin so that the user can turn over on the device and prevent the user from falling from the mounting surface. At that time, the far infrared radiation plate that heats the human body is provided only in a necessary portion, and the weight and cost of the entire device can be reduced.
Further, between the surface plate and the heat insulating structure, a uniform heat transfer plate is arranged which is in contact with the secondary heat source pipe and conducts heat from the secondary heat source pipe to the entire surface plate substantially evenly. By doing so, it is possible to reduce the temperature difference and temperature unevenness between the far-infrared radiation plate and the surface plate, and prevent the user from feeling uncomfortable or uncomfortable.
Further, a wooden edge frame member that can be machined is attached to the far-infrared radiation plate in an intimate contact with the outer peripheral edge of the far infrared radiation plate, and the outer peripheral portion of the edge frame member is cut as necessary to form the outer contour of the edge frame member. By setting the required standard shape, even if the far-infrared radiation plate is unevenly molded, it is possible to align the outer contour shape of the edge frame member in advance in a factory or the like. Adjustment work such as cutting and caulking of gaps can be reduced, and on-site construction work can be performed with less labor and in a short time. Further, it is possible to expect an improvement in design feeling due to the edge frame member.
Further, the edge frame member is arranged so as to contact the uniform heat transfer plate, thereby reducing the temperature difference between the far-infrared radiation plate and the edge frame member and providing the edge frame member. However, it is possible to realize a comfortable mounting surface for the user who mounts it on the mounting surface.
In addition, the far-infrared radiation plate is inexpensive and can be expected to have a high heat storage effect and a strong far-infrared radiation effect by configuring at least a sintered molded plate having a natural soil component capable of emitting far-infrared rays. Can be manufactured.
In addition, the concave portion of the heat insulating structure is filled with at least one type of natural soil, natural ore coral, charcoal or a processed product thereof capable of emitting far infrared rays, or a combination of a plurality thereof, for example, By filling the concave portion with natural soil or natural ore capable of radiating far infrared rays, the heat from the secondary heat source pipe radiated to the concave portion can be effectively used for far infrared ray radiating action or heat storage. At that time, in addition to the heat transfer to the human body by the far infrared radiation plate, an auxiliary heating effect can be achieved. Also, for example, by filling the recesses with corals or natural ores, which tend to generate large amounts of negative ions, the effect of warming the body with far infrared rays, as well as the effects of negative ions on the mind and body, improve blood flow. In addition, various health support effects such as enhancement of metabolism can be further improved.
Further, the heat source supply unit consists of a heat source supply unit for heating and cooling including a fluid cooling device, and the secondary heat source pipe consists of a double-tube thermosyphon, which selectively heats and cools the far infrared radiation plate. By adopting the switchable configuration, it is possible not only to heat the human body by heating, but also to cool and comfortably use the human body, for example, in summer when the temperature is high. In particular, by using the double pipe type thermosyphon, heat can be efficiently exchanged in both heating and cooling modes, and a secondary heat source pipe for both heating and cooling can be specifically realized. In addition, the simple operation of switching the heating and cooling heat source fluids enables effective use by one device.

本発明の実施形態に係る健康補助装置の一部切欠平面図である。1 is a partially cutaway plan view of a health assistance device according to an embodiment of the present invention. 図1の健康補助装置のA−A線断面拡大図である。It is an AA line sectional enlarged view of the health assistance device of FIG. 図1の健康補助装置のB−B線断面図である。It is the BB sectional view taken on the line of the health assistance apparatus of FIG. 図1の健康補助装置の一部省略分解斜視説明図である。FIG. 2 is a partially omitted exploded perspective view of the health assistance device of FIG. 1. 図1の健康補助装置の断熱構造体上側を開放した状態の平面図である。It is a top view of the state which opened the upper side of the heat insulation structure of the health support device of FIG. 縁枠部材の説明図である。It is explanatory drawing of an edge frame member. 断熱構造体と支持部材の一部拡大斜視説明図である。It is a partially expanded perspective view of a heat insulation structure and a support member. 図7のC−C線断面図である。FIG. 8 is a sectional view taken along line CC of FIG. 7. 図1の健康補助装置の室内配置Indoor layout of the health support device in Figure 1. 遠赤外線放射板の配置を異ならしめた他の形態の健康補助装置の一部切欠平面図である。It is a partially cutaway plan view of another form of health assistance device in which the arrangement of far-infrared radiation plates is different. 図10の健康補助装置の断熱構造体上側を開放した状態の平面図である。FIG. 11 is a plan view of the health assistance device of FIG. 10 with the upper side of the heat insulating structure open. 図10の健康補助装置のD−D線断面図である。It is the DD sectional view taken on the line of the health assistance apparatus of FIG. 遠赤外線放射板の配置を異ならしめた他の形態の健康補助装置の平面図である。It is a top view of the health assistance device of another form which made the arrangement|positioning of the far-infrared radiation board different. 二重管式熱サイホンの一部省略した概略説明図である。It is the schematic explanatory drawing which abbreviate|omitted a part of double tube type thermosiphon. 図14のE−E線断面説明図である。It is the EE sectional view taken on the line of FIG. 図15のF−F線断面説明図である。FIG. 16 is a cross-sectional view taken along the line FF of FIG. 15.

符号の説明Explanation of symbols

10 健康補助装置
12 外枠体
14 二次熱源管
16 断熱構造体
18 遠赤外線放射板
20 熱源供給ユニット
22 可撓接続管
26 受凹部
28 表面板
40 縁枠部材
42 支持部材
44 均等伝熱板
10 Health Assistance Device 12 Outer Frame 14 Secondary Heat Source Tube 16 Insulation Structure 18 Far Infrared Radiation Plate 20 Heat Source Supply Unit 22 Flexible Connection Tube 26 Receiving Concave 28 Surface Plate 40 Edge Frame Member 42 Supporting Member 44 Uniform Heat Transfer Plate

以下添付図面を参照しつつ本発明の実施の形態について説明する。本発明の健康補助装置は、岩盤浴のように遠赤外線を利用して体を温め健康補助効果等を期待できる装置であって、例えば、図8に示すように、一般住宅内の居間L、寝室等のどこにでも簡便に設置して利用することができる。
図1ないし図8は、本発明の健康補助装置の実施形態を示している。本実施形態において、健康補助装置10は、外枠体12と、外枠体の内部に配置される二次熱源管14と、外枠体の内部に嵌合される断熱構造体16と、断熱構造体上に配置されて二次熱源管14から熱作用を受ける遠赤外線放射板18と、熱源供給ユニット20と、可撓接続管22と、を有している。
外枠体12は、図1、図2、図4に示すように、上面側を開口した中空ケース状の枠体であり、二次熱源管14と断熱構造体16と遠赤外線放射板18等を含む構成部材を一体的にまとめて床面から少しの段差の高さを有する程度の厚板台状ユニット24とし、該台状ユニット24ごと自由に持ち運び、配置することができる。本実施形態では、外枠体12は、例えば、対向する一対の短辺枠部材12aと対向する一対の長辺枠部材12bを含む平面視矩形状に設けられている。外枠体12は、例えば、強度のある木製素材からなり、枠部材12a、12bを平面視で外形輪郭が略1m×2m、内側開口が910mm×1820mm程度の矩形枠状に組み付けて設けられている。外枠体12の高さは、例えば、150mm程度に設定されている。この外枠体12の高さは、例えば、子供、一般人及び高齢者でも、補助台等を使わずに例えば、一段の踏み出し動作や腰掛動作等を含む簡単な一つの動作で台状ユニット上に載り降りできる程度の高さに設定すると好適である。また、外枠体の下方に高さ調整可能な脚部を取り付けて、台面の高さを所要の高さに設定してもよい。外枠体12の底部側には、長辺枠部材12bを連結するように短辺方向に沿って複数の下受枠部材12cが架設されている。なお、外枠体12は、硬質成型樹脂で設けられていても良い。外枠体12の上面側の開口から中空内部に断熱構造体16が嵌合され、下受枠部材12cで該断熱構造体16を下から受けて、外枠体12と断熱構造体16とを一体化する。なお、外枠体の内部の下面側には閉鎖板を敷設してもよい。
断熱構造体16は、図1、図2、図4に示すように、二次熱源管14を安定的に受ける受凹部26を有するとともに、上からの人の荷重を受ける荷重受部を有する軽量素材から構成されている。本実施形態では、断熱構造体16は、受凹部26内に保持した二次熱源管14で発生する熱の損失を少なくし、遠赤外線放射板18に効率良く伝達させるために断熱性を有している。また、断熱構造体16上には、人の載面Rを形成する遠赤外線放射板18と該遠赤外線放射板18の周りに表面板28が敷設されており、該遠赤外線放射板18上や表面板28上に人が載った際にその荷重を受けて変形、損傷等しないように荷重に耐えうる強度を有している。さらに、断熱構造体は、軽量素材で形成されることにより、一般家庭の部屋内への持ち運びや施工作業を省力でスムーズに行える。すなわち、断熱構造体は、少なくとも耐荷重性、断熱性、軽量性を備えた素材から形成される。本実施形態では、例えば、ポリスチレン等の発泡合成樹脂の成型体からなる。
本実施形態では、断熱構造体16は、例えば、910mm×1820mm程度で、厚さが70mm程度の大きさの平面視矩形状で成型されて外枠体12の内部に収容状に嵌合される。断熱構造体16は、下部側に基部16aを形成しつつ上面側に複数の凹凸が形成されている。図1ないし図3の実施形態では、断熱構造体16の上面側の凹凸は、凹溝を直線状に連通させつつ該凹溝が縦横に直交した連続空隙から形成される凹部30と、該凹部30部分を除いた部分に縦横に等間隔で多数突設される凸部32と、を含み、凹凸が交互に連続して形成された複数の凹凸を有している。
本実施形態では、凸部32を荷重受部とするとともに、所要の凹部30(直線状の凹溝)に二次熱源管14を収容させて受凹部26としている。本実施形態では、凸部32は、水平な平面状の上端面を有する略円柱形状に上方に向けて、同じ高さで突設しており、上面を面一になるように形成されている。凹部30は、例えば、50mm程度の溝深さで、下面側が閉鎖され、上面側を開放しており、二次熱源管を下から支持するとともに、左右両側に断続的に突設している凸部により左右を規制しながら、二次熱源管を安定的に収容する。したがって、施工時には、二次熱源管14を断熱構造体内に簡単に設置することができるともに、所要位置に位置決めされながら安定的に収納させる。また、メンテナンス等が必要な際にも該二次熱源管を簡単に出し入れして作業を行なうことができる。本実施形態では、図7に示すように、この凹部30内に、二次熱源管14をその長手方向が外枠体の長辺方向に沿うように配置させている。そして、後述の遠赤外線放射板18が配置される位置に対応して外枠体の短辺方向中央位置に二次熱源管14を2本配置させ、さらにその両外側にも2本配置させて、計4本配置させている。なお、図10、図12に示すように、例えば、遠赤外線放射板の配置等に合わせて二次熱源管14の配置を異ならせることができ、使用状態に対応して熱効率の良い配置を実現できる。さらに、凹部30の底部までの深さ、すなわち凸部32の高さは、二次熱源管14を凹部内に配置した状態で該二次熱源管の上端部Uと、凸部32の上面とが面一になるように設定されている。すなわち、凹部30の底部までの深さが二次熱源管の外径と略同じに設定される。これにより、凸部32上に遠赤外線放射板を載置した際に凹部内の二次熱源管と遠赤外線放射板18が接するようになっている。
二次熱源管14は、図2、図3、図5に示すように、管内部に熱源流体を通流させることにより、長手方向の略全体から外部に向けて熱を作用させる熱源手段である。なお、図2において、中央の2本の二次熱源管14が遠赤外線放射板へ熱を作用させる熱源手段であり、他の2本は後述する均等伝熱板44を介して表面板等へ熱作用する熱源手段である。本実施形態において、二次熱源管14は、図14、図15、図16に示すように、外管34内に、熱源流体Mの通流用の内管35を長手方向に貫通し、外管34と内管35との中間に作動液Wを封入して外管34の両端開口を栓体33で閉鎖しつつ、外管内を作動液の作動空間として真空密閉して設けられた二重管式熱サイホンからなる。内管内に温、冷熱の熱源流体Mを通流することにより、作動液Wの高速な蒸発、凝縮サイクルを通じて熱伝達を行うことにより外管周囲を加温あるいは冷却させる。本実施形態では、外管34は、例えば、外径が50mm程度で薄肉厚の断面円形のアルミニウム製中空管部材からなる。また、内管35は、例えば、外径が10mm程度で薄肉厚のアルミニウム製中空管部材からなる。熱サイホンは、外部との熱交換効率が良く、長手方向の略全体的に均一に熱が伝達されるとともに、装置の低コスト化が図れる。本実施形態では、二次熱源管14は、上記のように4本配置されており、それらの内管どうしが、例えば耐熱性のゴムホース等の可撓管37で直列状に接続されている。さらに、直列状に接続した二次熱源管の接続終端部側は、他端側を外枠体12の外部に引き出した可撓接続管22に接続されて、熱源供給ユニット20に接続されている。すなわち、二次熱源管14の内管は、可撓管を介して熱源供給ユニット20を含む閉ループ状に接続され、熱源流体が内管内を循環通流するようになっている。なお、二次熱源管の配置本数や位置は任意に設定してもよく、例えば、図5において、6本配置させる態様としてもよい。
熱源供給ユニット20は、二次熱源管14に熱源流体を強制循環通流させるポンプ36と、流体加熱装置38と、を含む。本実施形態において、熱源供給ユニット20は、二次熱源管14である二重管式熱サイホンの内管内に熱源流体を圧送及び回収しながら強制循環通流させるポンプと、該熱源流体を加熱する流体加熱装置と、をコンパクトに一体化して構成されている。本実施形態では、熱源供給ユニット20は、家庭用100V電源から電源供給されてポンプ及び流体加熱装置等が稼働するようになっており、図8のように例えば、居間L等の部屋において、コンセント差込口Pの近辺又は延長電源コード等を用いて任意の場所に配置することができる。本実施形態では、熱源供給ユニットは、例えば、熱源流体の温度を57〜58℃に設定して、可撓接続管を介して二次熱源管に強制循環通流している。
可撓性接続管22は、熱源流体の循環通流を保持しつつ自在に撓むようになっており、本実施形態では、例えば、外径16mm、内径9.5mm程度の耐熱性があるゴムホースからなる。可撓接続管22の長さは、数十cm〜1m程度に任意に設定される。可撓性接続管22は、熱源供給ユニット20と、内部に二次熱源管14を収納した台状ユニット24と、の相対的な位置関係を自由に設定しながら、それぞれを安定した床面上に配置させることができる。これにより、例えば健康補助装置を一般家庭の住宅内に持ち運び、室内の家具や電気製品等を避けながら任意の場所に配置することができ、手軽に利用することができる。
本実施形態では、遠赤外線放射板18は、図1、図2、図3に示すように、加熱時に遠赤外線を放射する平板体であり、上面側に人が載る平面状の載面Rを形成するとともに、下面を二次熱源管14の上端部Uに接しながら断熱構造体の複数の凸部32上に載置されている。すなわち、本実施形態では、遠赤外線放射板18は、下面側は平面に形成されており、平坦な凸部32に載置するだけで受凹部内の二次熱源管の上端部Uに接しつつ上面を略面一にできる。遠赤外線放射板18は、例えば、二次熱源管14から加熱作用を受けた場合に、その熱を直接的な接触により温める効果と遠赤外線による人体内部から温める効果とがあいまって載面上の人体を温めることができ、いわゆる従来の岩盤浴のような作用効果を有効に利用することができる。本実施形態では、遠赤外線放射板18は、例えば、略300mm×300mmの略矩形状で、厚さが20mm程度で板体で形成され、それらを複数個並べることにより、人が横になれるような大きさの載面を形成している。図1、図3上では、断熱構造体内の短辺方向略中央の2本の二次熱源管14の上方に長手方向に沿って4枚並べた態様となっている。本実施形態では、遠赤外線放射板18には、その外周縁に縁枠部材40が密着状に取り付けられており、遠赤外線放射板どうしは互いに若干離隔して併設されている。従って、本実施形態で形成される載面は、縁枠部材40を含み、例えば、略300〜400mm程度の幅で1400〜1500mm程度の大きさで形成される。なお、遠赤外線放射板18の配置位置は、任意に設定することができ、例えば、図10に示すような8枚配置の態様や、図13に示すような6枚配置の態様、その他任意枚数で任意形状の載面形成することとしてもよい。また、断熱構造体上の全面に遠赤外線放射板を載置してもよい。一枚の遠赤外線放射板の形状は正方形状に限らず、長方形やその他の形状でもよく、また大きさも任意に設定してもよい。
遠赤外線放射板18は、例えば、高い蓄熱作用と遠赤外線放射効果を期待できるセラミック等が好適である。本実施形態では、例えば、熊本県阿蘇地方から産出される褐鉄鉱を含む黄土等の天然土成分を含む素材を焼結して成型した焼結成型板からなる。上記のような黄土等の天然土成分により、高い遠赤外線効果を期待できる。なお、阿蘇地方の黄土は、心身に良好な作用を及ぼすと言われているマイナスイオンが多量に発生するという報告もあり、健康補助に有効な効果を期待できる。また、本実施形態では、遠赤外線放射板18の温度が例えば、体温よりやや高めの約40〜50℃程度になるように熱源供給ユニットの熱源流体の温度を設定するとよい。遠赤外線放射板の加熱温度は任意に設定してもよいが、低温やけどしないような比較的低い温度で人体を温めて長時間快適に利用できる温度が好適である。
縁枠部材40は、図5に示すように、切削可能な木製の枠部材であり、必要に応じて外形部分Xを切ったり削ったりして該縁枠部材の外形輪郭を所要の規格形状に設定される。遠赤外線放射板18は、焼結成型される際に、例えば、300mm×300mmのような大きさの正方形に正確に成型することは困難であり、それぞれ若干の誤差がある不均一な略矩形状の外形輪郭で形成される。例えば、そのままの不均一な状態で遠赤外線放射板を設置し、隙間がないように、表面板28等の放射板周りの部材を削り調整したり、或いは隙間をパテで埋めるようにコーキングしたりすることが考えられるが、現場施工時の作業工数が増加し、煩雑で労力、時間、人件費等がかかる。また、コーキングした際には、パテ等の充填物が熱に弱いため、メンテナンスが頻繁に必要となる。しかしながら、本実施形態のように、工場等で予め不均一形状の遠赤外線放射板18の周囲に縁枠部材40を密着させて、外形輪郭を規格形状に揃えておくことで、組立現場において簡単な組立工程だけで施工することができ、省力、短時間施工、低コスト化が図れる。本実施形態では、縁枠部材は、例えば、330mm×330mm×10mm程度の大きさの4つの枠部材からなり、それらを図5に示すように遠赤外線放射板18の外周縁に互いに隙間なく密着して取り付ける。この際、端部を密着させるために必要に応じて削ってもよい。縁枠部材の上面は、遠赤外線放射板と面一に設定されて、ガタや段差の無い平面状の載面の一部を形成する。そして、例えば、略360mm×360mm程度の正方形Sqを規格形状とし、該正方形Sqからはみでる外側部分Qを切削して、全体外形形状を規格形状に設定される。表面板等の他の構成部材と隙間無く良好な面を形成するような設計を簡単にできる。また、縁枠部材により、遠赤外線放射板の周囲が縁取りされて意匠感の向上を期待できる。
さらに、本実施形態では、図2、図3、図5に示すように、断熱構造体18の凹部30内に支持部材42が配置されており、複数の遠赤外線放射板18が形成している平面状の載面を保持するように支持している。支持部材42は、断熱構造体16の凹部30内に密着嵌合状に係合し、嵌合時に凸部32の上面と略面一な上面を形成するようになっている。図2、図5において、支持部材42は、断熱構造体16の中央の2本の二次熱源管14の両外側の凹部30内に配置され、4枚の遠赤外線放射板18の凹部30開口上に突出した縁部を下から安定的に支持し各遠赤外線放射板な並んだ上面を面一Sに整列している。本実施形態では、支持部材42は、例えば、断熱構造体と同じ材質で形成されており、発泡ポリスチレン等の発泡合成樹脂からなる。さらに、支持部材42は、図7、図8にも示すように、凹部30内に直線状に配置される直状基部42aと、直状基部42aに交差する凹部内へ突設しながら凹部及び凸部に密着嵌合される交差状突設部42bと、を含む。これにより、支持部材42は、交差する凹部空隙内にそれぞれ配置されると同時に凹部の底面や凸部の円弧面に密着しながら位置決めされて、支持部材42自身が凹部30内に嵌合して安定した状態で配置されかつ上からの荷重を受けても移動しないようになっている。さらに支持部材42は、所要の凹部30位置に脱着自在に係合するようになっており、例えば、図11にも示すように、遠赤外線放射板の配置位置に対応して自在にかつ簡単に配置することができる。これにより、簡単に施工できるとともに、メンテナンスや再利用等できる点でも有利である。なお、支持部材42は、本実施形態では脱着構成としているが、接着剤等の固定手段で固定することとしてもよい。
なお、本実施形態では、図2、図4に示すように、表面板28と断熱構造体16との間には均等伝熱板44が配置される。本実施形態では、断熱構造体12の遠赤外線放射板18が載置された凸部32を除く他の凸部32上には、均等伝熱板44が載置される。本実施形態では、均等伝熱板44は、熱伝導性の高いアルミニウム等の金属薄板上に、ある程度剛性のあるベニア等の木製合板を接着した積層板等から構成されている。本実施形態では、均等伝熱板44は、表面板28の上面からの荷重を受けてその荷重が断熱構造体に加わるようにする荷重受板部材としても機能する。均等伝熱板44は、全体的には外枠体の上面側開口或いは断熱構造体の平面大きさと同じ矩形形状に設けられており、例えば、910mm×1820mm程度の大きさで形成される。また、板厚は、例えば、略10mm程度に設定されている。さらに、均等伝熱板44の略中間位置には、遠赤外線放射板18の配置される位置に対応して、4つの矩形状の開口45が設けられている。開口45は、例えば、370mm×370mm程度の大きさで、遠赤外線放射板18より若干大きな開口でかつ遠赤外線放射板外周の縁枠部材40には当着するような大きさの矩形孔が打ち抜き加工されている。すなわち、均等伝熱板44は一体形成されて、外枠体12内に嵌合状に収納されて断熱構造体16上に載置されている。均等伝熱板44の下面は4本の二次熱源管14の上端部Uと接しており、該二次熱源管14からの熱を上面に載置させる表面板全体に略均等に熱伝導させる。さらに、本実施形態では、遠赤外線放射板の周囲に配置されている縁枠部材40にも伝熱する。これにより、二次熱源管から熱を直接に受ける遠赤外線放射板18と表面板28等との間に生じろ温度差や表面板の温度むらが生じるのを防止して全体的に均一な温度に保持できる結果、載面上に載っている利用者の不快感、違和感を防止できる。なお、本実施形態では、均等伝熱板44に荷重受機能を担持させた構成としているが、それぞれ別の板部材で構成することとしてもよい。
本実施形態では、表面板28は、図1、図2、図4に示すように、均等伝熱板44上に敷設されて遠赤外線放射板18が形成する載面Rと面一な平面を形成する。表面板28は、例えば、板の厚さが10mm程度の木製の板部材からなり、複数の板部材を組み合わせて、遠赤外線放射板18の周り、本実施形態では、縁枠部材40の周りに敷設される。本実施形態では、均等伝熱板44と表面板28とを合わせた合計板厚が、遠赤外線放射板18の厚さと略同じに設定されている。さらに、縁枠部材と密着するように配置されて隙間無く敷設されている。表面板28は、外枠体12の内側に収容状に配置されて外枠体の上端とも略同じ高さになっている。この表面板を敷設することにより、台状ユニット24の上で利用者が装置上で寝返りできたり、載面からの落下を防止できるような余裕の有る広い平面を形成して有効に利用できる。その際に、人体を温める遠赤外線放射板18の構成を必要な部分だけとし、装置全体の軽量化、低コスト化を図れる。また、例えば木目調の模様等が施されていれば意匠感の向上を期待できる。なお、図10、図13に示すように、表面板28は、遠赤外線放射板18の配置構成に応じて敷設される。
また、本実施形態では、断熱構造体16の凹部には、例えば、上記したような褐鉄鉱成分等を含むとされる阿蘇地方の黄土の顆粒物と、備長炭等の炭と、を含むペレット状の黄土炭加工物46を充填している。なお、炭は、備長炭に限らず、その他の木炭、竹炭、その他種々の炭でもよい。黄土炭加工物46は、例えば、二次熱源管14からの加熱作用により炭及び黄土から遠赤外線を放射することができ、遠赤外線放射板からの遠赤外線に加えて、より効果的に載面上の人を温めることができる。本実施形態では、黄土炭加工物46は二次熱源管12が収容された凹部30(受凹部26)及び支持部材42が配置された部分以外の凹部空隙に充填されている。これにより、黄土炭加工物46は、二次熱源管14が凹部連通空隙部分に放出される熱を受けて、それによる蓄熱作用、遠赤外線放射機能を生じさせ、二次熱源管14からの熱を効率良く利用し得る。なお、黄土及び炭は、上述のようにマイナスイオンの多量発生を期待でき、利用者の健康補助に有効な効果を期待できる。
また、断熱構造体16の凹部に充填するものとしては黄土炭加工物46に限らず、例えば、造礁サンゴが波や海流によって粉砕された砂状のサンゴ粒体や、トルマリン、ゲルマニウム等の天然鉱石等の粉体又は粒体を充填してもよい。特に、珊瑚等は、マイナスイオンを大量に発生するというデータもあり、珊瑚からのマイナスイオンと遠赤外線放射板から遠赤外線とにより、例えば、血流の改善や新陳代謝の促進等の種々の健康補助効果を向上させうる。さらに、本実施形態では、二次熱源管として二重管式熱サイホンを用いているので、凹部内に充填されたサンゴ等は、熱サイホンからの熱、振動作用により、大量のマイナスイオンを発生させうる。
次に、図9をも参照しつつ、本実施形態に係る健康補助装置の作用について説明する。例えば、例えば図8に示すような居間等に設置する際には、外枠体12、二次熱源管14、断熱構造体16、遠赤外線放射板18、熱源供給ユニット20、その他の各構成部材を予め工場等で製造しておき、分解した状態で室内、に運搬する。各構成部材の重量が比較的軽いので運搬がしやすい。図2、図5に示すように、外枠体12の内部に断熱構造体16を嵌合して、断熱構造体16の凹部30に4本の二次熱源管14を収容する。二次熱源管14をゴムホース等で直列状に接続しつつ、接続終端部となる2本の二次熱源管14にそれぞれ可撓接続管22を接続して外枠体12の外側に引き出しておく。また、支持部材42を凹凸に嵌合させながら所定位置に配置する。凹部30の二次熱源管及び支持部材を配置させた残りの部分には、黄土炭加工物46を充填する。そして、断熱構造体16上に均等伝熱板44と、遠赤外線放射板18及び縁枠部材40、さらに表面板28を配置する。縁枠部材40の外形輪郭を予め正方形等の規格形状に揃えておくことで、施工現場での削り加工やコーキング作業等を必要とせず、単に組立作業だけで簡単、省力、短時間に施工できる。そして、可撓接続管22の端部を熱源供給ユニット20に接続する。このように従来のようにコンクリートやモルタル等を一切使用することなく、例えば、居間等の所望の室内に簡単に運搬して、組立または配置することができる。また、装置全体としても、比較的軽量に製造でき、装置全体を運搬して、好きな場所に設置することができる。なお、構成部材ごとに量産して低コスト化を図ることもできる。使用する際には、熱源供給ユニット20を例えば、家庭用100V電源に接続して稼働させて、二次熱源管14に加熱された熱源流体を強制循環通流し、遠赤外線放射板18を加熱する。この際、均等伝熱板により、表面板全体が均一に温められ、温度差や温度むらを防止し、利用者が不快感や違和感を感じるのを防止する。利用者は、遠赤外線放射板18が形成している載面上に例えば、仰向け、又はうつぶせ状態で載ると、遠赤外線による内部から温める効果と直接的な接触により温める効果とがあいまって利用者の略全体を同時に温める。これにより、発汗を促進させて、体内の老廃物を良好に排出させる効果を期待できる。さらに、例えば、肌の汚れを排出することによる美肌効果や、血流を良くして、疲労の回復や軽減、腰痛、肩こり、冷え性、その他等の症状の緩和・改善・予防等の種々の健康補助効果を期待できる。このようにして、いわゆる岩盤浴のような作用効果を、一般家庭内で手軽に利用することができる。
なお、図10ないし図12は、遠赤外線放射板18の配置形態を変更した他の形態を示している。なお、実施形態と同一部材には同一符号を付し、その詳細な説明を省略する。図10では、載面Rを8枚の遠赤外線放射板18で形成している。さらに、図11、図12にも示すように、それらの遠赤外線放射板の配置位置に対応するように、二次熱源管14及び支持部材42が配置される。このように、遠赤外線放射板の配置が変更しても、構成部材を設計変更することなくその配置構成を変更するだけで簡単に施工できる。また同様に、図13に示すような6枚の遠赤外線放射板18で載面Rを形成する形態や、その他任意の配置構成とすることもできる。
また、上記実施形態にかかる健康補助装置では、主に人体を温める態様について説明したが、それに加えて、必要に応じて人体を冷やすことができる構成としてもよい。この実施形態では、熱源供給ユニット20は、流体加熱装置とともに、流体冷却装置を含む構成とし、加熱、冷却兼用の熱源供給ユニットから構成される。例えば、熱源供給ユニット20は、上記実施形態での流体加熱装置38に替えて、加熱、冷却兼用のヒートポンプ50等を一体的に内蔵することにより、ポンプ36により二次熱源管内部を強制循環させる熱源流体を加熱または冷却することができる。さらに、この実施形態の場合、二次熱源管14は上記実施形態の二重管式熱サイホンの構成に、外管34の内壁面及び内管35の外壁面に周方向に沿って多数の細幅凹溝を形成したものを用いると好適である。この細幅凹溝を形成することにより、作動液が、細幅凹溝による毛細管現象により、外管内壁面、内管の外壁面に上昇した状態となる。そして、内管に加熱熱源流体を通流させると上記実施形態と同様に外管外部を加熱作用する。一方、内管内に冷却熱源流体を通流させると、蒸発部、凝縮部を変換して外管外壁面が蒸発部、内管外壁面が凝縮部となり、外管外部の冷却、すなわち、遠赤外線放射板の冷却を好適に行なえる。よって、熱源流体を切り替えて、遠赤外線放射板を加熱または冷却させて、載面上の人体を温めたり、冷やしたりすることができ、季節、気候等に応じて快適に健康補助装置を利用できる。また、加熱、冷熱の熱源流体を切り替えるだけでよく、切替操作も簡単で、一つの装置だけで有効な使い方ができる。
以上説明した本発明の健康補助装置は、上記した実施形態のみの構成に限定されるものではなく、特許請求の範囲に記載した本発明の本質を逸脱しない範囲において、任意の改変を行ってもよい。
Embodiments of the present invention will be described below with reference to the accompanying drawings. The health support device of the present invention is a device that can warm the body by using far infrared rays like a bedrock bath and can expect a health support effect. For example, as shown in FIG. 8, a living room L in a general house, It can be easily installed and used anywhere such as in the bedroom.
1 to 8 show an embodiment of a health assistance device of the present invention. In the present embodiment, the health assistance device 10 includes an outer frame body 12, a secondary heat source pipe 14 arranged inside the outer frame body, a heat insulating structure 16 fitted inside the outer frame body, and heat insulation. It has a far-infrared radiation plate 18 which is arranged on the structure and receives heat from the secondary heat source pipe 14, a heat source supply unit 20, and a flexible connecting pipe 22.
As shown in FIGS. 1, 2, and 4, the outer frame body 12 is a hollow case-shaped frame body having an open upper surface, and includes a secondary heat source tube 14, a heat insulating structure 16, a far infrared radiation plate 18, and the like. It is possible to integrally carry the constituent members including the above into a thick plate trapezoidal unit 24 having a height of a small step from the floor surface, and to carry and arrange the trapezoidal unit 24 freely. In the present embodiment, the outer frame body 12 is provided in a rectangular shape in plan view including, for example, a pair of opposing short side frame members 12a and a pair of opposing long side frame members 12b. The outer frame body 12 is made of, for example, a strong wooden material, and is provided by assembling the frame members 12a and 12b into a rectangular frame shape having an outer contour of about 1 m×2 m and an inner opening of about 910 mm×1820 mm in plan view. There is. The height of the outer frame body 12 is set to, for example, about 150 mm. The height of the outer frame body 12 can be set on a trapezoidal unit by a simple operation including a stepping operation and a sitting operation, for example, even for children, ordinary people and elderly people without using an auxiliary table or the like. It is preferable to set the height so that it can be loaded and unloaded. Further, a height-adjustable leg portion may be attached below the outer frame body to set the height of the table surface to a required height. On the bottom side of the outer frame body 12, a plurality of lower receiving frame members 12c are installed along the short side direction so as to connect the long side frame members 12b. The outer frame 12 may be made of a hard molding resin. The heat insulating structure 16 is fitted into the hollow inside from the opening on the upper surface side of the outer frame 12, and the lower frame member 12c receives the heat insulating structure 16 from below to integrally integrate the outer frame 12 and the heat insulating structure 16. Turn into. A closing plate may be laid on the lower surface side inside the outer frame.
As shown in FIGS. 1, 2, and 4, the heat insulating structure 16 has a light receiving recess 26 that stably receives the secondary heat source tube 14 and a load receiving portion that receives a load from above. Composed of materials. In the present embodiment, the heat insulating structure 16 has heat insulating properties in order to reduce the loss of heat generated in the secondary heat source tube 14 held in the receiving recess 26 and to efficiently transfer the heat to the far infrared radiation plate 18. ing. Further, on the heat insulating structure 16, a far-infrared radiation plate 18 that forms a person's mounting surface R and a surface plate 28 are laid around the far-infrared radiation plate 18, and on the far-infrared radiation plate 18 and When a person is placed on the surface plate 28, the load is strong enough to withstand the load so as not to be deformed or damaged due to the load. Further, since the heat insulating structure is made of a lightweight material, it can be smoothly carried into the room of a general household and the construction work can be performed with less labor. That is, the heat insulating structure is formed of a material having at least load resistance, heat insulation, and light weight. In the present embodiment, for example, it is formed of a molded body of foamed synthetic resin such as polystyrene.
In the present embodiment, the heat insulating structure 16 is, for example, about 910 mm×1820 mm, is formed in a rectangular shape in plan view having a thickness of about 70 mm, and is fitted into the outer frame body 12 in a housing shape. .. The heat insulating structure 16 has a plurality of irregularities formed on the upper surface side while forming the base portion 16a on the lower side. In the embodiment of FIG. 1 to FIG. 3, the unevenness on the upper surface side of the heat insulating structure 16 includes a concave portion 30 formed by a continuous void in which the concave groove is communicated in a straight line and the concave groove is perpendicular to the vertical and horizontal directions, and the concave portion. A plurality of protrusions and recesses 32 are formed in a portion excluding the 30 portions, the protrusions 32 protruding in the vertical and horizontal directions at equal intervals, and the plurality of protrusions and recesses are formed alternately and continuously.
In the present embodiment, the convex portion 32 serves as a load receiving portion, and the secondary heat source tube 14 is housed in a required concave portion 30 (linear concave groove) to form the receiving concave portion 26. In the present embodiment, the convex portion 32 is formed in a substantially cylindrical shape having a horizontal flat upper end surface so as to project upward and at the same height, and the upper surface thereof is flush. .. The recess 30 has a groove depth of, for example, about 50 mm, is closed on the lower surface side and is open on the upper surface side, supports the secondary heat source pipe from below, and projects intermittently on both left and right sides. The secondary heat source tube is stably accommodated while the left and right are regulated by the section. Therefore, at the time of construction, the secondary heat source pipe 14 can be easily installed in the heat insulating structure, and the secondary heat source pipe 14 is stably stored while being positioned at a required position. Further, when maintenance or the like is required, the secondary heat source pipe can be easily put in and taken out to perform the work. In the present embodiment, as shown in FIG. 7, the secondary heat source tube 14 is arranged in the recess 30 such that the longitudinal direction thereof is along the long side direction of the outer frame body. Then, two secondary heat source tubes 14 are arranged at the center position in the short side direction of the outer frame body corresponding to the position where the far-infrared radiation plate 18 described later is arranged, and further, two secondary heat source tubes 14 are arranged on both outer sides thereof. , A total of four are arranged. As shown in FIGS. 10 and 12, for example, the arrangement of the secondary heat source tube 14 can be changed according to the arrangement of the far-infrared radiation plate, etc., and the arrangement with good thermal efficiency can be realized according to the usage state. it can. Further, the depth to the bottom of the concave portion 30, that is, the height of the convex portion 32 is the same as the upper end U of the secondary heat source tube 14 and the upper surface of the convex portion 32 in the state where the secondary heat source tube 14 is arranged in the concave portion. Are set to be flush. That is, the depth to the bottom of the recess 30 is set to be substantially the same as the outer diameter of the secondary heat source tube. Thus, when the far infrared radiation plate is placed on the convex portion 32, the secondary heat source tube in the concave portion and the far infrared radiation plate 18 are in contact with each other.
As shown in FIGS. 2, 3, and 5, the secondary heat source pipe 14 is a heat source means that causes heat to flow from almost the entire longitudinal direction toward the outside by causing a heat source fluid to flow inside the pipe. .. In FIG. 2, the two secondary heat source tubes 14 in the center are heat source means for applying heat to the far-infrared radiation plate, and the other two are to a surface plate or the like via a uniform heat transfer plate 44 described later. It is a heat source means that acts thermally. In this embodiment, as shown in FIGS. 14, 15, and 16, the secondary heat source pipe 14 penetrates the inner pipe 35 for flowing the heat source fluid M in the outer pipe 34 in the longitudinal direction to form an outer pipe. A double pipe provided by sealing the working fluid W between the inner pipe 34 and the inner pipe 35 and closing both ends of the outer pipe 34 with the plugs 33, while vacuum-sealing the outer pipe as a working space for the working liquid. It consists of a thermosyphon. The heat source fluid M of warm and cold heat is passed through the inner pipe to transfer heat through the high-speed evaporation and condensation cycle of the working fluid W, thereby heating or cooling the periphery of the outer pipe. In the present embodiment, the outer tube 34 is made of, for example, an aluminum hollow tube member having an outer diameter of about 50 mm and a thin wall and a circular cross section. The inner tube 35 is made of, for example, a thin aluminum hollow tube member having an outer diameter of about 10 mm. The thermosyphon has a high efficiency of heat exchange with the outside, and the heat is uniformly transferred in the entire longitudinal direction, and the cost of the device can be reduced. In the present embodiment, the four secondary heat source tubes 14 are arranged as described above, and the inner tubes are connected in series by a flexible tube 37 such as a heat resistant rubber hose. Furthermore, the connection end portion side of the secondary heat source pipes connected in series is connected to the flexible connection pipe 22 whose other end side is drawn out of the outer frame body 12, and is connected to the heat source supply unit 20. .. That is, the inner pipe of the secondary heat source pipe 14 is connected in a closed loop including the heat source supply unit 20 via a flexible pipe, and the heat source fluid circulates in the inner pipe. The number and positions of the secondary heat source tubes may be set arbitrarily, and for example, in FIG. 5, six tubes may be arranged.
The heat source supply unit 20 includes a pump 36 for forcibly circulating the heat source fluid through the secondary heat source pipe 14, and a fluid heating device 38. In the present embodiment, the heat source supply unit 20 heats the heat source fluid by a pump for forcibly circulating the heat source fluid while pumping and collecting the heat source fluid into the inner tube of the double-tube thermosyphon that is the secondary heat source tube 14. The fluid heating device and the fluid heating device are integrated compactly. In the present embodiment, the heat source supply unit 20 is configured so that a pump, a fluid heating device, and the like are operated by being supplied with power from a household 100 V power source, and as shown in FIG. 8, for example, in a room such as a living room L, an outlet. It can be placed at any place near the insertion port P or using an extension power cord or the like. In the present embodiment, for example, the heat source supply unit sets the temperature of the heat source fluid to 57 to 58° C., and forcedly circulates the secondary heat source pipe through the flexible connection pipe.
The flexible connecting pipe 22 is configured to flex freely while maintaining the circulation flow of the heat source fluid, and in the present embodiment, is made of a heat-resistant rubber hose having an outer diameter of 16 mm and an inner diameter of 9.5 mm, for example. .. The length of the flexible connecting tube 22 is arbitrarily set to several tens of cm to 1 m. The flexible connection pipe 22 is set on a stable floor surface while freely setting the relative positional relationship between the heat source supply unit 20 and the trapezoidal unit 24 in which the secondary heat source pipe 14 is housed. Can be placed at. Thereby, for example, the health assistance device can be carried in a house of a general household and can be arranged at any place while avoiding indoor furniture and electric appliances, and can be easily used.
In the present embodiment, the far-infrared radiation plate 18 is a flat plate body that radiates far-infrared rays when heated, as shown in FIGS. 1, 2, and 3, and has a flat mounting surface R on which a person rests. While being formed, the lower surface is placed on the plurality of protrusions 32 of the heat insulating structure while being in contact with the upper end U of the secondary heat source tube 14. That is, in the present embodiment, the far-infrared radiation plate 18 is formed to have a flat bottom surface, and is merely placed on the flat convex portion 32 while contacting the upper end portion U of the secondary heat source tube in the receiving concave portion. The top surface can be made substantially flush. For example, when the far-infrared radiation plate 18 receives a heating action from the secondary heat source tube 14, the far-infrared radiation plate 18 has the effect of warming the heat by direct contact and the effect of warming the heat from the inside of the human body by the far-infrared rays on the mounting surface. The human body can be warmed and the action and effect of a so-called conventional bedrock bath can be effectively utilized. In the present embodiment, the far-infrared radiation plate 18 is, for example, a substantially rectangular shape of about 300 mm×300 mm, is formed of a plate body with a thickness of about 20 mm, and a plurality of them are arranged so that a person can lie down. It forms a mounting surface of various sizes. In FIG. 1 and FIG. 3, four heat exchanger tubes are arranged along the longitudinal direction above the two secondary heat source pipes 14 in the heat insulating structure in the center of the short side direction. In the present embodiment, an edge frame member 40 is closely attached to the outer peripheral edge of the far-infrared radiation plate 18, and the far-infrared radiation plates are provided side by side with each other at a slight distance from each other. Therefore, the mounting surface formed in the present embodiment includes the edge frame member 40, and is formed with a width of about 300 to 400 mm and a size of about 1400 to 1500 mm, for example. The arrangement position of the far-infrared radiation plate 18 can be set arbitrarily. For example, a mode of arranging 8 sheets as shown in FIG. 10, a mode of arranging 6 sheets as shown in FIG. It is also possible to form the mounting surface in an arbitrary shape. Further, a far infrared radiation plate may be placed on the entire surface of the heat insulating structure. The shape of one far-infrared radiation plate is not limited to a square shape, but may be a rectangular shape or another shape, and the size may be set arbitrarily.
The far-infrared radiation plate 18 is preferably made of, for example, ceramic, which is expected to have a high heat storage effect and a far-infrared radiation effect. In the present embodiment, for example, the sintered molded plate is formed by sintering a material containing a natural soil component such as loess containing limonite produced in the Aso region of Kumamoto Prefecture. A high far-infrared effect can be expected due to the above-mentioned natural earth component such as loess. It should be noted that there is a report that a large amount of negative ions, which are said to exert good effects on the mind and body, are generated in the loess of the Aso region, and it can be expected to have an effective effect on health support. In addition, in the present embodiment, the temperature of the heat source fluid of the heat source supply unit may be set such that the temperature of the far infrared radiation plate 18 is, for example, about 40 to 50° C., which is slightly higher than the body temperature. The heating temperature of the far-infrared radiation plate may be set arbitrarily, but a temperature that allows the human body to be warmed at a relatively low temperature that does not cause low-temperature burns and is comfortable to use for a long time is preferable.
The edge frame member 40 is, as shown in FIG. 5, a wooden frame member that can be cut, and cuts or scrapes the outer shape portion X as necessary to make the outer contour of the edge frame member a required standard shape. Is set. When the far-infrared radiation plate 18 is sintered and molded, it is difficult to accurately mold it into a square having a size of, for example, 300 mm×300 mm, and each of the far-infrared radiation plate 18 has a non-uniform substantially rectangular shape with some errors. It is formed by the outer contour of. For example, the far-infrared radiation plate is installed in a non-uniform state as it is, and the members around the radiation plate such as the surface plate 28 are cut and adjusted so that there is no gap, or caulking is performed so that the gap is filled with putty. However, the number of man-hours required for on-site construction increases, which is complicated and requires labor, time and labor costs. In addition, when caulking, the filling such as putty is weak against heat, and therefore maintenance is frequently required. However, as in this embodiment, the edge frame member 40 is brought into close contact with the periphery of the far-infrared radiation plate 18 having a nonuniform shape in advance in a factory or the like, and the outer contour is aligned with the standard shape, so that it is easy at the assembly site. It can be installed only by various assembling processes, which saves labor, shortens the time, and reduces the cost. In the present embodiment, the edge frame member is composed of, for example, four frame members each having a size of about 330 mm×330 mm×10 mm, and these are closely attached to the outer peripheral edge of the far-infrared radiation plate 18 as shown in FIG. Then install. At this time, in order to bring the end portions into close contact with each other, they may be cut as necessary. The upper surface of the edge frame member is set flush with the far-infrared radiation plate and forms a part of a flat mounting surface having no play or step. Then, for example, a square Sq of about 360 mm×360 mm is set as a standard shape, and the outer portion Q protruding from the square Sq is cut to set the entire outer shape to the standard shape. It is possible to easily design such that a good surface is formed without a gap with other constituent members such as a surface plate. Further, the periphery of the far-infrared radiation plate is edged by the edge frame member, so that improvement in design feeling can be expected.
Furthermore, in the present embodiment, as shown in FIGS. 2, 3, and 5, the support member 42 is arranged in the recess 30 of the heat insulating structure 18, and a plurality of far-infrared radiation plates 18 are formed. It is supported so as to hold a flat mounting surface. The support member 42 is engaged in the concave portion 30 of the heat insulating structure 16 in a close fitting manner and forms an upper surface that is substantially flush with the upper surface of the convex portion 32 when fitted. 2 and 5, the support member 42 is disposed in the recesses 30 on both outer sides of the two secondary heat source tubes 14 at the center of the heat insulating structure 16, and the openings of the recesses 30 of the four far infrared radiation plates 18 are provided. The edge portion protruding upward is stably supported from below, and the upper surfaces of the far-infrared radiation plates arranged side by side are aligned in the same plane S. In the present embodiment, the support member 42 is made of, for example, the same material as the heat insulating structure, and is made of expanded synthetic resin such as expanded polystyrene. Further, as shown in FIG. 7 and FIG. 8, the support member 42 is provided with a straight base portion 42a linearly arranged in the recess portion 30 and a recess portion while projecting into the recess portion intersecting the straight base portion 42a. And a cross-shaped protruding portion 42b that is closely fitted to the convex portion. As a result, the support members 42 are respectively placed in the intersecting recess voids, and at the same time positioned while closely contacting the bottom surfaces of the recesses and the arc surfaces of the projections, so that the support members 42 themselves fit into the recesses 30. It is placed in a stable state and does not move even if it receives a load from above. Further, the supporting member 42 is adapted to be detachably engaged with a required position of the concave portion 30. For example, as shown in FIG. 11, the supporting member 42 can freely and easily correspond to the arrangement position of the far infrared radiation plate. Can be placed. This is advantageous in that it can be easily installed and can be maintained and reused. Although the support member 42 has a detachable structure in this embodiment, it may be fixed by a fixing means such as an adhesive.
In this embodiment, as shown in FIGS. 2 and 4, a uniform heat transfer plate 44 is arranged between the surface plate 28 and the heat insulating structure 16. In the present embodiment, the uniform heat transfer plate 44 is placed on the convex portions 32 other than the convex portion 32 on which the far infrared radiation plate 18 of the heat insulating structure 12 is placed. In the present embodiment, the uniform heat transfer plate 44 is composed of a laminated plate or the like in which a wooden plywood such as a veneer having a certain degree of rigidity is bonded onto a thin metal plate such as aluminum having high heat conductivity. In the present embodiment, the uniform heat transfer plate 44 also functions as a load receiving plate member that receives a load from the upper surface of the surface plate 28 and applies the load to the heat insulating structure. The uniform heat transfer plate 44 is generally provided in the upper surface side opening of the outer frame body or in the same rectangular shape as the plane size of the heat insulating structure, and is formed, for example, in a size of about 910 mm×1820 mm. The plate thickness is set to, for example, about 10 mm. Further, four rectangular openings 45 are provided at substantially intermediate positions of the uniform heat transfer plate 44, corresponding to the positions where the far infrared radiation plates 18 are arranged. The opening 45 has, for example, a size of about 370 mm×370 mm, is slightly larger than the far-infrared radiation plate 18, and is punched out with a rectangular hole having a size such that the edge frame member 40 around the far-infrared radiation plate is attached. It is processed. That is, the uniform heat transfer plate 44 is integrally formed, is housed in the outer frame body 12 in a fitted state, and is placed on the heat insulating structure 16. The lower surface of the uniform heat transfer plate 44 is in contact with the upper ends U of the four secondary heat source tubes 14, and the heat from the secondary heat source tubes 14 is substantially evenly conducted to the entire surface plate placed on the upper surface. .. Further, in the present embodiment, heat is also transferred to the edge frame member 40 arranged around the far infrared radiation plate. This prevents a temperature difference between the far-infrared radiation plate 18 that directly receives heat from the secondary heat source tube, the surface plate 28, and the like, and a temperature unevenness of the surface plate from occurring, thereby ensuring a uniform temperature. As a result, it is possible to prevent the user on the mounting surface from feeling uncomfortable and uncomfortable. In addition, in the present embodiment, the uniform heat transfer plate 44 is configured to carry a load receiving function, but may be configured to be different plate members.
In this embodiment, as shown in FIGS. 1, 2, and 4, the surface plate 28 is laid on the uniform heat transfer plate 44 and has a flat surface flush with the mounting surface R formed by the far-infrared radiation plate 18. Form. The surface plate 28 is made of, for example, a wooden plate member having a plate thickness of about 10 mm, and a plurality of plate members are combined to surround the far-infrared radiation plate 18, in the present embodiment, around the edge frame member 40. Is laid. In the present embodiment, the total thickness of the uniform heat transfer plate 44 and the surface plate 28 is set to be substantially the same as the thickness of the far infrared radiation plate 18. Further, they are arranged so as to be in close contact with the edge frame member and laid without a gap. The surface plate 28 is arranged inside the outer frame 12 in a housing manner and has substantially the same height as the upper end of the outer frame. By laying this surface plate, it is possible to effectively use it by forming a wide flat surface on the stand-like unit 24 so that the user can turn over on the device and prevent the user from falling from the mounting surface. At that time, the far-infrared radiation plate 18 for warming the human body is configured only in necessary parts, and the weight and cost of the entire device can be reduced. Further, for example, if a woodgrain pattern or the like is applied, an improved design feeling can be expected. As shown in FIGS. 10 and 13, the surface plate 28 is laid according to the arrangement configuration of the far infrared radiation plate 18.
Further, in the present embodiment, the concave portion of the heat insulating structure 16 is in the form of a pellet containing, for example, loess granules of the Aso region that are said to contain the above-described limonite component and the like, and charcoal such as Bincho charcoal. The loess charcoal processed product 46 is filled. The charcoal is not limited to Bincho charcoal, but may be other charcoal, bamboo charcoal, or other various charcoals. The loess charcoal processed product 46 can emit far infrared rays from the charcoal and the loess, for example, by the heating action from the secondary heat source pipe 14, and in addition to the far infrared rays from the far infrared ray emitting plate, the surface is more effectively mounted. Can warm the person above. In the present embodiment, the loess charcoal processed product 46 is filled in the concave portions other than the concave portion 30 (the receiving concave portion 26) in which the secondary heat source pipe 12 is accommodated and the portion in which the supporting member 42 is arranged. As a result, the loess charcoal processed product 46 receives the heat released from the secondary heat source tube 14 to the recess communicating void portion, and thereby causes the heat storage function and the far-infrared radiation function to occur, and the heat from the secondary heat source tube 14 is generated. Can be used efficiently. It should be noted that loess and charcoal can be expected to generate a large amount of negative ions as described above, and can be expected to have an effective effect on the health support of users.
Further, what is filled in the concave portion of the heat insulating structure 16 is not limited to the loess charcoal processed product 46, and for example, sandy coral granules obtained by crushing a reef coral by waves or ocean currents, natural tourmaline, germanium and the like. Powder or granules such as ore may be filled. In particular, there is data that corals and the like generate a large amount of negative ions, and negative ions from corals and far-infrared rays from the far-infrared radiation plate, for example, can improve various health benefits such as improving blood flow and promoting metabolism. The effect can be improved. Further, in the present embodiment, since the double pipe type thermosyphon is used as the secondary heat source pipe, the coral or the like filled in the recess generates a large amount of negative ions due to the heat from the thermosyphon and the vibration action. Can be done.
Next, referring to FIG. 9 as well, the operation of the health assistance device according to the present embodiment will be described. For example, when installing in a living room as shown in FIG. 8, for example, the outer frame 12, the secondary heat source tube 14, the heat insulating structure 16, the far infrared radiation plate 18, the heat source supply unit 20, and other components. Are manufactured in advance in a factory or the like, and then disassembled and transported indoors. Since the weight of each component is relatively light, it is easy to transport. As shown in FIGS. 2 and 5, the heat insulating structure 16 is fitted inside the outer frame 12, and the four secondary heat source tubes 14 are housed in the recesses 30 of the heat insulating structure 16. While connecting the secondary heat source pipes 14 in series with a rubber hose or the like, the flexible connection pipes 22 are respectively connected to the two secondary heat source pipes 14 serving as connection end portions and drawn out to the outside of the outer frame body 12. .. Further, the support member 42 is arranged at a predetermined position while being fitted into the unevenness. The loess charcoal processed product 46 is filled in the remaining portion of the recess 30 where the secondary heat source pipe and the supporting member are arranged. Then, the uniform heat transfer plate 44, the far infrared radiation plate 18, the edge frame member 40, and the surface plate 28 are arranged on the heat insulating structure 16. By preliminarily aligning the outer contour of the edge frame member 40 with a standard shape such as a square, it is possible to carry out simple, labor-saving, and short-time construction by simply assembling work without the need for shaving or caulking work at the construction site .. Then, the end of the flexible connecting pipe 22 is connected to the heat source supply unit 20. Thus, without using concrete or mortar as in the conventional case, for example, it can be easily transported to a desired room such as a living room and assembled or arranged. Further, the entire device can be manufactured relatively lightly, and the entire device can be transported and installed at a desired place. It is also possible to mass-produce each of the constituent members to reduce the cost. When used, the heat source supply unit 20 is connected to, for example, a household 100V power source to operate, and the heated heat source fluid is forcedly circulated through the secondary heat source tube 14 to heat the far infrared radiation plate 18. .. At this time, the uniform heat transfer plate uniformly heats the entire surface plate to prevent temperature difference and temperature unevenness, and prevent the user from feeling uncomfortable and uncomfortable. When the user mounts on the mounting surface formed by the far-infrared radiation plate 18, for example, on the back or in a prone state, the effect of warming from the inside by the far infrared rays and the effect of warming by direct contact are combined. The whole of is heated at the same time. Thereby, the effect of promoting sweating and satisfactorily discharging the waste products in the body can be expected. Furthermore, for example, various skin health effects such as removing skin stains and improving blood flow, recovery and reduction of fatigue, relief/improvement/prevention of symptoms such as low back pain, stiff shoulders, coldness, etc. Auxiliary effect can be expected. In this way, the effects of a so-called bedrock bath can be easily utilized in a general household.
10 to 12 show another configuration in which the layout of the far infrared radiation plate 18 is changed. The same members as those in the embodiment are designated by the same reference numerals, and detailed description thereof will be omitted. In FIG. 10, the mounting surface R is formed by eight far-infrared radiation plates 18. Further, as shown in FIGS. 11 and 12, the secondary heat source tube 14 and the support member 42 are arranged so as to correspond to the arrangement positions of those far infrared radiation plates. Thus, even if the arrangement of the far-infrared radiation plate is changed, the construction can be easily performed by changing the arrangement configuration without changing the design of the constituent members. Similarly, the mounting surface R may be formed by the six far-infrared radiation plates 18 as shown in FIG. 13, or any other arrangement may be adopted.
Further, in the health assistance device according to the above-described embodiment, the mode of mainly warming the human body has been described, but in addition to that, the human body may be cooled as necessary. In this embodiment, the heat source supply unit 20 is configured to include a fluid cooling device as well as a fluid heating device, and is composed of a heat source supply unit for both heating and cooling. For example, the heat source supply unit 20 has a heat pump 50 for heating and cooling integrated therein instead of the fluid heating device 38 in the above-described embodiment, so that the pump 36 forcibly circulates inside the secondary heat source pipe. The heat source fluid can be heated or cooled. Further, in the case of this embodiment, the secondary heat source pipe 14 has the same configuration as the double pipe type thermosyphon of the above-mentioned embodiment, and has a large number of thin walls along the circumferential direction on the inner wall surface of the outer pipe 34 and the outer wall surface of the inner pipe 35. It is preferable to use a grooved groove. By forming the narrow groove, the hydraulic fluid is in a state of rising to the inner wall surface of the outer tube and the outer wall surface of the inner tube due to the capillary phenomenon caused by the narrow groove. Then, when the heating heat source fluid is caused to flow through the inner tube, the outside of the outer tube is heated as in the above embodiment. On the other hand, when the cooling heat source fluid is passed through the inner pipe, the outer wall surface of the outer pipe becomes the evaporating portion and the outer wall surface of the inner pipe becomes the condensing portion by converting the evaporating portion and the condensing portion. The radiation plate can be suitably cooled. Therefore, by switching the heat source fluid to heat or cool the far-infrared radiation plate, the human body on the mounting surface can be heated or cooled, and the health assistance device can be comfortably used according to the season, climate, etc. .. Further, it is only necessary to switch the heat source fluid for heating and cold heat, and the switching operation is simple, and effective use can be achieved with only one device.
The health assistance device of the present invention described above is not limited to the configuration of the above-described embodiment only, and any modification may be made without departing from the essence of the present invention described in the claims. Good.

本発明の健康補助装置は、例えば、場所、時間等を問わず、家庭内に設置で、手軽に岩盤浴のような遠赤外線等による健康補助効果を利用できる。また、一般家庭に限らず、入浴施設、宿泊施設、スポーツ施設、老人福祉施設等その他の施設内にも設置できる。   The health assistance device of the present invention can be installed in a home regardless of location, time, etc., and can easily utilize the health assistance effect of far infrared rays such as a bedrock bath. It can be installed not only in ordinary households but also in other facilities such as bathing facilities, accommodation facilities, sports facilities, and welfare facilities for the elderly.

Claims (10)

上面側を開口した中空ケース状の外枠体と、
外枠体の内部に配置され内部に熱源流体を通流させることにより長手方向の略全体から外部に向けて熱を作用させる二次熱源管と、
外枠体の内部に嵌合され二次熱源管を安定的に受ける受凹部を有するとともに、上からの人の荷重を受ける荷重受部を有する軽量素材の断熱構造体と、
加熱時に遠赤外線を放射する遠赤外線放射板であって、上面側に人が載る平面状の載面を形成しつつ下面は二次熱源管の上端部に接するように断熱構造体上に載置されて二次熱源管からの熱作用を受けてその熱を直接に人に伝達する遠赤外線放射板と、
二次熱源管に熱源流体を強制循環通流させるポンプと流体加熱装置とを含む熱源供給ユニットと、
熱源流体の循環通流を保持しつつ自在に撓みながら二次熱源管と熱源供給ユニットとを接続する可撓接続管と、を備えたことを特徴とする健康補助装置。
With a hollow case-shaped outer frame body that opens on the upper surface side,
A secondary heat source pipe that is disposed inside the outer frame and causes heat to act from the substantially entire longitudinal direction to the outside by causing the heat source fluid to flow inside.
A heat insulating structure made of a lightweight material, which has a receiving recess that is fitted inside the outer frame to stably receive the secondary heat source tube, and has a load receiving portion that receives a load from above.
It is a far-infrared radiation plate that radiates far-infrared rays when heated, and it is placed on the heat insulating structure so that the upper surface forms a flat mounting surface on which a person rests and the lower surface contacts the upper end of the secondary heat source tube. Far infrared radiation plate that receives heat from the secondary heat source tube and transfers that heat directly to a person,
A heat source supply unit including a pump and a fluid heating device for forcibly circulating the heat source fluid through the secondary heat source pipe;
A health support device, comprising: a flexible connection pipe that connects a secondary heat source pipe and a heat source supply unit while flexibly bending while maintaining circulation of a heat source fluid.
断熱構造体の上面側は複数の凹凸部を有し、凸部を荷重受部とするとともに所要の凹部を受凹部として二次熱源管を受けることを特徴とする請求項1記載の健康補助装置。 The health support device according to claim 1, wherein the upper surface side of the heat insulating structure has a plurality of concave and convex portions, and the convex portion serves as a load receiving portion and the required concave portion serves as a receiving concave portion to receive the secondary heat source tube. .. 断熱構造体の凹部内に密着嵌合状に係合し、嵌合時に凸部の上面と略面一な上面を形成するとともに、複数の遠赤外線放射板の平面状の載面を保持させるように該遠赤外線放射板を支持する脱着支持部材を有することを特徴とする請求項2記載の健康補助装置。 Engages in the recess of the heat insulating structure in a close-fitting manner to form a top surface that is substantially flush with the top surface of the projection when fitted, and to hold the planar mounting surfaces of the far-infrared radiation plates. The health assistance device according to claim 2, further comprising a detachable support member that supports the far-infrared radiation plate. 遠赤外線放射板の周りの断熱構造体上に敷設されて遠赤外線放射板と面一な平面を形成する表面板を有することを特徴とする請求項1ないし3のいずれかに記載の健康補助装置。 4. The health assistance device according to claim 1, further comprising a surface plate laid on the heat insulating structure around the far-infrared radiation plate and forming a plane flush with the far-infrared radiation plate. .. 表面板と断熱構造体との間には、二次熱源管に接して該二次熱源管からの熱を表面板全体に略均等に熱伝導させる均等伝熱板が配置されたことを特徴とする請求項4記載の健康補助装置。 Between the surface plate and the heat insulating structure, a uniform heat transfer plate is disposed which is in contact with the secondary heat source pipe and conducts heat from the secondary heat source pipe to the entire surface plate substantially evenly. The health assistance device according to claim 4. 遠赤外線放射板には、その外周縁に切削加工可能な木製の縁枠部材が密着状に取り付けられ、縁枠部材の外形部分を必要に応じて切削して縁枠部材の外形輪郭を所要の規格形状に設定することを特徴とする請求項1ないし5のいずれかに記載の健康補助装置。 The far-infrared radiation plate has a wooden edge frame member that can be machined on the outer peripheral edge thereof, and is closely attached to the far-infrared radiation plate. The outer edge portion of the edge frame member is cut as necessary to obtain the outer contour of the edge frame member. The health assistance device according to claim 1, wherein the health assistance device is set to a standard shape. 縁枠部材は、均等伝熱板上に当着するように配置されたことを特徴とする請求項6記載の健康補助装置。 The health assistance device according to claim 6, wherein the edge frame member is arranged so as to be in contact with the uniform heat transfer plate. 遠赤外線放射板は、少なくとも遠赤外線を放射しうる天然土成分を有する焼結成型板からなることを特徴とする請求項1ないし7のいずれかに記載の健康補助装置。 8. The health assistance device according to claim 1, wherein the far-infrared radiation plate is made of a sintered molding plate having at least a natural soil component capable of emitting far-infrared radiation. 断熱構造体の凹部には、少なくとも遠赤外線を放射しうる天然土、天然鉱石、サンゴ、炭又はそれらの加工物のいずれか一種或いはそれらの複数の組み合わせが充填されることを特徴とする請求項1ないし8のいずれかに記載の健康補助装置。 The concave portion of the heat insulating structure is filled with at least one of natural soil, natural ore, coral, charcoal or a processed product thereof capable of emitting far infrared rays, or a combination of a plurality thereof. The health assistance device according to any one of 1 to 8. 熱源供給ユニットは、流体冷却装置を含む加熱、冷却兼用の熱源供給ユニットからなるとともに、
二次熱源管は、二重管式熱サイホンからなり、
遠赤外線放射板の加熱、冷却を選択的に切替可能なことを特徴とする請求項1ないし9のいずれかに記載の健康補助装置。
The heat source supply unit consists of a heat source supply unit for both heating and cooling including a fluid cooling device,
The secondary heat source tube consists of a double tube type thermosyphon,
10. The health assistance device according to claim 1, wherein heating and cooling of the far infrared radiation plate can be selectively switched.
JP2007514874A 2005-04-27 2006-04-27 Health aids Pending JPWO2006118336A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005128926 2005-04-27
JP2005128926 2005-04-27
PCT/JP2006/309220 WO2006118336A1 (en) 2005-04-27 2006-04-27 Health aid

Publications (1)

Publication Number Publication Date
JPWO2006118336A1 true JPWO2006118336A1 (en) 2008-12-18

Family

ID=37308114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007514874A Pending JPWO2006118336A1 (en) 2005-04-27 2006-04-27 Health aids

Country Status (2)

Country Link
JP (1) JPWO2006118336A1 (en)
WO (1) WO2006118336A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095445A (en) * 2007-10-16 2009-05-07 Matsumoto Kenko Co Ltd Bedrock bathing apparatus
US11071688B2 (en) 2019-05-22 2021-07-27 Kohler Co. Steam system and method
TW202208734A (en) * 2020-05-01 2022-03-01 日商冒險集團股份有限公司 Laying material, structure for fitness studio, and structure for sauna

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723487U (en) * 1990-12-06 1995-05-02 服部ヒーテイング工業株式会社 Bedding for bathroom
JPH08285379A (en) * 1995-04-18 1996-11-01 Shiroki Corp Solar type hot water feeder, heating device and heat collecting device
JP2001293294A (en) * 2000-04-17 2001-10-23 Susumu Kiyokawa Method and device for drying object to be dried in bathroom
JP2005021426A (en) * 2003-07-03 2005-01-27 Matsushita Electric Ind Co Ltd Bathroom sauna apparatus
JP4366683B2 (en) * 2003-07-28 2009-11-18 武原 力 Thermosyphon
JP2005066143A (en) * 2003-08-27 2005-03-17 Kunio Nakamura Simple stone bath device

Also Published As

Publication number Publication date
WO2006118336A1 (en) 2006-11-09

Similar Documents

Publication Publication Date Title
KR101395236B1 (en) Apparatus for the whole body dome-sauna
JPWO2006118336A1 (en) Health aids
KR20200029728A (en) Yellow soil bed
KR101613666B1 (en) Energy-saving cold and hot water mat
KR200475856Y1 (en) Apparatus for the whole body dome-sauna
KR101246177B1 (en) Hot water mat
JP2009095445A (en) Bedrock bathing apparatus
KR101160122B1 (en) A wood heating board
KR200402747Y1 (en) Foot Warming System having Far Infrared Ray Radiation Function
JP3138157U (en) Portable bedrock bath equipment
KR101275918B1 (en) A bed using thermosyphon
JP3122095U (en) Bedrock bath
KR200405673Y1 (en) Futon for bed
KR100695516B1 (en) Hot floor panel
JP2004125341A (en) Floor heating device for tatami mat
JP2006311944A (en) Heating type bed and heating bathroom
KR20150086800A (en) Hot water panel and manufacturing method thereof
JP3219912U (en) Massage bed
JP3159786U (en) Heated bathroom with dry sauna
JP2006288952A (en) Foot bathing device
KR101872693B1 (en) Portable Heater
KR200261222Y1 (en) Fomentation mattress
KR200252785Y1 (en) Sectional mattress containing loess
JP2006081871A (en) Bedrock bathing bed, auxiliary treatment tool thereof, method of arranging bed, and bedrock bathroom
JP2005066143A (en) Simple stone bath device