JPWO2006085606A1 - Circular dichroic thermal lens microscope - Google Patents

Circular dichroic thermal lens microscope Download PDF

Info

Publication number
JPWO2006085606A1
JPWO2006085606A1 JP2007502654A JP2007502654A JPWO2006085606A1 JP WO2006085606 A1 JPWO2006085606 A1 JP WO2006085606A1 JP 2007502654 A JP2007502654 A JP 2007502654A JP 2007502654 A JP2007502654 A JP 2007502654A JP WO2006085606 A1 JPWO2006085606 A1 JP WO2006085606A1
Authority
JP
Japan
Prior art keywords
thermal lens
sample
intensity
light
excitation light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007502654A
Other languages
Japanese (ja)
Inventor
雅世 山内
雅世 山内
彰秀 火原
彰秀 火原
北森 武彦
武彦 北森
和真 馬渡
和真 馬渡
学 渡慶次
学 渡慶次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
University of Tokyo NUC
Institute of Microchemical Technology
Original Assignee
Kanagawa Academy of Science and Technology
University of Tokyo NUC
Institute of Microchemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology, University of Tokyo NUC, Institute of Microchemical Technology filed Critical Kanagawa Academy of Science and Technology
Priority claimed from PCT/JP2006/302335 external-priority patent/WO2006085606A1/en
Publication of JPWO2006085606A1 publication Critical patent/JPWO2006085606A1/en
Pending legal-status Critical Current

Links

Abstract

極微量な光学活性試料を識別定量でき、かつ従来よりも高感度な円二色性熱レンズ顕微鏡装置の提供することを課題とする。光学顕微鏡に励起光と検出光を入射し、励起光が試料中に照射されることにより形成される熱レンズに検出光を入射し、熱レンズによる検出光の拡散を測定することにより試料中の物質の検出を行う熱レンズ顕微鏡装置であって、励起光を位相変調素子により変調することで光学異性体の識別もしくは定量を行う、円二色性熱レンズ顕微鏡装置により、課題を解決する。【選択図】 図1It is an object of the present invention to provide a circular dichroic thermal lens microscope apparatus capable of discriminating and quantifying an extremely small amount of an optically active sample and having higher sensitivity than before. The excitation light and the detection light are incident on the optical microscope, the detection light is incident on the thermal lens formed by irradiating the excitation light into the sample, and the diffusion of the detection light by the thermal lens is measured to A circular dichroic thermal lens microscope apparatus that detects a substance and identifies or quantifies an optical isomer by modulating excitation light with a phase modulation element. [Selection] Figure 1

Description

この出願の発明は、円二色性熱レンズ顕微鏡装置に関するものである。さらに詳しくは、この出願の発明は、円二色性分光法を熱レンズ顕微鏡により実現することで、高感度かつマイクロチャネル中の試料などの微量な試料を測定することを可能にする円二色性熱レンズ顕微鏡装置に関するものである。   The invention of this application relates to a circular dichroic thermal lens microscope apparatus. More specifically, the invention of this application realizes circular dichroism spectroscopy with a thermal lens microscope, thereby making it possible to measure a small amount of sample such as a sample in a microchannel with high sensitivity. The present invention relates to a thermal lens microscope apparatus.

生体試料を初めとする各種の液体試料等の分析や測定を行う場合にあっては、これまで種々の分光分析法が利用されているものの、試料が破壊ないし損傷される等の問題があることから、溶液あるいは生体組織中等の超微量の試料を扱う場合には、光学領域の顕微鏡が広く利用されている。   When analyzing and measuring various liquid samples including biological samples, various spectroscopic methods have been used so far, but there are problems such as destruction or damage of samples. Therefore, in the case of handling an extremely small amount of sample such as in a solution or biological tissue, a microscope in the optical region is widely used.

しかしその一方で、高精度で高い空間分解能での分析が必要とされる場合、実際上利用可能な分析ツールとしてはレーザ蛍光顕微鏡のみであって、自ずと分析対象は蛍光物質に限定されてきたが、非蛍光物質についても適用可能で、高精度かつ高空間分解能の分析ツールとしての光学顕微鏡の実現が求められてきた。   However, on the other hand, when analysis with high accuracy and high spatial resolution is required, the only practically available analysis tool is a laser fluorescence microscope, and the analysis target has been limited to fluorescent substances. It is also applicable to non-fluorescent substances, and the realization of an optical microscope as an analysis tool with high accuracy and high spatial resolution has been demanded.

かかる条件を満たす分析ツールとして、熱レンズ効果を利用した光学顕微鏡系が検討されたが、熱レンズ効果を利用する場合、励起光が試料中に入射されることにより形成される熱レンズに検出光を入射し、試料透過後の検出光の拡散から試料物質の検出を行うものとすることが欠かせないにも拘わらず、光学顕微鏡系では、色収差等が高度に補正されているなど、励起光と検出光の焦点位置が一致してしまうことにより、実現が非常に困難であった。   An optical microscope system using the thermal lens effect has been studied as an analysis tool that satisfies such conditions. However, when the thermal lens effect is used, the detection light is applied to the thermal lens formed by the excitation light entering the sample. However, it is essential to detect the sample substance from the diffused detection light after passing through the sample. Since the focal positions of the detection light coincide with each other, it has been very difficult to realize.

そして、本発明者らは、これらの問題を解消するための分析ツールとして、励起光と検出光の波長を異なるものとし、色収差のあるレンズを対物レンズとして用いることにより、試料中における励起光および検出光の焦点位置が一致させないようにした光学調整装置と、試料透過光の集光装置とを採用し、励起光と検出光が接眼レンズに入射されて対物レンズより試料ステージ上の試料に放射され、その試料透過光を集光装置により集光しつつ該透過光のうち検出光のみから分析が行われる、熱レンズ顕微鏡超微量分析装置等を、この出願に先立ち提供してきた(特許文献1参照のこと。)。   The inventors of the present invention, as an analysis tool for solving these problems, use different wavelengths of excitation light and detection light, and use a lens having chromatic aberration as an objective lens, so that the excitation light in the sample and Employs an optical adjustment device that prevents the focal position of the detection light from coinciding and a condensing device for the sample transmitted light. Prior to this application, a thermal lens microscope ultra-microanalyzer etc. has been provided prior to this application, in which the sample transmitted light is collected by a condensing device and analyzed only from the detected light. See

しかしながら、この特許文献1に係る熱レンズ顕微鏡超微量分析装置は、分析を行う微小空間における分析対象の濃度を感度良く検出できるものの、励起光照射時と非照射時の透過検出光の拡散の差を測定して(すなわち励起光は強度変調)、光吸収を示す全溶質のトータルな濃度を、熱レンズ効果として測定する手法であるために、酷似した物性を有する複数の物質が共存する分析条件下においては、それぞれを区別して定量的に検出することはきわめて困難であった。   However, although the thermal lens microscope ultra-microanalyzer according to Patent Document 1 can detect the concentration of an analysis target in a minute space where analysis is performed with high sensitivity, the difference in diffusion of transmitted detection light during excitation light irradiation and non-irradiation is different. (Ie, excitation light is intensity-modulated), and the total concentration of all solutes exhibiting light absorption is measured as a thermal lens effect. Therefore, the analysis conditions allow multiple substances with very similar physical properties to coexist. Below, it was extremely difficult to distinguish and quantitatively detect each.

特に、いわゆる光学活性な試料の場合、光学異性体間の吸光特性における差は、きわめて小さく、常法による励起光を用いた熱レンズ顕微鏡装置では、両者の識別並びに定量が困難であると考えられてきた。   In particular, in the case of so-called optically active samples, the difference in optical absorption characteristics between optical isomers is extremely small, and it is considered difficult to distinguish and quantify them using a thermal lens microscope apparatus using excitation light by a conventional method. I came.

一方、こうした光学活性な試料を効率的に合成する装置としては、ガラス、樹脂、シリコンなどに、1〜100μmの溝を刻んで、その上で迅速に合成を行うマイクロチップが近年利用されるようになってきたため(非特許文献1参照のこと。)、かかる装置で合成された試料量は従来の1/10,000以下の極微量となっており、被分析物の光路長が大幅に短縮されるのにともない、一層、検出が困難になってきている。   On the other hand, as an apparatus for efficiently synthesizing such an optically active sample, a microchip that synthesizes a 1-100 μm groove in glass, resin, silicon, etc. and then quickly synthesizes the groove is recently used. (See Non-Patent Document 1), the amount of sample synthesized by such an apparatus is extremely small, less than 1 / 10,000 of the conventional amount, and the optical path length of the analyte is greatly shortened. As a result, detection is becoming more difficult.

なお、かかるマイクロチップを利用する場合に限らず、反応条件のスクリーニングに際しては、多種多様な反応条件を検討する必要があることから、それぞれの分析に供しうる試料量は、可能な限り微量であることが望ましいことはいうまでもない。   In addition, not only when using such a microchip, but when screening reaction conditions, it is necessary to consider a wide variety of reaction conditions, so the amount of sample that can be used for each analysis is as small as possible It goes without saying that it is desirable.

また、光学活性な試料は、そのキラリティに応じて、生体の生理作用に大きな影響を及ぼすことが広く知られており、製薬分野においては、光学活性試料のキラリティを正確に識別し、定量することが重要な課題となっている。   In addition, optically active samples are widely known to have a great influence on the physiological functions of living bodies depending on their chirality. In the pharmaceutical field, the chirality of optically active samples can be accurately identified and quantified. Has become an important issue.

こうした光学活性試料の測定法としては、物質が示す右円偏光と左円偏光の吸収度の差(円二色性)に基づいて測定する円二色性測定装置や、直線偏光の回転(旋光角)を測定する旋光計などが知られている。特に、円二色性測定装置は旋光計よりも温度変化やほこり、気泡などの外乱要因に強いため、重要不可欠な手段となっている。   Measurement methods for such optically active samples include circular dichroism measurement devices that measure the difference in absorbance between the right and left circular polarizations (circular dichroism) exhibited by a substance, rotation of linearly polarized light (optical rotation) A polarimeter that measures angle) is known. In particular, the circular dichroism measuring apparatus is an indispensable means because it is more resistant to disturbance factors such as temperature change, dust, and bubbles than the polarimeter.

具体的には、光照射手段から照射された光の偏光状態を周期的に変調する偏光調整手段を備え、変調された光を試料に照射し、該試料からの拡散反射光を、積分球を介して検出手段により検出する円二色性測定装置が知られている(例えば、特許文献2を参照のこと。)。   Specifically, it comprises polarization adjusting means for periodically modulating the polarization state of the light emitted from the light irradiating means, irradiating the sample with the modulated light, and diffusing reflected light from the sample into the integrating sphere. There is known a circular dichroism measuring device that detects the light through a detecting means (for example, see Patent Document 2).

また、光を強く絞らない熱レンズ測定で光学活性を測定した例はある(例えば、非特許文献2を参照のこと。)。
特開2004−45434号公報 特開2004−325336号公報 "Macromolecular Rapid Communications", No.25, (2004), pp.158-168 "ANALYTICAL CHEMISTRY", Vol.62, No.22、(1990.11.15.) pp.2467-2471
In addition, there is an example in which optical activity is measured by a thermal lens measurement that does not squeeze the light strongly (see, for example, Non-Patent Document 2).
JP 2004-45434 A JP 2004-325336 A "Macromolecular Rapid Communications", No.25, (2004), pp.158-168 "ANALYTICAL CHEMISTRY", Vol.62, No.22, (November 15, 1990) pp.2467-2471

生体の生理作用についての理解を進めていく上で、光学活性試料の識別定量化の問題は益々その重要性を増していくものと予想されるが、従来の円二色性測定装置等では、その検出感度が十分とはいえず、また、被分析物の局在性の高い試料や極微量の試料に対しては、有効な分析ツールとは言い難い。   The problem of discriminating and quantifying optically active samples is expected to increase in importance as we continue to understand the physiological functions of living organisms. However, with conventional circular dichroism measuring devices, It cannot be said that the detection sensitivity is sufficient, and it is difficult to say that it is an effective analysis tool for a sample with a highly localized analyte or a very small amount of sample.

特に、その試料量については今後いっそう厳しい制限を受けることになると予想されるため、検出感度の観点から円二色性測定装置等では今後のニーズに対処出来ないことは明かであり、しかも、これらの分析ツールは、元々空間分解能において劣っていることから、特定の細胞表面といった局在性の高い分析対象への応用はほとんど期待できない。   In particular, the sample amount is expected to be subject to more severe restrictions in the future, so it is clear that circular dichroism measuring devices cannot cope with future needs from the viewpoint of detection sensitivity. Since the analysis tool is originally inferior in spatial resolution, it is hardly expected to be applied to a highly localized analysis target such as a specific cell surface.

一方、既存の熱レンズ顕微鏡装置は、複数種の光学異性体が共存する被検査試料では、光学異性体間の通常用いられる励起光の吸収特性における差があまりに小さいことから、かかる光学活性試料に対して適用したとしても、複数種の光学異性体に亘っての平均化された概略の濃度を求められるに過ぎず、具体的にどのタイプの光学異性体が多いのかまでは識別できない。   On the other hand, in the existing thermal lens microscope apparatus, in the sample to be inspected in which plural kinds of optical isomers coexist, the difference in the absorption characteristics of the excitation light normally used between the optical isomers is too small. Even if it is applied to this, only an approximate concentration averaged over a plurality of optical isomers can be obtained, and it cannot be specifically identified which type of optical isomer is large.

また、非特許文献2に例示される方法では、光学活性を熱レンズ測定で測定はしているものの、この方法は、感度が低く微量な試料には適用できなかった。またこの手法で用いられている電気化学変調手段の結晶材料ADP(NH4H2PO4)を熱レンズ顕微鏡に適用して円二色性熱レンズ信号を測定すると、後述の図4に例示されるとおり、予想外にバックグラウンド信号が大きく増加して測定精度が低下することを発見した。In the method exemplified in Non-Patent Document 2, the optical activity is measured by thermal lens measurement, but this method has low sensitivity and cannot be applied to a very small amount of sample. Further, when the circular dichroic thermal lens signal is measured by applying the crystal material ADP (NH 4 H 2 PO 4 ) of the electrochemical modulation means used in this method to a thermal lens microscope, it is exemplified in FIG. 4 to be described later. As shown, the background signal increased unexpectedly, and the measurement accuracy decreased.

従って、解決すべき技術的課題としては、測定原理的に光学活性試料を識別することが困難な従来の熱レンズ顕微鏡装置に、如何にして光学活性試料を識別する機能を付加し、マイクロチップといった極微量の試料にも適用可能な、より高感度かつ高空間分解能を達成するかということにある。   Therefore, as a technical problem to be solved, a function for identifying an optically active sample is added to a conventional thermal lens microscope apparatus in which it is difficult to identify an optically active sample in principle of measurement, and a microchip is used. It is to achieve higher sensitivity and higher spatial resolution that can be applied to a very small amount of sample.

本発明は、上述の背景技術における技術的な課題を解決するためになされたものである。すなわち、光学活性試料の場合、光学異性体を含むが故に、一般的な物理的化学的な性質は酷似しているものの、互いに逆の旋光性を示すといったキラルな構造を有していることから、この出願の発明者らは、熱レンズ顕微鏡における励起光を左右の円偏光に制御可能な構成を付加することができれば、円二色性を利用して吸収特性に光学異性体間で有意な差をもって検出できるのではないかとの着想に思い至った。   The present invention has been made to solve the technical problems in the background art described above. In other words, since optically active samples contain optical isomers, they have a chiral structure that is similar in general physicochemical properties but exhibits opposite optical rotations. The inventors of this application, if the configuration that can control the excitation light in the thermal lens microscope to the left and right circularly polarized light can be added, the absorption characteristics using the circular dichroism is significant between the optical isomers. I came up with the idea that it could be detected with a difference.

しかしながら、左右の円偏光を励起光として導入できるようにするだけでは、例えば、後述の図2に例示される、光学異性体([(+)Co(en)33+)の場合、左円偏光と右円偏光との間の検出光の吸光度における差(Δε+(532nm)=εL−εR)は、+3.2×10-1(M-1cm-1)であり、その比(Δε+/ε(532nm))は、0.032に過ぎない。一方、その光学異性体である[(−)Co(en)33+)の場合にも、吸光度における差(Δε-(532nm)=εL−εR)は、-3.2×10-1(M-1cm-1)であり、その比(Δε-/ε(532nm))は、0.032であって、濃度測定と光学異性体の種類を同時に精度よく特定することは難しい。However, only by allowing left and right circularly polarized light to be introduced as excitation light, for example, in the case of an optical isomer ([(+) Co (en) 3 ] 3+ ) illustrated in FIG. The difference (Δε + (532 nm) = ε L −ε R ) in the absorbance of the detection light between the circularly polarized light and the right circularly polarized light is + 3.2 × 10 −1 (M −1 cm −1 ), and the ratio (Δε + / ε (532 nm)) is only 0.032. On the other hand, in the case of [(−) Co (en) 3 ] 3+ ) which is the optical isomer, the difference in absorbance (Δε (532 nm) = ε L −ε R ) is −3.2 × 10 −1. (M −1 cm −1 ) and the ratio (Δε / ε (532 nm)) is 0.032, and it is difficult to accurately determine the concentration measurement and the type of optical isomer at the same time.

そこで、この出願の発明者らは、励起光を、所定の周期で右円偏光と左円偏光とに切換え可能な光変調素子を介して試料に照射することにより、熱レンズ効果の大きさに周期性のある変化を付与し、かかる熱レンズ領域を透過し検出光の強度のうち、光変調素子の周波数と同期した成分を測定して濃度を精度よく検出しつつ、微弱な信号の周期性における位相差をもって光学異性体の種類を同定することに成功した。   Therefore, the inventors of this application irradiate the sample with a light modulation element that can be switched between right circularly polarized light and left circularly polarized light at a predetermined period, thereby increasing the thermal lens effect. Applying a periodic change, measuring the component synchronized with the frequency of the light modulation element out of the intensity of the detected light transmitted through the thermal lens area, and detecting the concentration accurately, while the periodicity of the weak signal We succeeded in identifying the type of optical isomer with the phase difference in.

本発明(1)は、波長の異なる励起光と検出光を放射する発振手段をそれぞれ設け、対物レンズを介して該励起光と該検出光を試料中に導入し、該励起光が試料中に形成する熱レンズによる検出光の透過光量変化を、光検出器を設置して熱レンズ信号として測定する熱レンズ顕微鏡装置であって、さらに該励起光を左右の円偏光に変調可能な位相変調手段を該発振手段と試料の間の励起光の経路に配置するとともに、前記左右の円偏光の照射による熱レンズ信号の差(以下、円二色性熱レンズ信号)を測定して光学異性体の識別もしくは定量を行うことを特徴とする、円二色性熱レンズ顕微鏡装置である。
本発明(2)は、前記対物レンズの開口数が0.1以上であることを特徴とする、本発明(1)の円二色性熱レンズ顕微鏡装置である。
本発明(3)は、前記位相変調手段が電気光学変調素子であることを特徴とする、本発明(1)又は本発明(2)の円二色性熱レンズ顕微鏡装置である。
本発明(4)は、前記電気光学変調素子の結晶材料が、KDP(KH2PO4)、DKDP(KD2PO2)又はBBO(BaB2O4)からなる群のうちの何れか1種から構成されていることを特徴とする、本発明(3)の円二色性熱レンズ顕微鏡装置である。
本発明(5)は、同期検波手段を更に備え、該同期検波手段により前記円二色性熱レンズ信号から前記電気光学変調素子の変調周波数と同期する成分を抽出することで、前記円二色性熱レンズ信号の強度もしくは位相を測定することを特徴とする、本発明(3)又は本発明(4)の何れか1発明の円二色性熱レンズ顕微鏡装置である。
本発明(6)は、励起光の強度変調手段を更に備え、該強度変調手段により発生する熱レンズ信号(以下、強度変調熱レンズ信号)強度と、円二色性熱レンズ信号強度を測定することにより、試料の光学純度を測定することを特徴とする、本発明(5)の円二色性熱レンズ顕微鏡装置である。
本発明(7)は、波長の異なる励起光と検出光を放射する発振手段をそれぞれ設け、試料中に該励起光の焦点を結ぶ対物レンズを介して、該励起光と該検出光を試料中に導入し、試料を透過した検出光の強度を測定する円二色性熱レンズ顕微鏡装置において、
該励起光のみを左右の円偏光に選択的に変調可能な位相変調手段を該発振手段と試料の間の励起光の経路に配置するとともに、前記試料を透過した検出光の強度を該位相変調手段の変調に同期して検出可能な同期検波手段を含み、前記試料を透過した検出光の強度から前記位相変調に同期する成分を抽出し該同期成分の位相差を少なくとも求めることを特徴とする、円二色性熱レンズ顕微鏡装置である。
本発明(8)は、前記位相変調手段とは独立に変調可能な励起光の強度変調手段を更に備え、前記位相変調手段による円偏光とされた励起光が照射されたときに試料を透過した検出光の強度と該強度変調手段による偏りのない励起光が試料に照射されたときに試料を透過した検出光の強度をそれぞれ計測し、その強度の比を更に求めることを特徴とする、請求項7記載の円二色性熱レンズ顕微鏡装置である。
In the present invention (1), oscillation means for emitting excitation light and detection light having different wavelengths are provided, and the excitation light and the detection light are introduced into the sample via the objective lens, and the excitation light is introduced into the sample. A thermal lens microscope apparatus for measuring a change in transmitted light amount of detection light by a thermal lens to be formed as a thermal lens signal by installing a photodetector, and further, phase modulation means capable of modulating the excitation light into left and right circularly polarized light Is arranged in the path of the excitation light between the oscillation means and the sample, and the difference in thermal lens signal (hereinafter referred to as circular dichroic thermal lens signal) due to irradiation of the left and right circularly polarized light is measured to determine the optical isomer. A circular dichroic thermal lens microscope apparatus characterized by performing identification or quantification.
The present invention (2) is the circular dichroic thermal lens microscope apparatus according to the present invention (1), wherein the numerical aperture of the objective lens is 0.1 or more.
The present invention (3) is the circular dichroic thermal lens microscope apparatus according to the present invention (1) or (2), wherein the phase modulation means is an electro-optic modulation element.
According to the present invention (4), the crystal material of the electro-optic modulation element is any one selected from the group consisting of KDP (KH 2 PO 4 ), DKDP (KD 2 PO 2 ), and BBO (BaB 2 O 4 ). This is a circular dichroic thermal lens microscope apparatus according to the present invention (3).
The present invention (5) further includes synchronous detection means, and the synchronous detection means extracts a component synchronized with the modulation frequency of the electro-optic modulation element from the circular dichroic thermal lens signal, so that the circular dichroism is extracted. A circular dichroic thermal lens microscope apparatus according to any one of the present invention (3) and the present invention (4), characterized by measuring the intensity or phase of a diffractive thermal lens signal.
The present invention (6) further includes excitation light intensity modulation means, and measures the intensity of a thermal lens signal (hereinafter, intensity modulated thermal lens signal) generated by the intensity modulation means and the circular dichroic thermal lens signal intensity. By this, it is a circular dichroism thermal lens microscope apparatus of this invention (5) characterized by measuring the optical purity of a sample.
In the present invention (7), oscillation means for emitting excitation light and detection light having different wavelengths are provided, and the excitation light and the detection light are passed through the sample through an objective lens that focuses the excitation light in the sample. In a circular dichroic thermal lens microscope apparatus that measures the intensity of detection light that has been introduced into
A phase modulation means capable of selectively modulating only the excitation light into left and right circularly polarized light is disposed in the excitation light path between the oscillation means and the sample, and the intensity of the detection light transmitted through the sample is modulated by the phase modulation. Including synchronous detection means capable of detecting in synchronization with the modulation of the means, extracting a component synchronized with the phase modulation from the intensity of the detection light transmitted through the sample, and obtaining at least a phase difference of the synchronous component A circular dichroic thermal lens microscope apparatus.
The present invention (8) further includes excitation light intensity modulation means that can be modulated independently of the phase modulation means, and transmitted through the sample when irradiated with circularly polarized excitation light by the phase modulation means. The intensity of the detection light and the intensity of the detection light transmitted through the sample when the sample is irradiated with the excitation light without bias by the intensity modulation means, respectively, and the ratio of the intensity is further obtained. Item 8. The circular dichroic thermal lens microscope apparatus according to Item 7.

ここで、本発明にいう「位相変調素子」とは、励起光に左右の円偏光を付与するためのものであって、互いに直角な、90°位相のずれた平面偏光を重ね合わせると、螺旋を描き円偏光となるが、その位相のずれる方向により、螺旋の向きが左右に変化することから、重ね合わせる位相を制御して円偏光の向きを制御する変調素子の総称であって、「電気光学変調素子」や「光弾性変調素子」がある。例えば、ポッケルス効果を利用したポッケルスセルに代表される。   Here, the “phase modulation element” referred to in the present invention is for imparting left and right circularly polarized light to the excitation light, and when plane polarized light that is perpendicular to each other and shifted by 90 ° is superimposed, The direction of the spiral changes from side to side depending on the direction of the phase shift, and is a generic term for modulation elements that control the direction of circular polarization by controlling the phase to be superimposed. There are “optical modulation element” and “photoelastic modulation element”. For example, it is represented by a Pockels cell using the Pockels effect.

また、「開口数(N.A.)」は、入射ひとみ(絞り)の半径が物点において張る角uの正弦と物体空間の絶対屈折率nとの積nsinuであり、顕微鏡の場合には、互いに分離して認めうる2点の最短間隔(分解能)は開口数に逆比例することから、採用した顕微鏡の光学系が特定されている場合に開口数の範囲を限定することは、実質的に分析対象試料の透過長さ(試料の厚さ)を間接的に特定することになる。従って、「開口数が0.1以上である」なる限定は、従来の円二色性測定装置が想定するボリュームの大きな分析対象を除外することを意味する。   The “numerical aperture (NA)” is a product nsinu of the sine of the angle u where the radius of the entrance pupil (aperture) is stretched at the object point and the absolute refractive index n of the object space. Since the shortest distance (resolution) between two points that can be recognized is inversely proportional to the numerical aperture, limiting the numerical aperture range when the optical system of the employed microscope is specified is substantially the object of analysis. The penetration length (sample thickness) of the sample is indirectly specified. Therefore, the limitation that “the numerical aperture is 0.1 or more” means that an analysis object with a large volume assumed by the conventional circular dichroism measuring apparatus is excluded.

さらに、「光学純度」とは、一対の鏡像異性体だけからなる混合物中に存在する一方の鏡像異性体の過剰量を百分率で表した値であって、「%e.e. (enantiomeric excess)」をもって表し、
e.e.=(C(+)−C(-))/(C(+)+C(-))×100%
をもって定義され、検出感度の一つの指標となる。
Furthermore, “optical purity” is a percentage value of the excess amount of one enantiomer present in a mixture consisting of only a pair of enantiomers, expressed as “% ee (enantiomeric excess)”. ,
ee = (C (+) -C (-) ) / (C (+) + C (-) ) x 100%
And is an index of detection sensitivity.

なお、従前の検出光の透過光量変化であるいわゆる広義の「熱レンズ信号」と区別する目的で、本発明においては、励起光を強度変調したときの信号を「強度変調熱レンズ信号」と呼び、励起光を位相変調したときの信号を「円二色性熱レンズ信号」と呼ぶ。   For the purpose of distinguishing from the so-called “thermal lens signal” in a broad sense, which is a change in the amount of transmitted light of detection light in the past, in the present invention, the signal when the intensity of the excitation light is modulated is referred to as the “intensity modulated thermal lens signal”. A signal when the excitation light is phase-modulated is called a “circular dichroic thermal lens signal”.

本発明にかかる円二色性熱レンズ顕微鏡装置の概要を示す図The figure which shows the outline | summary of the circular dichroism thermal lens microscope apparatus concerning this invention. 本発明の実施例において用いられた鏡像光学異性体の構造を示す図The figure which shows the structure of the mirror image optical isomer used in the Example of this invention 本発明の実施例1にかかる濃度の検量線の一例を示す図The figure which shows an example of the calibration curve of the density | concentration concerning Example 1 of this invention. 電気光学変調素子としてADP(NH4H2PO4)を採用した際の円二色性熱レンズ信号におけるバックグラウンド信号強度の経時的変化を示す参考図Reference diagram showing the change over time of the background signal intensity in the circular dichroic thermal lens signal when ADP (NH 4 H 2 PO 4 ) is used as the electro-optic modulator 本発明の実施例2にかかる光学純度の検量線の一例を示す図The figure which shows an example of the calibration curve of the optical purity concerning Example 2 of this invention. 本発明の実施例3にかかる強度変調/位相変調した励起光に対する熱レンズ信号強度の経時的変化の一例を示す図The figure which shows an example of a time-dependent change of the thermal lens signal intensity | strength with respect to the intensity | strength modulation / phase modulation | alteration excitation light concerning Example 3 of this invention.

符号の説明Explanation of symbols

1 励起光発振器
2 検出光発振器
3 位相変調素子
4 ビームスプリッタ
5 顕微鏡
6 ミラー
7 対物レンズ
8 試料
9 レンズ
10 ミラー
11 励起光カットフィルタ
12 ピンホール
13 フォトダイオード
14 ロックインアンプ
DESCRIPTION OF SYMBOLS 1 Excitation light oscillator 2 Detection light oscillator 3 Phase modulation element 4 Beam splitter 5 Microscope 6 Mirror 7 Objective lens 8 Sample 9 Lens 10 Mirror 11 Excitation light cut filter 12 Pinhole 13 Photo diode 14 Lock-in amplifier

以下に、本発明の実施の形態についてさらに詳しく説明する。まず、本発明の円二色性熱レンズ顕微鏡装置の一例についての概要を図1に示す。図1中、1は励起光発振器であって、具体的には、波長532nm、出力100mW のNd:YAGレーザを採用し、2は検出光発振器であって、具体的には、波長633nm、出力15mWのHe-Neレーザを採用した。これらの波長としては、試料が励起光に対しては吸収を示し、検出光に対しては吸収のない波長が選択されることが望ましい。励起光および検出光の光発振器には、白色光であるインコヒーレント光発振器を用いることもできるが、単色光であり光密度が高くできるレーザ発振器であることが望ましい。   Hereinafter, embodiments of the present invention will be described in more detail. First, the outline | summary about an example of the circular dichroism thermal lens microscope apparatus of this invention is shown in FIG. In FIG. 1, 1 is an excitation light oscillator, specifically, an Nd: YAG laser having a wavelength of 532 nm and an output of 100 mW is adopted, and 2 is a detection light oscillator, specifically, a wavelength of 633 nm, an output. A 15mW He-Ne laser was used. As these wavelengths, it is desirable to select a wavelength in which the sample absorbs excitation light and does not absorb detection light. An incoherent optical oscillator that is white light can be used as an optical oscillator for excitation light and detection light, but a laser oscillator that is monochromatic light and can increase the light density is desirable.

そして、励起光発振器1から放出された励起光は、ポッケルスセルにて構成される、DKDP(KD2PO2)の位相変調素子3に導入され、1kHzで右円偏光と左円偏光とが切り替わる励起光を出力し、前記検出光発振器2から放出された検出光とビームスプリッタ4を介して合成され、顕微鏡5内に導入される。変調周波数は低い方が熱レンズ信号の強度が大きくなる、すなわち感度が向上するが、あまり低く設定すると光ノイズや電気ノイズの影響が相対的に大きくなるので、信号強度とノイズの比が大きくなるよう、最適な周波数を選択することが望ましい。Then, the excitation light emitted from the excitation light oscillator 1 is introduced into the phase modulation element 3 of DKDP (KD 2 PO 2 ) composed of a Pockels cell, and the right circular polarization and the left circular polarization are switched at 1 kHz. Excitation light is output, combined with the detection light emitted from the detection light oscillator 2 via the beam splitter 4, and introduced into the microscope 5. The lower the modulation frequency, the greater the intensity of the thermal lens signal, that is, the sensitivity is improved. However, if the modulation frequency is set too low, the influence of optical noise and electrical noise becomes relatively large, so the ratio of signal intensity to noise increases. It is desirable to select an optimal frequency.

かかる合成光を、励起光が試料8内に焦点を結ぶように調整された、集光能力に優れた対物レンズ7(並びに必要に応じて配置されるミラー6)を介して、試料に照射する。但し、対物レンズ7等の光学系は、集光能力に優れているものではあるが、励起光と検出光の焦点が一致しないような構成のものを採用することが望ましい。また、必ずしも対物レンズを用いる必要はなく、集光能力に優れたレンズもしくは組み合わせレンズ(アクロマティックレンズ)などを用いても構わない。さらに本例では、顕微鏡の筐体を用いているが、励起光およびプローブ光を集光能力に優れたレンズによって、試料8内に集光できるような構成であればよい。   The synthesized light is irradiated onto the sample through the objective lens 7 (and the mirror 6 arranged as necessary) that is adjusted so that the excitation light is focused in the sample 8 and has excellent light collecting ability. . However, although the optical system such as the objective lens 7 is excellent in the light collecting ability, it is desirable to adopt a configuration in which the focal points of the excitation light and the detection light do not coincide. Further, it is not always necessary to use an objective lens, and a lens having excellent light collecting ability or a combination lens (achromatic lens) may be used. Furthermore, in this example, the housing of the microscope is used. However, any configuration may be used as long as the excitation light and the probe light can be collected in the sample 8 by a lens having excellent light collecting ability.

一方、前記焦点と共焦点となるように、もう一つのレンズ9を対向配置し、試料8を透過した合成光を、ミラー10を介して顕微鏡5の外に導き出す。励起光カットフィルタ11により励起光の影響を除去しつつ、ピンホール12を通過した検出光をフォトダイオード13に導き、検出光の光量が電気信号に変換される。その電気信号は同期検波手段の一例であるロックインアンプ14に導かれ、励起光の右円偏光照射時と左円偏光照射時の熱レンズ信号の位相および強度を信号として出力する。そして、それぞれが円二色性熱レンズ信号となり、右もしくは左円偏光の吸収の強弱を表す位相から光学活性試料の識別が、強度から濃度の定量が可能となる。光学純度が100%である試料については、これら強度と位相からそのまま識別と定量が可能となる。   On the other hand, another lens 9 is disposed so as to be confocal with the focal point, and the synthesized light transmitted through the sample 8 is led out of the microscope 5 through the mirror 10. While removing the influence of the excitation light by the excitation light cut filter 11, the detection light that has passed through the pinhole 12 is guided to the photodiode 13, and the amount of the detection light is converted into an electrical signal. The electric signal is guided to a lock-in amplifier 14 which is an example of synchronous detection means, and outputs the phase and intensity of the thermal lens signal when the excitation light is irradiated with the right circularly polarized light and the left circularly polarized light as signals. Then, each becomes a circular dichroic thermal lens signal, and the optically active sample can be identified from the phase representing the intensity of absorption of right or left circularly polarized light, and the concentration can be quantified. A sample with an optical purity of 100% can be identified and quantified as it is from the intensity and phase.

なお、励起光の経路に光チョッパーなどを介在させ、光の強度変調に同期して検出することができるように構成することが望ましい。この場合、励起光をある変調周波数でオン・オフすなわち強度変調するので、光学活性体の識別はできず、ロックインアンプの出力信号である強度変調熱レンズ信号の強度は試料のトータルな濃度を意味する。そして、前記円二色性熱レンズ信号強度と強度変調熱レンズ信号強度の比を測定すれば、トータルな濃度に対する鏡像異性体の過剰量、すなわち、光学純度が推定できる。また、前記円二色性熱レンズ信号の位相から過剰な鏡像異性体の識別が可能となる。このように、光チョッパーなどの強度変調手段を併設することで、光学純度の測定も可能となる。さらに、信号処理はロックインアンプなどの同期検波手段からの信号から位相変調および強度変調時の比を取る操作のみでよいので、パソコンなどに取り込めば簡単に演算できるし、専用の演算ボードを設けても構わない。   It is desirable that an optical chopper or the like be interposed in the excitation light path so that detection can be performed in synchronization with light intensity modulation. In this case, since the excitation light is turned on / off at a certain modulation frequency, that is, intensity modulation, the optically active substance cannot be identified, and the intensity of the intensity-modulated thermal lens signal that is the output signal of the lock-in amplifier is the total concentration of the sample. means. Then, by measuring the ratio of the circular dichroic thermal lens signal intensity and the intensity-modulated thermal lens signal intensity, it is possible to estimate the excess of the enantiomer with respect to the total concentration, that is, the optical purity. In addition, it becomes possible to identify an excess enantiomer from the phase of the circular dichroic thermal lens signal. In this way, the optical purity can be measured by providing an intensity modulation means such as an optical chopper. Furthermore, the signal processing only needs to take the ratio of phase modulation and intensity modulation from the signal from the synchronous detection means such as lock-in amplifier, so it can be easily calculated if it is imported to a personal computer, etc., and a dedicated calculation board is provided. It doesn't matter.

また、同期検波手段を用いなくても、励起光を右円偏光にして一定時間後フォトダイオード13の出力を測定し、さらに左円偏光にして同様に一定時間後のフォトダイオード13の出力を測定し、その出力信号の差の絶対値と符号を測定すれば、前記同期検波手段であるロックインアンプの強度と位相に相当する円二色性熱レンズ信号が得られる強度変調の場合についても、励起光を一定時間照射後および一定時間非照射後のそれぞれのフォトダイオード13の出力の差の絶対値を同様に測定すれば、強度変調熱レンズ信号の強度に相当する信号が得られる。これらは同様に比を測定するという簡単な演算で、光学純度を算出することが可能となる。この場合もパソコンや専用のボードを用いればよい。   Further, without using synchronous detection means, the output of the photodiode 13 is measured after a certain period of time with the excitation light being right circularly polarized, and the output of the photodiode 13 after a certain period of time is also measured by using the left circularly polarized light. And, in the case of intensity modulation in which a circular dichroic thermal lens signal corresponding to the intensity and phase of the lock-in amplifier as the synchronous detection means is obtained by measuring the absolute value and the sign of the difference between the output signals, If the absolute value of the difference between the outputs of the respective photodiodes 13 after irradiation with the excitation light for a certain time and after non-irradiation for a certain time is similarly measured, a signal corresponding to the intensity of the intensity-modulated thermal lens signal is obtained. Similarly, the optical purity can be calculated by a simple calculation of measuring the ratio. In this case, a personal computer or a dedicated board may be used.

さらに、前記位相変調手段による右円偏光および左円偏光の出力が不安定な場合は、位相変調手段から出力された励起光をビームスプリッタなどを用いて一部取り出し、それらの強度変化を別のフォトダイオードなどで測定することが望ましい。そして、前記円二色性信号と前記強度変化を同時に測定して割り算などの演算操作で補正するか、もしくは別々に測定してパソコンなどのメモリーに取り込み後演算操作を行うことで、出力に由来する円二色性熱レンズ信号の精度低下を防止することが可能になる。   Further, when the outputs of the right circularly polarized light and the left circularly polarized light by the phase modulation unit are unstable, a part of the excitation light output from the phase modulation unit is extracted using a beam splitter or the like, and the intensity change thereof is changed to another. It is desirable to measure with a photodiode or the like. Then, the circular dichroism signal and the intensity change are measured simultaneously and corrected by an arithmetic operation such as division, or separately measured and taken into a memory such as a personal computer, and then the arithmetic operation is performed. It is possible to prevent a decrease in accuracy of the circular dichroic thermal lens signal.

また、本発明の円二色性熱レンズ顕微鏡装置は、以上の構成に限定されるものではなく、その他通常の光学顕微鏡系に採用されている種々の光学的素子や配置が、本発明の検出の障害とならない範囲で採用できる。   Further, the circular dichroic thermal lens microscope apparatus of the present invention is not limited to the above configuration, and other various optical elements and arrangements employed in a normal optical microscope system can be detected by the present invention. It can be adopted as long as it does not become an obstacle.

ここで、光学活性な試料としては、[(+)Co(en)33+と[(−)Co(en)33+の一対の鏡像光学異性体を採用した。その構造を図2に示す。前述のとおり、光学異性体([(+)Co(en)33+)の場合、左円偏光と右円偏光による吸光度における差(Δε+(532nm)=εL−εR)は、+3.2×10-1(M-1cm-1)であり、その比(Δε+/ε(532nm))は、0.032に過ぎない。一方、その光学異性体である[(−)Co(en)33+)の場合にも、吸光度における差(Δε-(532nm)=εL−εR)は、-3.2×10-1(M-1cm-1)であり、その比(Δε-/ε(532nm))は、0.032である。Here, as the optically active sample, a pair of mirror image optical isomers of [(+) Co (en) 3 ] 3+ and [(−) Co (en) 3 ] 3+ was employed. The structure is shown in FIG. As described above, in the case of the optical isomer ([(+) Co (en) 3 ] 3+ ), the difference in absorbance between the left circularly polarized light and the right circularly polarized light (Δε + (532 nm) = ε L −ε R ) is + 3.2 × 10 −1 (M −1 cm −1 ), and the ratio (Δε + / ε (532 nm)) is only 0.032. On the other hand, in the case of [(−) Co (en) 3 ] 3+ ) which is the optical isomer, the difference in absorbance (Δε (532 nm) = ε L −ε R ) is −3.2 × 10 −1. (M −1 cm −1 ), and the ratio (Δε / ε (532 nm)) is 0.032.

なお、図2中で「(+)」と記載した構造を有するものについての値には、"+"の添え字をして表記し、「(−)」と記載した構造を有するものについての値には、"−"の添え字をして表記した。また吸光度(Abs.)は、ε(M-1cm-1)×濃度(M)×光路長(cm)によって定義されることから、左円偏光による吸光度と右円偏光の吸光度との差(Abs.))は、Δε(M-1cm-1)×濃度(M)×光路長(cm)である。In FIG. 2, the value having the structure described as “(+)” is indicated with a suffix “+”, and the value having the structure described as “(−)”. The value is expressed with a subscript "-". The absorbance (Abs.) Is defined by ε (M −1 cm −1 ) × concentration (M) × optical path length (cm), so the difference between the absorbance of left circularly polarized light and the absorbance of right circularly polarized light ( Abs.)) Is Δε (M −1 cm −1 ) × concentration (M) × optical path length (cm).

かかる図2の一対の鏡像光学異性体について、それぞれ別々に種々の濃度の試料(100μmの深さのマイクロチャネル中に試料溶液を貯留。)を作成し、図1の円二色性熱レンズ顕微鏡装置を用いて、左円偏光と右円偏光に対する円二色性熱レンズ信号強度と試料に照射される励起光の変調に対する円二色性熱レンズ信号の位相を測定した。その結果を横軸に濃度をとってまとめたものを、図3に示す。   For the pair of enantiomers of FIG. 2, samples of various concentrations (sample solutions are stored in a microchannel having a depth of 100 μm) are prepared separately, and the circular dichroic thermal lens microscope of FIG. Using the apparatus, the circular dichroic thermal lens signal intensity for the left circularly polarized light and the right circularly polarized light and the phase of the circular dichroic thermal lens signal for the modulation of the excitation light irradiated on the sample were measured. FIG. 3 shows a summary of the results with the concentration on the horizontal axis.

図3の上の図より、広範な濃度範囲に亘って、光学異性体のタイプ毎に位相が略一定しており、しかも両者の位相の差が180°であることが判る。これにより、光学異性体のタイプ毎に左右何れか一方の円偏光をよく吸収を示すのに対し、他方の円偏光には相対的に低い吸収しか示しておらず、かつその関係は光学異性体間で逆転するという、いわゆる円二色性が極微量かつ極度限定された空間についても成り立っていることを示しており、円二色性熱レンズ顕微鏡装置の広汎な実用性の証左といえよう。この図3の上の図を用いれば、試料中にどちらのタイプの光学異性体が多いかを明確に峻別できる。   From the upper diagram of FIG. 3, it can be seen that the phase is substantially constant for each type of optical isomer over a wide concentration range, and that the phase difference between the two is 180 °. Thus, for each type of optical isomer, either one of the left and right circularly polarized light is well absorbed, whereas the other circularly polarized light shows only a relatively low absorption, and the relationship is optical isomer. It is shown that the so-called circular dichroism, which is reversed between the two, is also established in a very small and extremely limited space, which is a proof of the wide-ranging practicality of the circular dichroic thermal lens microscope apparatus. By using the upper diagram of FIG. 3, it is possible to clearly distinguish which type of optical isomer is more in the sample.

また、図3の下の図より、濃度に対する良好な直線性が見出され、濃度の検量線として十分利用できることが示された。因みに、濃度0の点に隣接する各点(濃度0上の点は除く。)は、(+)が9.4×10-5Mの試料についての点であり、(−)が6.3×10-5Mの試料についての点であることから、検出限界は、それぞれ、2.6×10-7(Abs.)(=3.2×10-1(=Δε)×9.4×10-5M×0.01cm(マイクロチャネルの深さ)×0.85(光学純度))と、1.9×10-7(Abs.)(=3.2×10-1(=Δε)×6.3×10-5M×0.01cm(マイクロチャネルの深さ)×0.93(光学純度))と見積もられた。ここで、用いられた光学純度の値は、十分量用意した試料を市販の円二色性測定装置によって測定した値である。Further, from the lower figure of FIG. 3, good linearity with respect to the concentration was found, and it was shown that it can be sufficiently used as a calibration curve for the concentration. By the way, each point adjacent to the point of density 0 (excluding the point on density 0) is a point for a sample with (+) of 9.4 × 10 −5 M, and (−) is 6.3 × 10 −5. The detection limit is 2.6 × 10 −7 (Abs.) (= 3.2 × 10 −1 (= Δε) × 9.4 × 10 −5 M × 0.01 cm (microchannel) ) × 0.85 (optical purity)) and 1.9 × 10 −7 (Abs.) (= 3.2 × 10 −1 (= Δε) × 6.3 × 10 −5 M × 0.01 cm (microchannel depth) × 0.93 (optical purity)). Here, the value of optical purity used is a value obtained by measuring a sufficiently prepared sample with a commercially available circular dichroism measuring device.

この検出感度は、市販の円二色性測定装置の検出限界が10-5Abs.程度であるといわれていることからすると、約2桁優れたものであって、極めて高感度なる分析ツールといえる。This detection sensitivity is about two orders of magnitude superior because the detection limit of commercially available circular dichroism measuring devices is said to be about 10 -5 Abs. I can say that.

一方、非特許文献2に例示される、ADP(NH4H2PO4)の電気光学変調素子を用いた技術における吸光度の検出限界は、1.9×10-6(Abs.)に過ぎず、この実施例の結果に比べおよそ一桁劣るものであった。On the other hand, the detection limit of absorbance in the technique using the electro-optic modulation element of ADP (NH 4 H 2 PO 4 ) exemplified in Non-Patent Document 2 is only 1.9 × 10 −6 (Abs.). The result was inferior by an order of magnitude compared to the results of the examples.

しかも、本実施例の光学系に代えて、電気光学変調素子にADP(NH4H2PO4)を用いて、試料として、円二色性のないサンセットイエロー水溶液を測定した結果(測定を3回実施。)を比較例として図4に示す。この図4から明かであるように、バックグラウンド信号が経時的に増加する傾向が何れの回の測定にあっても観測され、かつその信号レベルは測定精度に大きく影響するものであった。In addition, instead of the optical system of the present example, ADP (NH 4 H 2 PO 4 ) was used as the electro-optic modulation element, and the result of measuring a sunset yellow aqueous solution having no circular dichroism as a sample (measurement was performed) 4 times) is shown as a comparative example. As is clear from FIG. 4, the tendency of the background signal to increase with time was observed in any number of measurements, and the signal level greatly affected the measurement accuracy.

これに対し、電気光学変調素子として、本発明のDKDP (KD2PO2)を採用した場合には、バックグラウンド信号は1μV以下で安定した結果を示した。さらに、DKDP (KD2PO2)に代えて KDP(KH2PO4)又はBBO(BaB2O4)を採用した場合にも、ほぼ同様の結果を得ることができた。On the other hand, when the DKDP (KD 2 PO 2 ) of the present invention was used as the electro-optic modulation element, the background signal was stable at 1 μV or less. Further, when KDP (KH 2 PO 4 ) or BBO (BaB 2 O 4 ) was employed instead of DKDP (KD 2 PO 2 ), almost the same results could be obtained.

次に、本発明の円二色性熱レンズ顕微鏡装置を試料における光学純度の計測に利用した。まず、図2の両鏡像光学異性体を種々の配合比で混合し、トータルの濃度が16mMとなるように調製した試料を用意し、かかる試料について、本発明の円二色性熱レンズ顕微鏡装置を用いて熱レンズ信号強度(μV)と位相(°)を計測した。   Next, the circular dichroic thermal lens microscope apparatus of the present invention was used for measurement of optical purity in a sample. First, a sample prepared by mixing the both enantiomers of FIG. 2 at various blending ratios and preparing a total concentration of 16 mM is prepared, and the circular dichroic thermal lens microscope apparatus of the present invention is prepared for such a sample. Was used to measure the thermal lens signal intensity (μV) and phase (°).

その結果を、横軸にe.e.(enatiomeric excess(%)=(C(+)−C(-))/(C(+)+C(-))×100%)をとって、ラセミ体の結果が中央になるようにまとめたものを図5に示す。上の図は、位相(°)についてであり、下の図は、熱レンズ信号強度(μV)についての結果である。The result of the racemate is obtained by taking the result ee (enatiomeric excess (%) = (C (+) -C (-) ) / (C (+) + C (-) ) x 100%) on the horizontal axis. What was put together so that it might become the center is shown in FIG. The upper figure is for the phase (°) and the lower figure is the result for the thermal lens signal strength (μV).

図5の下の図のとおり、光学純度(e.e.)に対し熱レンズ信号強度は広範囲に亘って良好な直線性を示しており、光学純度の検量線として十分利用可能であることが示された。   As shown in the lower diagram of FIG. 5, the thermal lens signal intensity shows a good linearity over a wide range with respect to the optical purity (ee), indicating that it can be sufficiently used as an optical purity calibration curve. .

ここで、e.e.=0%のラセミ体についての結果に隣接する点は、それぞれ、e.e.が「+1.77%」と「−1.65%」の試料についての点であることから、(−)に対する吸収光度=9.1×10-7(Abs.)(=0.32×1.77%/100×0.016M×0.01cm)であり、(+)に対する吸収光度=8.5×10-7(Abs.)(=0.32×1.65%/100×0.016M×0.01cm)と見積もられ、市販の円二色性測定装置の10-5(Abs.)程度に対し、約一桁高感度であることから、鏡像光学異性体の混合溶液からなる試料に対しても十分な優位性があることが示された。Here, the points adjacent to the results for the racemate with ee = 0% are the points for the samples with ee of “+ 1.77%” and “−1.65%”, respectively, so the absorption for (−) Luminous intensity = 9.1 × 10 −7 (Abs.) (= 0.32 × 1.77% / 100 × 0.016M × 0.01 cm), Absorbing luminous intensity for (+) = 8.5 × 10 −7 (Abs.) (= 0.32 × 1.65) % / 100 × 0.016M × 0.01cm), which is about an order of magnitude higher than 10 -5 (Abs.) Of a commercially available circular dichroism measuring device. It was also shown that there is a sufficient advantage over the sample consisting of the mixed solution.

実施例2は、光学純度についての検量線を予め求めておく手法であるが、他の手法によっても光学純度を推定することができる。この実施例では、励起光の導入経路に光チョッパーなどの強度変調素子を介在させ、円偏光でない生の励起光を直接試料に照射できるように設計した円二色性熱レンズ顕微鏡装置を用いた。   Example 2 is a method for obtaining a calibration curve for optical purity in advance, but the optical purity can also be estimated by other methods. In this example, a circular dichroic thermal lens microscope apparatus designed such that an intensity modulation element such as an optical chopper is interposed in the introduction path of excitation light and the sample is directly irradiated with raw excitation light that is not circularly polarized light is used. .

まず、予め、ラセミ体の試料と、(+)のタイプの光学異性体が多い試料と、(−)のタイプの光学異性体が多い試料を用意した。これらの試料に対し、該装置を適用し、最初に強度変調素子のみを駆動し位相変調素子を駆動させない励起光をそれぞれの試料に照射した。その際の強度変調熱レンズ信号強度の励起光ON−OFF後の経時的変化を示したのが、図6の左のグラフである。ここで、励起光は約1kHzで強度変調されており、ここでいう励起光のON-OFFとは1kHzで強度変調された励起光を数秒レベル(すなわち強度変調周波数に対して十分長い時間スケール)で照射−非照射することを意味しており、このON-OFF自体は強度変調ではない。以下、位相変調においても同様である。一方、位相変調素子のみを駆動させて、左右何れかの円偏光とした励起光を前記の3つの試料にそれぞれ照射した際の熱レンズ信号強度の励起光の経時的変化を示したのが、図6の右のグラフである。   First, a racemic sample, a sample with many (+) type optical isomers, and a sample with many (−) type optical isomers were prepared in advance. The apparatus was applied to these samples, and each sample was irradiated with excitation light that first driven only the intensity modulation element and not the phase modulation element. The graph on the left of FIG. 6 shows the change over time of the intensity-modulated thermal lens signal intensity at that time after the excitation light ON-OFF. Here, the excitation light is intensity-modulated at about 1 kHz, and the ON-OFF of excitation light here refers to the excitation light intensity-modulated at 1 kHz for several seconds (that is, a time scale sufficiently long for the intensity modulation frequency). Means ON-OFF irradiation, and this ON-OFF itself is not intensity modulation. Hereinafter, the same applies to phase modulation. On the other hand, the time-dependent change of the excitation light of the thermal lens signal intensity when the three samples were respectively irradiated with excitation light in the left or right circular polarization by driving only the phase modulation element, It is a graph on the right side of FIG.

従って、図6の左のグラフから、全方位の成分を含む励起光であることから、試料全体の吸光度が見積もられる一方、図6の右のグラフからは、円偏光に対する吸光度、すなわち、何れか一方の光学異性体の他方に対する過剰量に起因する吸収度が見積もられることになるので、その比をとれば、光学純度を求められる。   Therefore, from the graph on the left in FIG. 6, since the excitation light includes components in all directions, the absorbance of the entire sample can be estimated, whereas from the graph on the right in FIG. Since the absorbance due to an excess of one optical isomer relative to the other is estimated, the optical purity can be obtained by taking the ratio.

なお、ラセミ体の場合は、左右何れの円偏光が照射されている時も、それぞれ試料の半分ずつが相対的に高い吸収光度を示すことになるので、一定の熱レンズ効果が得られてしまい、その熱レンズ信号強度は過剰量がある場合に比べ低い値を示す。   In the case of a racemate, half of each sample exhibits a relatively high absorption luminous intensity when irradiated with either left or right circularly polarized light, so that a constant thermal lens effect is obtained. The thermal lens signal intensity shows a lower value than when there is an excessive amount.

ここで、(ΔAbs./Abs.)の値はg因子と呼ばれ、物質固有の値を示す。これは、本測定においては、(円二色性熱レンズ信号/強度変調熱レンズ信号)に相当する。そこで、光学純度100%のときのg因子が市販の円二色性測定装置と本装置で一致すれば、図5の結果からe.e.と円二色性熱レンズ信号強度に比例関係が得られているので、(円二色性熱レンズ信号/強度変調熱レンズ信号/g因子×100%)という簡単な演算によって、光学純度を測定することが可能となる。実際に図6から(+)が光学純度100%の試料で、本測定のg因子は0.026(=10.8μV/407μV)であり、(−)が光学純度100%の試料で、本測定のg因子は0.029(=11.7μV/407μV)であった。一方、同じ試料について市販の円二色性測定装置で測定したg因子は、(+)が光学純度100%の試料で0.029、(−)の試料で0.032であった。このように、g因子は同様な値が得られ、円二色性熱レンズ信号と強度変調熱レンズ信号から簡単な演算で光学純度を推定することができるようになった。また、円二色性熱レンズ信号の位相からどちらが過剰であるか推定できるようになった。   Here, the value of (ΔAbs. / Abs.) Is called g-factor and indicates a value specific to the substance. This corresponds to (circular dichroic thermal lens signal / intensity modulated thermal lens signal) in this measurement. Therefore, if the g factor when the optical purity is 100% is the same between a commercially available circular dichroism measuring apparatus and this apparatus, a proportional relationship is obtained between the ee and the circular dichroic thermal lens signal intensity from the result of FIG. Therefore, the optical purity can be measured by a simple calculation of (circular dichroic thermal lens signal / intensity modulated thermal lens signal / g factor × 100%). From Fig. 6, (+) is the sample with 100% optical purity, the g factor of this measurement is 0.026 (= 10.8μV / 407μV), and (-) is the sample with 100% optical purity. The factor was 0.029 (= 11.7 μV / 407 μV). On the other hand, the g factor measured with a commercially available circular dichroism measuring apparatus for the same sample was 0.029 for the sample with (+) 100% optical purity and 0.032 for the sample with (−). Thus, the g factor has a similar value, and the optical purity can be estimated from the circular dichroic thermal lens signal and the intensity-modulated thermal lens signal by a simple calculation. Also, it is possible to estimate which is excessive from the phase of the circular dichroic thermal lens signal.

以上の実施例はすべて、ロックインアンプの出力(強度と位相)をそのまま測定するか、もしくは比を取るという簡単な演算で達成することができることはいうまでもない。   It goes without saying that all of the above embodiments can be achieved by a simple calculation of measuring the output (intensity and phase) of the lock-in amplifier as it is or taking a ratio.

本発明は、光学活性試料を識別定量でき、かつ従来よりも高感度な円二色性熱レンズ顕微鏡装置を提供するものである。また、本発明は、マイクロチャネルといった極微量な試料に対しても適用可能であって、かつ高空間分解能をも備えた、光学活性試料を識別定量する高感度な円二色性熱レンズ顕微鏡装置を提供するものである。さらに、本発明は、光学純度についても簡便かつ高感度に検出可能な円二色性熱レンズ顕微鏡装置を提供するものである。   The present invention provides a circular dichroic thermal lens microscope apparatus capable of discriminating and quantifying an optically active sample and having higher sensitivity than before. In addition, the present invention can be applied to a very small amount of sample such as a microchannel, and has a high spatial resolution and a highly sensitive circular dichroic thermal lens microscope apparatus for discriminating and quantifying an optically active sample. Is to provide. Furthermore, the present invention provides a circular dichroic thermal lens microscope apparatus that can detect optical purity simply and with high sensitivity.

Claims (8)

波長の異なる励起光と検出光を放射する発振手段をそれぞれ設け、対物レンズを介して該励起光と該検出光を試料中に導入し、該励起光が試料中に形成する熱レンズによる検出光の透過光量変化を、光検出器を設置して熱レンズ信号として測定する熱レンズ顕微鏡装置であって、さらに該励起光を左右の円偏光に変調可能な位相変調手段を該発振手段と試料の間の励起光の経路に配置するとともに、前記左右の円偏光の照射による熱レンズ信号の差(以下、円二色性熱レンズ信号)を測定して光学異性体の識別もしくは定量を行うことを特徴とする、円二色性熱レンズ顕微鏡装置。   Oscillating means for emitting excitation light and detection light having different wavelengths are provided, and the excitation light and the detection light are introduced into the sample via the objective lens, and the detection light by the thermal lens formed in the sample by the excitation light Is a thermal lens microscope apparatus that measures a change in the amount of transmitted light as a thermal lens signal by installing a photodetector, and further comprises a phase modulation means capable of modulating the excitation light into left and right circularly polarized light between the oscillation means and the sample. And identifying or quantifying optical isomers by measuring the difference between thermal lens signals (hereinafter referred to as circular dichroic thermal lens signals) due to irradiation of the left and right circularly polarized light. A circular dichroic thermal lens microscope apparatus characterized by this. 前記対物レンズの開口数が0.1以上であることを特徴とする、請求項1記載の円二色性熱レンズ顕微鏡装置。   2. The circular dichroic thermal lens microscope apparatus according to claim 1, wherein the numerical aperture of the objective lens is 0.1 or more. 前記位相変調手段が電気光学変調素子であることを特徴とする、請求項1又は2記載の円二色性熱レンズ顕微鏡装置。   3. The circular dichroic thermal lens microscope apparatus according to claim 1, wherein the phase modulation means is an electro-optic modulation element. 前記電気光学変調素子の結晶材料が、KDP(KH2PO4)、DKDP(KD2PO2)又はBBO(BaB2O4)からなる群のうちの何れか1種から構成されていることを特徴とする、請求項3記載の円二色性熱レンズ顕微鏡装置。The crystal material of the electro-optic modulation element is composed of any one of the group consisting of KDP (KH 2 PO 4 ), DKDP (KD 2 PO 2 ), and BBO (BaB 2 O 4 ). The circular dichroic thermal lens microscope apparatus according to claim 3, wherein 同期検波手段を更に備え、該同期検波手段により前記円二色性熱レンズ信号から前記電気光学変調素子の変調周波数と同期する成分を抽出することで、前記円二色性熱レンズ信号の強度もしくは位相を測定することを特徴とする、請求項3又は4の何れか1項記載の円二色性熱レンズ顕微鏡装置。   And further comprising synchronous detection means, by extracting a component synchronized with the modulation frequency of the electro-optic modulation element from the circular dichroic thermal lens signal by the synchronous detection means, The circular dichroic thermal lens microscope apparatus according to claim 3, wherein the phase is measured. 励起光の強度変調手段を更に備え、該強度変調手段により発生する熱レンズ信号(以下、強度変調熱レンズ信号)強度と、円二色性熱レンズ信号強度を測定することにより、試料の光学純度を測定することを特徴とする、請求項5記載の円二色性熱レンズ顕微鏡装置。   It further comprises excitation light intensity modulation means, and measures the optical lens purity by measuring the intensity of a thermal lens signal (hereinafter, intensity modulated thermal lens signal) generated by the intensity modulation means and the intensity of the circular dichroic thermal lens signal. The circular dichroic thermal lens microscope apparatus according to claim 5, wherein: 波長の異なる励起光と検出光を放射する発振手段をそれぞれ設け、試料中に該励起光の焦点を結ぶ対物レンズを介して、該励起光と該検出光を試料中に導入し、試料を透過した検出光の強度を測定する円二色性熱レンズ顕微鏡装置において、
該励起光のみを左右の円偏光に選択的に変調可能な位相変調手段を該発振手段と試料の間の励起光の経路に配置するとともに、前記試料を透過した検出光の強度を該位相変調手段の変調に同期して検出可能な同期検波手段を含み、前記試料を透過した検出光の強度から前記位相変調に同期する成分を抽出し該同期成分の位相差を少なくとも求めることを特徴とする、円二色性熱レンズ顕微鏡装置。
Oscillating means for emitting excitation light and detection light having different wavelengths are provided, and the excitation light and the detection light are introduced into the sample through an objective lens that focuses the excitation light in the sample, and transmitted through the sample. In the circular dichroic thermal lens microscope apparatus that measures the intensity of the detected light,
A phase modulation means capable of selectively modulating only the excitation light into left and right circularly polarized light is disposed in the excitation light path between the oscillation means and the sample, and the intensity of the detection light transmitted through the sample is modulated by the phase modulation. Including synchronous detection means capable of detecting in synchronization with the modulation of the means, extracting a component synchronized with the phase modulation from the intensity of the detection light transmitted through the sample, and obtaining at least a phase difference of the synchronous component , Circular dichroic thermal lens microscope device.
前記位相変調手段とは独立に変調可能な励起光の強度変調手段を更に備え、前記位相変調手段による円偏光とされた励起光が照射されたときに試料を透過した検出光の強度と該強度変調手段による偏りのない励起光が試料に照射されたときに試料を透過した検出光の強度をそれぞれ計測し、その強度の比を更に求めることを特徴とする、請求項7記載の円二色性熱レンズ顕微鏡装置。   Further comprising excitation light intensity modulation means that can be modulated independently of the phase modulation means, and the intensity of the detection light transmitted through the sample and the intensity when irradiated with the circularly polarized excitation light by the phase modulation means 8. The circular dichroic according to claim 7, wherein the intensity of the detection light transmitted through the sample when the sample is irradiated with the excitation light without bias by the modulation means is further determined, and the ratio of the intensity is further obtained. Thermal lens microscope device.
JP2007502654A 2005-02-10 2006-02-10 Circular dichroic thermal lens microscope Pending JPWO2006085606A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005033879 2005-02-10
JP2005033879 2005-02-10
PCT/JP2006/302335 WO2006085606A1 (en) 2005-02-10 2006-02-10 Circular dichroic thermal lens microscope

Publications (1)

Publication Number Publication Date
JPWO2006085606A1 true JPWO2006085606A1 (en) 2008-06-26

Family

ID=59053815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007502654A Pending JPWO2006085606A1 (en) 2005-02-10 2006-02-10 Circular dichroic thermal lens microscope

Country Status (1)

Country Link
JP (1) JPWO2006085606A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031814A (en) * 2001-03-19 2003-01-31 Semiconductor Energy Lab Co Ltd Method for preparing semiconductor device
WO2003029790A1 (en) * 2001-10-01 2003-04-10 Georgia Tech Research Corporation High-throughput chiral detector and methods for using same
JP2004317646A (en) * 2003-04-14 2004-11-11 Japan Science & Technology Agency Microscope
JP3612557B2 (en) * 2000-09-27 2005-01-19 独立行政法人情報通信研究機構 Physical quantity measuring apparatus and physical quantity measuring method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3612557B2 (en) * 2000-09-27 2005-01-19 独立行政法人情報通信研究機構 Physical quantity measuring apparatus and physical quantity measuring method
JP2003031814A (en) * 2001-03-19 2003-01-31 Semiconductor Energy Lab Co Ltd Method for preparing semiconductor device
WO2003029790A1 (en) * 2001-10-01 2003-04-10 Georgia Tech Research Corporation High-throughput chiral detector and methods for using same
JP2004317646A (en) * 2003-04-14 2004-11-11 Japan Science & Technology Agency Microscope

Similar Documents

Publication Publication Date Title
US6950184B2 (en) Water quality monitoring by Raman spectral analysis
US8098428B2 (en) Circular dichroism fluorescent microscope
Periasamy et al. FLIM microscopy in biology and medicine
Kong et al. Characterization of bacterial spore germination using phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers
US20090304247A1 (en) Measurement system with optical referencing
US8134707B2 (en) On-chip polarimetry for high-throughput screening of nanoliter and smaller sample volumes
CN1898550A (en) Optical analysis system, blood analysis system and method of determining an amplitude of a principal component
Kagel et al. Photoacids in biochemical applications
CN103499393B (en) The measuring method of spectrum
Cassano et al. Thermal lens microscopy as a detector in microdevices
Pandey et al. Integration of diffraction phase microscopy and Raman imaging for label‐free morpho‐molecular assessment of live cells
WO2016063322A1 (en) Optical analysis device and biomolecular analysis device
US20100060981A1 (en) Circular Dichroic Thermal Lens Microscope
Nedosekin et al. Solid Phase–Enhanced Photothermal Lensing with Mesoporous Polymethacrylate Matrices for Optical-Sensing Chemical Analysis
Koronczi et al. Development of a submicron optochemical potassium sensor with enhanced stability due to internal reference
AU2014351811A1 (en) Method for detection of a reversibly photo-convertible fluorescent species
Zeng et al. Coherent Raman microscopy analysis of plant cell walls
JP5583019B2 (en) Beam shaper, optical system and method of using the same
JP5057377B2 (en) Method and apparatus for measuring biological components or their functions
US20080030718A1 (en) Detection method, microchemical system using the detection method, signal detection method, thermal lens spectroscopic system, fluorescence detection system, signal detection apparatus, signal detection system, signal detection program, and storage medium
Bornhop et al. Polarimetry in capillary dimensions
JPWO2006085606A1 (en) Circular dichroic thermal lens microscope
US7446867B2 (en) Method and apparatus for detection and analysis of biological materials through laser induced fluorescence
US7012692B2 (en) Photothermal conversion spectroscopic analysis method, and photothermal conversion spectroscopic analysis apparatus for carrying out the method
Steinberg [7] Circularly polarized luminescence

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110928