JPWO2006078078A1 - Propylene resin piping members - Google Patents

Propylene resin piping members Download PDF

Info

Publication number
JPWO2006078078A1
JPWO2006078078A1 JP2006554011A JP2006554011A JPWO2006078078A1 JP WO2006078078 A1 JPWO2006078078 A1 JP WO2006078078A1 JP 2006554011 A JP2006554011 A JP 2006554011A JP 2006554011 A JP2006554011 A JP 2006554011A JP WO2006078078 A1 JPWO2006078078 A1 JP WO2006078078A1
Authority
JP
Japan
Prior art keywords
propylene
pipe
based resin
parts
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006554011A
Other languages
Japanese (ja)
Inventor
英裕 興梠
英裕 興梠
末喜 末留
末喜 末留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Publication of JPWO2006078078A1 publication Critical patent/JPWO2006078078A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

無機充填材を必須成分とするプロピレン系樹脂製配管部材であって、線膨張係数が10×10−5/℃以下であることを特徴とするプロピレン系樹脂製配管部材、および更に前記配管部材の200℃中における酸化誘導時間が40分以上であること、前記配管部材の、線膨張係数(α)と90℃中における引張弾性率(E)が式E×α<6/67を満たすこと、および前記配管部材の90℃中における引張弾性率が370〜1,310MPaであることを特徴とするプロピレン系樹脂製配管部材。A propylene-based resin pipe member having an inorganic filler as an essential component, which has a linear expansion coefficient of 10×10 −5 /° C. or less, and further a pipe member made of the propylene resin. The oxidation induction time at 200° C. is 40 minutes or more, the linear expansion coefficient (α) and the tensile elastic modulus (E) at 90° C. of the piping member satisfy the expression E×α<6/67, And a propylene-based resin pipe member, wherein the pipe member has a tensile elastic modulus at 90° C. of 370 to 1,310 MPa.

Description

本発明は、60℃以上の高温流体が流れる配管ラインに好適に使用される押出成形法で製造されるパイプや、射出成形法で製造される継手、フランジ、バルブ、及びアクチュエータのケーシング等のプロピレン系樹脂製配管部材に関するものであり、さらに詳しくは、特に高温流体が流れる配管ラインでの使用において、熱膨張に伴う配管部材の長手方向への伸びを抑え、配管部材の長期寿命、耐熱性及び成形性の優れたプロピレン系樹脂製配管部材に関するものである。   INDUSTRIAL APPLICABILITY The present invention relates to a pipe manufactured by an extrusion molding method that is preferably used for a piping line through which a high-temperature fluid of 60° C. or higher flows, and a propylene such as a joint, a flange, a valve, and a casing of an actuator manufactured by an injection molding method. More specifically, the present invention relates to a resin-made pipe member, and more particularly, when used in a pipe line through which a high-temperature fluid flows, it suppresses elongation in the longitudinal direction of the pipe member due to thermal expansion, and thus long-term life and heat resistance of the pipe member. The present invention relates to a propylene resin pipe member having excellent moldability.

従来プロピレン系樹脂製配管部材は、各種工場、医療分野、建築分野などにおいて、剛性、耐熱性、または耐薬品性などの優れた特性から幅広く使用されている。特にプロピレン系樹脂製パイプは、高温域での酸・アルカリに対する耐性を有し、価格も安価であることから、工業分野での高温薬液配管や給湯用配管に適しており、今後その普及が大きく期待されている。
しかしながら、プロピレン系樹脂製パイプを高温流体が流れる配管ラインに用いた場合、通常のプロピレン系樹脂の線膨張係数は12×10−5〜15×10−5/℃程度であるため、熱膨張に伴うパイプ長手方向への伸びが大きいという問題があった。このため、パイプを固定施工して60℃以上の高温流体を流す際に、熱膨張に伴うパイプ長手方向への伸びにより蛇行現象が生じ、パイプに大きな歪み応力が生じてパイプの長期寿命が損なわれるだけでなく、継手やバルブとの接続部分に歪みが生じることで流体の漏れが発生する恐れがあった。この対策として、パイプの一定間隔にコの字型の流路(蛸ベンド)を設けてパイプの膨張を緩和する方法や伸縮管を使用する方法があるが、そのために設置スペースを大きくとる必要があり、配管にコストがかかるという問題があった。このため、プロピレン系樹脂製パイプ自体の熱膨張の低減が望まれている。
プロピレン系樹脂成形材料の熱膨張を抑制させる方法として、従来からプロピレン系樹脂に無機充填材を配合する手法が用いられており、ポリプロピレンを100部とエチレンプロピレンゴムを20〜50部とからなる樹脂に、タルクを0〜20部とウィスカーを2.5〜20部とからなる無機質の充填剤が配合されたゴム変性ポリプロピレン樹脂材があった(特開昭63−57653号公報)。この樹脂材は、主にバンパーなどの自動車部品用途で用いられているものであり、耐衝撃性に優れ線膨張係数が低いという効果が得られるものであった。
また、従来ではプロピレン系樹脂成形材料の剛性と耐熱性向上を目的に、表面処理したタルクを用いて無機充填材を高充填したものとして、ポリプロピレン系樹脂100重量部と表面処理タルク30〜400重量部とからなるポリプロピレン系樹脂組成物において、表面処理タルクが、タルク100重量部に対してシリコーンオイル0.1〜5重量部と高級脂肪酸金属塩0.1〜5重量部とにより表面処理されているポリプロピレン系樹脂組成物があった(特開2000−256519号公報)。この樹脂組成物は、自動車用部品をはじめとする各種工業製品に好適に使用することができるものであり、目ヤニの発生が少なく分散性に優れるという効果が得られるものであった。
従来のプロピレン系樹脂製配管部材としては、230℃、2.16kg荷重下で測定されるメルトフローレートが0.005〜5g/10分の範囲にあり、示差走査型熱量計により測定される吸熱曲線の最大ピーク位置の温度が128〜172℃の範囲にあり、密度が898〜917kg/mの範囲にあり、炭素原子数が4〜20のα−オレフィンから導かれる構成単位の含有割合が0〜6モル%の範囲にあり、200℃で成形したプレスシート試験片の曲げ弾性率が800〜2,600MPaの範囲にあるポリプロピレンからなるポリプロピレン製パイプがあった(特開平10−195264)。このパイプは、無機充填材や他の線膨張係数を抑えるような添加剤は含まれておらず、特定のポリプロピレンから形成されているので機械的強度に優れているという効果が得られるものであった。
BACKGROUND ART Conventionally, propylene-based resin piping members have been widely used in various factories, medical fields, construction fields, etc. because of their excellent properties such as rigidity, heat resistance, or chemical resistance. In particular, propylene-based resin pipes are resistant to acids and alkalis at high temperatures and are inexpensive, so they are suitable for high-temperature chemical liquid pipes and hot water supply pipes in the industrial field, and will be widely used in the future. Is expected.
However, when a propylene-based resin pipe is used in a piping line through which a high-temperature fluid flows, since the linear expansion coefficient of a normal propylene-based resin is about 12×10 −5 to 15×10 −5 /° C., thermal expansion does not occur. There was a problem that the elongation in the longitudinal direction of the pipe was large. For this reason, when the pipe is fixedly installed and a high-temperature fluid of 60° C. or higher is flowed, a meandering phenomenon occurs due to the expansion in the longitudinal direction of the pipe due to thermal expansion, causing a large strain stress in the pipe and impairing its long-term life. Not only that, but there is a risk that fluid leakage may occur due to strain in the connection part with the joint and the valve. As measures against this, there are a method of relaxing the expansion of the pipe by providing a U-shaped flow path (octopus bend) at regular intervals of the pipe and a method of using a telescopic tube, but for that purpose it is necessary to take a large installation space. However, there was a problem in that piping was expensive. Therefore, it is desired to reduce the thermal expansion of the propylene resin pipe itself.
As a method for suppressing the thermal expansion of a propylene-based resin molding material, a method of blending an inorganic filler with a propylene-based resin has been conventionally used, and a resin composed of 100 parts of polypropylene and 20 to 50 parts of ethylene propylene rubber. There was a rubber-modified polypropylene resin material containing an inorganic filler consisting of 0 to 20 parts of talc and 2.5 to 20 parts of whiskers (Japanese Patent Laid-Open No. 63-57653). This resin material is mainly used for automobile parts such as bumpers, and has an effect of being excellent in impact resistance and having a low linear expansion coefficient.
Further, conventionally, for the purpose of improving the rigidity and heat resistance of a propylene-based resin molding material, 100 parts by weight of a polypropylene-based resin and 30 to 400 parts by weight of a surface-treated talc are used as a highly filled inorganic filler using surface-treated talc. In a polypropylene resin composition comprising 1 part by weight, the surface-treated talc is surface-treated with 0.1-5 parts by weight of silicone oil and 0.1-5 parts by weight of a higher fatty acid metal salt with respect to 100 parts by weight of talc. There was a polypropylene-based resin composition (Japanese Patent Laid-Open No. 2000-256519). This resin composition can be suitably used for various industrial products such as automobile parts, and has the effect of producing less eye blemishes and excellent dispersibility.
As a conventional propylene-based resin piping member, the melt flow rate measured at 230° C. under a load of 2.16 kg is in the range of 0.005 to 5 g/10 minutes, and the heat absorption measured by a differential scanning calorimeter. The temperature at the maximum peak position of the curve is in the range of 128 to 172° C., the density is in the range of 898 to 917 kg/m 3 , and the content ratio of the constituent unit derived from the α-olefin having 4 to 20 carbon atoms is There was a polypropylene pipe made of polypropylene in the range of 0 to 6 mol% and the bending elastic modulus of a press sheet test piece molded at 200° C. in the range of 800 to 2,600 MPa (JP-A-10-195264). This pipe does not contain an inorganic filler or other additives that suppress the coefficient of linear expansion, and is formed of a specific polypropylene, so that the effect of excellent mechanical strength can be obtained. It was

しかしながら、無機充填材が添加されたプロピレン系樹脂成形材料において、配管部材に必要な特性が考慮された技術はこれまでに確認されていない。従来技術をそのまま配管部材用途に用いたとしても、無機充填材を添加しただけでは配管部材として特性を満たすことができず、そのまま配管部材用に適用できないのが実情である。例えば、パイプ成形においてドローダウンが大きく成形できなかったり、仮にパイプ成形できたとしても耐熱性が不十分なためにパイプの寿命が短かかったり、配管部材として十分な引張弾性率が得られずに破損し易いなどの問題が発生する恐れがあった。
また、プロピレン系樹脂製配管部材は、特に高温流体が流れる配管に用いる場合において長期使用のために耐酸化性を有する必要があり、通常は成形に使用するプロピレン系樹脂に数種の酸化防止剤を配合することで耐酸化性を向上できるが、従来のプロピレン系樹脂成形材料では配管部材用途としての耐酸化性が考慮されていないため、例えば、配管部材内部を流れる流体によっては酸化防止剤が溶出されて配管部材内部の耐酸化性が損なわれるなどの問題が発生する恐れがあった。
また、従来のプロピレン系樹脂製配管部材において、無機充填材や他の線膨張係数を抑えるような添加剤は含まれておらず、組成から線膨張係数は少なく見積もっても12×10−5/℃程度であることが推測されるため、パイプを固定施工して高温流体を流す際に、熱膨張に伴うパイプ長手方向への伸びにより蛇行現象が生じ、パイプに大きな歪み応力が生じてパイプの長期寿命が損なわれる恐れがあった。
本発明は、以上のような従来のプロピレン系樹脂製配管部材が有する欠点を克服し、特に高温流体が流れる配管ラインでの使用において熱膨張に伴う配管部材の長手方向への伸びを抑え、配管部材の長期寿命や耐熱性や成形性の優れた特性を発揮するプロピレン系樹脂製配管部材を提供することを目的としてなされたものである。
本発明者らは上記の好ましい性質を有するプロピレン系樹脂製配管部材を開発すべく鋭意研究を重ねた結果、配管部材中に存在する無機充填材により配管部材の線膨張係数が所定範囲にあって、この所定範囲が線膨張係数と引張弾性率との関係から導き出される配管部材特性に適合しうることを見出し、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は無機充填材を必須成分とするプロピレン系樹脂製配管部材であって、該プロピレン系樹脂製配管部材100質量部に対して該無機充填材が5〜30質量部配合してなり、線膨張係数が10×10−5/℃以下であることを第一の特徴とし、配管部材の200℃における酸化誘導時間が40分以上であることを第二の特徴とし、配管部材の線膨張係数(α)と90℃中における引張弾性率(E)がE×α<6/67の関係式を満たすことを第三の特徴とし、配管部材の90℃における引張弾性率が370〜1,310MPaの範囲にあることを第四の特徴とし、前記プロピレン系樹脂製配管部材100質量部に対して、スチレン・ブタジエン系ゴムを1〜20質量部配合してなることを第五の特徴とし、前記スチレン・ブタジエン系ゴムのポリスチレン換算の重量平均分子量が20万以上であることを第六の特徴とし、前記配管部材が、パイプ、継手、バルブ、ポンプ、アクチュエーターのケーシング、流量計、及び各種センサのいずれかであることを第七の特徴とする。
However, in the propylene-based resin molding material to which the inorganic filler is added, no technique has been confirmed so far in consideration of the characteristics required for the piping member. Even if the conventional technique is used as it is for a piping member, the characteristics cannot be satisfied as a piping member only by adding an inorganic filler, and it cannot be directly applied to a piping member. For example, if the drawdown cannot be made large in pipe forming, or even if pipe forming is possible, the heat resistance will be insufficient and the life of the pipe will be short, or sufficient tensile elastic modulus as a piping member will not be obtained. There was a risk that problems such as breakage would occur.
Further, the propylene-based resin piping member needs to have oxidation resistance for long-term use, especially when used for piping through which a high-temperature fluid flows, and normally several kinds of antioxidants are added to the propylene-based resin used for molding. Although it is possible to improve the oxidation resistance by blending, since the conventional propylene-based resin molding material does not consider the oxidation resistance as a piping member application, for example, depending on the fluid flowing inside the piping member, an antioxidant may be present. There is a possibility that problems such as elution and deterioration of the oxidation resistance inside the piping member may occur.
In addition, the conventional propylene-based resin piping member does not include an inorganic filler or other additives that suppress the linear expansion coefficient, and the linear expansion coefficient is 12×10 −5 / Since it is estimated that the temperature is around ℃, when the pipe is fixedly installed and a high-temperature fluid is flowed, a meandering phenomenon occurs due to the expansion in the longitudinal direction of the pipe due to thermal expansion, causing large strain stress in the pipe and There was a risk that the long-term life would be impaired.
The present invention overcomes the disadvantages of the conventional propylene-based resin piping member as described above, and particularly suppresses the elongation of the piping member in the longitudinal direction due to thermal expansion in use in a piping line in which a high temperature fluid flows, The purpose of the present invention is to provide a propylene-based resin pipe member that exhibits excellent long-term life, heat resistance, and moldability.
As a result of intensive studies to develop a propylene-based resin piping member having the above-mentioned preferable properties, the present inventors have found that the linear expansion coefficient of the piping member is within a predetermined range due to the inorganic filler present in the piping member. It was found that this predetermined range can be adapted to the characteristics of the piping member derived from the relationship between the coefficient of linear expansion and the tensile elastic modulus, and the present invention has been completed based on this finding.
That is, the present invention is a propylene-based resin piping member containing an inorganic filler as an essential component, wherein 5 to 30 parts by mass of the inorganic filler is mixed with 100 parts by mass of the propylene-based resin piping member. The first feature is that the linear expansion coefficient is 10×10 −5 /° C. or less, and the second feature is that the oxidation induction time of the piping member at 200° C. is 40 minutes or more. The third characteristic is that the expansion coefficient (α) and the tensile elastic modulus (E) at 90° C. satisfy the relational expression of E×α<6/67, and the tensile elastic modulus at 90° C. of the piping member is 370 to 1 The third characteristic is that the styrene-butadiene-based rubber is mixed in an amount of 1 to 20 parts by mass with respect to 100 parts by mass of the propylene-based resin piping member. A sixth feature is that the styrene-butadiene rubber has a polystyrene-equivalent weight average molecular weight of 200,000 or more, and the piping member includes a pipe, a joint, a valve, a pump, an actuator casing, a flow meter, and various types. The seventh feature is that it is one of the sensors.

図1は、式(1)の熱応力を許容できる領域を示すグラフである。
図2は、熱応力試験の説明図である。
FIG. 1 is a graph showing a region in which the thermal stress of Expression (1) can be allowed.
FIG. 2 is an explanatory diagram of the thermal stress test.

符号の説明Explanation of symbols

1 パイプ
2 冶具
3 ロードセル
4 恒温槽
発明の詳細な説明
本発明におけるプロピレン系樹脂成形材料は、プロピレン単独重合体、プロピレンとそれ以外のα−オレフィンとの共重合体など、従来慣用されているものが使用されており、これら重合体の混合物でも問題なく使用できる。また、プロピレン系樹脂成形材料の分子量に起因するメルトフローレート(以下MFRと称す)は特に限定されないが、0.1〜2.0g/10分の範囲が好ましく、0.2〜1.0g/10分がより好ましい。プロピレン系樹脂の良好な生産性を得るためにMFRは0.1g/10分以上が良く、パイプ成形におけるドローダウンを抑えて良好なストレスクラック性を得るためにMFRは2.0g/10分以下が良い。なおMFRは、JIS K7210に準拠し、試験温度230℃、試験荷重2.16kgの条件で測定したものである。
また本発明における無機充填材は、球状フィラー、板状フィラー、繊維状フィラーなど、従来慣用されているものが使用され、この中から適宜選択して用いることができる。球状フィラーとしては、炭酸カルシウム、マイカ、硫酸バリウム、硫酸カルシウム、クレー、パーライト、シラスバルーン、けいそう土、焼成アルミナ、ケイ酸カルシウムなどが挙げられる。板状フィラーとしては、タルク、マイカなどが挙げられる。繊維状フィラーとしては、ガラス繊維、炭素繊維、ホウ素繊維、炭化ケイ素繊維、チタン酸カリウム繊維、あるいはポリアミド繊維、ポリエステル繊維、ポリアリレート繊維、ポリイミド繊維などが挙げられる。このほかに無定形フィラーとしてシリカなどが挙げられる。
上記無機充填材は、単独で用いても良く、2種以上を組み合わせて用いても良い。このうちタルク、マイカ、シリカ、炭酸カルシウム、ガラス繊維を主体としたものが、熱膨張特性、耐熱性、コストなどの面で好ましく、特にタルクは引張弾性率を上げすぎずに線膨張係数を低減させるので好適である。また、プロピレン系樹脂との接着性を良くする目的で、シランカップリング剤などで有機化処理したものを用いても良い。
また、無機充填材の平均粒子径・平均繊維径は特に限定されるものではないが、無機充填材がタルク、マイカ、シリカ、炭酸カルシウムの場合は、平均粒子径は0.5〜10μmが好ましく、1.0〜6.0μmがより好ましい。これは押出成形や射出成形などの成形性を低下させなくする点から平均粒子径は0.5μm以上であることが良く、熱膨張特性や耐衝撃性を向上させる点から平均粒子径は10μm以下であることが良い。また無機充填材がガラス繊維の場合は、平均繊維径は3.0〜12μmが好ましい。これはガラス繊維の入手のし易さの点から3.0μm以上であることが良く、強度、耐熱性を向上させる点から12μm以下であることが良い。
本発明におけるプロピレン系樹脂に対する無機充填材の配合割合は、無機充填材の種類や組み合わせや平均粒子径・平均繊維径で変わるものの、プロピレン系樹脂製配管部材100質量部に対して、無機充填材が5〜30質量部配合してなる必要がある。これは線膨張係数を低減させるために5質量部以上であることが良く、耐薬品性と耐衝撃性を低下させなくし、熱応力及び引張弾性率を低減させて配管部材としての寿命を長くするために30質量部以下であることが良い。
本発明のプロピレン系樹脂製配管部材の線膨張係数は、10×10−5/℃以下である必要があり、より好ましくは2×10−5〜8×10−5/℃である必要がある。これは配管部材(特にパイプ)を固定施工して高温流体を流す際に、熱膨張に伴う配管部材の長手方向への伸びにより蛇行現象が生じることにより、配管部材に大きな歪み応力が生じて配管部材の長期寿命が損なわれたり、パイプと継手やバルブ等との接続部分に歪みが生じて流体の漏れが発生することを防止するためである。
また、本発明のプロピレン系樹脂製配管部材の200℃中での酸化誘導時間は、40分以上であることが好ましく、80分以上であることがより好ましい。これは200℃中での酸化誘導時間が40分以上であれば高温流体を流れる配管ラインでの用途でも十分な耐酸化性を有し、配管部材を90℃程度の高温で酸化劣化することなく長期使用を可能にするためである。また、200℃中での酸化誘導時間が40分以上であれば、使用済みのプロピレン系樹脂製配管部材をリサイクルしようとする場合において、それまでに配管部材が受けた熱履歴や成形加工熱による酸化防止剤の消費を抑えることができるため、再ペレット化する際に新たに酸化防止剤を添加する必要がなくなるか最小限の添加量で済ませることができるので、リサイクルの手間を省くことができる。
また本発明のプロピレン系樹脂製配管部材において、無機充填材をプロピレン系樹脂に配合すると、線膨張係数は下がり、引張弾性率は増加する傾向を示すが、無機充填材の配合量は、線膨張係数をα、90℃中における引張弾性率をEとすると、式(1)を満足するよう調整することが好ましい。
E×α<6/67 ・・・(1)
式(1)は、常温にて両端を固定したプロピレン系樹脂製配管部材に90℃の高温流体を流した際の弾性限界による歪みが、90℃中における熱膨張による歪みを許容できる範囲を規定したものである。詳しく説明すると、90℃中における弾性限界による歪み(ε1)は、90℃中における引張強度(δ)と90℃中における引張弾性率(E)から、
ε1=δ/E ・・・(2)
で表される。次に、90℃中における熱膨張による歪み(ε2)は、線膨張係数(α)と常温との温度差(Δt)から、
ε2=α×Δt ・・・(3)
で表される。弾性限界による歪み(ε1)と熱膨張による歪み(ε2)は、弾性限界による歪み(ε1)が熱膨張による歪み(ε2)を許容できる範囲であれば、プロピレン系樹脂製配管部材として高温流体が流れる際に配管部材にかかる応力歪みによる弊害を防止できるので
ε1>ε2 ・・・(4)
となり、式(4)に式(2)、式(3)を代入すると、
E×α<δ/Δt ・・・(5)
となる。ここでプロピレン系樹脂製配管部材の90℃中における引張強度(δ)は10〜15MPa程度であるが、実質的には6MPa以上(安全率約2を考慮)の応力が瞬時でも加わると配管部材が破壊されることから、90℃中における引張強度の限界値は6MPaと考えられる。また常温との温度差(Δt)が67℃(90−23℃)であることから、これらを式(5)に当てはめれば、式(1)が導き出される(式(1)の熱応力を許容できる領域を示すグラフは図1参照)。
式(1)の関係式の中で90℃中における引張弾性率の範囲は、370〜1,310MPaであることが好ましく、520〜1,050MPaであることがより好ましい。高温時に配管部材(特にパイプ)が自重により大きくたわんだり配管部材の接続部に応力のかかることのない剛性を有するためには90℃中の引張弾性率が370MPa以上であることが必要で、配管部材の熱膨張による歪みを許容できる弾性限界による歪みを有するためには1,310MPa以下であることが良い。
また、本発明の常温中における引張弾性率の範囲は、上記の理由から1,005〜3,520MPaであることが好ましい。
また、本発明のプロピレン系樹脂製配管部材にはスチレン・ブタジエン系ゴムが配合されていることが望ましい。これは他のゴムを配合した場合と比較して、より少ない配合量で熱応力を低減させるため、例えばパイプや継手などを配管接続した管路に高温流体を流しても高温によるパイプ、継手の材質の劣化が抑えられて破損することなく長期間使用することができ、より少ない配合量で引張弾性率を低減させるため、例えばパイプの場合ではパイプを設置したときのパイプの自重によるたわみや高温流体を流したときの熱膨張などによりパイプの特定箇所に応力が集中しても引張弾性率が低いことで応力は一点に集中することなく分散されるのでパイプが破損することが防止され、バルブの場合ではバルブ閉止時の内部圧力による応力集中や接続されたパイプのたわみなどの応力がバルブに集中したとしても同様に応力が分散されて破損することが防止されるので好適である。特にスチレン・ブタジエン系ゴムのうち、水素添加されたスチレン・ブタジエン系ゴムであれば、耐薬品性に優れるために例えばパイプや継手などを配管接続した管路に流す流体として硫酸、苛性ソーダ等の酸性、アルカリ性の薬品を流した場合でも薬品によって腐食することなく使用することができ、耐候性に優れるため例えばパイプや継手などを屋外に配管設置しても紫外線劣化が抑えられて問題なく使用できるので好適である。
また、スチレン・ブタジエン系ゴムは1〜20質量部含有することが望ましい。配管部材として好適に使用できる程度に引張弾性率を低減させることで、例えば配管接続した管路のパイプやバルブの特定箇所に応力が集中しても引張弾性率が低いことで応力は一点に集中することなく分散されるのでパイプやバルブが破損することを防止させるために1質量部以上であることが良く、良好なクリープ特性を長期間維持することで、例えばパイプや継手などを配管接続した管路に内圧が加わった状態で高温流体を流しても配管部材が劣化して破損することなく長期間使用できるようにするために20質量部以下であることが良い。
また、スチレン・ブタジエン系ゴムのポリスチレン換算の重量平均分子量が20万以上であることが望ましく、20万〜70万の範囲であることがより望ましい。これは、ゴムの配合で生じる配管部材のクリープ特性の低下を格段に抑えることで、例えばパイプや継手などを配管接続した管路に内圧が加わった状態で高温流体を流しても配管部材が劣化して破損することなく長期間使用できるようにするために20万以上であることが良く、安定した重量平均分子量を維持し良好な成形外観を得ることで、成形されたパイプなどの内面を平滑にして流体が流れるときの抵抗を低減させ、外面に傷がつきにくくするために70万以下であることが良い。
本発明で使用するプロピレン系樹脂成形材料には、必要に応じて、酸化防止剤や紫外線吸収剤、造核剤、顔料、可塑剤等の公知の添加剤を配合してもかまわない。
本発明のプロピレン系樹脂製配管部材およびその成形方法は特に限定されないが、例えば公知の押出成形法で製造されるパイプ、射出成形法で製造される継手、バルブ、ポンプ、アクチュエータのケーシング、流量計、及び各種センサが好適なものとして挙げられる。これは、本発明の配管部材であるパイプ、継手、バルブ、ポンプ、アクチュエータのケーシング、流量計、及び各種センサを配管接続して用いた場合、高温流体が流れる際の熱膨張による配管部材(特にパイプ)の伸びで蛇行現象が起こることを抑制し、配管部材にかかる応力歪みを少なくしてパイプの長期寿命を維持すると共に、成形収縮率が低いため成形時の寸法の安定性に優れるので、特にバルブ、ポンプ、アクチュエータのケーシング、流量計、及び各種センサなどの成形部品の寸法のばらつきが抑えられて製品の製造が容易となる。また、成形収縮率が低いと成形後の長期時間の経過で配管部材の後収縮による寸法変化が抑えられるので配管接続する際に寸法の変化による施工性の悪化を防ぐことができるので好適である。
1 pipe 2 jig 3 load cell 4 thermostat Detailed description of the invention The propylene-based resin molding material in the present invention is a conventionally used one such as a propylene homopolymer or a copolymer of propylene and other α-olefin. Is used, and a mixture of these polymers can be used without any problem. The melt flow rate (hereinafter referred to as MFR) due to the molecular weight of the propylene-based resin molding material is not particularly limited, but is preferably in the range of 0.1 to 2.0 g/10 minutes, and 0.2 to 1.0 g/ 10 minutes is more preferred. In order to obtain good productivity of propylene-based resin, MFR is preferably 0.1 g/10 minutes or more, and in order to obtain good stress cracking property by suppressing drawdown in pipe molding, MFR is 2.0 g/10 minutes or less. Is good. The MFR is measured according to JIS K7210 under the conditions of a test temperature of 230° C. and a test load of 2.16 kg.
Further, as the inorganic filler in the present invention, conventionally used fillers such as spherical fillers, plate fillers and fibrous fillers are used, and it can be appropriately selected and used from these. Examples of the spherical filler include calcium carbonate, mica, barium sulfate, calcium sulfate, clay, perlite, shirasu balloon, diatomaceous earth, calcined alumina, calcium silicate and the like. Examples of the plate-like filler include talc and mica. Examples of the fibrous filler include glass fiber, carbon fiber, boron fiber, silicon carbide fiber, potassium titanate fiber, polyamide fiber, polyester fiber, polyarylate fiber, and polyimide fiber. In addition to this, silica and the like can be cited as the amorphous filler.
The above inorganic fillers may be used alone or in combination of two or more. Of these, those mainly composed of talc, mica, silica, calcium carbonate, and glass fiber are preferable in terms of thermal expansion characteristics, heat resistance, cost, etc. Particularly, talc reduces the linear expansion coefficient without raising the tensile modulus too much. Therefore, it is preferable. In addition, for the purpose of improving the adhesiveness with the propylene-based resin, those treated with a silane coupling agent or the like may be used.
Further, the average particle diameter and the average fiber diameter of the inorganic filler are not particularly limited, but when the inorganic filler is talc, mica, silica or calcium carbonate, the average particle diameter is preferably 0.5 to 10 μm. , 1.0 to 6.0 μm is more preferable. The average particle size is preferably 0.5 μm or more from the viewpoint of not lowering the moldability of extrusion molding or injection molding, and the average particle size is 10 μm or less from the viewpoint of improving thermal expansion characteristics and impact resistance. Good to be. When the inorganic filler is glass fiber, the average fiber diameter is preferably 3.0 to 12 μm. This is preferably 3.0 μm or more from the viewpoint of easy availability of glass fiber, and is preferably 12 μm or less from the viewpoint of improving strength and heat resistance.
The compounding ratio of the inorganic filler to the propylene-based resin in the present invention varies depending on the type and combination of the inorganic filler and the average particle diameter/average fiber diameter, but the inorganic filler is added to 100 parts by mass of the propylene-based resin piping member. Is required to be mixed in an amount of 5 to 30 parts by mass. This is preferably 5 parts by mass or more in order to reduce the coefficient of linear expansion, does not deteriorate chemical resistance and impact resistance, reduces thermal stress and tensile elastic modulus, and prolongs the life of the piping member. Therefore, the amount is preferably 30 parts by mass or less.
The linear expansion coefficient of the propylene resin pipe member of the present invention needs to be 10×10 −5 /° C. or less, and more preferably 2×10 −5 to 8×10 −5 /° C. .. This is because when a pipe member (particularly a pipe) is fixedly installed and a high-temperature fluid is flown, a meandering phenomenon occurs due to expansion in the longitudinal direction of the pipe member due to thermal expansion, resulting in a large strain stress in the pipe member. This is to prevent the long-term life of the member from being impaired and to prevent the fluid from leaking due to the distortion of the connecting portion between the pipe and the joint or valve.
Further, the oxidation induction time of the propylene-based resin piping member of the present invention at 200° C. is preferably 40 minutes or longer, and more preferably 80 minutes or longer. If the oxidation induction time at 200° C. is 40 minutes or more, it has sufficient oxidation resistance even in applications in piping lines that flow high-temperature fluid, and the piping members do not undergo oxidative deterioration at high temperatures of about 90° C. This is to enable long-term use. Also, if the oxidation induction time at 200°C is 40 minutes or more, when the used propylene resin pipe member is to be recycled, it may be due to the heat history and the molding process heat received by the pipe member until then. Since the consumption of antioxidants can be suppressed, it is not necessary to add new antioxidants when re-pelletizing or it can be done with a minimum amount of addition, so the labor of recycling can be saved. ..
Further, in the propylene-based resin piping member of the present invention, when an inorganic filler is mixed with a propylene-based resin, the linear expansion coefficient tends to decrease and the tensile elastic modulus tends to increase. When the coefficient is α and the tensile elastic modulus at 90° C. is E, it is preferable to adjust to satisfy the formula (1).
E×α<6/67 (1)
Formula (1) defines the range in which the strain due to the elastic limit when a 90° C. high-temperature fluid is flown through a propylene resin pipe member whose both ends are fixed at room temperature, and the strain due to thermal expansion at 90° C. is allowable. It was done. More specifically, the strain (ε1) due to the elastic limit at 90° C. is calculated from the tensile strength (δ) at 90° C. and the tensile elastic modulus (E) at 90° C.
ε1=δ/E (2)
It is represented by. Next, the strain (ε2) due to thermal expansion at 90° C. is calculated from the temperature difference (Δt) between the linear expansion coefficient (α) and room temperature,
ε2=α×Δt (3)
It is represented by. If the strain due to the elastic limit (ε1) and the strain due to the thermal expansion (ε2) are within a range where the strain due to the elastic limit (ε1) can tolerate the strain due to the thermal expansion (ε2), a high temperature fluid is used as a propylene resin pipe member. Since it is possible to prevent the adverse effect of stress strain on the piping member when flowing
ε1>ε2 (4)
Then, substituting equation (2) and equation (3) into equation (4),
E×α<δ/Δt (5)
Becomes The tensile strength (δ) of the propylene-based resin piping member at 90° C. is about 10 to 15 MPa, but when a stress of substantially 6 MPa or more (considering a safety factor of about 2) is applied instantaneously, the piping member is Therefore, the limit value of the tensile strength at 90° C. is considered to be 6 MPa. Further, since the temperature difference (Δt) from room temperature is 67° C. (90-23° C.), if these are applied to the equation (5), the equation (1) is derived (the thermal stress of the equation (1) is (See Figure 1 for a graph showing the acceptable range).
In the relational expression of the formula (1), the range of the tensile elastic modulus at 90° C. is preferably 370 to 1,310 MPa, and more preferably 520 to 1,050 MPa. In order for the piping member (particularly the pipe) to have a rigidity that does not significantly bend due to its own weight at high temperatures and stress is not applied to the connection portion of the piping member, the tensile elastic modulus at 90° C. must be 370 MPa or more. In order to have the strain due to the elastic limit that allows the strain due to the thermal expansion of the member, the pressure is preferably 1,310 MPa or less.
Further, the range of the tensile elastic modulus at room temperature of the present invention is preferably 1,005 to 3,520 MPa for the above reason.
Further, it is desirable that the propylene resin pipe member of the present invention contains styrene/butadiene rubber. This reduces thermal stress with a smaller amount of compounding compared to the case where other rubbers are compounded.For example, even if a high-temperature fluid is flown through a pipe line connecting pipes or fittings, the temperature Deterioration of the material is suppressed, it can be used for a long time without damage, and in order to reduce the tensile elastic modulus with a smaller compounding amount, for example, in the case of pipes, deflection due to the weight of the pipe when installed and high temperature Even if stress concentrates on a specific part of the pipe due to thermal expansion when flowing a fluid, the tensile elastic modulus is low and the stress is dispersed without concentrating on one point, preventing pipe damage and preventing valve damage. In the case of (1), even if stress concentration due to internal pressure when the valve is closed or stress such as bending of a connected pipe is concentrated in the valve, the stress is similarly dispersed and damage is prevented, which is preferable. In particular, among styrene-butadiene rubbers, hydrogenated styrene-butadiene rubbers have excellent chemical resistance, and therefore, for example, acid such as sulfuric acid and caustic soda can be used as a fluid to be flown in a pipe connecting pipes or joints. , It can be used even if an alkaline chemical is flowed without being corroded by the chemical, and since it has excellent weather resistance, it can be used without problems even if pipes or fittings are installed outdoors, for example, because UV deterioration is suppressed. It is suitable.
Further, it is desirable to contain 1 to 20 parts by mass of styrene-butadiene rubber. By reducing the tensile elastic modulus to the extent that it can be suitably used as a piping member, for example, even if stress is concentrated on a specific part of a pipe or valve of a pipeline connected, stress is concentrated on one point due to the low tensile elastic modulus. The amount is preferably 1 part by mass or more in order to prevent the pipes and valves from being damaged because they are dispersed without being carried out. By maintaining good creep characteristics for a long period of time, for example, pipes or fittings are connected by piping. The amount is preferably 20 parts by mass or less so that the piping member can be used for a long period of time without being deteriorated and damaged even when a high-temperature fluid is flowed while the internal pressure is applied to the conduit.
The polystyrene-equivalent weight average molecular weight of the styrene-butadiene rubber is preferably 200,000 or more, more preferably 200,000 to 700,000. This is because by significantly suppressing the deterioration of the creep characteristics of the piping members caused by the rubber compounding, the piping members will deteriorate even if a high temperature fluid is flowed under the condition where internal pressure is applied to the pipeline connecting the pipes and joints. It is preferably 200,000 or more so that it can be used for a long period of time without being damaged, maintaining a stable weight average molecular weight and obtaining a good molded appearance, so that the inner surface of a molded pipe or the like is smoothed. It is preferably 700,000 or less in order to reduce the resistance when the fluid flows and prevent the outer surface from being easily scratched.
The propylene-based resin molding material used in the present invention may be blended with known additives such as an antioxidant, an ultraviolet absorber, a nucleating agent, a pigment and a plasticizer, if necessary.
The propylene resin pipe member of the present invention and its molding method are not particularly limited, but for example, a pipe manufactured by a known extrusion molding method, a joint manufactured by an injection molding method, a valve, a pump, a casing of an actuator, a flowmeter. , And various sensors are preferable. This is because when a pipe, which is a pipe member of the present invention, a joint, a valve, a pump, a casing of an actuator, a flowmeter, and various sensors are connected by pipes, the pipe member due to thermal expansion when a high-temperature fluid flows (particularly It suppresses the meandering phenomenon due to the elongation of the pipe), reduces the stress strain applied to the piping member to maintain the long life of the pipe, and since the molding shrinkage rate is low, it is excellent in dimensional stability during molding, In particular, variations in the dimensions of molded parts such as valves, pumps, casings of actuators, flow meters, and various sensors are suppressed, which facilitates manufacturing of products. Further, when the molding shrinkage rate is low, dimensional change due to post-shrinkage of the piping member can be suppressed over a long time after molding, so that it is possible to prevent deterioration of workability due to dimensional change when connecting pipes, which is preferable. ..

以下に実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。
本発明のプロピレン系樹脂製配管部材について、パイプを成形して、その性能を以下に示す試験方法で評価した。
(1)線膨張係数測定試験
JIS K7197に準拠して、プロピレン系樹脂製パイプから加工にて線膨張測定用試験片を切り出し、23〜100℃の範囲で線膨張係数測定試験を行い測定した。
(2)引張試験
JIS K7113に準拠して、プロピレン系樹脂製パイプから引張試験片を切り出し、23±1℃及び90±1℃の雰囲気中で引張試験を行い、引張強度及び引張弾性率を測定した。
(3)成形収縮率測定試験
パイプ成形時のサイジングダイ寸法を基準として、プロピレン系樹脂製パイプを23±1℃雰囲気中で48hr放置した後の外径寸法の収縮率を測定した。
(4)熱安定性試験
JIS K6761(付属書4)に準拠して、プロピレン系樹脂製パイプの内面から15±0.5mgの試験片を切り出し、示差走査熱量計を用いて、窒素雰囲気下で200±0.5℃に加熱し、安定後、酸素雰囲気下に置き換え、酸化誘導時間を測定した。なお、酸化誘導時間は長いほうが熱安定性に優れることになる。
(5)破壊水圧試験
配水用ポリエチレン協会規格の水道配水用ポリエチレン管PWA001に準拠して、プロピレン系樹脂製パイプ1000mmに対し、23±1℃及び90±1℃の雰囲気中でプランジャーポンプを用いて水圧をかけた。水圧は0.5MPa刻みで上昇させ、破壊時の水圧を測定した。
(6)熱応力試験
図2に示すように、まず23±1℃にて300mmのプロピレン系樹脂製パイプ1の両端を固定した。パイプ1の一端を冶具2で固定し、他端をロードセル3に結合させ、上記パイプを90℃の恒温槽4に10分放置し、パイプ1の熱膨張で発生する応力をロードセル3にて測定した。なお、熱応力は小さいほど長期寿命に優れることになる。
(7)クリープ試験
DIN8087に準拠して、プロピレン系樹脂製パイプ1000mmに対し、95±1℃の雰囲気中で内圧0.75MPaをかけ、破壊に至るまでの時間を測定した。
(8)重量平均分子量測定
ゲルパーミエーションクロマトグラフィー(GPC、カラム;東ソー(株)製、TSK gel GMHXL)を用いてスチレン・ブタジエン系ゴムをポリスチレン換算で重量平均分子量を求めた。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
With respect to the propylene-based resin piping member of the present invention, a pipe was molded and its performance was evaluated by the test method shown below.
(1) Linear expansion coefficient measurement test According to JIS K7197, a test piece for linear expansion measurement was cut out from a propylene resin pipe by processing, and a linear expansion coefficient measurement test was performed in the range of 23 to 100°C.
(2) Tensile test According to JIS K7113, a tensile test piece is cut out from a propylene resin pipe and subjected to a tensile test in an atmosphere of 23±1° C. and 90±1° C. to measure the tensile strength and the tensile elastic modulus. did.
(3) Mold Shrinkage Measurement Test Using the sizing die size during pipe molding as a reference, the propylene resin pipe was allowed to stand for 48 hours in an atmosphere of 23±1° C., and then the shrinkage ratio of the outer diameter was measured.
(4) Thermal stability test In accordance with JIS K6761 (Appendix 4), a test piece of 15±0.5 mg was cut out from the inner surface of a propylene resin pipe, and using a differential scanning calorimeter in a nitrogen atmosphere. After heating to 200±0.5° C. and stabilizing, it was replaced in an oxygen atmosphere and the oxidation induction time was measured. The longer the oxidation induction time, the better the thermal stability.
(5) Destruction water pressure test In accordance with the polyethylene pipe for water distribution PWA001 specified by the Polyethylene Association for Water Distribution, a plunger pump is used in an atmosphere of 23±1°C and 90±1°C for 1000 mm of propylene resin pipe. Water pressure was applied. The water pressure was increased in 0.5 MPa increments, and the water pressure at break was measured.
(6) Thermal stress test As shown in FIG. 2, first, both ends of a 300 mm propylene-based resin pipe 1 were fixed at 23±1° C. One end of the pipe 1 is fixed by the jig 2, the other end is connected to the load cell 3, the pipe is left in the constant temperature bath 4 at 90° C. for 10 minutes, and the stress generated by the thermal expansion of the pipe 1 is measured by the load cell 3. did. It should be noted that the smaller the thermal stress, the better the long-term life.
(7) Creep test According to DIN8087, an internal pressure of 0.75 MPa was applied to a propylene-based resin pipe of 1000 mm in an atmosphere of 95±1° C., and the time until fracture was measured.
(8) Weight average molecular weight measurement The weight average molecular weight of the styrene/butadiene rubber was calculated in terms of polystyrene using gel permeation chromatography (GPC, column; TSK gel GMHXL manufactured by Tosoh Corporation).

エチレン含有量9質量部のプロピレン・エチレン共重合体85質量部に、平均粒径5.0μmのタルクを15質量部配合し、単軸押出機にて混練、ペレット化し、MFRが0.5g/10分のプロピレン系樹脂成形材料として製造した。得られた成形材料を、単軸押出機を用い、シリンダー温度220℃にて厚さ3.0mm、内径26mmのプロピレン系樹脂製パイプを作製し、線膨張係数測定試験、引張試験、成形収縮率測定試験、熱安定性試験、破壊水圧試験、熱応力試験を実施した。結果を表1に示す。   15 parts by mass of talc having an average particle size of 5.0 μm was mixed with 85 parts by mass of a propylene/ethylene copolymer having an ethylene content of 9 parts by mass, kneaded and pelletized by a single-screw extruder to have an MFR of 0.5 g/ It was manufactured as a propylene-based resin molding material for 10 minutes. Using a single screw extruder, a propylene-based resin pipe having a thickness of 3.0 mm and an inner diameter of 26 mm was prepared from the obtained molding material at a cylinder temperature of 220° C., and a linear expansion coefficient measurement test, a tensile test, and a molding shrinkage ratio were performed. A measurement test, a thermal stability test, a breaking water pressure test, and a thermal stress test were carried out. The results are shown in Table 1.

エチレン含有量9質量部のプロピレン・エチレン共重合体75質量部に、平均粒径4.8μmのマイカを25質量部配合して、実施例1と同様にパイプを作製し、評価試験を実施した。結果を表1に示す。   25 parts by mass of mica having an average particle size of 4.8 μm was mixed with 75 parts by mass of a propylene/ethylene copolymer having an ethylene content of 9 parts by mass, and a pipe was prepared in the same manner as in Example 1 to carry out an evaluation test. .. The results are shown in Table 1.

結晶性プロピレン系樹脂70質量部に、平均粒径5.0μmのタルクを20質量部と、MFRが0.7g/10分のエチレンプロピレンゴムを10質量部配合して、実施例1と同様にパイプを作製し、評価試験を実施した。結果を表1に示す。同様に熱応力試験、クリープ試験を実施した。結果を表2に示す。   20 parts by mass of talc having an average particle size of 5.0 μm and 10 parts by mass of ethylene propylene rubber having an MFR of 0.7 g/10 min were mixed with 70 parts by mass of the crystalline propylene-based resin, and the same as in Example 1. A pipe was produced and an evaluation test was conducted. The results are shown in Table 1. Similarly, a thermal stress test and a creep test were carried out. The results are shown in Table 2.

結晶性プロピレン系樹脂75質量部に、平均粒径2.5μmの炭酸カルシウムを25質量部配合して、実施例1と同様にパイプを作製し、評価試験を実施した。結果を表1に示す。   25 parts by mass of calcium carbonate having an average particle size of 2.5 μm was mixed with 75 parts by mass of the crystalline propylene-based resin, a pipe was produced in the same manner as in Example 1, and an evaluation test was performed. The results are shown in Table 1.

結晶性プロピレン系樹脂80質量部に、平均繊維径10μmのガラス繊維を20質量部配合して、実施例1と同様にパイプを作製し、評価試験を実施した。結果を表1に示す。

Figure 2006078078
20 parts by mass of glass fiber having an average fiber diameter of 10 μm was mixed with 80 parts by mass of the crystalline propylene-based resin, a pipe was produced in the same manner as in Example 1, and an evaluation test was carried out. The results are shown in Table 1.
Figure 2006078078

結晶性プロピレン系樹脂70質量部に、平均粒径5.0μmのタルクを20質量部と、重量平均分子量10万(MFRは3.0g/10分)のスチレン・ブタジエンゴムを10質量部配合して、実施例1と同様にパイプを作製し、熱応力試験、クリープ試験を実施した。結果を表2に示す。   20 parts by mass of talc having an average particle diameter of 5.0 μm and 10 parts by mass of styrene-butadiene rubber having a weight average molecular weight of 100,000 (MFR is 3.0 g/10 minutes) are mixed with 70 parts by mass of a crystalline propylene resin. Then, a pipe was produced in the same manner as in Example 1, and a thermal stress test and a creep test were performed. The results are shown in Table 2.

結晶性プロピレン系樹脂75質量部に、平均粒径5.0μmのタルクを20質量部と、重量平均分子量10万(MFRは3.0g/10分)のスチレン・ブタジエンゴムを5質量部配合して、実施例1と同様にパイプを作製し、評価試験を実施した。結果を表2に示す。   20 parts by weight of talc having an average particle size of 5.0 μm and 5 parts by weight of styrene-butadiene rubber having a weight average molecular weight of 100,000 (MFR is 3.0 g/10 min) are mixed with 75 parts by weight of a crystalline propylene resin. Then, a pipe was produced in the same manner as in Example 1 and an evaluation test was performed. The results are shown in Table 2.

結晶性プロピレン系樹脂75質量部に、平均粒径5.0μmのタルクを20質量部と、重量平均分子量20万(MFRは0.1g/10分未満)のスチレン・ブタジエンゴムを5質量部配合して、実施例1と同様にパイプを作製し、評価試験を実施した。結果を表2に示す。   20 parts by weight of talc having an average particle size of 5.0 μm and 5 parts by weight of styrene-butadiene rubber having a weight average molecular weight of 200,000 (MFR is less than 0.1 g/10 minutes) are mixed with 75 parts by weight of a crystalline propylene resin. Then, a pipe was produced in the same manner as in Example 1, and an evaluation test was performed. The results are shown in Table 2.

結晶性プロピレン系樹脂75質量部に、平均粒径5.0μmのタルクを20質量部と、重量平均分子量25万(MFRは0.1g/10分未満)のスチレン・ブタジエンゴムを5質量部配合して、実施例1と同様にパイプを作製し、評価試験を実施した。結果を表2に示す。   20 parts by mass of talc having an average particle size of 5.0 μm and 5 parts by mass of styrene-butadiene rubber having a weight average molecular weight of 250,000 (MFR is less than 0.1 g/10 minutes) are mixed with 75 parts by mass of a crystalline propylene resin. Then, a pipe was produced in the same manner as in Example 1, and an evaluation test was performed. The results are shown in Table 2.

結晶性プロピレン系樹脂55質量部に、平均粒径5.0μmのタルクを20質量部と、重量平均分子量25万(MFRは0.1g/10分未満)のスチレン・ブタジエンゴムを25質量部配合して、実施例1と同様にパイプを作製し、評価試験を実施した。結果を表2に示す。   55 parts by mass of crystalline propylene resin, 20 parts by mass of talc having an average particle size of 5.0 μm, and 25 parts by mass of styrene-butadiene rubber having a weight average molecular weight of 250,000 (MFR is less than 0.1 g/10 minutes). Then, a pipe was produced in the same manner as in Example 1, and an evaluation test was performed. The results are shown in Table 2.

結晶性プロピレン系樹脂55質量部に、平均粒径5.0μmのタルクを20質量部と、MFRが0.7g/10分のエチレンプロピレンゴムを25質量部配合して、実施例1と同様にパイプを作製し、評価試験を実施した。結果を表2に示す。

Figure 2006078078
比較例1
結晶性プロピレン系樹脂100質量部のプロピレン樹脂成形材料を、実施例1と同様にパイプを作製し、線膨張係数測定試験、引張試験、成形収縮率測定試験、熱安定性試験、破壊水圧試験、熱応力試験、クリープ試験を実施した。結果を表1と表2に示す。
比較例2
結晶性プロピレン系樹脂97質量部に、平均粒径5.0μmのタルクを3質量部配合して、実施例1と同様にパイプを作製し、線膨張係数測定試験、引張試験、成形収縮率測定試験、熱安定性試験、破壊水圧試験、熱応力試験を実施した。結果を表1に示す。
比較例3
結晶性プロピレン系樹脂65質量部に、平均粒径5.0μmのタルクを35質量部配合して、実施例1と同様にパイプを作製し、評価試験を実施した。結果を表1に示す。
表1からわかるように、実施例1〜5は無機充填材が5〜30質量部配合されていることで、パイプの線膨張係数が10×10−5/℃以下になっている。一方、比較例1は無機充填材が配合されておらず、比較例2は無機充填材が5〜30質量部の範囲に満たないため、実施例と比較して線膨張係数は1.4〜2.2倍程大きくなっている。また比較例3は無機充填材が5〜30質量部の範囲よりい多いため、パイプの線膨張係数は10×10−5/℃以下だが引張弾性率が高く熱応力も高くなる。これにより線膨張係数が10×10−5/℃以下のパイプであれば高温流体が流れる際に熱膨張によるパイプの伸びで蛇行現象が起こることが抑制でき、パイプにかかる応力歪みが少なくなるので歪みによる流体の漏れを防止でき、熱応力を低減させることでパイプに高温流体を流しても高温によるパイプの材質の劣化が抑えられて破損することなく長期間使用することができる。
また、無機充填材が配合されていることで、パイプの酸化誘導時間が大幅に長くなっている。実施例と比較例について酸化誘導時間からパイプの寿命を比較すると、無機充填材を配合しない比較例1に対して実施例の寿命は約2〜4倍となるため長期寿命に優れている。
さらに、無機充填材を必須成分とすることにより、実施例のパイプの成形収縮率は比較例1の2〜7割程度に低減している。成形収縮率が小さいことにより、特に継手やバルブなどの射出成形において金型設計が容易となり、成形品の加工も容易となる。また金属部品をインサート成形する場合、成形収縮率が小さければ金属部品に対する応力歪みを抑えることができる。
次に、式(1)の範囲内である実施例1〜5と、式(1)の範囲から外れる比較例3とを比較すると、線膨張係数と酸化誘導時間は優れた性能を有しているが、熱応力が他より劣っており、式(1)を満たしているほうが寿命を長期化できるという点でより望ましい。また、比較例3は90℃中における引張弾性率が370〜1,310MPaの範囲より大きいが、引張弾性率が大きくなるとパイプの耐衝撃特性が低下する傾向になり、パイプの用途が狭まるため、引張弾性率が370〜1,310MPaの範囲であるほうがパイプを広い用途で使用でき、さらにパイプを固定施工した後で高温流体を流す際に発生する応力歪みを低減することができる点で望ましい。
また、実施例1〜5より無機充填材を必須成分にするのであればいずれの無機充填材でも効果が得られる。これらの無機充填材のうち、パイプとして引張弾性率を上げすぎずに線膨張係数を低減させるほうが良いため、引張弾性率と線膨張係数がバランスの良い値となるタルクを無機充填材として用いることがより好適である。
表2からわかるように、比較例1に対して実施例3、6、10、11より、特にスチレン・ブタジエンゴムを配合すると、他のゴムを配合した場合と比較してもより効果的に熱応力を低減することができる。また実施例7より、スチレン・ブタジエンゴムの配合量を実施例6の半分にしても熱応力は実施例3と同レベルであり、クリープ特性が向上している。また、実施例7、8、9より、スチレン・ブタジエンゴムの重量平均分子量が高くなるとクリープ特性が向上している。特にクリープ特性に優れている実施例8、9は高圧配管としての使用に好適である。プロピレン樹脂製パイプは、ゴムを配合すると熱応力は低減するが、クリープ特性は適量の範囲内であればゴムを配合しない場合より向上するか同等程度であるがゴムの配合量が多くなるとクリープ特性は低下する。このため、配管部材として使用するにはスチレン・ブタジエンゴムの配合量は1〜20質量部とし、ポリスチレン換算の重量平均分子量は20万以上であることが好適である。
なお、本実施例では押出成形で作製したプロピレン系樹脂製パイプを用いているが、射出成形で作製した継手、バルブ、ポンプ、アクチュエーターのケーシング、流量計、及び各種センサなどの他の配管部材においても同様に、高温流体を流しても高温による材質の劣化が抑えられて破損することなく長期間使用することができると共に、成形収縮率が低いので成形後に長期時間が経過しても後収縮による寸法の変化は抑えられ施工性の悪化を防ぐことができる。また継手、バルブ、ポンプにおいてはクリープ特性に優れるため管路に内圧が加わった状態で高温流体を流しても、配管部材の材質が劣化して破損することなく長期間使用でき、バルブ、ポンプ、アクチュエーターのケーシング、流量計、及び各種センサにおいては成形収縮率が低いことで寸法のばらつきが抑えられて部品の製造が容易となるなどの効果が得られる。
[発明の効果]
本発明のプロピレン系樹脂製配管部材は、以下のような優れた特性を有する。
(1)無機充填材を必須成分とし、線膨張係数10×10−5/℃以下であるプロピレン系樹脂製配管部材であるため、高温流体が流れる際の熱膨張による配管部材(特にパイプ)の伸びで蛇行現象が起こることを抑制し、配管に蛸ベンドや伸縮管などを設ける必要がない。
(2)無機充填材を必須成分とし、線膨張係数10×10−5/℃以下であるプロピレン系樹脂製配管部材であるため、高温流体が流れる際に配管部材にかかる応力歪みを少なくし、歪みによる流体の漏れを防止するとともにパイプの長期寿命を維持することができる。
(3)200℃中における酸化誘導時間が40分以上であるため、高温での耐酸化性に優れ、高温流体が流れる配管においてもパイプの長期寿命を維持することができる。
(4)スチレン・ブタジエンゴムを配合すると、応力歪みを緩和し、良好なクリープ特性を維持することができ、さらにポリスチレン換算の重量平均分子量を20万以上にすると、配管部材のクリープ特性の低下を格段に抑えるため、配管部材を配管接続した管路に内圧が加わった状態で高温流体を流しても、配管部材の材質が劣化して破損することなく長期間使用できる。
(5)プロピレン系樹脂成形部材の成形収縮率が小さいため、特に継手やバルブなどの射出成形において金型設計や成形品の加工が容易となり、また金属部品をインサート成形する場合、金属部品に対する応力歪みを抑えることができる。
(6)配管部材が、パイプ、継手、バルブ、ポンプ、アクチュエーターのケーシング、流量計、及び各種センサのいずれかであるため、高温流体が流れる際の熱膨張による配管部材(特にパイプ)の伸びで蛇行現象が起こることを抑制し、配管部材にかかる応力歪みを少なくしてパイプの長期寿命を維持すると共に、成形時の寸法の安定性に優れるので成形部品の寸法のばらつきが抑えられて製品の製造が容易となり、成形後の長期時間の経過で配管部材の後収縮による寸法変化が抑えられて配管接続する際に寸法変化による施工性の悪化を防ぐことができる。In the same manner as in Example 1, 55 parts by mass of the crystalline propylene resin was mixed with 20 parts by mass of talc having an average particle size of 5.0 μm and 25 parts by mass of ethylene propylene rubber having an MFR of 0.7 g/10 min. A pipe was produced and an evaluation test was conducted. The results are shown in Table 2.
Figure 2006078078
Comparative Example 1
A pipe was made in the same manner as in Example 1 using 100 parts by mass of the crystalline propylene-based resin as a propylene resin molding material, and a linear expansion coefficient measurement test, a tensile test, a mold shrinkage measurement test, a thermal stability test, a breaking water pressure test, A thermal stress test and a creep test were carried out. The results are shown in Tables 1 and 2.
Comparative example 2
97 parts by mass of the crystalline propylene-based resin was mixed with 3 parts by mass of talc having an average particle diameter of 5.0 μm to prepare a pipe in the same manner as in Example 1, and a linear expansion coefficient measurement test, a tensile test, and a molding shrinkage measurement were performed. A test, a thermal stability test, a breaking water pressure test, and a thermal stress test were carried out. The results are shown in Table 1.
Comparative Example 3
35 parts by mass of talc having an average particle size of 5.0 μm was mixed with 65 parts by mass of the crystalline propylene-based resin, a pipe was produced in the same manner as in Example 1, and an evaluation test was performed. The results are shown in Table 1.
As can be seen from Table 1, in Examples 1 to 5, the inorganic filler is mixed in an amount of 5 to 30 parts by mass, so that the linear expansion coefficient of the pipe is 10×10 −5 /° C. or less. On the other hand, Comparative Example 1 contains no inorganic filler, and Comparative Example 2 contains less than 5 to 30 parts by mass of inorganic filler, and therefore has a linear expansion coefficient of 1.4 to 1.4 as compared with the Examples. It is 2.2 times larger. Further, in Comparative Example 3, since the inorganic filler is more than the range of 5 to 30 parts by mass, the linear expansion coefficient of the pipe is 10×10 −5 /° C. or less, but the tensile elastic modulus is high and the thermal stress is also high. As a result, when the pipe has a linear expansion coefficient of 10×10 −5 /° C. or less, it is possible to prevent the meandering phenomenon from occurring due to the expansion of the pipe due to thermal expansion when a high temperature fluid flows, and the stress strain applied to the pipe is reduced. Fluid leakage due to strain can be prevented, and thermal stress is reduced, so that deterioration of the material of the pipe due to high temperature is suppressed even if a high-temperature fluid is flowed through the pipe, and it can be used for a long period of time without being damaged.
In addition, the incorporation of the inorganic filler significantly lengthens the oxidation induction time of the pipe. Comparing the lifespans of the pipes from the oxidation induction time in the examples and the comparative examples, the lifespan of the example is about 2 to 4 times that of the comparative example 1 in which the inorganic filler is not mixed, and thus the long-term life is excellent.
Furthermore, by using the inorganic filler as an essential component, the molding shrinkage of the pipe of the example is reduced to about 20 to 70% of that of the comparative example 1. Since the molding shrinkage rate is small, the mold design is facilitated particularly in the injection molding of joints, valves, etc., and the processing of molded products is facilitated. Further, when the metal part is insert-molded, the stress strain on the metal part can be suppressed if the molding shrinkage rate is small.
Next, comparing Examples 1 to 5 within the range of Formula (1) with Comparative Example 3 outside the range of Formula (1), the linear expansion coefficient and the oxidation induction time have excellent performance. However, the thermal stress is inferior to the others, and it is more preferable that the formula (1) is satisfied because the life can be extended. Further, in Comparative Example 3, the tensile elastic modulus at 90° C. is larger than the range of 370 to 1,310 MPa, but when the tensile elastic modulus becomes large, the impact resistance property of the pipe tends to deteriorate, and the application of the pipe is narrowed. It is preferable that the tensile elastic modulus is in the range of 370 to 1,310 MPa because the pipe can be used in a wide range of applications, and the stress strain generated when the high temperature fluid is flowed after the pipe is fixedly installed can be reduced.
Further, from Examples 1 to 5, the effect can be obtained with any inorganic filler as long as the inorganic filler is an essential component. Of these inorganic fillers, it is better to reduce the linear expansion coefficient without increasing the tensile modulus too much as a pipe, so use talc as the inorganic filler, which has a well-balanced tensile elastic modulus and linear expansion coefficient. Is more preferable.
As can be seen from Table 2, in comparison with Comparative Example 1, from Examples 3, 6, 10, and 11, in particular, when the styrene-butadiene rubber was blended, the heat treatment was more effective than when other rubbers were blended. The stress can be reduced. Further, from Example 7, even if the compounding amount of styrene-butadiene rubber is half that of Example 6, the thermal stress is at the same level as in Example 3, and the creep characteristics are improved. Further, from Examples 7, 8 and 9, the creep property is improved when the weight average molecular weight of the styrene-butadiene rubber is higher. Particularly, Examples 8 and 9 having excellent creep characteristics are suitable for use as high-pressure piping. Propylene resin pipes reduce the thermal stress when rubber is blended, but the creep characteristics are similar to or comparable to the case where rubber is not blended within the appropriate range, but the creep characteristics increase when the rubber content increases. Will fall. Therefore, for use as a piping member, it is preferable that the compounding amount of styrene/butadiene rubber is 1 to 20 parts by mass and the weight average molecular weight in terms of polystyrene is 200,000 or more.
In this example, a propylene resin pipe manufactured by extrusion molding is used, but in other piping members such as joints, valves, pumps, actuator casings, flow meters, and various sensors manufactured by injection molding. Similarly, even if a high temperature fluid is flowed, deterioration of the material due to high temperature is suppressed and it can be used for a long time without damage. The change in dimensions can be suppressed and the deterioration of workability can be prevented. In addition, since the joints, valves, and pumps have excellent creep characteristics, they can be used for a long period of time without damaging and breaking the material of the piping members even if a high-temperature fluid is flowed while the internal pressure is applied to the piping. In the casing of the actuator, the flow meter, and various sensors, the molding shrinkage rate is low, so that variations in dimensions are suppressed and the parts can be easily manufactured.
[The invention's effect]
The propylene resin pipe member of the present invention has the following excellent properties.
(1) Since it is a propylene resin pipe member having an inorganic filler as an essential component and a linear expansion coefficient of 10×10 −5 /° C. or less, the pipe member (especially pipe) due to thermal expansion when a high temperature fluid flows. It suppresses the meandering phenomenon caused by stretching, and there is no need to install octopus bends or expansion tubes in the piping.
(2) Since it is a propylene-based resin pipe member having an inorganic filler as an essential component and a linear expansion coefficient of 10×10 −5 /° C. or less, stress strain applied to the pipe member when a high-temperature fluid flows is reduced, It is possible to prevent the fluid from leaking due to strain and to maintain the long life of the pipe.
(3) Since the oxidation induction time at 200° C. is 40 minutes or more, the oxidation resistance at high temperature is excellent, and the long life of the pipe can be maintained even in the pipe through which the high temperature fluid flows.
(4) When styrene-butadiene rubber is blended, stress strain can be relaxed and good creep characteristics can be maintained. Further, if the polystyrene-equivalent weight average molecular weight is set to 200,000 or more, deterioration of the creep characteristics of piping members will occur. In order to suppress it significantly, even if a high temperature fluid is made to flow while the internal pressure is applied to the pipeline connecting the piping members, the material of the piping members is not deteriorated and can be used for a long period of time.
(5) Since the molding shrinkage of the propylene-based resin molded member is small, it is easy to design the mold and process the molded product particularly in the injection molding of joints and valves, and when insert-molding the metal part, stress on the metal part is applied. Distortion can be suppressed.
(6) Since the piping member is any of a pipe, a joint, a valve, a pump, a casing of an actuator, a flow meter, and various sensors, the expansion of the piping member (particularly the pipe) due to thermal expansion when a high temperature fluid flows. It suppresses the meandering phenomenon, reduces the stress strain on the piping member to maintain the long life of the pipe, and has excellent dimensional stability during molding, which suppresses dimensional variation of molded parts and Manufacturing is facilitated, and dimensional change due to post-shrinkage of the piping member is suppressed over a long period of time after molding, and deterioration of workability due to dimensional change when connecting pipes can be prevented.

Claims (7)

無機充填材を必須成分とするプロピレン系樹脂製配管部材であって、該プロピレン系樹脂製配管部材100質量部に対して該無機充填材が5〜30質量部配合してなり、線膨張係数が10×10−5/℃以下であることを特徴とするプロピレン系樹脂製配管部材。A propylene-based resin piping member containing an inorganic filler as an essential component, wherein the inorganic filler is mixed in an amount of 5 to 30 parts by mass with respect to 100 parts by mass of the propylene-based resin piping member, and the linear expansion coefficient is A propylene-based resin pipe member having a temperature of 10×10 −5 /° C. or less. 前記配管部材の200℃中における酸化誘導時間が40分以上であることを特徴とする請求項1記載のプロピレン系樹脂製配管部材。 The propylene-based resin pipe member according to claim 1, wherein an oxidation induction time of the pipe member at 200° C. is 40 minutes or more. 前記配管部材の、線膨張係数(α)と90℃中における引張弾性率(E)が式(1)を満たすことを特徴とする請求項1または請求項2記載のプロピレン系樹脂製配管部材。
E×α<6/67・・・(1)
The propylene-based resin piping member according to claim 1 or 2, wherein a linear expansion coefficient (α) and a tensile elastic modulus (E) at 90°C of the piping member satisfy Expression (1).
E×α<6/67・・・(1)
前記配管部材の90℃中における引張弾性率が370〜1,310MPaであることを特徴とする請求項3記載のプロピレン系樹脂製配管部材。 The propylene-based resin pipe member according to claim 3, wherein the pipe member has a tensile elastic modulus at 90°C of 370 to 1,310 MPa. 前記プロピレン系樹脂製配管部材100質量部に対して、スチレン・ブタジエン系ゴムを1〜20質量部配合してなることを特徴とする請求項1乃至請求項4のいずれかに記載のプロピレン系樹脂製配管部材。 The propylene-based resin according to any one of claims 1 to 4, wherein 1 to 20 parts by mass of styrene/butadiene-based rubber is mixed with 100 parts by mass of the propylene-based resin piping member. Made pipe member. 前記スチレン・ブタジエン系ゴムのポリスチレン換算の重量平均分子量が20万以上であることを特徴とする請求項5記載のプロピレン系樹脂製配管部材。 The propylene-based resin piping member according to claim 5, wherein the styrene-butadiene rubber has a polystyrene-equivalent weight average molecular weight of 200,000 or more. 前記配管部材が、パイプ、継手、バルブ、ポンプ、アクチュエーターのケーシング、流量計、及び各種センサのいずれかであることを特徴とする請求項1乃至請求項6のいずれかに記載のプロピレン系樹脂製配管部材。 The propylene resin according to any one of claims 1 to 6, wherein the piping member is any one of a pipe, a joint, a valve, a pump, a casing of an actuator, a flow meter, and various sensors. Plumbing member.
JP2006554011A 2005-01-24 2006-01-24 Propylene resin piping members Pending JPWO2006078078A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005015775 2005-01-24
JP2005015775 2005-01-24
PCT/JP2006/301388 WO2006078078A1 (en) 2005-01-24 2006-01-24 Piping member made of propylene based resin

Publications (1)

Publication Number Publication Date
JPWO2006078078A1 true JPWO2006078078A1 (en) 2008-08-07

Family

ID=36692436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006554011A Pending JPWO2006078078A1 (en) 2005-01-24 2006-01-24 Propylene resin piping members

Country Status (3)

Country Link
JP (1) JPWO2006078078A1 (en)
TW (1) TW200632020A (en)
WO (1) WO2006078078A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5241111B2 (en) 2007-02-16 2013-07-17 旭有機材工業株式会社 Propylene-based resin composition and piping member molded using the same
JP6709309B2 (en) * 2019-04-24 2020-06-10 積水化学工業株式会社 Multi-layer pipe

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637932A (en) * 1986-06-28 1988-01-13 Idemitsu Petrochem Co Ltd Preparation of polypropylene resin molded body
JPH05170932A (en) * 1991-12-26 1993-07-09 Mitsubishi Petrochem Co Ltd Tubular polypropylene resin molding for watersupply and drainage
JPH0859913A (en) * 1994-08-23 1996-03-05 Mitsubishi Chem Corp Tubular formed article for plumbing made of polypropylene resin
JPH08120129A (en) * 1994-10-25 1996-05-14 Showa Denko Kk Propylene resin composition and its molded article
JPH11182760A (en) * 1997-12-19 1999-07-06 Sumitomo Rubber Ind Ltd Piping joint
JP2001304463A (en) * 2000-04-27 2001-10-31 Showa Denko Kk Fiber-reinforced resin pipe, fiber-reinforced multi-layer resin pipe, and manufacturing method for the pipes
JP2002037894A (en) * 2000-07-26 2002-02-06 Sekisui Chem Co Ltd Oriented tubular body
JP2002256124A (en) * 2000-12-27 2002-09-11 Mitsui Chemicals Inc Poly-1-butene resin composition, and pipe material and pipe prepared therefrom
JP2002295741A (en) * 2001-03-29 2002-10-09 Asahi Kasei Corp Pipe material of polypropylene-based resin
JP2003014190A (en) * 2001-07-02 2003-01-15 Ge Plastics Japan Ltd Pipe member

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637932A (en) * 1986-06-28 1988-01-13 Idemitsu Petrochem Co Ltd Preparation of polypropylene resin molded body
JPH05170932A (en) * 1991-12-26 1993-07-09 Mitsubishi Petrochem Co Ltd Tubular polypropylene resin molding for watersupply and drainage
JPH0859913A (en) * 1994-08-23 1996-03-05 Mitsubishi Chem Corp Tubular formed article for plumbing made of polypropylene resin
JPH08120129A (en) * 1994-10-25 1996-05-14 Showa Denko Kk Propylene resin composition and its molded article
JPH11182760A (en) * 1997-12-19 1999-07-06 Sumitomo Rubber Ind Ltd Piping joint
JP2001304463A (en) * 2000-04-27 2001-10-31 Showa Denko Kk Fiber-reinforced resin pipe, fiber-reinforced multi-layer resin pipe, and manufacturing method for the pipes
JP2002037894A (en) * 2000-07-26 2002-02-06 Sekisui Chem Co Ltd Oriented tubular body
JP2002256124A (en) * 2000-12-27 2002-09-11 Mitsui Chemicals Inc Poly-1-butene resin composition, and pipe material and pipe prepared therefrom
JP2002295741A (en) * 2001-03-29 2002-10-09 Asahi Kasei Corp Pipe material of polypropylene-based resin
JP2003014190A (en) * 2001-07-02 2003-01-15 Ge Plastics Japan Ltd Pipe member

Also Published As

Publication number Publication date
TW200632020A (en) 2006-09-16
WO2006078078A1 (en) 2006-07-27

Similar Documents

Publication Publication Date Title
JP6242339B2 (en) Semi-aromatic polyamide resin composition, molded article, and method for producing semi-aromatic polyamide
JP5137465B2 (en) valve
JP4280281B2 (en) Hot water supply hose
JPWO2017170190A1 (en) Rubber composition and rubber molded article using the same
JP2007291295A (en) Water proofing nitrile rubber composition
JPWO2006078078A1 (en) Propylene resin piping members
JP5642124B2 (en) Propylene-based resin composition for piping members, and piping members and multilayer piping members molded using the same
JP5241111B2 (en) Propylene-based resin composition and piping member molded using the same
JP6572398B2 (en) Resin composition, molded article and method for producing the same
KR100828620B1 (en) Styrenic thermoplastic resin compositions having thermal resistance and high fluidity
WO2008146862A1 (en) Piping member
JP2007039474A (en) Propylene resin composition for piping member and piping member and multilayered piping member molded by using the same
JP2017177548A (en) Laminated structure and hollow structure comprising the same
Khoury Moussa et al. Enhancement of mechanical properties of high modulus polypropylene grade for multilayer sewage pipes applications
JP2008111063A (en) Extruded hollow molded article and method for producing the same
JP2012067257A (en) Polyvinyl chloride resin composition and flexible cable protecting tube
JP2017120122A (en) Hose and method for producing the same
US8967207B2 (en) Multi-layer cylindrical molded article
KR101230058B1 (en) Manufacturing method of diffuser membrane for improved elasticity and durability and high efficiency diffuser membrane using thereof
US20200399468A1 (en) Polyamide composition for liquid-assisted injection moulding applications
JP4747634B2 (en) Polyarylene sulfide resin composition
KR101310395B1 (en) Corrugatd pipe and manufacturing method thereof
CN116135923B (en) Polyvinyl chloride material and preparation method and application thereof
JPS61149683A (en) Heat-resistant high-pressure hose
KR20100105065A (en) POLYPROPYLENE RESIN COMPOSITION FOR PIPE HAVING β-CRYSTAL STRUCTURE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120821