JPWO2006117925A1 - Pancreatic β-cell regeneration method and apparatus - Google Patents

Pancreatic β-cell regeneration method and apparatus Download PDF

Info

Publication number
JPWO2006117925A1
JPWO2006117925A1 JP2007514482A JP2007514482A JPWO2006117925A1 JP WO2006117925 A1 JPWO2006117925 A1 JP WO2006117925A1 JP 2007514482 A JP2007514482 A JP 2007514482A JP 2007514482 A JP2007514482 A JP 2007514482A JP WO2006117925 A1 JPWO2006117925 A1 JP WO2006117925A1
Authority
JP
Japan
Prior art keywords
cells
insulin
medium
culturing
dexamethasone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007514482A
Other languages
Japanese (ja)
Other versions
JP4913730B2 (en
Inventor
一人 里村
一人 里村
清水 博道
博道 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2007514482A priority Critical patent/JP4913730B2/en
Publication of JPWO2006117925A1 publication Critical patent/JPWO2006117925A1/en
Application granted granted Critical
Publication of JP4913730B2 publication Critical patent/JP4913730B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0676Pancreatic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3834Cells able to produce different cell types, e.g. hematopoietic stem cells, mesenchymal stem cells, marrow stromal cells, embryonic stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3895Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells using specific culture conditions, e.g. stimulating differentiation of stem cells, pulsatile flow conditions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/48Drugs for disorders of the endocrine system of the pancreatic hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/48Drugs for disorders of the endocrine system of the pancreatic hormones
    • A61P5/50Drugs for disorders of the endocrine system of the pancreatic hormones for increasing or potentiating the activity of insulin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1346Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells
    • C12N2506/1353Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells from bone marrow mesenchymal stem cells (BM-MSC)

Abstract

本発明の目的は、細胞移植治療のための膵臓β細胞を、骨髄細胞などの採取容易な細胞から再生する方法を提供することである。本発明によれば、間質から採取した幹細胞を分化誘導因子を添加した培地で培養することにより、膵臓β細胞を再生する方法が提供される。An object of the present invention is to provide a method for regenerating pancreatic β cells for cell transplantation treatment from easily harvested cells such as bone marrow cells. According to the present invention, there is provided a method for regenerating pancreatic β cells by culturing stem cells collected from the stroma in a medium to which a differentiation-inducing factor is added.

Description

本発明は、骨髄の幹細胞を培養し分化誘導することによってインスリン産生細胞である膵臓β細胞を高効率に再生する技術に関する。   The present invention relates to a technique for highly efficiently regenerating pancreatic β cells, which are insulin-producing cells, by culturing and inducing differentiation of bone marrow stem cells.

糖尿病は20世紀後半以降急激に増大し、今では、日本における患者人口は予備軍を含めると1300万人と推定され、大きな国民的問題になりつつある。I型糖尿病は膵臓のインスリン産生が阻害される疾患で、インスリン注射が必要になる。II型糖尿病は糖尿病の90%以上を占め、インスリンは産生されるものの体細胞がインスリン抵抗性を示す疾患である。II型糖尿病においても症状が進むとインスリンの補充が必要になる。   Diabetes has increased rapidly since the latter half of the 20th century, and now the patient population in Japan is estimated to be 13 million including the reserve army, which is becoming a major national problem. Type I diabetes is a disease in which insulin production in the pancreas is inhibited and requires insulin injection. Type II diabetes accounts for over 90% of diabetes, and insulin is produced, but somatic cells exhibit insulin resistance. In type II diabetes, supplementation of insulin is necessary as symptoms progress.

糖尿病の主な治療法は、膵臓のインスリン産生の低下を補うためのインスリン注射であるが、最近では経口のインスリン製剤も開発され、またβ細胞(膵臓のインスリン産生細胞)の同種移植や、動物のβ細胞を免疫隔離カプセルへ封入した人工膵島の移植も検討されている。一方、近年、再生医療の進展とともにβ細胞自体を再生させようとする研究も盛んになってきた。β細胞をin vitroで作るための細胞源としては、膵臓、肝臓、腸管、ES細胞、骨髄などが研究されている。   The main treatment for diabetes is insulin injection to compensate for the decrease in pancreatic insulin production. Recently, oral insulin preparations have been developed, and allografts of beta cells (pancreatic insulin-producing cells) and animals Transplantation of artificial islets in which β-cells are encapsulated in immunoisolation capsules is also being investigated. On the other hand, in recent years, research to regenerate β cells themselves has been actively carried out with the development of regenerative medicine. Pancreas, liver, intestinal tract, ES cell, bone marrow and the like have been studied as cell sources for producing β cells in vitro.

膵導管細胞からのβ細胞再生では、レチノイン酸のDDS製剤、アクチビン、ベータセルリン等の増殖因子、pdx-1等の転写因子タンパクの利用、並びにpdx-1遺伝子又はNeuroD遺伝子等の遺伝子導入が検討されており、膵導管上皮細胞から約70%という高効率でインスリン発現細胞を分化誘導した例がある(β細胞関連転写因子,分化増殖因子発現アデノウイルスベクターの膵管内投与によるインスリン賛成細胞の再生, 及川洋一 他 第3回日本再生医療学会総会(2004年3月))。   For β-cell regeneration from pancreatic duct cells, consideration is given to DDS preparations of retinoic acid, use of growth factors such as activin and betacellulin, transcription factor proteins such as pdx-1, and gene transfer such as the pdx-1 gene or NeuroD gene Insulin-expressing cells have been induced to differentiate from pancreatic ductal epithelial cells with a high efficiency of about 70% (regeneration of insulin-prone cells by intra-pancreatic administration of β-cell-related transcription factors and differentiation growth factor-expressing adenovirus vectors) , Yoichi Oikawa et al. The 3rd Annual Meeting of the Japanese Society for Regenerative Medicine (March 2004)).

肝臓からのβ細胞再生では、藤宮らはマウスへウイルスベクターでNeuroD,ベータセルリン遺伝子を導入し、肝臓内へ膵ラ氏島を再生した。血糖値は4ヶ月以上にわたって正常値が維持された。また、in vitroで肝細胞を分化することができた(成体ラット肝幹様細胞を用いた膵内分泌細胞への分化誘導, 山田聡子 他 第3回日本再生医療学会総会(2004年3月))。   To regenerate β cells from the liver, Fujinomiya et al. Introduced the NeuroD and betacellulin genes into mice using a viral vector, and regenerated pancreatic islets into the liver. The blood glucose level remained normal for over 4 months. Moreover, hepatocytes could be differentiated in vitro (Induction of differentiation into pancreatic endocrine cells using adult rat liver stem-like cells, Atsuko Yamada et al. The 3rd Annual Meeting of the Japanese Society for Regenerative Medicine (March 2004)) .

腸管上皮からのβ細胞再生では、谷口らはマウス腸管上皮細胞を採取し、glucagon様ペプチドを添加して培養することによりインスリン発現細胞へ分化できた(小腸上皮細胞におけるインスリン分泌細胞の分化誘導, 谷口英樹 第3回日本再生医療学会総会(2004年3月))。   In β-cell regeneration from the intestinal epithelium, Taniguchi et al. Were able to differentiate into insulin-expressing cells by collecting mouse intestinal epithelial cells, adding glucagon-like peptide and culturing them (induction of differentiation of insulin-secreting cells in small intestinal epithelial cells, Hideki Taniguchi 3rd Annual Meeting of the Japanese Society for Regenerative Medicine (March 2004)).

ES細胞からのβ細胞再生では、城井らはマウスES細胞へnhx2.2遺伝子を導入し、高効率にインスリン産生細胞へ分化誘導できた(nkx2.2遺伝子導入ES細胞からインスリン産生細胞への分化誘導と治療の試み, 城井啓 他 第3回日本再生医療学会総会(2004年3月))。しかし、1x106個をマウス腎へ移植したが、血糖値正常化は得られなかった。In the regeneration of β cells from ES cells, Joi et al. Introduced the nhx2.2 gene into mouse ES cells and were able to induce differentiation into insulin-producing cells with high efficiency (differentiation from nkx2.2 gene-transferred ES cells into insulin-producing cells). Trial of induction and treatment, Kei Shiroi et al. The 3rd Annual Meeting of the Japanese Society for Regenerative Medicine (March 2004)). However, 1 × 10 6 cells were transplanted into the mouse kidney, but no normal blood glucose level was obtained.

骨髄の間葉系細胞(以下、MSC)からのβ細胞再生では、中田らはICRマウス骨髄から骨髄細胞を採取し、マウス膵島細胞培養条件下で培養し、bFGF等の増殖因子を用いて分化誘導し、インスリン発現細胞を再生することができた(骨髄細胞からグルコース応答インスリン分泌細胞分化誘導の試み, 中田正範 他 第3回日本再生医療学会総会(2004年3月))。グルコース応答性もみられたが不完全であった。また、分化できたのは骨髄MSCの数%程度と少ない   For β-cell regeneration from bone marrow mesenchymal cells (MSC), Nakata et al. Collected bone marrow cells from ICR mouse bone marrow, cultured under mouse pancreatic islet cell culture conditions, and differentiated using growth factors such as bFGF Insulin-expressing cells were able to be induced (attempts to induce differentiation of glucose-responsive insulin-secreting cells from bone marrow cells, Masanori Nakata et al. The 3rd Annual Meeting of the Japanese Society for Regenerative Medicine (March 2004)). Glucose responsiveness was also observed but incomplete. Also, only a few percent of bone marrow MSCs were able to differentiate.

In vitroでのβ細胞再生では、泉田らは高血糖モデルラットへ同種のラット大腿骨から採取した骨髄細胞をPKH-26染色で標識したものを尾静脈より移植し、48日後に膵臓を摘出しインスリン染色を行い、移植した骨髄細胞由来のインスリン産生細胞が存在していることを確認した(ラット糖尿病モデルにおける骨髄細胞のインスリン産生細胞への分化誘導に関する検討, 泉田欣彦 第3回日本再生医療学会総会(2004年3月))。しかし、分化誘導は行っていない。   For in vitro β-cell regeneration, Izumida et al. Transplanted bone marrow cells collected from the same type of rat femur into hyperglycemic model rats, labeled with PKH-26, from the tail vein, and removed the pancreas 48 days later. Insulin staining confirmed that insulin-producing cells derived from transplanted bone marrow cells existed (examination of differentiation induction of bone marrow cells into insulin-producing cells in a rat diabetes model, 3rd Japan Society for Regenerative Medicine General meeting (March 2004)). However, differentiation induction is not performed.

胎盤細胞からのβ細胞再生では、松本らは、マウス胎盤由来細胞をEGF、bFGF、Nicotinamideを添加した無血清培地で浮遊培養することによりsphereを形成するインスリン産生細胞を誘導した(胎盤由来インスリン分泌細胞の糖尿病治療への可能性, 松本秀一朗 他 第3回日本再生医療学会総会(2004年3月))。この細胞はIn vitroでは増殖しなかった。   In β-cell regeneration from placental cells, Matsumoto et al. Induced insulin-producing cells that formed spheres by suspension culture of mouse placenta-derived cells in serum-free medium supplemented with EGF, bFGF, and Nicotinamide (placental-derived insulin secretion). Possibility of treating cells with diabetes, Shuichiro Matsumoto et al. The 3rd Annual Meeting of the Japanese Society for Regenerative Medicine (March 2004)). The cells did not grow in vitro.

以上のようなin vitroでβ細胞を再生してこれを機能が低下している膵臓へ移植することによって治療する方法とは別に、体内の幹細胞へ刺激を加えることによってin vivoでβ細胞を再生させようとする研究も行われている。山口らは、I型糖尿病モデルラットへall trans retinoic acid DDS製剤を投与し、インスリン分泌能を改善した(ビタミンA活性体及びそのDDS製剤による体性幹細胞の膵β細胞への分化誘導の可能性, 川上麻理子 他 第3回日本再生医療学会総会(2004年3月))。これは体性幹細胞がβ細胞へ分化したものと推測されている(以上、2004年第3回再生医療学会総会より)。   Apart from the method of regenerating β cells in vitro as described above and transplanting them to the pancreas with reduced function, the cells are regenerated in vivo by stimulating the stem cells in the body. There is also research to try to make it happen. Yamaguchi et al. Improved insulin secretion by administering all trans retinoic acid DDS preparation to type I diabetic model rats (possibility of induction of differentiation of somatic stem cells into pancreatic β cells by vitamin A active substance and its DDS preparation) , Mariko Kawakami et al. The 3rd Annual Meeting of the Japanese Society for Regenerative Medicine (March 2004)). This is presumed that somatic stem cells have differentiated into β cells (from the 3rd Annual Meeting of the Japanese Society for Regenerative Medicine 2004).

膵臓β細胞の再生を目指した研究の多くは膵臓の細胞やES細胞を元にした再生を目指しているが、これらの細胞源は入手が容易でなかったり、倫理面の問題があるため臨床応用に向いているとはいえない。最も現実的な幹細胞源は骨髄間葉系幹細胞(MSC)であると考えられる(ここでは多能性幹細胞:MAPCも含む)。最近は同等の分化能を有する細胞が脂肪組織や胎盤にも存在することが明らかになってきており、さらに臍帯血や末梢血中での存在も示唆されている。これらの細胞はいずれも非侵襲的に採取できることから、臨床応用に適した細胞源であるといえる。本発明の目的は、細胞移植治療のための膵臓β細胞を、骨髄細胞などの採取容易な細胞から再生する方法を提供することである。   Most research aimed at the regeneration of pancreatic β-cells is aimed at regeneration based on pancreatic cells and ES cells, but these cell sources are not readily available or have ethical problems, so clinical application It cannot be said that it is suitable for. The most realistic stem cell source is considered to be bone marrow mesenchymal stem cells (MSCs) (including pluripotent stem cells: MAPC here). Recently, it has been clarified that cells having the same differentiation potential are also present in adipose tissue and placenta, and the existence in umbilical cord blood and peripheral blood has also been suggested. Since these cells can be collected non-invasively, it can be said that they are suitable cell sources for clinical application. An object of the present invention is to provide a method for regenerating pancreatic β cells for cell transplantation treatment from easily harvested cells such as bone marrow cells.

骨髄MSCからのβ細胞誘導も研究されているが、分化できたのは骨髄MSCのうちの数%程度と非常に少ないのが現状である。本発明は、MSCからのβ細胞のより効率的な分化誘導方法を提供するものである。本発明者らは、マウスおよびヒトで骨髄細胞の継代培養とコロニーアッセイにより自然株化細胞を得ることに成功した。この株細胞は適当な増殖因子の組み合わせにより、インスリン陽性細胞に10数%以上の高い効率で分化誘導できることを見出した。本発明はこれらの知見に基づいて完成したものである。   Although β cell induction from bone marrow MSCs has been studied, the number of bone marrow MSCs that can be differentiated is very small, about several percent. The present invention provides a more efficient method for inducing differentiation of β cells from MSCs. The present inventors succeeded in obtaining natural cell lines by subculture of bone marrow cells and colony assay in mice and humans. It has been found that this cell line can be induced to differentiate into insulin-positive cells with a high efficiency of 10% or more by combining appropriate growth factors. The present invention has been completed based on these findings.

即ち、本発明によれば、間質から採取した幹細胞を分化誘導因子を添加した培地で培養することによりインスリン発現細胞を取得することを含む、膵臓β細胞を再生する方法が提供される。   That is, according to the present invention, there is provided a method for regenerating pancreatic β-cells, comprising obtaining insulin-expressing cells by culturing stem cells collected from the stroma in a medium supplemented with a differentiation-inducing factor.

好ましくは、株化した間質幹細胞を分化誘導因子を添加した培地で培養することによりインスリン発現細胞を取得する。
好ましくは、間葉組織から採取し株化した間質幹細胞を分化誘導因子を添加した培地で培養することによりインスリン発現細胞を取得する。
好ましくは、間葉組織は、骨髄、脂肪組織、末梢血、臍帯血、又は胎盤である。
Preferably, insulin-expressing cells are obtained by culturing established stromal stem cells in a medium supplemented with a differentiation-inducing factor.
Preferably, insulin-expressing cells are obtained by culturing stromal stem cells collected from mesenchymal tissue and established in a medium supplemented with a differentiation-inducing factor.
Preferably, the mesenchymal tissue is bone marrow, adipose tissue, peripheral blood, umbilical cord blood, or placenta.

好ましくは、間質から採取した幹細胞を、Transferrin、Insulin、sodium selenite、血清アルブミン、Ascorbic acid、dexamethasone、EGF、Progesterone、及びNicotinamideのいずれか1種以上を添加した培地で培養することによりインスリン発現細胞を取得する。   Preferably, stem cells collected from the stroma are cultured in a medium supplemented with one or more of Transferrin, Insulin, sodium selenite, serum albumin, Ascorbic acid, dexamethasone, EGF, Progesterone, and Nicotinamide to express insulin-expressing cells To get.

好ましくは、間質から採取した幹細胞を、Transferrin、sodium selenite、血清アルブミン、Ascorbic acid、dexamethasone、及びProgesteroneのいずれか1種以上を添加した培地で培養することによりインスリン発現細胞を取得する。   Preferably, insulin-expressing cells are obtained by culturing stem cells collected from the stroma in a medium to which at least one of Transferrin, sodium selenite, serum albumin, Ascorbic acid, dexamethasone, and Progesterone is added.

好ましくは、骨髄より採取した細胞を継代培養して骨髄間質細胞株を作製し、この骨髄間質細胞株をFBS、Ascorbic acid、及びdexamethasoneを加えた培地で培養し、その後、培地をFBS、Transferrin、Insulin、sodium selenite、BSA、Ascorbic acid、dexamethasone、EGF、Progesterone、及びNicotinamideを加えた培地に変更して培養を行うことによってインスリン発現細胞を取得する。   Preferably, cells collected from the bone marrow are subcultured to prepare a bone marrow stromal cell line, and this bone marrow stromal cell line is cultured in a medium to which FBS, Ascorbic acid, and dexamethasone are added. Insulin-expressing cells are obtained by changing to a medium containing Transferrin, Insulin, sodium selenite, BSA, Ascorbic acid, dexamethasone, EGF, Progesterone, and Nicotinamide.

本発明の別の態様によれば、体性幹細胞、ES細胞または脱分化させた成熟細胞をTransferrin、Insulin、sodium selenite、血清アルブミン、Ascorbic acid、dexamethasone、EGF、Progesterone、及びNicotinamideのいずれか1種以上を添加した培地で培養することによりインスリン発現細胞を取得することを含む、膵臓β細胞を再生する方法が提供される。   According to another aspect of the present invention, somatic stem cells, ES cells or dedifferentiated mature cells are any one of Transferrin, Insulin, sodium selenite, serum albumin, Ascorbic acid, dexamethasone, EGF, Progesterone, and Nicotinamide. There is provided a method for regenerating pancreatic β-cells, comprising obtaining insulin-expressing cells by culturing in a medium supplemented with the above.

本発明のさらに別の態様によれば、体性幹細胞、ES細胞または脱分化させた成熟細胞を培養する密閉された容器と、Transferrin、Insulin、sodium selenite、血清アルブミン、Ascorbic acid、dexamethasone、EGF、Progesterone、及びNicotinamideのいずれか1種以上を時間的に制御された順序かつ制御された量で、該容器へ添加する機構と、制御された時間に培地を交換する機構と、滅菌された空気を循環させる機構と、該容器の温度を制御する機構と、該細胞の培養状態をモニターする機構と、該細胞を該容器へ充填および容器から排出する機構とを備えた、膵臓β細胞の再生装置が提供される。   According to yet another aspect of the present invention, a sealed container for culturing somatic stem cells, ES cells or dedifferentiated mature cells, Transferrin, Insulin, sodium selenite, serum albumin, Ascorbic acid, dexamethasone, EGF, A mechanism for adding one or more of Progesterone and Nicotinamide to the container in a time-controlled order and in a controlled amount, a mechanism for changing the medium at a controlled time, and sterilized air A regenerating apparatus for pancreatic β cells comprising a mechanism for circulating, a mechanism for controlling the temperature of the container, a mechanism for monitoring the culture state of the cells, and a mechanism for filling and discharging the cells from the container Is provided.

本発明のさらに別の態様によれば、体性幹細胞、ES細胞または脱分化させた成熟細胞を増殖させ、Transferrin、Insulin、sodium selenite、血清アルブミン、Ascorbic acid、dexamethasone、EGF、Progesterone、及びNicotinamideのいずれか1種以上を加えた培地で培養することにより膵臓β細胞を再生し、再生した膵臓β細胞を糖尿病患者に移植することを含む、糖尿病の治療方法が提供される。   According to yet another aspect of the present invention, somatic stem cells, ES cells or dedifferentiated mature cells are grown and transferredrin, insulin, sodium selenite, serum albumin, Ascorbic acid, dexamethasone, EGF, Progesterone, and Nicotinamide. There is provided a method for treating diabetes, which comprises regenerating pancreatic β cells by culturing in a medium containing any one or more of them, and transplanting the regenerated pancreatic β cells into a diabetic patient.

以下、本発明の実施の形態について詳細に説明する。
本発明による膵臓β細胞を再生する方法は、間質から採取した幹細胞を分化誘導因子を添加した培地で培養することによりインスリン発現細胞を取得することを特徴とする方法である。
Hereinafter, embodiments of the present invention will be described in detail.
The method for regenerating pancreatic β cells according to the present invention is a method characterized in that insulin-expressing cells are obtained by culturing stem cells collected from the stroma in a medium supplemented with a differentiation-inducing factor.

間質とは、骨髄などに含まれる支持組織であり、一般的には、間質細胞と細胞外基質から構成される。本発明では、間質などの組織中に存在する幹細胞を採取して使用する。採取する幹細胞は好ましくは間葉系幹細胞である。間葉とは、各胚葉の間を埋める疎性結合組織であり、一般には中胚葉由来であるが、外胚葉由来のものもある。間葉系幹細胞を含む組織としては、骨髄、脂肪組織、末梢血、臍帯血、胎盤などを挙げることができる。   The stroma is a supporting tissue contained in bone marrow or the like, and is generally composed of stromal cells and an extracellular matrix. In the present invention, stem cells present in tissues such as stroma are collected and used. The stem cells to be collected are preferably mesenchymal stem cells. The mesenchyme is a loose connective tissue that fills the space between the germ layers, and is generally derived from the mesoderm, but some is derived from the ectoderm. Examples of the tissue containing mesenchymal stem cells include bone marrow, adipose tissue, peripheral blood, umbilical cord blood, and placenta.

幹細胞とは、外胚葉(歯髄細胞(歯髄線維芽細胞を含む)、上皮細胞(歯)、エナメル上皮基底膜細胞、神経細胞、象牙芽細胞、セメント芽細胞など)、中胚葉(骨芽細胞、軟骨細胞、骨細胞、腎基底膜細胞、血液系細胞)、内胚葉(消化管上皮細胞、消化管実質細胞)などの細胞へと分化しうる又はそれらの修復を促進しうる多能性を有する未分化な細胞である。幹細胞としては、各組織・臓器に含まれ、分化の方向性がある程度決定されている体性幹細胞を使用してもよいし、胚性幹細胞をはじめとする多能性幹細胞を使用してもよい。また、本発明では、幹細胞として、脱分化させた成熟細胞を用いてもよい。   Stem cells are ectoderm (dental pulp cells (including dental pulp fibroblasts), epithelial cells (tooth), enamel epithelial basement membrane cells, neurons, odontoblasts, cement blasts, etc.), mesoderm (osteoblasts, It has pluripotency that can differentiate into cells such as chondrocytes, bone cells, renal basement membrane cells, blood cells), endoderm (gastrointestinal epithelial cells, gastrointestinal parenchymal cells), or promote their repair. It is an undifferentiated cell. As stem cells, somatic stem cells contained in each tissue / organ and whose direction of differentiation is determined to some extent may be used, or pluripotent stem cells such as embryonic stem cells may be used. . Further, in the present invention, dedifferentiated mature cells may be used as stem cells.

本発明において幹細胞は、当該細胞を有する任意の間質から採取することができるが、好ましくは骨髄、脂肪組織、末梢血、臍帯血、又は胎盤などから採取することができる。多量の細胞が採取可能であること及び採取が容易であるという観点から、大腿骨、脛骨又は骨盤(腸骨)から採取することが好ましい。骨髄由来の間葉系幹細胞の採取方法は当業者に公知であり、例えば医療において用いられている通常の採取方法を用いることができる。具体的には、ヒトに対しては、患者に対するインフォームドコンセントのもとに、ヒト大腿骨、腸骨、顎骨、末梢血管等の幹細胞が存在する組織および器官より、注射器や穿刺針などを用いて骨髄や末梢血を無菌的に必要量採取し、そのまま、培養容器に播種し浮遊系細胞と接着系細胞を分離することで使用するか、フローサイトメトリー、または密度勾配遠心法などの手法を用いることで、幹細胞を採取分離することができる。ヒト以外の哺乳動物の骨髄から間葉系幹細胞を採取する際には、例えば骨(大腿骨、脛骨)の両端を切断し、間葉系幹細胞の培養に適する培地で骨内を洗浄して、洗い出された該培養液から間葉系幹細胞を取得することができる。   In the present invention, the stem cells can be collected from any stroma containing the cells, but preferably can be collected from bone marrow, adipose tissue, peripheral blood, umbilical cord blood, placenta, or the like. From the viewpoint that a large amount of cells can be collected and collection is easy, it is preferable to collect from the femur, tibia or pelvis (iliac bone). A method for collecting bone marrow-derived mesenchymal stem cells is known to those skilled in the art, and for example, a normal collection method used in medicine can be used. Specifically, for humans, with informed consent to the patient, a syringe or puncture needle is used from tissues and organs in which stem cells such as human femur, iliac bone, jawbone, and peripheral blood vessels are present. Collect as much bone marrow and peripheral blood as necessary and inoculate them in a culture vessel and use them by separating floating cells and adherent cells, or use techniques such as flow cytometry or density gradient centrifugation. By using it, stem cells can be collected and separated. When collecting mesenchymal stem cells from the bone marrow of mammals other than humans, for example, cut both ends of the bone (femur, tibia), wash the inside of the bone with a medium suitable for culturing mesenchymal stem cells, Mesenchymal stem cells can be obtained from the washed culture.

間葉系幹細胞の初代培養及び/又は継代培養を行うには、採取分離した細胞を適当な培地(例えば、DMEM(Dulbecco's modified Eagle's medium)培地、又はα−MEM培地など)を用い、組織培養用培養皿に細胞を播種して初代培養及び継代培養する。培養に用いる血清としては、ウシ胎児血清(FBS)を用いることができる。   In order to perform primary culture and / or subculture of mesenchymal stem cells, the collected and separated cells are used for tissue culture using an appropriate medium (for example, DMEM (Dulbecco's modified Eagle's medium) medium, α-MEM medium, etc.). Cells are seeded in a culture dish for primary culture and subculture. As the serum used for the culture, fetal bovine serum (FBS) can be used.

細胞の培養は、動物細胞の培養に用いる通常の血清入り培地や無血清培地を用いて、通常の動物細胞の培養条件(例えば、室温から37℃の温度;5%CO2インキュベーター内など)の下で行なうことができる。培養の形態は特に限定されないが、例えば、静置培養で行なうことができる。Cell culture can be performed using normal serum-containing medium or serum-free medium used for animal cell culture under normal animal cell culture conditions (eg, room temperature to 37 ° C; 5% CO 2 incubator, etc.) Can be done below. Although the form of culture is not particularly limited, for example, it can be performed by static culture.

本発明において、幹細胞からインスリン産生細胞である膵臓β細胞への分化誘導培養は、初代培養及び継代培養した幹細胞を、分化誘導培地を用いて培養し、細胞を分化誘導することにより行うことができる。ここで分化誘導培地とは、以下に説明する分化誘導因子を添加した培地のことを言う。   In the present invention, differentiation induction culture from stem cells to pancreatic β cells, which are insulin-producing cells, can be performed by culturing primary and subcultured stem cells using a differentiation induction medium and inducing cell differentiation. it can. Here, the differentiation-inducing medium refers to a medium to which a differentiation-inducing factor described below is added.

本発明で用いる分化誘導因子としては、幹細胞をインスリン発現細胞へと分化させることができる因子であれば、その種類は特に限定されない。分化誘導因子としては、具体的には、トランスフェリン(Transferrin)、インスリン(Insulin)、亜セレン酸ナトリウム(sodium selenite)、血清アルブミン、アスコルビン酸(Ascorbic acid)、デキサメタゾン(dexamethasone)、EGF(上皮増殖因子)、プロゲステロン(Progesterone)、及びニコチンアミド(Nicotinamide)などを用いることができる。本発明では、上記9種の分化誘導因子のいずれか1種以上を用いることができ、好ましくは、上記9種の分化誘導因子のうちの2種類以上(さらに好ましくは3種類以上)を組み合わせて使用することができ、特に好ましくは上記9種の全ての分化誘導因子を使用することができる。また別の好ましい実施態様によれば、トランスフェリン(Transferrin)、亜セレン酸ナトリウム(sodium selenite)、血清アルブミン、アスコルビン酸(Ascorbic acid)、デキサメタゾン(dexamethasone)、及びプロゲステロン(Progesterone)の6種の分化誘導因子を組み合わせて使用することができる。   The differentiation inducing factor used in the present invention is not particularly limited as long as it is a factor capable of differentiating stem cells into insulin-expressing cells. Specific examples of differentiation-inducing factors include transferrin, insulin, insulin selenite, serum albumin, ascorbic acid, dexamethasone, EGF (epidermal growth factor) ), Progesterone, and nicotinamide. In the present invention, any one or more of the nine types of differentiation inducing factors can be used, and preferably two or more (more preferably three or more) of the nine types of differentiation inducing factors are combined. It is possible to use, and particularly preferably, all nine types of differentiation inducers described above can be used. According to another preferred embodiment, six types of differentiation induction of transferrin, sodium selenite, serum albumin, ascorbic acid, dexamethasone, and progesterone Factors can be used in combination.

トランスフェリン(Transferrin)を使用する場合、トランスフェリンの培地中の濃度は、本発明の効果を達成できる限り特に限定されないが、一般的には、5〜500μg/mlであり、好ましくは10〜200μg/mlである。   When transferrin is used, the concentration of transferrin in the medium is not particularly limited as long as the effect of the present invention can be achieved, but is generally 5 to 500 μg / ml, preferably 10 to 200 μg / ml. It is.

インスリンを使用する場合、インスリンの培地中の濃度は、本発明の効果を達成できる限り特に限定されないが、一般的には、0.5〜50μg/mlであり、好ましくは1〜20μg/mlである。   When insulin is used, the concentration of insulin in the medium is not particularly limited as long as the effect of the present invention can be achieved, but is generally 0.5 to 50 μg / ml, preferably 1 to 20 μg / ml. is there.

亜セレン酸ナトリウムを使用する場合、亜セレン酸ナトリウムの培地中の濃度は、本発明の効果を達成できる限り特に限定されないが、一般的には、0.5〜50ng/mlであり、好ましくは1〜20ng/mlである。   In the case of using sodium selenite, the concentration of sodium selenite in the medium is not particularly limited as long as the effect of the present invention can be achieved, but is generally 0.5 to 50 ng / ml, preferably 1-20 ng / ml.

血清アルブミンを使用する場合、血清アルブミンの培地中の濃度は、本発明の効果を達成できる限り特に限定されないが、一般的には、0.1〜10mg/mlであり、好ましくは0.2〜5mg/mlである。   When serum albumin is used, the concentration of serum albumin in the medium is not particularly limited as long as the effect of the present invention can be achieved, but is generally 0.1 to 10 mg / ml, preferably 0.2 to 5 mg / ml.

アスコルビン酸を使用する場合、アスコルビン酸の培地中の濃度は、本発明の効果を達成できる限り特に限定されないが、一般的には、5〜500μg/mlであり、好ましくは10〜200μg/mlである。   When ascorbic acid is used, the concentration of ascorbic acid in the medium is not particularly limited as long as the effects of the present invention can be achieved, but is generally 5 to 500 μg / ml, preferably 10 to 200 μg / ml. is there.

デキサメタゾンを使用する場合、デキサメタゾンの培地中の濃度は、本発明の効果を達成できる限り特に限定されないが、一般的には、1〜100nMであり、好ましくは2〜50nMである。   When dexamethasone is used, the concentration of dexamethasone in the medium is not particularly limited as long as the effect of the present invention can be achieved, but it is generally 1 to 100 nM, preferably 2 to 50 nM.

EGFを使用する場合、EGFの培地中の濃度は、本発明の効果を達成できる限り特に限定されないが、一般的には、0.2〜20ng/mlであり、好ましくは0.5〜10ng/mlである。   When EGF is used, the concentration of EGF in the medium is not particularly limited as long as the effect of the present invention can be achieved, but is generally 0.2 to 20 ng / ml, preferably 0.5 to 10 ng / ml. ml.

プロゲステロンを使用する場合、プロゲステロンの培地中の濃度は、本発明の効果を達成できる限り特に限定されないが、一般的には、2.5〜250ng/mlであり、好ましくは5〜100ng/mlである。   When progesterone is used, the concentration of progesterone in the medium is not particularly limited as long as the effect of the present invention can be achieved, but is generally 2.5 to 250 ng / ml, preferably 5 to 100 ng / ml. is there.

ニコチンアミドを使用する場合、ニコチンアミドの培地中の濃度は、本発明の効果を達成できる限り特に限定されないが、一般的には、1〜100mMであり、好ましくは2〜50mMである。   When nicotinamide is used, the concentration of nicotinamide in the medium is not particularly limited as long as the effects of the present invention can be achieved, but it is generally 1 to 100 mM, preferably 2 to 50 mM.

上記した本発明の方法に従って幹細胞を培養して、これを分化誘導することによって、インスリン産生細胞を取得することができる。分化誘導された細胞におけるインスリンの発現の有無については、mRNAレベルの発現についてはRT-PCR又はノザンブロット、あるいはin situ hybridizationなどにより確認でき、タンパク質レベルの発現についてはウェスタンブロット、免疫染色などにより確認できる。RT-PCR及びノザンブロット、in situ hybridizationは、インスリン遺伝子を特異的に検出できるプライマー又はプローブ(プロインスリンを検出するためのプライマー又はプローブを使用してもよい)を用いて、当業者の公知の常法により行うことができる。また、ウェスタンブロット及び免疫染色は、抗インスリン抗体を用いて、当業者の公知の常法により行うことができる。また、Pdx1遺伝子(膵臓の発生にかかわる重要な遺伝子であり、インスリン産生細胞の発生及び機能維持の役割も担っていると考えられている)の発現の有無を指標とすることによって、膵臓β細胞の再生を確認することもできる。   Insulin-producing cells can be obtained by culturing stem cells according to the method of the present invention described above and inducing differentiation thereof. As for the presence or absence of insulin expression in differentiation-induced cells, mRNA level expression can be confirmed by RT-PCR or Northern blot, in situ hybridization, etc., and protein level expression can be confirmed by Western blot, immunostaining, etc. . RT-PCR, Northern blotting, and in situ hybridization are known to those skilled in the art using primers or probes that can specifically detect the insulin gene (primers or probes for detecting proinsulin may be used). Can be done by law. In addition, Western blotting and immunostaining can be performed by an ordinary method known to those skilled in the art using an anti-insulin antibody. In addition, by using the presence or absence of expression of the Pdx1 gene (an important gene involved in the development of the pancreas, which is also thought to play a role in the generation and maintenance of functions of insulin-producing cells), pancreatic β cells You can also check the playback.

本発明の方法で再生した膵臓β細胞は、インスリンを発現することができ、糖尿病患者に移植することによって糖尿病を治療することができる。   The pancreatic β cells regenerated by the method of the present invention can express insulin and can be treated for diabetes by transplantation into a diabetic patient.

さらに本発明は、体性幹細胞、ES細胞または脱分化させた成熟細胞を培養する密閉された容器と、Transferrin、Insulin、sodium selenite、血清アルブミン、Ascorbic acid、dexamethasone、EGF、Progesterone、及びNicotinamideのいずれか1種以上を時間的に制御された順序かつ制御された量で、該容器へ添加する機構と、制御された時間に培地を交換する機構と、滅菌された空気を循環させる機構と、該容器の温度を制御する機構と、該細胞の培養状態をモニターする機構と、該細胞を該容器へ充填および容器から排出する機構とを備えた、膵臓β細胞の再生装置に関する。   Furthermore, the present invention relates to a sealed container for culturing somatic stem cells, ES cells or dedifferentiated mature cells, and any of Transferrin, Insulin, sodium selenite, serum albumin, Ascorbic acid, dexamethasone, EGF, Progesterone, and Nicotinamide. A mechanism for adding one or more of them in a time-controlled order and in a controlled amount to the container, a mechanism for changing the medium at a controlled time, a mechanism for circulating sterilized air, The present invention relates to an apparatus for regenerating pancreatic β cells, comprising a mechanism for controlling the temperature of a container, a mechanism for monitoring the culture state of the cells, and a mechanism for filling and discharging the cells from the container.

採取された細胞から膵臓β細胞を再生する一連の工程を自動的に行うための培養装置の一例を図4に示す。体性幹細胞、ES細胞または脱分化させた成熟細胞を選別、希釈または濃縮などの必要な措置を施した後、細胞容器1から装置の中へ注入する。注入口から配管2を通って細胞は培養容器3へ導かれる。Transferrin、Insulin、sodium selenite、血清アルブミン、Ascorbic acid、dexamethasone、EGF、Progesterone、Nicotinamideのいずれか、あるいは複数の組み合わせを備えた分化誘導因子リザーバー群4から時間的に制御された順序で、制御された量が培養容器3へ添加される。また、培地のリザーバー5から制御された時間に培地が培養容器3へ供給され、老廃物を含んだ培地が排出される。分化誘導因子と培地の供給、排出はコンピュータ6で制御されたポンプ機構7によって行われる。培養容器へは、循環機構8によって滅菌された空気と二酸化炭素が供給される。培養容器の温度は温度センサーと加熱・冷却機構9によって制御される。培養容器内の細胞の形状や数、増殖速度は光学的モニター系10によりモニターされる。培地のpHやグルコース濃度は廃液流路で化学センサー11によりモニターされる。必要な数に増殖したβ細胞は酵素処理などにより剥離後、ポンプ系7により容器12の中へ排出される。   FIG. 4 shows an example of a culture apparatus for automatically performing a series of steps for regenerating pancreatic β cells from the collected cells. Somatic stem cells, ES cells or dedifferentiated mature cells are subjected to necessary measures such as selection, dilution or concentration, and then injected from the cell container 1 into the device. The cells are led from the inlet through the pipe 2 to the culture vessel 3. Transferrin, Insulin, Sodium selenite, Serum albumin, Ascorbic acid, Dexamethasone, EGF, Progesterone, Nicotinamide, or a differentiation inducer reservoir group 4 with a combination of them was controlled in a time-controlled order. An amount is added to the culture vessel 3. In addition, the medium is supplied to the culture container 3 from the medium reservoir 5 at a controlled time, and the medium containing the waste is discharged. Supply and discharge of the differentiation-inducing factor and the medium are performed by a pump mechanism 7 controlled by a computer 6. Air and carbon dioxide sterilized by the circulation mechanism 8 are supplied to the culture container. The temperature of the culture vessel is controlled by a temperature sensor and a heating / cooling mechanism 9. The shape and number of cells in the culture vessel and the growth rate are monitored by the optical monitor system 10. The pH and glucose concentration of the medium are monitored by the chemical sensor 11 in the waste liquid channel. The β cells grown to the required number are detached by enzyme treatment or the like and then discharged into the container 12 by the pump system 7.

以下の実施例により本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。   The following examples further illustrate the present invention, but the present invention is not limited to the examples.

実施例1
マウス(C57B1/6, 雄性,6週齢)から採取した骨髄細胞を継代培養し、自発株化による骨髄間質細胞株を得た(2株)。骨髄間質細胞株を得るには、クローニングリングを用いたシリンダー法を行った。薄蒔きにシャーレに播種した骨髄間質細胞の中から、任意の一個の細胞をクローニングリングで囲い、そこで剥離した一個の細胞を24穴プレートに継代した。24穴プレートの中で、一個の細胞からコンフルエントに達した細胞を、やや培養面積の広い6穴プレートに継代し、その中でコンフルエントになるまで培養した。さらに、6穴プレートでコンフルエントに達した細胞を、さらに培養面積の広いT-75フラスコに継代し、培養を続けることで、一個の骨髄間質細胞由来の細胞を得ることができた。また、この細胞を半年から1年程度培養し、公知の方法により培養前と培養後で分化能や増殖能が安定していることを確認し、骨髄間質細胞株として使用することとした。
Example 1
Bone marrow cells collected from mice (C57B1 / 6, male, 6 weeks old) were subcultured to obtain bone marrow stromal cell lines by spontaneous cell lines (2 strains). To obtain a bone marrow stromal cell line, a cylinder method using a cloning ring was performed. From bone marrow stromal cells seeded in a petri dish thinly, arbitrary one cell was surrounded by a cloning ring, and one detached cell was passaged to a 24-well plate. In a 24-well plate, cells that reached confluence from a single cell were subcultured to a 6-well plate with a slightly larger culture area, and cultured until confluence. Furthermore, cells that reached confluence in a 6-well plate were subcultured into a T-75 flask with a larger culture area, and continued to culture, thereby obtaining a single bone marrow stromal cell-derived cell. The cells were cultured for about six months to one year, and it was confirmed that the differentiation ability and proliferation ability were stable before and after culturing by a known method and used as a bone marrow stromal cell line.

上記で得た骨髄間質細胞株を継代後、10%FBS、50μg/ml Ascorbic acid、10nM dexamethasoneを加えたα−MEM培地で12時間培養した。その後、培地を5%FBS、50μg/ml Transferrin、5μg/ml Insulin、5ng/ml sodium selenite、1mg/ml BSA、50μg/ml Ascorbic acid、10 nM dexamethasone、2ng/ml EGF、25ng/ml Progesterone、10mM Nicotinamideを加えたDMEM培地に変更した。   The bone marrow stromal cell line obtained above was subcultured and then cultured for 12 hours in an α-MEM medium supplemented with 10% FBS, 50 μg / ml Ascorbic acid, and 10 nM dexamethasone. After that, the medium was 5% FBS, 50 μg / ml Transferrin, 5 μg / ml Insulin, 5 ng / ml sodium selenite, 1 mg / ml BSA, 50 μg / ml Ascorbic acid, 10 nM dexamethasone, 2 ng / ml EGF, 25 ng / ml Progesterone, 10 mM It changed to the DMEM culture medium which added Nicotinamide.

培地交換後7〜10日後に、第1図に示すように細胞が密集するコロニーが形成され、細胞質内に多数の顆粒が形成された。遺伝子発現を以下の8つの遺伝子について調べた。即ち、配列番号1から10に記載した塩基配列を有するプライマーをそれぞれ使用して、RT−PCRにより遺伝子発現を調べた。RT−PCRは以下の通り行った。   Seven to 10 days after the medium change, colonies in which cells were densely formed were formed as shown in FIG. 1, and a large number of granules were formed in the cytoplasm. Gene expression was examined for the following 8 genes. That is, gene expression was examined by RT-PCR using primers having the nucleotide sequences described in SEQ ID NOs: 1 to 10, respectively. RT-PCR was performed as follows.

培養した細胞より、RNA採取キット(TRIzol Reagent: Invitrogen)を用いて、Total RNAを採取。cDNA合成キット(Superscript First-Strand Synthesis System for RT-PCR: Invitrogen)を用いて2μgのTotal RNAからcDNAを合成した。次に、サンプルチューブ1本あたり、cDNA 1μl, 滅菌水11.3μl, 10×PCR buffer(タカラバイオ製)2μl, dNTP(タカラバイオ製)1.6μl, センスプライマー(終濃度 0.5μM 、下記参照)2μl, アンチセンスプライマー(終濃度 0.5μM、下記参照)2μl, Taqポリメラーゼ(タカラバイオ製)を混和し、総量20μlのサンプルを調整した。調整したサンプルをサーマルサイクラーにセットし、検出目的の遺伝子に応じて20〜35サイクルでPCR反応を実施、最後に電気泳動法により目的の遺伝子を検出した。   Total RNA was collected from cultured cells using an RNA collection kit (TRIzol Reagent: Invitrogen). cDNA was synthesized from 2 μg of total RNA using a cDNA synthesis kit (Superscript First-Strand Synthesis System for RT-PCR: Invitrogen). Next, for each sample tube, 1 μl of cDNA, 11.3 μl of sterilized water, 2 μl of 10 × PCR buffer (Takara Bio), 1.6 μl of dNTP (Takara Bio), 2 μl of sense primer (final concentration 0.5 μM, see below), Antisense primer (final concentration 0.5 μM, see below) 2 μl and Taq polymerase (manufactured by Takara Bio Inc.) were mixed to prepare a sample with a total amount of 20 μl. The adjusted sample was set in a thermal cycler, PCR reaction was performed in 20 to 35 cycles according to the target gene for detection, and finally the target gene was detected by electrophoresis.

1. Proinsulin 1 (gttggtgcac ttcctacccc tg(配列番号1) 及び gtagagggag cagatgctgg tg(配列番号2)、300bp)
2. Proinsulin 2 (gtggatgcgc ttcctgcccc tg(配列番号3) 及び gtagagggag cagatgctgg tg(配列番号4)、300bp)
3. Glucagon (tcatgacgtt tggcaagtt(配列番号5) 及び cagaggagaa ccccagatca(配列番号6)、202bp)
4. Somatostatin (gacctgcgaa ctagactgac(配列番号7) 及び tttgggggag agggatcag(配列番号8)、294bp)
5. Pax 4(gctttgtacc caggacaagg ct(配列番号9)及び gaggtgtcac tggaacatct ac(配列番号10)、552bp)
6. Pax 6(aaccagagaa gacaggccag(配列番号11) 及び aggttcactc ccgggaagaa(配列番号12)、420bp)
7. PDX1(ggccacacag ctctacaagg(配列番号13) 及び ttccacttca tgcgacggtt(配列番号14)、582bp)
8. G3PDH(accacagtcc atgccatcac(配列番号15) 及び tccaccaccc tgttgctgta(配列番号16)、452bp)
1. Proinsulin 1 (gttggtgcac ttcctacccc tg (SEQ ID NO: 1) and gtagagggag cagatgctgg tg (SEQ ID NO: 2), 300 bp)
2. Proinsulin 2 (gtggatgcgc ttcctgcccc tg (SEQ ID NO: 3) and gtagagggag cagatgctgg tg (SEQ ID NO: 4), 300 bp)
3. Glucagon (tcatgacgtt tggcaagtt (SEQ ID NO: 5) and cagaggagaa ccccagatca (SEQ ID NO: 6), 202 bp)
4. Somatostatin (gacctgcgaa ctagactgac (SEQ ID NO: 7) and tttgggggag agggatcag (SEQ ID NO: 8), 294 bp)
5. Pax 4 (gctttgtacc caggacaagg ct (SEQ ID NO: 9) and gaggtgtcac tggaacatct ac (SEQ ID NO: 10), 552 bp)
6. Pax 6 (aaccagagaa gacaggccag (SEQ ID NO: 11) and aggttcactc ccgggaagaa (SEQ ID NO: 12), 420 bp)
7. PDX1 (ggccacacag ctctacaagg (SEQ ID NO: 13) and ttccacttca tgcgacggtt (SEQ ID NO: 14), 582 bp)
8. G3PDH (accacagtcc atgccatcac (SEQ ID NO: 15) and tccaccaccc tgttgctgta (SEQ ID NO: 16), 452 bp)

結果を図2に示す。Proinsulin 1、Proinsulin 2およびPDX-1のmRNAの発現が明瞭に認められた。また、タンパクの発現をWestern Blotにより調べた結果を図3に示す。Western Blotは以下の通り行った。培養した細胞について、培地を除去し、タンパク質溶解剤(Cytobaster Novagen製など)を用いてタンパク質を回収した。ソニケーターで懸濁・加温し、タンパク質濃度1mg/mlに調整したものをサンプルとし、サンプルを10%アクリルアミドゲルを用いて電気泳動した。電気泳動したゲルに含まれるタンパク質分画をPVDFメンブレンに転写し、最後に抗インスリンの1次抗体およびペルオキシダーゼ標識した抗1次抗体の2次抗体で目的のタンパク質を検出した。   The results are shown in FIG. Proinsulin 1, Proinsulin 2 and PDX-1 mRNA expression was clearly observed. Moreover, the result of having investigated the expression of protein by Western Blot is shown in FIG. Western Blot was performed as follows. For the cultured cells, the medium was removed and the protein was recovered using a protein lysing agent (such as Cytobaster Novagen). The sample was suspended and heated with a sonicator and adjusted to a protein concentration of 1 mg / ml, and the sample was electrophoresed using a 10% acrylamide gel. The protein fraction contained in the electrophoresed gel was transferred to a PVDF membrane, and finally the target protein was detected with a primary antibody of anti-insulin and a secondary antibody of peroxidase-labeled anti-primary antibody.

一次抗体:Goat anti-Insulin抗体(Santa Cruz sc-7838, 1:200)
二次抗体:Horseradish peroxides-conjugated anti-Goat IgG抗体(Pierce 31402, 1:5000)
とした。図3に示す通り、Insulinの発現が認められた。
Primary antibody: Goat anti-Insulin antibody (Santa Cruz sc-7838, 1: 200)
Secondary antibody: Horseradish peroxides-conjugated anti-Goat IgG antibody (Pierce 31402, 1: 5000)
It was. As shown in FIG. 3, the expression of insulin was observed.

分化した細胞の割合について顕微鏡の目視で確認した結果、本発明の方法ではインスリン陽性細胞が高い割合であった。   As a result of confirming the ratio of differentiated cells with a microscope, the ratio of insulin-positive cells was high in the method of the present invention.

骨髄間質細胞株を分化誘導することにより、膵臓発生のマスター遺伝子pdx-1やProinsulin 1、Proinsulin 2の発現が見られ、さらに、Insulinタンパクの発現が見られたことから、この細胞はβ細胞へ分化したことが確認できた。細胞株からの分化誘導であるため、この実験では周囲に存在していた膵臓細胞との細胞融合の可能性はない。また、培地へ添加したInsulinが細胞内へ取り込まれたものを検出した可能性があるが、分化した細胞内に顆粒が観察され、ProinsulinのmRNAの発現が見られたことから、培地のInsulin以外の寄与が認められる。   By inducing differentiation of the bone marrow stromal cell line, expression of pancreatic development master genes pdx-1, Proinsulin 1 and Proinsulin 2 was observed, and further, the expression of insulin protein was observed. It was confirmed that it was differentiated. Due to differentiation induction from the cell line, there is no possibility of cell fusion with the pancreatic cells present in this experiment. Insulin added to the medium may have been detected in cells, but granules were observed in differentiated cells and expression of mRNA for Proinsulin. This contribution is recognized.

以上、骨髄間質細胞からの株化細胞について述べたが、脂肪組織、胎盤、臍帯血や末梢血中の細胞にも骨髄間質細胞と近似した分化能を有する細胞が存在することから、同様の処理によりβ細胞へ分化可能であることが予想される。さらに一般の体性幹細胞やES細胞または脱分化させた成熟細胞を同様の処理によりβ細胞へ分化させることも可能と予想される。   As described above, cell lines derived from bone marrow stromal cells have been described. Since cells in adipose tissue, placenta, umbilical cord blood and peripheral blood also have differentiation potential similar to bone marrow stromal cells, It is expected that the cells can be differentiated into β cells. Furthermore, it is expected that general somatic stem cells, ES cells, or dedifferentiated mature cells can be differentiated into β cells by the same treatment.

本発明の方法によれば、骨髄間質などの採取が容易な間葉系幹細胞から膵臓β細胞を再生することができるので、本発明の方法で再生した膵臓β細胞は、糖尿病に対するβ細胞の移植治療のための細胞源として有効である。また、本発明では株化細胞を用いるので、継代を繰り返すことにより大量の細胞を得ることができる。また保存しておき必要時に再度分化させて移植することもできる。本発明の方法では、遺伝子導入や特殊なタンパク質やサイトカインを用いないことから、臨床応用が容易である。   According to the method of the present invention, pancreatic β cells can be regenerated from mesenchymal stem cells that can be easily collected, such as bone marrow stroma. Therefore, the pancreatic β cells regenerated by the method of the present invention are β cells for diabetes. It is effective as a cell source for transplantation therapy. In addition, since a cell line is used in the present invention, a large number of cells can be obtained by repeated passage. It can also be stored and differentiated and transplanted again when necessary. Since the method of the present invention does not use gene transfer or special proteins or cytokines, clinical application is easy.

図1は、再生したβ細胞を示す。FIG. 1 shows regenerated β cells. 図2は、再生したβ細胞のmRNA発現を示す。FIG. 2 shows mRNA expression of regenerated β cells. 図3は、再生したβ細胞のタンパク発現を示す。FIG. 3 shows protein expression of regenerated β cells. 図4は、β細胞の分化・培養装置図を示す。1 細胞容器、2 配管、3 培養容器、4 分化誘導因子リザーバー群、5 培地のリザーバー、6 コンピュータ、7 ポンプ機構、8 循環機構、9 加熱・冷却機構、10 光学的モニター系、11 化学センサー、12 容器FIG. 4 shows a differentiation / culture apparatus diagram of β cells. 1 cell container, 2 pipes, 3 culture containers, 4 differentiation inducer reservoir groups, 5 medium reservoir, 6 computer, 7 pump mechanism, 8 circulation mechanism, 9 heating / cooling mechanism, 10 optical monitoring system, 11 chemical sensor, 12 containers

Claims (10)

間質から採取した幹細胞を分化誘導因子を添加した培地で培養することによりインスリン発現細胞を取得することを含む、膵臓β細胞を再生する方法。 A method for regenerating pancreatic β cells, comprising obtaining insulin-expressing cells by culturing stem cells collected from stroma in a medium to which a differentiation-inducing factor is added. 株化した間質幹細胞を分化誘導因子を添加した培地で培養することによりインスリン発現細胞を取得する、請求項1に記載の方法。 The method according to claim 1, wherein insulin-expressing cells are obtained by culturing established stromal stem cells in a medium to which a differentiation-inducing factor is added. 間葉組織から採取し株化した間質幹細胞を分化誘導因子を添加した培地で培養することによりインスリン発現細胞を取得する、請求項1及び2に記載の方法。 The method according to claim 1 or 2, wherein insulin-expressing cells are obtained by culturing stromal stem cells collected from mesenchymal tissue and established in a medium supplemented with a differentiation-inducing factor. 間葉組織が、骨髄、脂肪組織、末梢血、臍帯血、又は胎盤である、請求項1から3の何れかに記載の方法。 The method according to any one of claims 1 to 3, wherein the mesenchymal tissue is bone marrow, adipose tissue, peripheral blood, umbilical cord blood, or placenta. 間質から採取した幹細胞を、Transferrin、Insulin、sodium selenite、血清アルブミン、Ascorbic acid、dexamethasone、EGF、Progesterone、及びNicotinamideのいずれか1種以上を添加した培地で培養することによりインスリン発現細胞を取得する、請求項1から4の何れかに記載の方法。 Insulin-expressing cells are obtained by culturing stem cells collected from the stroma in a medium supplemented with one or more of Transferrin, Insulin, sodium selenite, serum albumin, Ascorbic acid, dexamethasone, EGF, Progesterone, and Nicotinamide The method according to claim 1. 間質から採取した幹細胞を、Transferrin、sodium selenite、血清アルブミン、Ascorbic acid、dexamethasone、及びProgesteroneのいずれか1種以上を添加した培地で培養することによりインスリン発現細胞を取得する、請求項1から4の何れかに記載の方法。 Insulin-expressing cells are obtained by culturing stem cells collected from the stroma in a medium containing at least one of Transferrin, sodium selenite, serum albumin, Ascorbic acid, dexamethasone, and Progesterone. The method in any one of. 骨髄より採取した細胞を継代培養して骨髄間質細胞株を作製し、この骨髄間質細胞株をFBS、Ascorbic acid、及びdexamethasoneを加えた培地で培養し、その後、培地をFBS、Transferrin、Insulin、sodium selenite、BSA、Ascorbic acid、dexamethasone、EGF、Progesterone、及びNicotinamideを加えた培地に変更して培養を行うことによってインスリン発現細胞を取得する、請求項1から6の何れかに記載の方法。 Cells collected from the bone marrow are subcultured to produce a bone marrow stromal cell line, this bone marrow stromal cell line is cultured in a medium containing FBS, Ascorbic acid, and dexamethasone, and then the medium is FBS, Transferrin, The method according to any one of claims 1 to 6, wherein insulin-expressing cells are obtained by culturing by changing to a medium to which insulin, sodium selenite, BSA, ascorbic acid, dexamethasone, EGF, progesterone, and nicotinamide are added. . 体性幹細胞、ES細胞または脱分化させた成熟細胞をTransferrin、Insulin、sodium selenite、血清アルブミン、Ascorbic acid、dexamethasone、EGF、Progesterone、及びNicotinamideのいずれか1種以上を添加した培地で培養することによりインスリン発現細胞を取得することを含む、膵臓β細胞を再生する方法。 By culturing somatic stem cells, ES cells or dedifferentiated mature cells in a medium supplemented with one or more of Transferrin, Insulin, sodium selenite, serum albumin, Ascorbic acid, dexamethasone, EGF, Progesterone, and Nicotinamide A method for regenerating pancreatic β cells, comprising obtaining insulin-expressing cells. 体性幹細胞、ES細胞または脱分化させた成熟細胞を培養する密閉された容器と、Transferrin、Insulin、sodium selenite、血清アルブミン、Ascorbic acid、dexamethasone、EGF、Progesterone、及びNicotinamideのいずれか1種以上を時間的に制御された順序かつ制御された量で、該容器へ添加する機構と、制御された時間に培地を交換する機構と、滅菌された空気を循環させる機構と、該容器の温度を制御する機構と、該細胞の培養状態をモニターする機構と、該細胞を該容器へ充填および容器から排出する機構とを備えた、膵臓β細胞の再生装置。 A sealed container for culturing somatic stem cells, ES cells or dedifferentiated mature cells, and one or more of Transferrin, Insulin, sodium selenite, serum albumin, Ascorbic acid, dexamethasone, EGF, Progesterone, and Nicotinamide A mechanism for adding to the container in a time-controlled order and in a controlled amount, a mechanism for changing the medium at a controlled time, a mechanism for circulating sterilized air, and controlling the temperature of the container An apparatus for regenerating pancreatic β cells, comprising: a mechanism for monitoring the culture state of the cells; and a mechanism for filling and discharging the cells from the container. 体性幹細胞、ES細胞または脱分化させた成熟細胞を増殖させ、Transferrin、Insulin、sodium selenite、血清アルブミン、Ascorbic acid、dexamethasone、EGF、Progesterone、及びNicotinamideのいずれか1種以上を加えた培地で培養することにより膵臓β細胞を再生し、再生した膵臓β細胞を糖尿病患者に移植することを含む、糖尿病の治療方法。 Somatic stem cells, ES cells or dedifferentiated mature cells are grown and cultured in a medium containing at least one of Transferrin, Insulin, sodium selenite, serum albumin, Ascorbic acid, dexamethasone, EGF, Progesterone, and Nicotinamide A method for treating diabetes comprising regenerating pancreatic β cells by transplanting the regenerated pancreatic β cells to a diabetic patient.
JP2007514482A 2005-04-26 2006-03-02 Pancreatic β-cell regeneration method and apparatus Expired - Fee Related JP4913730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007514482A JP4913730B2 (en) 2005-04-26 2006-03-02 Pancreatic β-cell regeneration method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005127686 2005-04-26
JP2005127686 2005-04-26
PCT/JP2006/303948 WO2006117925A1 (en) 2005-04-26 2006-03-02 METHOD AND DEVICE FOR REGENERATING PANCREATIC β-CELLS
JP2007514482A JP4913730B2 (en) 2005-04-26 2006-03-02 Pancreatic β-cell regeneration method and apparatus

Publications (2)

Publication Number Publication Date
JPWO2006117925A1 true JPWO2006117925A1 (en) 2008-12-18
JP4913730B2 JP4913730B2 (en) 2012-04-11

Family

ID=37307731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007514482A Expired - Fee Related JP4913730B2 (en) 2005-04-26 2006-03-02 Pancreatic β-cell regeneration method and apparatus

Country Status (2)

Country Link
JP (1) JP4913730B2 (en)
WO (1) WO2006117925A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101601378B (en) * 2009-07-20 2012-09-05 同昕生物技术(北京)有限公司 High-efficiency rapid bladder cancer urinalysis kit and urinary cell active preservative fluid
KR102203056B1 (en) * 2011-12-22 2021-01-14 얀센 바이오테크 인코포레이티드 Differentiation of human embryonic stem cells into single hormonal insulin positive cells
EP3556842A4 (en) * 2017-01-20 2020-01-15 FUJIFILM Corporation Cell culture apparatus and cell culture method

Also Published As

Publication number Publication date
JP4913730B2 (en) 2012-04-11
WO2006117925A1 (en) 2006-11-09

Similar Documents

Publication Publication Date Title
US10413571B2 (en) Kidney-derived cells and methods of use in tissue repair and regeneration
JP5371445B2 (en) Method for culturing adipose tissue-derived cells and use thereof
US20190367883A1 (en) Regulating stem cells
JP2021530232A (en) Cells differentiated from immunomodulated pluripotent cells
BR112014020119A2 (en) culture of mesenchymal stem cells
Pan et al. Examining the therapeutic potential of various stem cell sources for differentiation into insulin-producing cells to treat diabetes
EP1934332B1 (en) Methods for differentiating stem cells and use thereof in the treatment of dental conditions
JPWO2013146992A1 (en) Method for producing dental pulp-derived pluripotent stem cells
AU2018289935A1 (en) Treatment agent for epidermolysis bullosa
JP4913730B2 (en) Pancreatic β-cell regeneration method and apparatus
Day Epithelial stem cells and tissue engineered intestine
CN112891374A (en) Method of treating the effects of stroke
EP3013945B1 (en) Cortical bone-derived stem cells
Young et al. Dental Pulp Stem Cells: A review of factors that influence the therapeutic potential of stem cell isolates
JP2023513847A (en) Methods of treating chronic graft-versus-host disease
WO2018225703A1 (en) Method for preparing differentiation-induced cells
Hojjat et al. The differentiation and generation of glucose-sensitive beta like-cells from menstrual blood-derived stem cells using an optimized differentiation medium with platelet-rich plasma (PRP)
Dong et al. Protective Effects of Bone Marrow–Derived Mesenchymal Stem Cells on Insulin Secretion and Inflammation in the Treatment of Severe Acute Pancreatitis in Rats
Narayanan et al. Ductal cell reprograming to insulin-producing cells as a potential beta cell replacement source for islet auto-transplant recipients
WO2021227573A1 (en) Xeno-free culture medium and method for expansion of mesenchymal stem cells by means of using same
Babiker et al. In vitro Differentiation of Adipose-Derived Mesenchymal Stem Cell into Insulin-Producing Cells
Lim et al. The transdifferentiation of human dedifferentiated fat cells into fibroblasts: An in vitro experimental pilot study
WO2015190522A1 (en) Method for producing endodermal stem cells
JP2020072731A (en) Cell having ability to form stratified epithelial tissue, and method for producing the same
JP2005287478A (en) Human fat precursor cell line and method for using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120119

R150 Certificate of patent or registration of utility model

Ref document number: 4913730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees