JPWO2006112360A1 - Polonium gasification method - Google Patents

Polonium gasification method Download PDF

Info

Publication number
JPWO2006112360A1
JPWO2006112360A1 JP2007526840A JP2007526840A JPWO2006112360A1 JP WO2006112360 A1 JPWO2006112360 A1 JP WO2006112360A1 JP 2007526840 A JP2007526840 A JP 2007526840A JP 2007526840 A JP2007526840 A JP 2007526840A JP WO2006112360 A1 JPWO2006112360 A1 JP WO2006112360A1
Authority
JP
Japan
Prior art keywords
polonium
chromobacterium
gasification
microorganisms
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007526840A
Other languages
Japanese (ja)
Inventor
則幸 百島
則幸 百島
紋子 福田
紋子 福田
昭夫 石田
昭夫 石田
千恵 吉永
千恵 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumamoto University NUC
Original Assignee
Kumamoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumamoto University NUC filed Critical Kumamoto University NUC
Publication of JPWO2006112360A1 publication Critical patent/JPWO2006112360A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Abstract

本発明の目的は、ポロニウムのガス化を担う微生物種を明らかにし、そのガス化能力を比較検討することで高いガス化能力を持つ微生物を特定し、微生物によるポロニウム分離技術とバイオリメディエーション技術を提供することである。本発明によれば、Chromobacterium属(クロモバクテリウム)又はEscherichia属(大腸菌)に属する微生物を用いることを特徴とする、ポロニウムのガス化方法が提供される。The purpose of the present invention is to clarify the microorganism species responsible for gasification of polonium, identify microorganisms with high gasification ability by comparing their gasification ability, and provide polonium separation technology and bioremediation technology by microorganisms It is to be. According to the present invention, there is provided a gasification method for polonium characterized by using a microorganism belonging to the genus Chromobacterium (chromobacterium) or the genus Escherichia (E. coli).

Description

本発明は、Chromobacterium属(クロモバクテリウム)又はEscherichia属(大腸菌)に属する微生物を用いたポロニウムのガス化方法に関する。   The present invention relates to a method for gasifying polonium using a microorganism belonging to the genus Chromobacterium (chromobacterium) or the genus Escherichia (E. coli).

微生物は化合物や物質を作り出したり分解したりすることで、自然界や産業利用において重要な役割を演じている。微生物の作用は炭素、窒素、水素などの有機化合物の構成元素だけでなく金属元素にも及んでいる。微生物の金属元素への作用のひとつに、金属元素のガス化がある(J. S. Thayer, Biological methylation of less-studied elements, Appl. Organometal. Chem., 16, 677-691 (2002))。すなわち本来は不揮発性である金属元素を揮発性化合物に変えることで、これらの元素を水相や固相から気相へ移行させる。水銀、砒素などは微生物の働きによりガス化して大気へ移行することが知られている。   Microorganisms play an important role in the natural world and industrial use by creating and decomposing compounds and substances. The action of microorganisms extends not only to constituent elements of organic compounds such as carbon, nitrogen and hydrogen but also to metal elements. One of the effects of microorganisms on metal elements is gasification of metal elements (J. S. Thayer, Biological methylation of less-studied elements, Appl. Organometal. Chem., 16, 677-691 (2002)). That is, by changing a metal element that is originally non-volatile into a volatile compound, these elements are transferred from an aqueous phase or a solid phase to a gas phase. It is known that mercury, arsenic, and the like are gasified by the action of microorganisms and transferred to the atmosphere.

ポロニウムは周期表で16属に位置し、酸素、硫黄、セレン、テルルの下にある元素で、同位体はすべて放射性の金属元素である。環境中ではウラン系列に属するPo-210(半減期138日)が最も長寿命の放射性核種であり、他にPo-214やPo-218などの短半減期核種がある。ポロニウムはアルファ壊変核種であるため、人の放射線被ばくの観点からは体内被ばくが重要である。最近、我々は室内実験においてポロニウムが微生物の作用によりガス化される可能性を示した(N. Momoshima, Li-X. Song, S. Osaki, Y. Maeda, Biologically induced Po emission from fresh water, J. Environ. Radioactivity, 63, 187-197 (2002);及びN. Momoshima, Li-X. Song, S. Osaki, Y. Maeda, Formation and emission of volatile polonium compound by microbial activity and polonium methylation with methylcobalamin. Environ. Sci. Technol., 35, 2956-2960 (2001))。しかし、ガス化を担う微生物種の特定やそのガス化能力については不明であった。   Polonium is an element under oxygen, sulfur, selenium, and tellurium, and isotope is a radioactive metal element. In the environment, Po-210 belonging to the uranium series (half-life 138 days) is the longest-lived radionuclide, and there are other short-lived nuclides such as Po-214 and Po-218. Polonium is an alpha-disrupting nuclide, so internal exposure is important from the viewpoint of human radiation exposure. Recently, we have shown that polonium may be gasified by the action of microorganisms in laboratory experiments (N. Momoshima, Li-X. Song, S. Osaki, Y. Maeda, Biologically induced Po emission from fresh water, J Environ. Radioactivity, 63, 187-197 (2002); and N. Momoshima, Li-X. Song, S. Osaki, Y. Maeda, Formation and emission of volatile polonium compound by microbial activity and polonium methylation with methylcobalamin. Environ Sci. Technol., 35, 2956-2960 (2001)). However, the identification of the microbial species responsible for gasification and its gasification ability were unknown.

実験室や工場レベルでのポロニウムと他放射性核種の分離は放射化学分離法で行っている。すなわちイオン交換法・溶媒抽出法などの基本的な既存の分析技術の組み合わせである。これまで、微生物を用いてポロニウムをガスとして分離回収する技術への応用は検討されておらず、微生物のガス化を利用した産業上のポロニウム分離法の報告例もない。また、微生物によるポロニウムガス化を利用すればポロニウムで汚染された環境を浄化することも可能であるが、このような観点からのバイオリメディエーション技術への展開もない。   Separation of polonium and other radionuclides at the laboratory and factory level is performed by radiochemical separation. In other words, it is a combination of basic existing analytical techniques such as ion exchange and solvent extraction. Until now, the application to the technique of separating and recovering polonium as gas using microorganisms has not been studied, and there is no report of an industrial polonium separation method using gasification of microorganisms. In addition, if polonium gasification by microorganisms is used, it is possible to purify the environment polluted with polonium, but there is no development of bioremediation technology from this viewpoint.

J. S. Thayer, Biological methylation of less-studied elements, Appl. Organometal. Chem., 16, 677-691 (2002).J. S. Thayer, Biological methylation of less-studied elements, Appl. Organometal. Chem., 16, 677-691 (2002). N. Momoshima, Li-X. Song, S. Osaki, Y. Maeda, Biologically induced Po emission from fresh water, J. Environ. Radioactivity, 63, 187-197 (2002).N. Momoshima, Li-X. Song, S. Osaki, Y. Maeda, Biologically induced Po emission from fresh water, J. Environ.Radioactivity, 63, 187-197 (2002). N. Momoshima, Li-X. Song, S. Osaki, Y. Maeda, Formation and emission of volatile polonium compound by microbial activity and polonium methylation with methylcobalamin. Environ. Sci. Technol., 35, 2956-2960 (2001).N. Momoshima, Li-X. Song, S. Osaki, Y. Maeda, Formation and emission of volatile polonium compound by microbial activity and polonium methylation with methylcobalamin.Environ. Sci. Technol., 35, 2956-2960 (2001).

ポロニウムは周期表の16属に属し同位体はすべて放射性である。環境中ではウラン系列のPo-210(半減期138日)が最も長寿命の放射性核種である。ポロニウムはアルファ壊変核種であるため、被ばくの観点からは体内被ばくが重要である。室内実験においてポロニウムが微生物の作用によりガス化されるという結果がこれまで得られているが、ガス化を担っている微生物の種類や活性の程度は不明である。   Polonium belongs to the 16 genera of the periodic table and all isotopes are radioactive. In the environment, the uranium series Po-210 (half-life 138 days) is the long-lived radionuclide. Polonium is an alpha-disrupting nuclide, so internal exposure is important from the point of view of exposure. In the laboratory experiment, the result that polonium is gasified by the action of microorganisms has been obtained so far, but the type and degree of activity of microorganisms responsible for gasification are unknown.

本発明では、ポロニウムガス化の実態を解明すること及び微生物を用いてポロニウムを選択的に水溶液から気相へ取り出すことができるバイオリメディエーション技術への展開を目的とした。即ち、本発明の目的は、ポロニウムのガス化を担う微生物種を明らかにし、そのガス化能力を比較検討することで高いガス化能力を持つ微生物を特定し、微生物によるポロニウム分離技術とバイオリメディエーション技術を提供することにある。 The object of the present invention is to elucidate the actual state of polonium gasification and to develop a bioremediation technique that can selectively remove polonium from an aqueous solution into a gas phase using microorganisms. That is, the object of the present invention is to clarify the microbial species responsible for gasification of polonium, to identify microorganisms having high gasification ability by comparing the gasification ability, and to polonium separation technology and bioremediation technology by microorganisms Is to provide.

種名が明らかである微生物を用いてポロニウムのガス化能力を詳細に調べた。その結果Chromobacterium属に属する微生物が特に高いポロニウムガス化能力を有していることがわかった。ガス化されたポロニウムは、それらを含む空気を酸性溶液中に通せば再び回収できることがわかった。以上の発見に基づいて本発明を完成させた。   The polonium gasification ability was investigated in detail using microorganisms with known species names. As a result, it was found that microorganisms belonging to the genus Chromobacterium have particularly high polonium gasification ability. It has been found that gasified polonium can be recovered again by passing air containing them through an acidic solution. The present invention has been completed based on the above findings.

即ち、本発明によれば、Chromobacterium属(クロモバクテリウム)又はEscherichia属(大腸菌)に属する微生物を用いることを特徴とする、ポロニウムのガス化方法が提供される。   That is, according to the present invention, there is provided a gasification method for polonium characterized by using a microorganism belonging to the genus Chromobacterium (chromobacterium) or the genus Escherichia (E. coli).

本発明のある態様によれば、ポロニウムを含有する試料をChromobacterium属(クロモバクテリウム)又はEscherichia属(大腸菌)に属する微生物に接触させ、上記微生物の作用により試料中のポロニウムをガス化することを含む、ポロニウムのガス化方法が提供される。   According to an aspect of the present invention, a sample containing polonium is brought into contact with a microorganism belonging to the genus Chromobacterium (Chromobacterium) or Escherichia (E. coli), and the polonium in the sample is gasified by the action of the microorganism. A method of gasifying polonium is provided.

好ましくは、微生物としてChromobacterium violaceum又はEscherichia coli K-12を使用する。   Preferably, Chromobacterium violaceum or Escherichia coli K-12 is used as the microorganism.

本発明のある態様によれば、上記した本発明の方法によりガス化したポロニウムを酸性溶液で無機化してから回収する、ポロニウムの回収方法が提供される。   According to an aspect of the present invention, there is provided a method for recovering polonium, wherein the polonium gasified by the above-described method of the present invention is mineralized with an acidic solution and then recovered.

本発明は、高いポロニウムガス化能力を有するChromobacterium属(クロモバクテリウム)又はEscherichia属(大腸菌)に属する微生物によるポロニウム分離技術とバイオリメディエーション技術を提供するものである。   The present invention provides a polonium separation technique and a bioremediation technique by a microorganism belonging to the genus Chromobacterium (chromobacterium) or the genus Escherichia (E. coli) having high polonium gasification ability.

本発明において用いる微生物は、Chromobacterium属(クロモバクテリウム)又はEscherichia属(大腸菌)に属する微生物である。Chromobacterium属(クロモバクテリウム)に属する微生物の具体例としては、Chromobacterium violaceum (JCM1249)、及びChromobacterium iodinum (Davis株)などが挙げられる。Escherichia属(大腸菌)に属する微生物の具体例としては、Escherichia coli K-12(IFO3301株)、Escherichia coli B(IFO13168株)、Escherichia coli W-1485 (IFO3302株)、及びEscherichia coli W-3110 (IFO12713株)などが挙げられる。Chromobacterium violaceumは、例えば、独立行政法人 理化学研究所バイオリソースセンター 微生物材料開発室より、登録番号JCM1249として入手可能である。また、Escherichia coli K-12は、例えば、独立行政法人製品評価技術基盤機構 生物遺伝資源部門(NBRC)よりNBRC番号NBRC 3301(IFO3301)として入手可能である。但し、本発明で用いることができる微生物は、上記菌株に限定されるわけではなく、Chromobacterium属(クロモバクテリウム)又はEscherichia属(大腸菌)に属する微生物であって、ポロニウムをガス化する作用を有する菌株であれば任意の菌株を使用することができ、またこれらの菌株の変異株などを用いることもできる。   The microorganism used in the present invention is a microorganism belonging to the genus Chromobacterium (chromobacterium) or the genus Escherichia (E. coli). Specific examples of microorganisms belonging to the genus Chromobacterium (Chromobacterium) include Chromobacterium violaceum (JCM1249), Chromobacterium iodinum (Davis strain), and the like. Specific examples of microorganisms belonging to the genus Escherichia (E. coli) include Escherichia coli K-12 (IFO3301 strain), Escherichia coli B (IFO13168 strain), Escherichia coli W-1485 (IFO3302 strain), and Escherichia coli W-3110 (IFO12713). Etc.). Chromobacterium violaceum is available as, for example, registration number JCM1249 from the Institute for Microbial Materials Development, RIKEN BioResource Center. In addition, Escherichia coli K-12 is available as, for example, NBRC No. NBRC 3301 (IFO3301) from the National Institute of Technology and Biological Resources (NBRC). However, the microorganisms that can be used in the present invention are not limited to the above strains, and belong to the genus Chromobacterium (chromobacterium) or the genus Escherichia (E. coli), and have an action of gasifying polonium. Any strain can be used as long as it is a strain, and mutant strains of these strains can also be used.

Chromobacterium属(クロモバクテリウム)又はEscherichia属(大腸菌)に属する微生物を培養する培地としては通常使用されるものを使用することができる。微生物を培養する培地は、通常は、該微生物が資化し得る炭素源、窒素源、無機塩類等を含有し、天然培地又は合成培地のいずれでもよい。炭素源としては、それぞれの微生物が資化し得るものであればよく、グルコース、フラクトース、スクロース、これらを含有する糖蜜、デンプンあるいはデンプン加水分解物等の炭水化物、酢酸、プロピオン酸等の有機酸、エタノール、プロパノールなどのアルコール類が用いられる。窒素源としては、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム、リン酸アンモニウム、等の各種無機酸や有機酸のアンモニウム塩、その他含窒素化合物、並びに、ペプトン、肉エキス、酵母エキス、コーンスチープリカー、カゼイン加水分解物、大豆粕および大豆粕加水分解物、各種発酵菌体およびその消化物等が用いられる。無機物としては、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウム等が用いられる。   As a culture medium for culturing microorganisms belonging to the genus Chromobacterium (chromobacterium) or the genus Escherichia (E. coli), those usually used can be used. A medium for culturing a microorganism usually contains a carbon source, a nitrogen source, inorganic salts and the like that can be assimilated by the microorganism, and may be either a natural medium or a synthetic medium. Any carbon source may be used as long as it can be assimilated by each microorganism. Glucose, fructose, sucrose, molasses containing these, carbohydrates such as starch or starch hydrolysate, organic acids such as acetic acid and propionic acid, ethanol Alcohols such as propanol are used. As a nitrogen source, ammonium salts of various inorganic acids and organic acids such as ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, and ammonium phosphate, other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn steep liquor, Casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermented bacterial cells and digested products thereof are used. As the inorganic substance, monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate and the like are used.

培養は、振盪培養または深部通気撹拌培養などの好気的条件下で行うことができる。培養温度は15〜40℃がよく、培養中pHは、3.0〜9.0に保持することが好ましい。pHの調整は、無機あるいは有機の酸、アルカリ溶液、尿素、炭酸カルシウム、アンモニアなどを用いて行うことができる。   The culture can be performed under aerobic conditions such as shaking culture or deep aeration stirring culture. The culture temperature is preferably 15 to 40 ° C., and the pH is preferably maintained at 3.0 to 9.0 during the culture. The pH can be adjusted using an inorganic or organic acid, an alkaline solution, urea, calcium carbonate, ammonia or the like.

本発明では、ポロニウムを含有する試料をChromobacterium属(クロモバクテリウム)又はEscherichia属(大腸菌)に属する微生物に接触させることによって、上記微生物の作用により試料中のポロニウムをガス化する。ポロニウムを含有する試料の種類は特に限定されない。例えば、核廃棄物処理施設やウラン関連施設で排出される廃液や、ポロニウムで汚染された土壌や水などの環境媒体を試料として使用することができる。   In the present invention, by contacting a sample containing polonium with a microorganism belonging to the genus Chromobacterium (chromobacterium) or the genus Escherichia (E. coli), the polonium in the sample is gasified by the action of the microorganism. The kind of the sample containing polonium is not particularly limited. For example, a waste liquid discharged from a nuclear waste treatment facility or a uranium-related facility, or an environmental medium such as soil or water contaminated with polonium can be used as a sample.

ポロニウムを含有する試料を微生物に接触させる方法としては、試料に微生物の培養液を添加する方法、試料に微生物の菌体を添加する方法、又は試料に担体に吸着させた菌体を添加する方法などが挙げられる。添加する菌体量は特に限定されないが、105〜109個/ml程度が好ましい。As a method of bringing a sample containing polonium into contact with a microorganism, a method of adding a microorganism culture solution to the sample, a method of adding a microorganism of microorganisms to the sample, or a method of adding a microorganism adsorbed to a carrier to the sample Etc. The amount of cells to be added is not particularly limited, but is preferably about 10 5 to 10 9 cells / ml.

また、ポロニウムを含有する試料が土壌などの環境媒体である場合には、上記微生物を土壌と接触させることによって土壌中のポロニウムを気化させて除去することにより、土壌を浄化することができる。このような場合、反応槽を用いてポロニウムの気化を行ってもよいが、土壌 に微生物を直接散布又は注入することもできる。汚染の現場で処理を行えば、土壌の移動や浄化後の復土などのコストを省くことができる。散布又は注入する微生物の量は、処理する面積や土壌中のポロニウム濃度によって適宜設定することができる。   When the sample containing polonium is an environmental medium such as soil, the soil can be purified by vaporizing and removing polonium in the soil by bringing the microorganism into contact with the soil. In such a case, polonium may be vaporized using a reaction tank, but microorganisms can also be sprayed or injected directly into the soil. If treatment is performed at the site of contamination, costs such as soil transfer and reconstitution after purification can be saved. The amount of microorganisms to be sprayed or injected can be appropriately set according to the area to be treated and the polonium concentration in the soil.

また、本発明で用いる微生物は、適当な粒状担体に固定して使用してもよい。粒状担体としては、例えば、多孔質ガラス、セラミックス、金属酸化物、活性炭、カオリナイト、ベントナイト、ゼオライト、シリカゲル、アルミナ、アンスラサイトなどの粒子状担体、デンプン、寒天、キチン、キトサン、ポリビニルアルコール、アルギン酸、ポリアクリルアミド、カラギーナン、アガロース、ゼラチンなどのゲル状担体、セルロース、グルタルアルデヒド、ポリアクリル酸、ウレタンポリマーなどの高分子樹脂やイオン交換樹脂、天然あるいは合成の高分子化合物、例えばセルロースを主成分とする綿、麻、パルプ材、あるいは天然物を変性した高分子アセテート、ポリエステル、ポリウレタンなどを挙げることができる。   Further, the microorganism used in the present invention may be used by being fixed on an appropriate granular carrier. Examples of the particulate carrier include particulate carriers such as porous glass, ceramics, metal oxides, activated carbon, kaolinite, bentonite, zeolite, silica gel, alumina, anthracite, starch, agar, chitin, chitosan, polyvinyl alcohol, and alginic acid. Mainly composed of gel carriers such as polyacrylamide, carrageenan, agarose, gelatin, polymer resins and ion exchange resins such as cellulose, glutaraldehyde, polyacrylic acid and urethane polymers, natural or synthetic polymer compounds such as cellulose Examples thereof include cotton, hemp, pulp material, or polymer acetate, polyester, polyurethane, etc. modified from natural products.

本発明では、上記した方法によりガス化したポロニウムを酸性溶液で無機化してから回収することができる。ここで用いる酸性溶液としては、硝酸、塩酸、硫酸などの無機酸の溶液を挙げることができる。   In the present invention, polonium gasified by the above-described method can be recovered after being mineralized with an acidic solution. Examples of the acidic solution used here include solutions of inorganic acids such as nitric acid, hydrochloric acid, and sulfuric acid.

以下の実施例により本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。   The following examples further illustrate the present invention, but the present invention is not limited to the examples.

ポロニウムガス化能力を調べた微生物とそれらの培養培地及び前培養の条件を表1に示す。   Table 1 shows the microorganisms whose polonium gasification ability was examined, their culture media, and preculture conditions.

Figure 2006112360
Figure 2006112360

ポロニウムガス化能力の評価は、図1に示す実験装置を用いて行った。Po-208トレーサを含む培地20mlを三角フラスコに入れ、120℃で20分加熱滅菌処理した後、前培養した微生物50μl加え30℃で振とう培養を行った(培養実験)。また、Po-208トレーサを三角フラスコに入れ120℃で20分加熱滅菌処理した後、Pb-208トレーサを含まない条件で前培養した後、蒸留水で十分洗浄して調製した懸濁液20mlをフラスコに移し振とう培養した(懸濁実験)。培養中は三角フラスコには0.2μmのメンブランフィルターを通して連続的に空気を導入し、培養液上部の空気をトラップバイアル中の液体シンチレータにバブリングさせることでガス化したポロニウムを捕集した。定期的にトラップバイアルの放射能を液体シンチレーションカウンターで測定することでガス化能力を評価した。   Evaluation of polonium gasification ability was performed using the experimental apparatus shown in FIG. 20 ml of a medium containing Po-208 tracer was placed in an Erlenmeyer flask and sterilized by heating at 120 ° C. for 20 minutes, and then 50 μl of pre-cultured microorganisms were added, followed by shaking culture at 30 ° C. (culture experiment). After placing the Po-208 tracer in an Erlenmeyer flask and sterilizing by heating at 120 ° C for 20 minutes, pre-incubate under conditions that do not include the Pb-208 tracer, and then thoroughly wash with distilled water to prepare 20 ml of the suspension. The flask was transferred to a flask and cultured with shaking (suspension experiment). During the culture, air was continuously introduced into the Erlenmeyer flask through a 0.2 μm membrane filter, and the gasified polonium was collected by bubbling the air above the culture solution to the liquid scintillator in the trap vial. The gasification capacity was evaluated by periodically measuring the radioactivity of the trap vial with a liquid scintillation counter.

(放射能測定の詳細)
トラップバイアルは20mlガラスバイアルを使用し、パーキンエルマー社製Ultima Gold AB液体シンチレータを、それぞれのトラップバイアルに10mlずつ入れた。トラップバイアルは3段で、トラップバイアルに補足されたPo-208から放出される5.1MeVのアルファ線を液体シンチレーションカウンターで測定した。液体シンチレーションカウンターはパッカード社製Tri-Carb2900TRを使用した。3本目のトラップバイアルにはポロニウムの放射能が検出されず、ガス化したポロニウムはすべて前段の2本のトラップバイアルで補足されていた。
(Details of radioactivity measurement)
As the trap vial, a 20 ml glass vial was used, and 10 ml of Ultima Gold AB liquid scintillator manufactured by PerkinElmer was put into each trap vial. The trap vial had three stages, and 5.1 MeV alpha rays emitted from Po-208 supplemented to the trap vial were measured with a liquid scintillation counter. As the liquid scintillation counter, Packard Tri-Carb2900TR was used. No polonium radioactivity was detected in the third trap vial, and all gasified polonium was captured by the two previous trap vials.

(培養実験)
Po-208トレーサを含む培地20mlを三角フラスコに入れ、120℃で20分加熱滅菌処理した後、前培養した微生物を少量加え、図1に示す実験装置を用いて30℃で振とう培養を行った。ガス化率は各トラップバイアルに補足されたポロニウム放射能の合計値である。
(Culture experiment)
Place 20 ml of medium containing Po-208 tracer in an Erlenmeyer flask, heat sterilize at 120 ° C for 20 minutes, add a small amount of pre-cultured microorganism, and perform shaking culture at 30 ° C using the experimental apparatus shown in Fig. 1. It was. The gasification rate is the total value of polonium radioactivity captured in each trap vial.

(培養実験の結果の詳細)
調べた3種類の微生物はいずれもポロニウムのガス化能力を有していることが明らかになったが、その能力には大きな違いが見られた。大腸菌の結果を図2に、枯草菌の結果を図3に、そしてクロモバクテリウムの結果を図4に示す。縦軸はトラップバイアルに捕集されたPo-208の放射能から求めた一日当たりのポロニウムのガス化率で横軸は培養時間を示す。本発明の培養実験で使用した培地の量から判断すると培養開始後24時間で三角フラスコの菌量は飽和に達したと考えられる。このことは、Po-208トレーサは含まないが同一の条件で行った培養実験において、微生物の増殖に伴う培養液の懸濁度の増加を吸光度で測定したところ24時間で吸光度が飽和に達したことから確認される。大腸菌とクロモバクテリウムにおける培養初期に見られた高いガス化率は、微生物増加の対数期、すなわち菌数の初期増加に対応したものと考えられる。しかし、枯草菌ではそのような傾向は観察されていないし、他の微生物と比べると培養期間全体におけるガス化率は一桁から二桁低い。大腸菌は対数期に高いガス化率を示したが、その後のガス化率は相対的に低い値で推移した。一方、クロモバクテリウムは培養開始後に最も大きいガス化率を示し、その後も高いガス化率を持続した。クロモバクテリウムの培養実験において、30℃で行っていた培養温度を316時間〜357時間の間は一時的に0℃に下げて培養を続けた。そして再び30℃に戻した。培養温度0℃ではガス化率は低下しほぼゼロを示したが、ガス化率は30℃に戻すと回復した。培養温度によるガス化率の変化は、ポロニウムのガス化が微生物活動によるものであることを支持している。富栄養状態でクロモバクテリウムは高いポロニウムガス化能力を示すことが明らかになった。
(Details of culture experiment results)
All three types of microorganisms examined were found to have the ability to gasify polonium, but there were significant differences in their ability. The results for E. coli are shown in FIG. 2, the results for Bacillus subtilis are shown in FIG. 3, and the results for Chromobacterium are shown in FIG. The vertical axis indicates the gasification rate of polonium per day determined from the radioactivity of Po-208 collected in the trap vial, and the horizontal axis indicates the culture time. Judging from the amount of the medium used in the culture experiment of the present invention, it is considered that the amount of bacteria in the Erlenmeyer flask reached saturation 24 hours after the start of the culture. This is because, in a culture experiment conducted under the same conditions but not including the Po-208 tracer, the increase in the degree of suspension of the culture broth accompanying the growth of microorganisms was measured by absorbance, and the absorbance reached saturation in 24 hours. It is confirmed from that. The high gasification rate observed in the early stage of culture in E. coli and Chromobacterium is considered to correspond to the logarithmic phase of microbial increase, that is, the initial increase in the number of bacteria. However, such a tendency is not observed in Bacillus subtilis, and the gasification rate in the whole culture period is one to two orders of magnitude lower than that of other microorganisms. Escherichia coli showed a high gasification rate in the logarithmic phase, but the subsequent gasification rate remained relatively low. On the other hand, Chromobacterium showed the highest gasification rate after the start of culture and continued to have a high gasification rate thereafter. In the chromobacterium culture experiment, the culture temperature which had been carried out at 30 ° C. was temporarily lowered to 0 ° C. for 316 hours to 357 hours, and the culture was continued. And it returned to 30 degreeC again. At a culture temperature of 0 ° C, the gasification rate decreased and showed almost zero, but when the gasification rate was returned to 30 ° C, it recovered. The change in the gasification rate with the culture temperature supports that the gasification of polonium is due to microbial activity. It was revealed that chromobacterium showed high polonium gasification ability under eutrophic condition.

(懸濁実験)
高いポロニウムガス化能力を示した大腸菌とクロモバクテリウムについて、Pb-208トレーサを含まない条件で前培養した後、菌を蒸留水で十分洗浄して培地を含まない菌懸濁液を得た。Po-208トレーサを三角フラスコに入れ120℃で20分加熱滅菌処理した後、この菌懸濁液20mlを三角フラスコに移して振とう培養を行いポロニウムのガス化率を測定した。図1の実験装置を使用し、放射能測定は上述の培養実験と同様の方法で行った。蒸留水に懸濁している菌量は培養実験における菌飽和量に等しくなるように調製した。微生物は培地がない貧栄養状態に置かれたことになる。
(Suspension experiment)
Escherichia coli and Chromobacterium, which showed high polonium gasification ability, were pre-cultured under conditions not containing Pb-208 tracer, and then the bacteria were sufficiently washed with distilled water to obtain a cell suspension containing no medium. A Po-208 tracer was placed in an Erlenmeyer flask and sterilized by heating at 120 ° C. for 20 minutes. Then, 20 ml of this bacterial suspension was transferred to the Erlenmeyer flask and cultured with shaking to measure the gasification rate of polonium. Using the experimental apparatus shown in FIG. 1, the radioactivity was measured in the same manner as in the culture experiment described above. The amount of bacteria suspended in distilled water was adjusted to be equal to the amount of bacterial saturation in the culture experiment. Microorganisms have been placed in an oligotrophic state where there is no medium.

(懸濁実験の結果の詳細)
大腸菌の結果を図5にクロモバクテリウムの結果を図6に示す。大腸菌もクロモバクテリウムもポロニウムガス化を行ったが、大腸菌のガス化率は先に行った富栄養状態の培養実験において開始直後に観察された値と比較すると一桁低い値を示した。一方、クロモバクテリウムは貧栄養状態の懸濁液中にも関わらず高いガス化率を示した。このクロモバクテリウム懸濁液を143時間後から790時間までのほぼ27日間4℃で保存した後、再び30℃に戻して培養を続けた。このように長期間に低温で保存したにもかかわらずガス化能力は回復し、クロモバクテリウムの高いポロニウムガス化能力が確認された。1196時間後に栄養源としてトリプトンを懸濁液に添加したところポロニウムのガス化が大幅に増加し、栄養の添加により微生物活性の増加が認められた。また、1363時間後に懸濁液に過酸化水素を加え微生物を殺したところ、ポロニウムのガス化は完全に停止した。
(Details of suspension experiment results)
The results for E. coli are shown in FIG. 5, and the results for Chromobacterium are shown in FIG. Both Escherichia coli and Chromobacterium were subjected to polonium gasification, but the gasification rate of Escherichia coli was an order of magnitude lower than the value observed immediately after the start in the eutrophic culture experiment. On the other hand, Chromobacterium showed a high gasification rate despite being in an oligotrophic suspension. This chromobacterium suspension was stored at 4 ° C. for approximately 27 days from 143 hours to 790 hours, and then returned to 30 ° C. to continue the culture. As described above, the gasification ability recovered despite being stored at a low temperature for a long period of time, and the high polonium gasification ability of Chromobacterium was confirmed. After 1196 hours, when tryptone was added to the suspension as a nutrient source, the gasification of polonium significantly increased, and the addition of nutrients showed an increase in microbial activity. Further, hydrogen peroxide was added to the suspension after 1363 hours to kill microorganisms, and polonium gasification was completely stopped.

(ガス化したポロニウムの回収実験)
図1の実験装置の試験管とトラップバイアルの間に、体積比で0.25%過酸化水素を含む0.5N硝酸を3ml入れた試験管とその後ろに水を3ml入れた試験管を設置し、ガス化したポロニウムを含む空気を硝酸、水、液体シンチレータの順にバブリングさせガス化したポロニウムの回収率を調べた。ガス化したポロニウムを含む空気を一定時間バブリングさせた後、硝酸及び水の各1mlと液体シンチレータ(Ultima Gold AB)10mlをガラスバイアル中で混合し液体シンチレーションカウンター(Tri Carb2900TR)で放射能を測定した。トラップバイアル中の液体シンチレータの放射能は上に述べた方法で測定した。
(Recovery experiment of gasified polonium)
A test tube containing 3 ml of 0.5N nitric acid containing 0.25% hydrogen peroxide in a volume ratio and a test tube containing 3 ml of water are installed between the test tube and trap vial of the experimental apparatus shown in FIG. The recovery rate of gasified polonium was investigated by bubbling nitric acid, water, and liquid scintillator in this order. After bubbling air containing gasified polonium for a certain period of time, 1 ml each of nitric acid and water and 10 ml of liquid scintillator (Ultima Gold AB) were mixed in a glass vial and the radioactivity was measured with a liquid scintillation counter (Tri Carb2900TR). . The radioactivity of the liquid scintillator in the trap vial was measured by the method described above.

(ガス化したポロニウム回収実験の結果の詳細)
硝酸、水、液体シンチレータに見出された放射能の割合を図7に示す。2回実験を行ったところ硝酸トラップへのポロニウムの回収率は95%と98%であり、ほぼ定量的に体積比で0.25%過酸化水素を含む0.5N硝酸で回収された。
(Details of gasification polonium recovery experiment results)
The ratio of radioactivity found in nitric acid, water and liquid scintillators is shown in FIG. Two experiments showed that the recovery rate of polonium in the nitrate trap was 95% and 98%, and it was recovered quantitatively with 0.5N nitric acid containing 0.25% hydrogen peroxide by volume.

本発明によれば、ポロニウムガス化能力が高い微生物種が同定され、これらの微生物を用いることによりガス化したポロニウムを回収することができる。即ち、本発明によれば、放射性核種ポロニウムを微生物でガス化させ、ガス化したポロニウムを再び酸性溶液で無機化して回収する技術が提供される。本発明においては、従来の化学的な分離精製法に頼らずに微生物を利用して簡単にポロニウムを分離することができることから、本発明の方法は、原子力産業や放射能・放射線を利用する産業で広く利用可能な技術であり、例えば、核廃棄物処理施設やウラン関連施設でポロニウムの分離回収技術として利用することができる。また、ポロニウムで汚染された土壌や水などの環境媒体を微生物を利用して浄化するバイオリメディエーション技術として利用でき、例えば、放射能汚染地域の環境浄化のために利用することができる。   According to the present invention, microbial species having high polonium gasification ability are identified, and gasified polonium can be recovered by using these microorganisms. That is, according to the present invention, a technique is provided in which radionuclide polonium is gasified with microorganisms, and the gasified polonium is again mineralized with an acidic solution and recovered. In the present invention, the polonium can be easily separated using microorganisms without relying on the conventional chemical separation and purification method. Therefore, the method of the present invention is applied to the nuclear industry and the industries using radioactivity and radiation. For example, it can be used as a technology for separating and recovering polonium in nuclear waste treatment facilities and uranium-related facilities. Further, it can be used as a bioremediation technique for purifying environmental media such as soil and water contaminated with polonium using microorganisms, and can be used, for example, for environmental purification in radioactively contaminated areas.

図1は、微生物培養装置を示す。FIG. 1 shows a microorganism culture apparatus. 図2は、培養実験における大腸菌のガス化率を示す。FIG. 2 shows the gasification rate of E. coli in the culture experiment. 図3は、培養実験における枯草菌のガス化率を示す。FIG. 3 shows the gasification rate of Bacillus subtilis in the culture experiment. 図4は、培養実験におけるクロモバクテリウムのガス化率を示す。FIG. 4 shows the gasification rate of chromobacterium in the culture experiment. 図5は、懸濁実験における大腸菌のガス化率を示す。FIG. 5 shows the gasification rate of E. coli in the suspension experiment. 図6は、懸濁実験におけるクロモバクテリウムのガス化率を示す。FIG. 6 shows the gasification rate of chromobacterium in the suspension experiment. 図7は、ガス化したポロニウムの硝酸による回収率を示す。FIG. 7 shows the recovery rate of gasified polonium by nitric acid.

Claims (4)

Chromobacterium属(クロモバクテリウム)又はEscherichia属(大腸菌)に属する微生物を用いることを特徴とする、ポロニウムのガス化方法。 A method for gasifying polonium, comprising using a microorganism belonging to the genus Chromobacterium (chromobacterium) or the genus Escherichia (E. coli). ポロニウムを含有する試料をChromobacterium属(クロモバクテリウム)又はEscherichia属(大腸菌)に属する微生物に接触させ、上記微生物の作用により試料中のポロニウムをガス化することを含む、ポロニウムのガス化方法。 A method for gasifying polonium, comprising bringing a sample containing polonium into contact with a microorganism belonging to the genus Chromobacterium (Chromobacterium) or the genus Escherichia (E. coli), and gasifying polonium in the sample by the action of the microorganism. 微生物としてChromobacterium violaceum又はEscherichia coli K-12を使用する、請求項1又は2に記載のポロニウムのガス化方法。 The polonium gasification method according to claim 1 or 2, wherein Chromobacterium violaceum or Escherichia coli K-12 is used as the microorganism. 請求項1から3の何れかに記載の方法によりガス化したポロニウムを酸性溶液で無機化してから回収する、ポロニウムの回収方法。 A method for recovering polonium, wherein the polonium gasified by the method according to any one of claims 1 to 3 is mineralized with an acidic solution and then recovered.
JP2007526840A 2005-04-14 2006-04-13 Polonium gasification method Pending JPWO2006112360A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005116543 2005-04-14
JP2005116543 2005-04-14
PCT/JP2006/307847 WO2006112360A1 (en) 2005-04-14 2006-04-13 Method of polonium gasification

Publications (1)

Publication Number Publication Date
JPWO2006112360A1 true JPWO2006112360A1 (en) 2008-12-11

Family

ID=37115083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007526840A Pending JPWO2006112360A1 (en) 2005-04-14 2006-04-13 Polonium gasification method

Country Status (2)

Country Link
JP (1) JPWO2006112360A1 (en)
WO (1) WO2006112360A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113426828A (en) * 2021-07-30 2021-09-24 西南科技大学 Method for restoring strontium-polluted soil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017003474A (en) * 2015-06-11 2017-01-05 大崎建設株式会社 Soil improving agent or improved bio-proliferation agent, soil foundation solidification method, proliferation method and decontamination method of improved bio, and decontamination method of radioactive contaminated soil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113426828A (en) * 2021-07-30 2021-09-24 西南科技大学 Method for restoring strontium-polluted soil

Also Published As

Publication number Publication date
WO2006112360A1 (en) 2006-10-26

Similar Documents

Publication Publication Date Title
Matheickal et al. Biosorption of lead (II) from aqueous solutions by Phellinus badius
Annadurai et al. Adsorption and bio-degradation of phenol by chitosan-immobilized Pseudomonas putida (NICM 2174)
Sarioglu et al. Removal of methylene blue by using biosolid
WO2016056592A1 (en) Method for culturing 1,4-dioxane-decomposing bacteria, culture medium, and 1,4-dioxane treatment method using 1,4-dioxane-decomposing bacteria
Sun et al. Research on removal of fluoroquinolones in rural domestic wastewater by vertical flow constructed wetlands under different hydraulic loads
Bors et al. Sorption studies of radioiodine on soils with special references to soil microbial biomass
Pagnanelli et al. Assessment of solid reactive mixtures for the development of biological permeable reactive barriers
Dai et al. Reclamation of heavy metals from contaminated soil using organic acid liquid generated from food waste: removal of Cd, Cu, and Zn, and soil fertility improvement
Yeager et al. Irradiation as a means to minimize public health risks from sludge-borne pathogens
Sheppard et al. Iodine and microbial interactions in an organic soil
Speitel Jr et al. Biodegradation and adsorption of a bisolute mixture in GAC columns
JP2013068556A (en) Method for purifying environment contaminated by radioactive cesium
JP2013171017A (en) Method for decontaminating environmental medium contaminated with radioactive cesium
JPWO2006112360A1 (en) Polonium gasification method
Young et al. The removal of lindane from aqueous solution using a fungal biosorbent: The influence of pH, temperature, biomass concentration, and culture age
Knaebel et al. A comparison of double vial to serum bottle radiorespirometry to measure microbial mineralization in soils
Pradhan et al. Copper removal by immobilized Microcystis aeruginosa in continuous flow columns at different bed heights: study of the adsorption/desorption cycle
Du et al. Effects of electroconductive materials on treatment performance and microbial community structure in biofilter systems with silicone tubings
Nancy et al. Slow sand filtration of secondary sewage effluent: Effect of sand bed depth on filter performance
Zoh et al. Treatment of Hydrolysates of the High Explosives Hexahydro‐1, 3, 5,‐Trinitro‐1, 3, 5‐Trianize and Octahydro‐1, 3, 5, 7‐Tetranitro‐1, 3, 5, 7‐Tetrazocine Using Biological Denitrification
Pan et al. Biosorption of strontium ion by immobilised Aspergillus niger
McBride et al. Kinetics of quinoline biodegradation, sorption and desorption in a clay-coated model soil containing a quinoline-degrading bacterium
Kaparullina et al. EDTA degradation by cells of Chelativorans oligotrophicus immobilized on a biofilter
Rector et al. An evaluation of technology to remove problematic organic compounds from the international space station potable water
Schwarz et al. Degradation of PCE in an anaerobic waste gas by biofiltration