JPWO2006085650A1 - Wavelength monitoring device - Google Patents

Wavelength monitoring device Download PDF

Info

Publication number
JPWO2006085650A1
JPWO2006085650A1 JP2007502671A JP2007502671A JPWO2006085650A1 JP WO2006085650 A1 JPWO2006085650 A1 JP WO2006085650A1 JP 2007502671 A JP2007502671 A JP 2007502671A JP 2007502671 A JP2007502671 A JP 2007502671A JP WO2006085650 A1 JPWO2006085650 A1 JP WO2006085650A1
Authority
JP
Japan
Prior art keywords
polarization
wavelength
optical signal
optical
birefringent element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007502671A
Other languages
Japanese (ja)
Inventor
良博 今野
良博 今野
佐々木 勝
勝 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Adamant Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Adamant Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd, Adamant Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Publication of JPWO2006085650A1 publication Critical patent/JPWO2006085650A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0224Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using polarising or depolarising elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength

Abstract

光学系が簡略化されることにより、大型化防止と低コスト化が達成可能な波長モニタ装置を提供する。コリメートレンズと、複屈折素子と、ファラデー回転子と、複数の溝部又は凸部が平行に形成された格子面を有する回折格子と、リニアイメージセンサとで波長モニタ装置を構成し、前記溝部又は凸部の形成方向が複屈折素子での異常光線の分離方向と平行になるように複屈折素子の結晶軸と回折格子とを位置決めし、更に、WDM装置からの光信号をコリメートレンズでコリメートし、その光信号を複屈折素子で常光線と異常光線とに分離し、常光線のみをファラデー回転子に透過させて偏光方向を90度回転させて常光線と異常光線の偏光方向を同一方向にし、同一の前記溝部若しくは凸部で回折させると共に、回折後の2つの回折光成分のスペクトル像をリニアイメージの1つの受光部に受光させて光信号の強度和を出力する。Provided is a wavelength monitor device capable of achieving an increase in size and a reduction in cost by simplifying an optical system. A wavelength monitor device is configured by a collimating lens, a birefringent element, a Faraday rotator, a diffraction grating having a grating surface in which a plurality of grooves or protrusions are formed in parallel, and a linear image sensor. The crystal axis of the birefringent element and the diffraction grating are positioned so that the formation direction of the part is parallel to the extraordinary ray separation direction in the birefringent element, and the optical signal from the WDM device is collimated with a collimating lens, The optical signal is separated into an ordinary ray and an extraordinary ray by a birefringent element, only the ordinary ray is transmitted to the Faraday rotator, the polarization direction is rotated by 90 degrees, and the polarization directions of the ordinary ray and the extraordinary ray are made the same direction, While diffracting at the same groove or projection, the spectral image of the two diffracted light components after diffraction is received by one light receiving portion of the linear image, and the sum of the intensity of the optical signal is output.

Description

本発明は、波長分割多重光通信システムの個別のチャンネルの波長を測定するための波長モニタ装置に関するものである。   The present invention relates to a wavelength monitor device for measuring the wavelength of an individual channel in a wavelength division multiplexing optical communication system.

現在、光通信システムでは急増する通信トラフィックに対処するため、時間分割多重(Time Division Multiplex:TDM)や波長分割多重(Wavelength Division Multiplex:WDM)と云った多重通信方式が採用されている。その中でもWDM方式は、多くの異なる波長の光信号を光ファイバのような単一の媒体を介して同時に送信することにより、実質的に光通信帯域幅を増大させ大量の情報を送信可能とした多重通信方式である。   Currently, in order to cope with rapidly increasing communication traffic in an optical communication system, multiplex communication methods such as time division multiplexing (TDM) and wavelength division multiplexing (WDM) are employed. Among them, the WDM method allows a large amount of information to be transmitted by substantially increasing the optical communication bandwidth by simultaneously transmitting optical signals of many different wavelengths through a single medium such as an optical fiber. It is a multiplex communication system.

現在、WDM方式での個別チャンネルの波長間隔及び周波数間隔(以下、必要に応じてまとめて「間隔」と記す)は、0.8nm又は100GHz程度まで引き下げられている。前記間隔を狭めることにより多重可能な波長数を増加させ、通信トラフィック増大化の対応が図られている。しかしながら各チャンネルの光源の波長は、長期的に見ると公称中心周波数から次第に離れるおそれがあり、また一方で前記のように通信トラフィックの増大に伴って前記間隔は今後も狭められて行く傾向にある。   Currently, the wavelength interval and frequency interval of individual channels in the WDM system (hereinafter collectively referred to as “interval” as necessary) are reduced to about 0.8 nm or 100 GHz. By narrowing the interval, the number of wavelengths that can be multiplexed is increased to cope with an increase in communication traffic. However, the wavelength of the light source of each channel may gradually deviate from the nominal center frequency in the long term, and on the other hand, the interval tends to be narrowed as communication traffic increases as described above. .

従って、波長スケールの点で隣接するチャンネル間同士、或いは、物理的にすぐ隣に配置されているチャンネル間同士で干渉を起こしてクロストークが発生するおそれが増加する。こういった干渉を防止するためには、通常の波長ドリフト±0.1nmを保証しなければならない。従って、各チャンネルの光源の波長および強度(パワー)の安定性が特に重要になり、そのような理由から前記光源の波長や強度を高精度にモニタする波長モニタ装置が必要とされている。   Therefore, there is an increased possibility that crosstalk will occur due to interference between channels adjacent to each other in terms of wavelength scale, or between channels physically adjacent to each other. In order to prevent such interference, a normal wavelength drift of ± 0.1 nm must be guaranteed. Therefore, the stability of the wavelength and intensity (power) of the light source of each channel is particularly important, and for this reason, a wavelength monitoring device that monitors the wavelength and intensity of the light source with high accuracy is required.

WDM方式のチャンネルの波長をモニタする波長モニタ装置としては様々な構造の物が提案されており、一例として、図10に示すような石英光導波路を用いたアレイ光導波路(以下、「AWG導波路」という)により、各波長の光信号を光導波路毎に分波するものがある(例えば、特許文献1参照)。   As a wavelength monitoring device for monitoring the wavelength of a WDM channel, various structures have been proposed. As an example, an array optical waveguide (hereinafter referred to as an “AWG waveguide”) using a quartz optical waveguide as shown in FIG. ”), The optical signal of each wavelength is demultiplexed for each optical waveguide (see, for example, Patent Document 1).

特開2003−140212号公報(第3頁、第5図)Japanese Unexamined Patent Publication No. 2003-140212 (page 3, FIG. 5)

図10の波長モニタ装置100は、入力側の光ファイバ101の1つにλ1〜λ4の光信号が入力されると、第1レンズ102、AWG光導波路103及び第2レンズ104を経て、出力側の複数の光ファイバ105からλ1、λ2、λ3及びλ4の光信号がそれぞれ別々に出力され、この出力光信号を図示しない受光器によって受光して、光信号の波長をモニタするように構成されている。   When an optical signal having a wavelength of λ1 to λ4 is input to one of the optical fibers 101 on the input side, the wavelength monitor device 100 in FIG. 10 passes through the first lens 102, the AWG optical waveguide 103, and the second lens 104, and then the output side. The optical signals of λ1, λ2, λ3, and λ4 are separately output from the plurality of optical fibers 105, and the output optical signals are received by a light receiver (not shown) to monitor the wavelength of the optical signals. Yes.

又、他方では図11に示すように、光信号を複屈折素子により2つの偏光成分に分離し、リトローレンズと回折格子によって2つの偏光成分を各々回折すると共に集光して、完全に分離された状態の2つのスペクトル像を形成し、この2つのスペクトル像の強度和をリニアイメージセンサによって検出する波長モニタ装置も提案されている(例えば、特許文献2参照)。   On the other hand, as shown in FIG. 11, the optical signal is separated into two polarization components by a birefringent element, and the two polarization components are diffracted and condensed by a Littrow lens and a diffraction grating, respectively, and completely separated. There has also been proposed a wavelength monitor device that forms two spectral images of a state and detects the sum of the intensities of the two spectral images with a linear image sensor (see, for example, Patent Document 2).

特開2003−194627号公報(第 頁、第1図)JP 2003-194627 A (page 1, FIG. 1)

図11の波長モニタ装置106は、入射光ファイバ107と、2個の複屈折素子(特許文献2では、「サバール板」と表記)108と、リトローレンズ109と、回折格子110と、リニアイメージセンサ(特許文献2では、「1次元アレイセンサ」と表記)111とで構成されており、入射光ファイバからの光信号L1を複屈折素子108によって2つの偏光成分L21、L22に分離し、リトローレンズ109でコリメートして回折格子110に入射させて2つの回折光成分L41、L42に回折した後、再びリトローレンズ109に入射、集光させて2つの完全に分離したスペクトル像を形成し、そのスペクトル像をリニアイメージセンサ111の受光面で受光することによって、光信号L1の波長毎の強度をモニタするものである。   11 includes an incident optical fiber 107, two birefringent elements (indicated as “Savart plate” in Patent Document 2) 108, a Littrow lens 109, a diffraction grating 110, a linear image sensor ( In Patent Document 2, the optical signal L1 from the incident optical fiber is separated into two polarization components L21 and L22 by the birefringent element 108, and the Littrow lens 109 After collimating and entering the diffraction grating 110 and diffracting into the two diffracted light components L41 and L42, the light is again incident on the Littrow lens 109 and condensed to form two completely separated spectral images. By receiving light on the light receiving surface of the image sensor 111, the intensity of each wavelength of the optical signal L1 is monitored.

しかしながら、図10の波長モニタ装置では、アレイ構造の作製精度が厳しく、又、将来、WDM方式の高密度化に伴い間隔が50GHz等のように小さくなるにつれて、アレイ全体が大型化するという欠点がある。又、AWG光導波路のコストが高く、波長モニタ装置全体が高価になってしまう。   However, the wavelength monitor apparatus of FIG. 10 has the drawback that the fabrication accuracy of the array structure is severe, and that the entire array becomes larger as the spacing becomes smaller, such as 50 GHz, in the future as the density of the WDM system increases. is there. In addition, the cost of the AWG optical waveguide is high, and the entire wavelength monitor device becomes expensive.

又、図11の波長モニタ装置では、2枚の複屈折素子を使用するため互いの偏光軸を精密に調整しなければならず、組み立て工程が煩雑になってしまう。更に、光信号を回折格子で回折後に再びリトローレンズに入射させる光学系なので、入射光ファイバから入射する光信号の波長が変化して回折格子の格子面における回折角度が波長毎に変化すると、波長毎に回折角度が異なる回折光をモニタする波長範囲に亘って全てリトローレンズに入射させる必要性があるため、大径のリトローレンズを使用しなければならず、光学系の大型化を招いてしまうという課題がある。   In addition, since the wavelength monitor apparatus of FIG. 11 uses two birefringent elements, the polarization axes of each other must be precisely adjusted, and the assembly process becomes complicated. Furthermore, since the optical signal is diffracted by the diffraction grating and then incident on the Littrow lens again, if the wavelength of the optical signal incident from the incident optical fiber changes and the diffraction angle at the grating surface of the diffraction grating changes for each wavelength, In addition, since it is necessary to make all of the diffracted light having different diffraction angles incident on the Littrow lens over the wavelength range to be monitored, a large-diameter Littrow lens must be used, resulting in an increase in the size of the optical system. is there.

又、リトローレンズを小径化しようとすると、回折格子を光信号の波長毎に動かして格子面の角度を波長毎に最適化し、常にリトローレンズに回折光が入射するようにしなければならないため、格子面の角度を可変する駆動機構が別に必要になり、高コストになると共に波長モニタ装置全体が大型化してしまう。更に、回折格子の駆動制御も波長毎に行わなければならず、波長モニタ装置の駆動が複雑且つ煩雑になってしまう。   Also, when trying to reduce the diameter of the Littrow lens, it is necessary to optimize the angle of the grating surface for each wavelength by moving the diffraction grating for each wavelength of the optical signal, so that the diffracted light always enters the Littrow lens. A separate drive mechanism for changing the angle is required, which increases the cost and increases the size of the entire wavelength monitor. Furthermore, the drive control of the diffraction grating must be performed for each wavelength, and the drive of the wavelength monitor device becomes complicated and complicated.

本発明は上記各課題に鑑みて成されたものであり、その目的は、光学系が簡略化されることにより、大型化防止と低コスト化が達成可能な波長モニタ装置を提供することである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a wavelength monitor device that can achieve prevention of enlargement and cost reduction by simplifying the optical system. .

本発明の請求項1記載の発明は、コリメートレンズと、光信号を偏光方向が互いに直交する常光線と異常光線の2つの偏光成分に分離する複屈折素子と、90度の回転角度を有するファラデー回転子と、複数の溝部又は凸部が平行に形成されてなる格子面を有する回折格子と、リニアイメージセンサとを有し、前記溝部若しくは前記凸部の形成方向が、前記複屈折素子内部における異常光線の分離方向と平行になるように、前記複屈折素子の結晶軸と回折格子とが位置決めされ、更に、WDM装置からの光信号を前記コリメートレンズに入射させてコリメートすると共に、コリメートした光信号を前記複屈折素子で前記常光線と前記異常光線とに分離し、前記複屈折素子から前記常光線として出射された偏光成分のみを前記ファラデー回転子に透過させることでその偏光方向を90度回転させて、前記2つの偏光成分の偏光方向を同一方向にし、この状態の前記偏光成分を同一の前記溝部若しくは凸部で回折させると共に、回折後の2つの回折光成分のスペクトル像を、互いの前記スペクトル像が完全に分離した状態で前記リニアイメージの1つの受光部に受光させて、前記光信号の強度和を出力することを特徴とする波長モニタ装置である。   The invention according to claim 1 of the present invention includes a collimating lens, a birefringent element that separates an optical signal into two polarization components of an ordinary ray and an extraordinary ray whose polarization directions are orthogonal to each other, and a Faraday having a rotation angle of 90 degrees. A rotor, a diffraction grating having a grating surface in which a plurality of grooves or protrusions are formed in parallel, and a linear image sensor, and the forming direction of the grooves or protrusions is within the birefringent element. The crystal axis of the birefringent element and the diffraction grating are positioned so as to be parallel to the extraordinary ray separation direction. Further, an optical signal from the WDM apparatus is incident on the collimator lens and collimated. A signal is separated into the ordinary ray and the extraordinary ray by the birefringent element, and only the polarization component emitted as the ordinary ray from the birefringent element is transmitted to the Faraday rotator. By rotating the polarization direction by 90 degrees, the polarization direction of the two polarization components is made the same direction, and the polarization component in this state is diffracted by the same groove or projection, A wavelength monitor device characterized in that a spectral image of a diffracted light component is received by one light-receiving unit of the linear image in a state where the spectral images are completely separated from each other, and an intensity sum of the optical signal is output. It is.

本発明の波長モニタ装置に依れば、分離させた偏光成分の偏光方向を同一方向に調整した上で、回折格子の格子面に光信号を入射させるため、偏光成分毎に回折角度が変化すること無く、同一な回折角度でリニアイメージセンサの受光部に二つの回折光成分のスペクトル像を受光させることが可能である。従って、リニアイメージセンサの一つの受光部に二つの同一次数の回折光成分のスペクトル像を受光させることが可能になり、リニアイメージセンサの異なる受光部に同一周波数・同一次数の二つの回折光成分のスペクトル像が受光されることを防止出来るため、波長モニタ装置の波長分解能を向上させることが可能となる。   According to the wavelength monitoring device of the present invention, the polarization direction of the separated polarization component is adjusted to the same direction, and the optical signal is incident on the grating surface of the diffraction grating, so that the diffraction angle changes for each polarization component. It is possible to receive the spectral images of the two diffracted light components at the light receiving portion of the linear image sensor at the same diffraction angle. Therefore, it is possible to receive two diffracted light component spectral images of the same order on one light receiving portion of the linear image sensor, and two diffracted light components having the same frequency and same order on different light receiving portions of the linear image sensor. Therefore, the wavelength resolution of the wavelength monitor device can be improved.

更に、リニアイメージセンサの複数の受光部毎に、特性のバラツキがあっても、同一周波数の二つのスペクトル像を同一の受光部に受光させられるので、その影響を防止出来る。   Furthermore, even if there are variations in characteristics for each of the plurality of light receiving portions of the linear image sensor, two spectral images having the same frequency can be received by the same light receiving portion, so that the influence can be prevented.

更に、波長モニタ装置の光学系が、コリメートレンズ、複屈折素子、ファラデー回転子、回折格子、及び、リニアイメージセンサで構成されるため、従来の波長モニタ装置のように、AWG導波路のような高価な構成部品を用いることなく光学系を形成することが可能となる。従って、波長モニタ装置の低コスト化を図ることが可能となる。   Further, since the optical system of the wavelength monitor device is composed of a collimating lens, a birefringent element, a Faraday rotator, a diffraction grating, and a linear image sensor, like an AWG waveguide, as in the conventional wavelength monitor device. An optical system can be formed without using expensive components. Therefore, the cost of the wavelength monitor device can be reduced.

又、回折格子の直前に従来の波長モニタ装置のように、リロートレンズと云ったレンズ部品を配置しない光学系を形成することにより、光学系を構成する光学素子の大型化が防止されるため、波長モニタ装置の大型化も防止することが出来る。   In addition, by forming an optical system that does not include lens components such as a rerout lens as in the conventional wavelength monitor device just before the diffraction grating, it is possible to prevent an increase in the size of the optical elements that constitute the optical system. Further, it is possible to prevent an increase in the size of the wavelength monitor device.

更に、レンズ部品を配置しないため、WDM装置から入射される光信号の波長が変化しても、回折格子をその都度駆動させること無く、リニアイメージセンサの受光部に受光させることができ、波長モニタ装置の部品点数の削減による小型化、低コスト化と、波長モニタ装置の駆動制御の容易化を実現することが可能となる。   In addition, since no lens parts are arranged, even if the wavelength of the optical signal incident from the WDM device changes, the light receiving unit of the linear image sensor can receive light without driving the diffraction grating each time. It is possible to achieve downsizing and cost reduction by reducing the number of parts of the apparatus and facilitating drive control of the wavelength monitor apparatus.

又、回折格子に入射する光信号の2つの偏光成分の偏光方向を同一方向にすることにより、2つの偏光成分が、回折格子において回折する際に常に一定の角度で回折させることが出来る。更に、2つの偏光成分を同一の溝部又は凸部で回折させる。以上により、回折後の2つの回折光成分間における光路長差を0にすることが可能になる。   Also, by making the polarization directions of the two polarization components of the optical signal incident on the diffraction grating the same direction, the two polarization components can always be diffracted at a constant angle when diffracting in the diffraction grating. Further, the two polarization components are diffracted by the same groove or protrusion. As described above, the optical path length difference between the two diffracted light components after diffraction can be made zero.

更に、格子面の溝部又は凸部に2つの偏光成分が入射する時点で、2つの偏光成分の偏光方向を共に、溝部又は凸部の形成方向に対し平行にすることにより、回折後の回折光成分に他方向の偏光成分がノイズとして入り込むことを防止できるため、波長モニタ装置の波長分解能を向上させることが可能となる。   Furthermore, when the two polarization components are incident on the grooves or projections on the grating surface, the diffracted light after diffraction is obtained by making the polarization directions of the two polarization components parallel to the formation direction of the grooves or projections. Since the polarization component in the other direction can be prevented from entering the component as noise, the wavelength resolution of the wavelength monitor device can be improved.

本発明の第1の実施形態の波長モニタ装置を模式的に示す概略斜視図。1 is a schematic perspective view schematically showing a wavelength monitor device according to a first embodiment of the present invention. 図1の波長モニタ装置を図1中の矢印a方向から見た概略平面図。The schematic plan view which looked at the wavelength monitor apparatus of FIG. 1 from the arrow a direction in FIG. 図1〜図2の波長モニタ装置が組み込まれるWDM装置の構成図。The block diagram of the WDM apparatus in which the wavelength monitor apparatus of FIGS. 1-2 is integrated. 図2における破線(a)〜(c)で示した各断面においてz軸方向から見た光信 号の偏光面を表わす状態図。FIG. 3 is a state diagram showing a polarization plane of an optical signal viewed from the z-axis direction in each cross section indicated by broken lines (a) to (c) in FIG. 2. 第1の実施形態の波長モニタ装置を構成する回折格子とリニアイメージセ ンサのみを示す概略部分斜視図。FIG. 2 is a schematic partial perspective view showing only a diffraction grating and a linear image sensor constituting the wavelength monitor device of the first embodiment. リニアイメージセンサに受光される2つのスペクトル像の受光状態を模式 的に示す状態図。FIG. 5 is a state diagram schematically showing a light receiving state of two spectrum images received by a linear image sensor. 第2の実施形態の波長モニタ装置を模式的に示す概略斜視図。The schematic perspective view which shows typically the wavelength monitor apparatus of 2nd Embodiment. 第2の実施形態の波長モニタ装置を構成する回折格子とリニアイメージセ ンサのみを示す概略部分斜視図。FIG. 5 is a schematic partial perspective view showing only a diffraction grating and a linear image sensor constituting the wavelength monitor device of the second embodiment. 図8を矢印b方向から見たときの回折格子とリニアイメージセンサの概略 部分側面図。FIG. 9 is a schematic partial side view of a diffraction grating and a linear image sensor when FIG. 8 is viewed from the direction of arrow b. AWG導波路による従来の波長モニタ装置の一例を示す模式図。The schematic diagram which shows an example of the conventional wavelength monitor apparatus by AWG waveguide. 他の従来の波長モニタ装置の一例を示す斜視図。The perspective view which shows an example of the other conventional wavelength monitor apparatus.

符号の説明Explanation of symbols

1、16 波長モニタ装置
2 複屈折素子
3a、3b ファラデー回転子
4、17 回折格子
5 コリメートレンズ
6 リニアイメージセンサ
7 WDM装置
8 光送信器
9 合波器
10 光増幅器
11 分波器
12 光受信器
13、15 光ファイバ
14 カプラ
1, 16 Wavelength monitoring device 2 Birefringent element
3a, 3b Faraday rotator 4, 17 Diffraction grating 5 Collimator lens 6 Linear image sensor 7 WDM device 8 Optical transmitter 9 Multiplexer
10 Optical amplifier
11 duplexer
12 Optical receiver
13, 15 Optical fiber
14 coupler

<第1の実施の形態>
以下、本発明の波長モニタ装置に係る第1の実施の形態を、図1〜図6を参照して説明する。図1は第1の実施形態の波長モニタ装置を模式的に示す概略斜視図であり、図2は図1の波長モニタ装置を、図1中の矢印aで示す平面方向から見たときの概略平面図であり、図3は図1〜図2の波長モニタ装置が組み込まれるWDM装置を模式的に示す構成図であり、図4(a)〜(c)は、それぞれ図2における破線(a)〜(c)で示した各断面における、z軸方向に見た光信号の偏光面を表わす図であり、図5は第1の実施形態の波長モニタ装置を構成する回折格子とリニアイメージセンサのみを示す概略部分斜視図であり、図6はリニアイメージセンサに受光される2つのスペクトル像の受光状態を模式的に示す状態図である。なお、図1、図2、図5の二点鎖線は光路を示し、比較的細線で描かれている光路部は、光学系の構成部品内を伝搬していることを示している。
<First Embodiment>
A first embodiment according to the wavelength monitoring device of the present invention will be described below with reference to FIGS. FIG. 1 is a schematic perspective view schematically showing the wavelength monitor device of the first embodiment, and FIG. 2 is a schematic view when the wavelength monitor device of FIG. 1 is viewed from the plane direction indicated by arrow a in FIG. FIG. 3 is a configuration diagram schematically showing a WDM apparatus in which the wavelength monitoring apparatus of FIGS. 1 to 2 is incorporated. FIGS. 4 (a) to 4 (c) are respectively broken lines (a ) To (c) are diagrams showing the polarization plane of the optical signal viewed in the z-axis direction in each of the cross sections, and FIG. 5 is a diffraction grating and a linear image sensor constituting the wavelength monitoring device of the first embodiment. FIG. 6 is a state diagram schematically showing a light receiving state of two spectrum images received by the linear image sensor. 1, 2, and 5 indicate an optical path, and an optical path portion drawn by a relatively thin line indicates that the optical path portion is propagating through the components of the optical system.

図1、図2及び図5に示すように、第1の実施形態の波長モニタ装置1は、1個の複屈折素子2と、2個のファラデー回転子3a、3bと、回折格子4、コリメートレンズ5及びリニアイメージセンサ6とを有して構成される。   As shown in FIGS. 1, 2 and 5, the wavelength monitor device 1 of the first embodiment includes one birefringent element 2, two Faraday rotators 3 a and 3 b, a diffraction grating 4, and a collimator. A lens 5 and a linear image sensor 6 are included.

次に図3より、前記波長モニタ装置1が光学的に接続されるWDM装置7を説明する。WDM装置7は、光信号を送信する図示しない光源を備える複数の光送信器8と、その光送信器8から送信された複数チャンネルの光信号を波長多重化する合波器9と、その合波器9により波長多重化された光信号を増幅中継するために複数段に接続される光増幅器10と、光増幅器10により増幅された光信号を各チャンネル毎に波長分離する分波器11と、その分波器11により波長分離された各光信号を受信する複数の光受信器12とから構成される。   Next, a WDM apparatus 7 to which the wavelength monitor apparatus 1 is optically connected will be described with reference to FIG. The WDM apparatus 7 includes a plurality of optical transmitters 8 each having a light source (not shown) that transmits an optical signal, a multiplexer 9 that wavelength-multiplexes optical signals of a plurality of channels transmitted from the optical transmitter 8, and a combination thereof. An optical amplifier 10 connected in a plurality of stages to amplify and repeat the optical signal wavelength-multiplexed by the wave multiplexer 9, and a demultiplexer 11 for wavelength-separating the optical signal amplified by the optical amplifier 10 for each channel; And a plurality of optical receivers 12 for receiving the optical signals wavelength-separated by the demultiplexer 11.

送信側では、異なる波長を有する複数の光送信器8の光源から出射された光信号を合波器9により波長軸上に多重化し、多重化した光信号を単一の光ファイバ13で受信側に送信する。受信側では波長軸上に多重化された光信号を分波器11により各波長毎に分離し、光受信器12で受光する。光ファイバ13で受信側に光信号が送信される際、カプラ14で光信号の一部は光ファイバ15へと分岐される。分岐の比率としては、例えば5:95等が挙げられる。95%の光は,光ファイバ13に導かれて受信側に送られ、5%の光信号は光ファイバ14を経由して波長モニタ装置1に導かれる。   On the transmission side, the optical signals emitted from the light sources of the plurality of optical transmitters 8 having different wavelengths are multiplexed on the wavelength axis by the multiplexer 9, and the multiplexed optical signals are received by the single optical fiber 13. Send to. On the receiving side, the optical signal multiplexed on the wavelength axis is separated for each wavelength by the demultiplexer 11 and received by the optical receiver 12. When an optical signal is transmitted to the receiving side by the optical fiber 13, a part of the optical signal is branched to the optical fiber 15 by the coupler 14. Examples of the branching ratio include 5:95. 95% of the light is guided to the optical fiber 13 and sent to the receiving side, and 5% of the optical signal is guided to the wavelength monitor device 1 via the optical fiber 14.

光ファイバ15は、例えばシングルモード光ファイバであり、コアの直径は例えば10μmである。光ファイバ15から光信号s1が入射されると、光信号s1は複屈折素子2で偏光方向が互いに直交する常光線s2と異常光線s3の2つの偏光成分に分離される(以下、必要に応じて、s2を「光信号」か「常光線」、s3を、「光信号」か「異常光線」と記載し分けることにする)。光信号s1の偏光面を図4(a)に示す。   The optical fiber 15 is, for example, a single mode optical fiber, and the core has a diameter of, for example, 10 μm. When the optical signal s1 is incident from the optical fiber 15, the optical signal s1 is separated into two polarization components of an ordinary ray s2 and an extraordinary ray s3 whose polarization directions are orthogonal to each other by the birefringent element 2 (hereinafter referred to as necessary). S2 is described as “optical signal” or “ordinary ray”, and s3 is described as “optical signal” or “abnormal ray”. The plane of polarization of the optical signal s1 is shown in FIG.

複屈折素子2はルチル等の複屈折結晶で構成され、光学面2aにおける結晶軸X1方向は、水平方向であるx軸方向に対して平行となるように0度に設定され、厚み方向における結晶軸X2方向は、光学面2aから45度の角度を呈するように、それぞれ設定されている。又、複屈折素子2の厚みは入射された光信号s1が常光線s2と異常光線s3に完全に分離される程に設定される。このように構成された複屈折素子2は、コリメートレンズ5の直後に配置され、コリメートレンズ5に入射されてコリメートされた前記光信号s1を2つの偏光成分s2、s3に分離する。   The birefringent element 2 is composed of a birefringent crystal such as rutile, and the crystal axis X1 direction on the optical surface 2a is set to 0 degrees so as to be parallel to the x-axis direction which is the horizontal direction, and the crystal in the thickness direction The direction of the axis X2 is set so as to exhibit an angle of 45 degrees from the optical surface 2a. The thickness of the birefringent element 2 is set so that the incident optical signal s1 is completely separated into the ordinary ray s2 and the extraordinary ray s3. The birefringent element 2 configured as described above is disposed immediately after the collimating lens 5 and separates the collimated optical signal s1 incident on the collimating lens 5 into two polarization components s2 and s3.

前記の通りに結晶軸X1とX2とが設定されているので、複屈折素子2内部で、常光線s2はそのままz軸方向に直進し、異常光線s3はz軸方向に対しては角度φをなす斜め方向に、x軸方向に対しては平行な方向へと屈折し、伝搬する。   Since the crystal axes X1 and X2 are set as described above, the ordinary ray s2 goes straight in the z-axis direction as it is inside the birefringent element 2, and the extraordinary ray s3 has an angle φ with respect to the z-axis direction. The light is refracted and propagated in a direction parallel to the x-axis direction.

そして、図4(b)に示すように2つの偏光成分s2、s3に分離された状態で複屈折素子2から出射され、常光線として出射された偏光成分s2のみを後段に配置するファラデー回転子3a、3bに透過させる。2枚のファラデー回転子3a、3bはそれぞれ45度の回転角を有し、回転方向は偏光成分s2の伝搬方向から見たときに同一方向となるように設置されている。従って、ファラデー回転子3a、3bは合わせて90度の回転角度を有していることになる。又、ファラデー回転子3a、3bは図2に示されるように、隣接して配置されたマグネットMによって磁気飽和されている(図1では図示を省略)。   Then, as shown in FIG. 4B, the Faraday rotator in which only the polarization component s2 emitted from the birefringent element 2 and separated as an ordinary ray is separated and separated into two polarization components s2 and s3. Permeate through 3a and 3b. The two Faraday rotators 3a and 3b each have a rotation angle of 45 degrees, and the rotation directions are set to be the same when viewed from the propagation direction of the polarization component s2. Therefore, the Faraday rotators 3a and 3b have a rotation angle of 90 degrees in total. Further, as shown in FIG. 2, the Faraday rotators 3a and 3b are magnetically saturated by magnets M arranged adjacent to each other (not shown in FIG. 1).

従って、偏光成分s2が2枚のファラデー回転子3a、3b内部を透過すると、その偏光方向は合計で90度回転されて図4(c)に示すように、偏光成分s3の偏光方向と同一方向に設定されて、2つの偏光成分s2、s3の偏光方向は同一方向となる。このように2つの偏光成分s2、s3の偏光方向が揃った状態で、光信号は更に後段に配置されている回折格子4の格子面に入射される。   Therefore, when the polarization component s2 is transmitted through the two Faraday rotators 3a and 3b, the polarization direction is rotated by 90 degrees in total, and the same direction as the polarization direction of the polarization component s3 as shown in FIG. And the polarization directions of the two polarization components s2 and s3 are the same. In this way, in the state where the polarization directions of the two polarization components s2 and s3 are aligned, the optical signal is further incident on the grating surface of the diffraction grating 4 disposed in the subsequent stage.

回折格子4は反射型の回折格子であり、その格子面には、図5に示すようにx軸方向に細長い多数の溝部4aが互いに平行に1次元形成されたものである。   The diffraction grating 4 is a reflection type diffraction grating, and a plurality of grooves 4a elongated in the x-axis direction are formed one-dimensionally in parallel with each other on the grating surface as shown in FIG.

このように構成された回折格子4を前記複屈折素子2側から重ねて見た場合、図1に示すように、複屈折素子2内部における異常光線s3の分離方向と、回折格子4の各々の溝部4aの形成方向(x軸方向)とが同一方向に平行となるように、結晶軸X1とX2の方向と、回折格子4の位置とが決定されることが分かる。この格子面に入射した2つの偏光成分s2、s3は、格子面によって反射、回折され、2つの回折光成分s21、s31に変換される。   When the diffraction grating 4 configured in this way is viewed from the birefringent element 2 side, as shown in FIG. 1, the separation direction of the extraordinary ray s3 within the birefringent element 2 and each of the diffraction gratings 4 are It can be seen that the directions of the crystal axes X1 and X2 and the position of the diffraction grating 4 are determined such that the formation direction (x-axis direction) of the groove 4a is parallel to the same direction. The two polarized components s2 and s3 incident on the grating surface are reflected and diffracted by the grating surface and converted into two diffracted light components s21 and s31.

周知の通り、回折格子4に入射する光信号(ここでは2つの偏光成分s2とs3)の偏光方向が変化すると、同一波長の偏光成分同士であっても、格子面上での反射角度が変化してしまう。しかし、本実施形態の波長モニタ装置1では、前記のように回折格子4に入射する2つの偏光成分s2、s3の偏光方向が、光ファイバ15から出射する光信号s1の偏光状態に関わらず同一にすることが出来る。即ち、光信号s1の偏光状態が変化しても、2つの偏光成分s2、s3の偏光方向を同一方向に保つことが可能である。   As is well known, when the polarization direction of an optical signal (here, two polarization components s2 and s3) incident on the diffraction grating 4 changes, the reflection angle on the grating surface changes even for polarization components of the same wavelength. Resulting in. However, in the wavelength monitor device 1 of the present embodiment, the polarization directions of the two polarization components s2 and s3 incident on the diffraction grating 4 are the same regardless of the polarization state of the optical signal s1 emitted from the optical fiber 15 as described above. Can be made. That is, even if the polarization state of the optical signal s1 changes, it is possible to keep the polarization directions of the two polarization components s2 and s3 in the same direction.

このため、回折格子4に入射する2つの偏光成分s2、s3は、回折格子4において回折する際、常に一定の反射角度で回折させられるため、回折後の2つの回折光成分s21、s31間における光路長差を0にすることが可能になる。更に、溝部4aに入射する時点で、偏光成分s2とs3の偏光方向は、溝部4aの形成方向に対し平行になっている。従って、回折後の回折光成分s21、s31に他方向の偏光成分がノイズとして入り込むことを防止できるため、波長モニタ装置1の波長分解能を向上させることが可能となる。   For this reason, the two polarization components s2 and s3 incident on the diffraction grating 4 are always diffracted at a constant reflection angle when diffracted by the diffraction grating 4, and therefore, between the two diffracted light components s21 and s31 after diffraction. The optical path length difference can be made zero. Further, at the time of incidence on the groove 4a, the polarization directions of the polarization components s2 and s3 are parallel to the formation direction of the groove 4a. Accordingly, it is possible to prevent the polarization component in the other direction from entering the diffracted light components s21 and s31 after diffraction as noise, so that the wavelength resolution of the wavelength monitor device 1 can be improved.

更に、2つの偏光成分s2、s3の偏光方向が同一方向の状態で、偏光成分s2、s3を同一の溝部(例えば、図1と図5の例では斜線を引いた溝部)4aで回折することにより、回折後の2つの回折光成分s21とs31との間における光路長差を0にすることが可能になる。なお、回折格子4を回折後の2つの回折光成分s21、s31の強度比は、回折格子4入射前の2つの偏光成分s2、s3の強度比と等しい。   Further, the polarization components s2 and s3 are diffracted by the same groove portion (for example, the hatched groove portion in the example of FIGS. 1 and 5) 4a in the state where the polarization directions of the two polarization components s2 and s3 are the same direction. Thus, the optical path length difference between the two diffracted light components s21 and s31 after diffraction can be made zero. The intensity ratio of the two diffracted light components s21 and s31 after diffracting the diffraction grating 4 is equal to the intensity ratio of the two polarization components s2 and s3 before entering the diffraction grating 4.

回折格子4から回折された2つの回折光成分s21、s31は、図5に示すようにリニアイメージセンサ6に向けて伝搬され、リニアイメージセンサ6の受光面上に、2つの回折光成分s21、s31によるスペクトル像sp1、sp2が完全に分離された状態で受光される。完全に分離された状態とは、2つのスペクトル像sp1、sp2の間に重なり部分が無い状態である。なお、図1及び図2ではリニアイメージ6は省略されている。   The two diffracted light components s21 and s31 diffracted from the diffraction grating 4 are propagated toward the linear image sensor 6 as shown in FIG. 5, and the two diffracted light components s21, s21, The spectral images sp1 and sp2 generated by s31 are received in a completely separated state. The completely separated state is a state where there is no overlapping portion between the two spectral images sp1 and sp2. 1 and 2, the linear image 6 is omitted.

図1〜図6では、光ファイバ15で伝搬される光信号s1が単色光(任意の単一の波長を有する光)の場合を想定し、スポット状のスペクトル像sp1、sp2を図示した。光信号s1が単色光ではなく、例えば、波長の異なる2種類の光を含む場合、2つのスペクトル像sp1、sp2は、受光面における波長分散方向(z軸方向)に沿って広がった状態となる。更に、多種類の波長を含む光信号s1が入射された場合は、前記波長分散方向に沿ってスポット状のスペクトル像が離散的に多数配列された状態となる。前記波長分散方向は、2つのスペクトル像sp1、sp2の分離方向(x軸方向)に直交する。   In FIG. 1 to FIG. 6, assuming that the optical signal s1 propagated through the optical fiber 15 is monochromatic light (light having an arbitrary single wavelength), spot-like spectral images sp1 and sp2 are illustrated. For example, when the optical signal s1 is not monochromatic light but includes two types of light having different wavelengths, the two spectral images sp1 and sp2 are spread along the wavelength dispersion direction (z-axis direction) on the light receiving surface. . Further, when an optical signal s1 including many kinds of wavelengths is incident, a large number of spot-like spectral images are discretely arranged along the wavelength dispersion direction. The chromatic dispersion direction is orthogonal to the separation direction (x-axis direction) of the two spectral images sp1 and sp2.

2つのスペクトル像sp1、sp2の中心間の分離距離D1(図6参照)は、複屈折素子2の厚さに比例する。本実施形態の波長モニタ装置1では、2つのスペクトル像sp1、sp2が完全に分離された状態となるように、且つ、一方の偏光成分s2のみがファラデー回転子3a、3bに透過可能となる分離距離となるように、複屈折素子2の厚さを設定する必要がある。   The separation distance D1 (see FIG. 6) between the centers of the two spectral images sp1 and sp2 is proportional to the thickness of the birefringent element 2. In the wavelength monitor device 1 of the present embodiment, the two spectral images sp1 and sp2 are completely separated, and only one polarization component s2 can be transmitted to the Faraday rotators 3a and 3b. It is necessary to set the thickness of the birefringent element 2 so as to be a distance.

リニアイメージセンサ6はその受光面にスペクトル像sp1、sp2の分離方向であるx軸方向に細長い多数の受光部6aを有すると共に、これらの受光部6aが前記波長分離方向に沿って1次元配列された受光素子である。各々の受光部6aは、細長い短冊状である。各々の受光部6aの分離方向(x軸方向)の大きさは、2つのスペクトル像sp1、sp2を同時に受光可能な大きさに設定されており、例えば、2つのスペクトル像sp1、sp2の分離距離D1と、各々のスペクトル像sp1、sp2のx軸方向の大きさD2との合計より大きく設定される。   The linear image sensor 6 has a large number of light receiving portions 6a elongated in the x-axis direction, which is the separation direction of the spectral images sp1 and sp2, on the light receiving surface, and these light receiving portions 6a are one-dimensionally arranged along the wavelength separation direction. Light receiving element. Each light receiving portion 6a has an elongated strip shape. The size of each light receiving unit 6a in the separation direction (x-axis direction) is set to a size capable of simultaneously receiving the two spectral images sp1 and sp2. For example, the separation distance between the two spectral images sp1 and sp2 It is set to be larger than the sum of D1 and the size D2 in the x-axis direction of each of the spectral images sp1 and sp2.

また、各々の受光部6aの分離方向の大きさは、スペクトル像sp1、sp2の分離距離D1と前記大きさD2との合計より小さく設定することも出来る。この場合、スペクトル像sp1、sp2が部分的にケラレることになるが、各々の受光部6aの中心に分離距離D1の中心が合うようにリニアイメージセンサ6を配置すれば、スペクトル像sp1、sp2の各々のケラレ量を等しくすることが出来る。   Further, the size of each light receiving portion 6a in the separation direction can be set smaller than the sum of the separation distance D1 of the spectral images sp1 and sp2 and the size D2. In this case, the spectral images sp1 and sp2 are partially vignetted, but if the linear image sensor 6 is arranged so that the center of the separation distance D1 is aligned with the center of each light receiving portion 6a, the spectral images sp1 and sp2 The amount of each vignetting can be made equal.

更に、各々の受光部6aのz軸方向の大きさは、スペクトル像sp1、sp2の測定に必要な波長分解能に応じて設定される。又、受光部6aの数は、スペクトル像sp1、sp2の測定に必要な波長範囲に応じて、その波長範囲を漏れなく受光可能なように設定される。なお、リニアイメージセンサ6としては、各々の受光部6aの受光感度が均一なもの(又は、少なくとも2つのスペクトル像sp1、sp2の受光位置で受光感度が等しいもの)を用いることが好ましい。   Further, the size of each light receiving unit 6a in the z-axis direction is set according to the wavelength resolution necessary for measuring the spectral images sp1 and sp2. The number of the light receiving parts 6a is set so that the wavelength range can be received without omission according to the wavelength range necessary for the measurement of the spectral images sp1 and sp2. In addition, it is preferable to use the linear image sensor 6 having uniform light receiving sensitivity of each light receiving unit 6a (or having the same light receiving sensitivity at the light receiving positions of at least two spectrum images sp1 and sp2).

リニアイメージセンサ6で2つのスペクトル像sp1、sp2を同時に受光するとき、2つのスペクトル像sp1、sp2の間に重なり部分が存在すると、この重なり部分で干渉が発生してしまい、重なり部分に光信号s1の元々の偏光状態に類似した偏光状態が現れてしまう。即ち、重なり部分での偏光状態が、入射される光信号s1の偏光状態に応じて変化してしまう。このため、リニアイメージセンサ6の受光感度が何らかの偏光依存性を持っている場合には、スペクトル像sp1、sp2の重なり部分での偏光状態に応じてリニアイメージセンサ6の出力が変化してしまう。又、干渉の結果、重なり部分での像強度が変化する場合にも、リニアイメージセンサ6の出力が変化してしまう。   When the linear image sensor 6 receives the two spectral images sp1 and sp2 at the same time, if there is an overlapping portion between the two spectral images sp1 and sp2, interference occurs in the overlapping portion, and an optical signal is generated in the overlapping portion. A polarization state similar to the original polarization state of s1 appears. That is, the polarization state at the overlapping portion changes according to the polarization state of the incident optical signal s1. For this reason, when the light receiving sensitivity of the linear image sensor 6 has some polarization dependence, the output of the linear image sensor 6 changes according to the polarization state in the overlapping part of the spectrum images sp1 and sp2. Further, the output of the linear image sensor 6 also changes when the image intensity at the overlapping portion changes as a result of interference.

しかし、本実施形態の波長モニタ装置1では、2つのスペクトル像sp1、sp2は完全に分離された状態でリニアイメージセンサ6に受光される。その結果、リニアイメージセンサ6は、常に2つのスペクトル像sp1、sp2の強度和を出力することが可能となる。   However, in the wavelength monitor device 1 of the present embodiment, the two spectral images sp1 and sp2 are received by the linear image sensor 6 in a completely separated state. As a result, the linear image sensor 6 can always output the sum of the intensities of the two spectral images sp1 and sp2.

従って、WDM装置7において、光送信器8から出射される光信号の波長毎の強度特性(強度和)をモニタすることが可能となる。本実施形態の波長モニタ装置1による測定結果を光送信器8にフィードバックすることで、光送信器8から出射される光信号の強度を波長毎に一定に保つことができ、安定した光通信が可能となる。   Therefore, in the WDM apparatus 7, it is possible to monitor the intensity characteristics (intensity sum) for each wavelength of the optical signal emitted from the optical transmitter 8. By feeding back the measurement result by the wavelength monitor device 1 of the present embodiment to the optical transmitter 8, the intensity of the optical signal emitted from the optical transmitter 8 can be kept constant for each wavelength, and stable optical communication can be performed. It becomes possible.

以上、本実施形態の波長モニタ装置1は、分離させた偏光成分の偏光方向を同一方向に調整した上で、回折格子4の格子面に光信号を入射させるため、偏光成分毎に回折角度が変化すること無く、同一な回折角度でリニアイメージセンサの受光部に二つの回折光成分のスペクトル像を受光させることが可能である。従って、リニアイメージセンサの一つの受光部に二つの同一次数の回折光成分のスペクトル像を受光させることが可能になり、異なる受光部に同一周波数で同一次数の二つの回折光成分のスペクトル像が受光されることを防止出来るため、波長モニタ装置1の波長分解能を向上させることが可能となる。   As described above, since the wavelength monitor device 1 of the present embodiment adjusts the polarization direction of the separated polarization component to the same direction and makes the optical signal incident on the grating surface of the diffraction grating 4, the diffraction angle is different for each polarization component. Without changing, it is possible to receive the spectral images of the two diffracted light components at the light receiving portion of the linear image sensor at the same diffraction angle. Therefore, it is possible to receive two diffracted light component spectral images of the same order on one light receiving portion of the linear image sensor, and two diffracted light component spectral images of the same order at the same frequency on different light receiving portions. Since it is possible to prevent light from being received, the wavelength resolution of the wavelength monitor device 1 can be improved.

更に、リニアイメージセンサ6の複数の受光部毎に、若干の特性バラツキがあっても、同一周波数の二つのスペクトル像を同一の受光部に受光させられるので、その影響を受けることが無い。   Furthermore, even if there is a slight characteristic variation for each of the plurality of light receiving portions of the linear image sensor 6, two spectral images having the same frequency can be received by the same light receiving portion, and thus are not affected.

更に、波長モニタ装置1の光学系が、コリメートレンズ5、複屈折素子2、ファラデー回転子3a、3b、回折格子4、及び、リニアイメージセンサ6で構成されるため、従来の波長モニタ装置のように、AWG導波路のような高価な構成部品を用いることなく光学系を形成することが可能となる。従って、波長モニタ装置1の低コスト化を図ることが可能となる。   Furthermore, since the optical system of the wavelength monitor device 1 is composed of the collimating lens 5, the birefringent element 2, the Faraday rotators 3a and 3b, the diffraction grating 4, and the linear image sensor 6, it is like a conventional wavelength monitor device. In addition, an optical system can be formed without using expensive components such as an AWG waveguide. Therefore, the cost of the wavelength monitor device 1 can be reduced.

又、回折格子4の直前に従来の波長モニタ装置のように、リロートレンズと云ったレンズ部品を配置しない光学系を形成することにより、光学系を構成する光学素子の大型化が防止されるため、波長モニタ装置1の大型化を防止することも出来る。   In addition, by forming an optical system that does not include lens components such as a rerout lens, just like the conventional wavelength monitor device, just before the diffraction grating 4, an increase in the size of the optical elements that constitute the optical system is prevented. Therefore, an increase in the size of the wavelength monitor device 1 can be prevented.

更に、レンズ部品を配置しないため、光信号s1の波長が変化しても回折格子4をその都度駆動させること無く、リニアイメージセンサ6の受光部に受光させることができ、波長モニタ装置1の部品点数の削減による小型化、低コスト化と、波長モニタ装置1の駆動制御の容易化を実現することが可能となる。   Further, since no lens parts are arranged, the light receiving unit of the linear image sensor 6 can receive light without driving the diffraction grating 4 each time even if the wavelength of the optical signal s1 changes. It is possible to achieve downsizing and cost reduction by reducing the number of points and facilitating drive control of the wavelength monitor device 1.

<第2の実施の形態>
次に、本発明の波長モニタ装置に係る第2の実施の形態を、図7〜図9を参照して説明する。図7は第2の実施形態の波長モニタ装置を模式的に示す概略斜視図であり、図8は第2の実施形態の波長モニタ装置を構成する回折格子とリニアイメージセンサのみを示す概略部分斜視図であり、図9は図8を矢印b方向から見たときの、回折格子とリニアイメージセンサの概略部分側面図である。なお、前記第1の実施の形態と同一箇所には同一番号を付し、重複する説明は省略、若しくは簡略化して記述する。図7、図8、図9の二点鎖線は光路を示し、比較的細線で描かれている光路部は、光学系の構成部品内を伝搬していることを示している。
<Second Embodiment>
Next, a second embodiment according to the wavelength monitoring device of the present invention will be described with reference to FIGS. FIG. 7 is a schematic perspective view schematically showing the wavelength monitor device of the second embodiment, and FIG. 8 is a schematic partial perspective view showing only the diffraction grating and the linear image sensor constituting the wavelength monitor device of the second embodiment. FIG. 9 is a schematic partial side view of the diffraction grating and the linear image sensor when FIG. 8 is viewed from the direction of arrow b. The same parts as those in the first embodiment are denoted by the same reference numerals, and overlapping descriptions are omitted or simplified. 7, 8, and 9 indicate an optical path, and an optical path portion drawn by a relatively thin line indicates that the optical path portion is propagating through the components of the optical system.

第2の実施形態の波長モニタ装置16が、第1の実施形態の波長モニタ装置1と異なる点は、回折格子17に透過型のものを用いている点である。その格子面には、図9に示すように矩形波状に多数の凸部17aが、x軸方向に細長く互いに平行に1次元形成されている。   The wavelength monitor device 16 of the second embodiment is different from the wavelength monitor device 1 of the first embodiment in that a transmission type is used for the diffraction grating 17. On the lattice plane, as shown in FIG. 9, a large number of convex portions 17a are formed in a rectangular wave shape in a one-dimensional shape that is elongated in the x-axis direction and parallel to each other.

このように構成された回折格子17を前記複屈折素子2側から重ねて見た場合、図7に示すように、複屈折素子2内部における異常光線s3の分離方向と、回折格子17の各々の前記凸部17aの形成方向(x軸方向)とが同一方向に平行となるように、結晶軸X1とX2の方向と、回折格子17の位置とが決定されている。この格子面に入射した2つの偏光成分s2、s3は、格子面に透過されて凸部17aで回折され、図8に示すように2つの回折光成分s21、s31に変換される。なお、図7〜図9では簡略化のため、0次の回折光成分のみを表している。   When the diffraction grating 17 configured in this manner is viewed from the birefringence element 2 side, as shown in FIG. 7, the separation direction of the extraordinary ray s3 in the birefringence element 2 and the diffraction grating 17 The directions of the crystal axes X1 and X2 and the position of the diffraction grating 17 are determined so that the formation direction (x-axis direction) of the projections 17a is parallel to the same direction. The two polarization components s2 and s3 incident on the grating surface are transmitted through the grating surface and diffracted by the convex portion 17a, and converted into two diffracted light components s21 and s31 as shown in FIG. 7 to 9, only the 0th-order diffracted light component is shown for simplification.

本実施形態の波長モニタ装置16でも、回折格子17に入射する2つの偏光成分s2、s3の偏光方向を、光ファイバ15から出射する光信号s1の偏光状態に関わらず同一にすることが出来る。即ち、光信号s1の偏光状態が変化しても、2つの偏光成分s2、s3の偏光方向を同一方向に保つことが可能である。このため、回折格子17に入射する2つの偏光成分s2、s3は、回折格子17において回折する際、同じ次数の回折光成分は常に同一方向に回折することになる。   Also in the wavelength monitor device 16 of the present embodiment, the polarization directions of the two polarization components s2 and s3 incident on the diffraction grating 17 can be made the same regardless of the polarization state of the optical signal s1 emitted from the optical fiber 15. That is, even if the polarization state of the optical signal s1 changes, it is possible to keep the polarization directions of the two polarization components s2 and s3 in the same direction. For this reason, when the two polarization components s2 and s3 incident on the diffraction grating 17 are diffracted by the diffraction grating 17, the diffracted light components of the same order are always diffracted in the same direction.

更に、凸部17aに入射する時点で、偏光成分s2とs3の偏光方向は、凸部17aの形成方向に対し平行になっている。従って、回折後の回折光成分s21、s31に他方向の偏光成分がノイズとして入り込むことを防止できるため、波長モニタ装置16の波長分解能を向上させることが可能となる。   Further, at the time of incidence on the convex portion 17a, the polarization directions of the polarization components s2 and s3 are parallel to the forming direction of the convex portion 17a. Accordingly, it is possible to prevent the polarization component in the other direction from entering the diffracted light components s21 and s31 after diffraction as noise, so that the wavelength resolution of the wavelength monitor device 16 can be improved.

更に、2つの偏光成分s2、s3の偏光方向が同一方向の状態で、偏光成分s2、s3を同一の凸部17aで回折することにより、回折後の2つの回折光成分s21とs31との間における光路長差を0にすることが可能になる。なお、回折格子17を回折後の2つの回折光成分s21、s31の強度比は、回折格子17入射前の2つの偏光成分s2、s3の強度比と等しい。   Further, by diffracting the polarization components s2 and s3 by the same convex portion 17a in the state where the polarization directions of the two polarization components s2 and s3 are the same direction, the two diffracted light components s21 and s31 after the diffraction are diffracted. The optical path length difference at can be made zero. The intensity ratio between the two diffracted light components s21 and s31 after diffracting the diffraction grating 17 is equal to the intensity ratio between the two polarization components s2 and s3 before entering the diffraction grating 17.

回折格子17から回折された2つの回折光成分s21、s31は、図8に示すようにリニアイメージセンサ6に向けて伝搬され、リニアイメージセンサ6の受光面上に、2つの回折光成分s21、s31によるスペクトル像sp1、sp2が完全に分離された状態で受光される。   As shown in FIG. 8, the two diffracted light components s21 and s31 diffracted from the diffraction grating 17 are propagated toward the linear image sensor 6, and the two diffracted light components s21, The spectral images sp1 and sp2 generated by s31 are received in a completely separated state.

図7〜図9では、光ファイバ15で伝搬される光信号s1が単色光(任意の単一の波長を有する光)の場合を想定し、スポット状のスペクトル像sp1、sp2を図示した。本実施形態の波長モニタ装置16では、2つのスペクトル像sp1、sp2は完全に分離された状態でリニアイメージセンサ6に受光される。その結果、リニアイメージセンサ6は、常に2つのスペクトル像sp1、sp2の強度和を出力することが可能となる。   7 to 9, assuming that the optical signal s1 propagated through the optical fiber 15 is monochromatic light (light having an arbitrary single wavelength), the spot-like spectral images sp1 and sp2 are illustrated. In the wavelength monitor device 16 of the present embodiment, the two spectral images sp1 and sp2 are received by the linear image sensor 6 in a completely separated state. As a result, the linear image sensor 6 can always output the sum of the intensities of the two spectral images sp1 and sp2.

従って、図3で示すWDM装置7において、光送信器8から出射される光信号の波長毎の強度特性(強度和)をモニタすることが可能となる。本実施形態の波長モニタ装置13による測定結果を光送信器8にフィードバックすることで、光送信器8から出射される光信号の強度を波長毎に一定に保つことができ、安定した光通信が可能となる。   Therefore, in the WDM apparatus 7 shown in FIG. 3, it is possible to monitor the intensity characteristics (intensity sum) for each wavelength of the optical signal emitted from the optical transmitter 8. By feeding back the measurement result by the wavelength monitor device 13 of this embodiment to the optical transmitter 8, the intensity of the optical signal emitted from the optical transmitter 8 can be kept constant for each wavelength, and stable optical communication can be performed. It becomes possible.

以上、本実施形態の波長モニタ装置16は、分離させた偏光成分の偏光方向を同一方向に調整した上で、回折格子17の格子面に光信号を入射させるため、偏光成分毎に回折角度が変化すること無く、同一な回折角度でリニアイメージセンサの受光部に二つの回折光成分のスペクトル像を受光させることが可能である。従って、リニアイメージセンサの一つの受光部に二つの同一次数の回折光成分のスペクトル像を受光させることが可能になり、異なる受光部に同一周波数で同一次数の二つの回折光成分のスペクトル像が受光されることを防止出来るため、波長モニタ装置16の波長分解能を向上させることが可能となる。   As described above, the wavelength monitor device 16 of the present embodiment adjusts the polarization direction of the separated polarization components to the same direction, and then causes the optical signal to enter the grating surface of the diffraction grating 17, so that the diffraction angle is different for each polarization component. Without changing, it is possible to receive the spectral images of the two diffracted light components at the light receiving portion of the linear image sensor at the same diffraction angle. Therefore, it is possible to receive two diffracted light component spectral images of the same order on one light receiving portion of the linear image sensor, and two diffracted light component spectral images of the same order at the same frequency on different light receiving portions. Since it is possible to prevent light from being received, the wavelength resolution of the wavelength monitor device 16 can be improved.

更に、リニアイメージセンサ6の複数の受光部毎に、若干の特性バラツキがあっても、同一周波数の二つのスペクトル像を同一の受光部に受光させられるので、その影響を受けることが無い。   Furthermore, even if there is a slight characteristic variation for each of the plurality of light receiving portions of the linear image sensor 6, two spectral images having the same frequency can be received by the same light receiving portion, and thus are not affected.

又、波長モニタ装置16の光学系も、コリメートレンズ5、複屈折素子2、ファラデー回転子3a、3b、回折格子4、及び、リニアイメージセンサ6で構成されるため、従来の波長モニタ装置のように、AWG導波路のような高価な構成部品を用いることなく光学系を形成することが可能となる。従って、波長モニタ装置16の低コスト化を図ることが可能となる。   Also, the optical system of the wavelength monitor device 16 is composed of the collimating lens 5, the birefringent element 2, the Faraday rotators 3a and 3b, the diffraction grating 4, and the linear image sensor 6, so that it looks like a conventional wavelength monitor device. In addition, an optical system can be formed without using expensive components such as an AWG waveguide. Accordingly, the cost of the wavelength monitor device 16 can be reduced.

又、回折格子17の直前に従来の波長モニタ装置のように、リロートレンズと云ったレンズ部品を配置しない光学系を形成することにより、光学系を構成する光学素子の大型化が防止されるため、波長モニタ装置16の大型化を防止することも出来る。   In addition, by forming an optical system that does not include lens components such as a rerout lens just like the conventional wavelength monitor device just before the diffraction grating 17, an increase in the size of the optical elements constituting the optical system is prevented. Therefore, an increase in the size of the wavelength monitor device 16 can be prevented.

更に、レンズ部品を配置しないため、光信号s1の波長が変化しても回折格子17をその都度駆動させること無く、リニアイメージセンサ6の受光部に受光させることができ、波長モニタ装置16の部品点数の削減による小型化、低コスト化と、波長モニタ装置16の駆動制御の容易化を実現することが可能となる。   Further, since no lens parts are arranged, the light receiving part of the linear image sensor 6 can receive light without driving the diffraction grating 17 each time even if the wavelength of the optical signal s1 changes. It is possible to achieve downsizing and cost reduction by reducing the number of points and facilitating drive control of the wavelength monitor device 16.

なお、本実施形態はその技術的思想に基づいて種々変更可能であり、透過型の回折格子17の格子面に形成する凸部の形状を、前述の矩形波状に変えて、例えば三角波状の凸部に形成しても良い。   The present embodiment can be variously changed based on the technical idea, and the shape of the convex portion formed on the grating surface of the transmission type diffraction grating 17 is changed to the above-described rectangular wave shape, for example, a triangular wave convex shape. You may form in a part.

本発明の波長モニタ装置は、WDM装置の個別のチャンネルの波長毎における強度特性(強度和)用モニタ装置はもとより、光スペクトルアナライザ、或いは分光器としても使用することが可能である。   The wavelength monitor device of the present invention can be used not only as a monitor device for intensity characteristics (intensity sum) for each wavelength of individual channels of a WDM device but also as an optical spectrum analyzer or a spectroscope.

Claims (1)

コリメートレンズと、光信号を偏光方向が互いに直交する常光線と異常光線の2つの偏光成分に分離する複屈折素子と、90度の回転角度を有するファラデー回転子と、複数の溝部又は凸部が平行に形成されてなる格子面を有する回折格子と、リニアイメージセンサとを有し、
前記溝部若しくは前記凸部の形成方向が、前記複屈折素子内部における異常光線の分離方向と平行になるように、前記複屈折素子の結晶軸と回折格子とが位置決めされ、
更に、WDM装置からの光信号を前記コリメートレンズに入射させてコリメートすると共に、コリメートした光信号を前記複屈折素子で前記常光線と前記異常光線とに分離し、前記複屈折素子から前記常光線として出射された偏光成分のみを前記ファラデー回転子に透過させることでその偏光方向を90度回転させて、前記2つの偏光成分の偏光方向を同一方向にし、
この状態の前記偏光成分を同一の前記溝部若しくは凸部で回折させると共に、回折後の2つの回折光成分のスペクトル像を、互いの前記スペクトル像が完全に分離した状態で前記リニアイメージの1つの受光部に受光させて、前記光信号の強度和を出力することを特徴とする波長モニタ装置。
A collimating lens, a birefringent element that separates an optical signal into two polarization components of an ordinary ray and an extraordinary ray whose polarization directions are orthogonal to each other, a Faraday rotator having a rotation angle of 90 degrees, and a plurality of grooves or projections A diffraction grating having a grating surface formed in parallel, and a linear image sensor;
The crystal axis of the birefringent element and the diffraction grating are positioned so that the forming direction of the groove or the convex part is parallel to the separating direction of extraordinary rays inside the birefringent element,
Further, the optical signal from the WDM device is incident on the collimating lens to be collimated, and the collimated optical signal is separated into the ordinary ray and the extraordinary ray by the birefringent element, and the ordinary ray from the birefringent element. The polarization direction of the two polarization components is made to be the same direction by rotating only the polarization component emitted as follows through the Faraday rotator to rotate the polarization direction by 90 degrees,
The polarization component in this state is diffracted by the same groove or convex portion, and the spectral images of the two diffracted light components after diffraction are converted into one of the linear images with the spectral images completely separated from each other. A wavelength monitor device that receives light at a light receiving unit and outputs a sum of intensity of the optical signals.
JP2007502671A 2005-02-14 2006-02-13 Wavelength monitoring device Withdrawn JPWO2006085650A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005035399 2005-02-14
JP2005035399 2005-02-14
PCT/JP2006/302467 WO2006085650A1 (en) 2005-02-14 2006-02-13 Wavelength monitoring device

Publications (1)

Publication Number Publication Date
JPWO2006085650A1 true JPWO2006085650A1 (en) 2008-06-26

Family

ID=36793212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007502671A Withdrawn JPWO2006085650A1 (en) 2005-02-14 2006-02-13 Wavelength monitoring device

Country Status (2)

Country Link
JP (1) JPWO2006085650A1 (en)
WO (1) WO2006085650A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5699769B2 (en) * 2011-04-13 2015-04-15 富士通株式会社 Optical channel monitor and optical transmission device
CN106154424B (en) * 2016-09-23 2019-02-22 山东科技大学 A kind of dual-port faraday rotation mirror and circulator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083810A (en) * 2001-09-14 2003-03-19 Anritsu Corp Spectroscopic device and light measuring device
US7177496B1 (en) * 2001-12-27 2007-02-13 Capella Photonics, Inc. Optical spectral power monitors employing time-division-multiplexing detection schemes
JP2003194627A (en) * 2001-12-28 2003-07-09 Nikon Corp Spectroscope

Also Published As

Publication number Publication date
WO2006085650A1 (en) 2006-08-17

Similar Documents

Publication Publication Date Title
US6978062B2 (en) Wavelength division multiplexed device
US20190349112A1 (en) Optical Signal Processing Device
JP6102943B2 (en) Optical device
JP4752316B2 (en) Optical multiplexer / demultiplexer, optical add / drop system, and optical signal multiplexing / demultiplexing method
US8897646B2 (en) Optical add/drop multiplexer
US7068885B2 (en) Double diffraction grating planar lightwave circuit
US6823106B2 (en) Optical multiplexer/demultiplexer and adjustment method thereof
US6842239B2 (en) Alignment of multi-channel diffractive WDM device
US7167647B2 (en) Wavelength division multiplexing optical performance monitors
JPWO2006085650A1 (en) Wavelength monitoring device
JP4407282B2 (en) Inverse dispersion type dual spectrometer
JP4362098B2 (en) Polarization monitor device
JP2001221923A (en) Optical waveguide circuit
JP4505313B2 (en) Optical device and optical control method
JP2011220889A (en) Optical measuring apparatus
JP2006242876A (en) Wavelength monitor unit
US6496611B1 (en) Multichannel optical spectrum slicer and method of measuring modal birefringence and/or polarization mode dispersion of slicer itself
JP2004240215A (en) Optical communication device and optical communication system
US7305185B2 (en) Device for integrating demultiplexing and optical channel monitoring
JPH085861A (en) Optical multiplexer/demultiplexer
US20040201892A1 (en) Diffraction grating element, optical module and optical communications system
US6618129B2 (en) Technique for combined spectral, power, and polarization monitoring
US20110129216A1 (en) Tunable optical filters
EP0362900A2 (en) Four channel optical wavelength multiplexer
CA2560329C (en) Double diffraction grating planar lightwave circuit

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512