JPWO2006064882A1 - Method for producing boric acid compound crystal and boric acid compound crystal obtained thereby - Google Patents

Method for producing boric acid compound crystal and boric acid compound crystal obtained thereby Download PDF

Info

Publication number
JPWO2006064882A1
JPWO2006064882A1 JP2006548908A JP2006548908A JPWO2006064882A1 JP WO2006064882 A1 JPWO2006064882 A1 JP WO2006064882A1 JP 2006548908 A JP2006548908 A JP 2006548908A JP 2006548908 A JP2006548908 A JP 2006548908A JP WO2006064882 A1 JPWO2006064882 A1 JP WO2006064882A1
Authority
JP
Japan
Prior art keywords
crystal
cooling
manufacturing
boric acid
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006548908A
Other languages
Japanese (ja)
Inventor
森 勇介
勇介 森
佐々木 孝友
孝友 佐々木
吉村 政志
政志 吉村
隆司 佐治
隆司 佐治
直人 久湊
直人 久湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Publication of JPWO2006064882A1 publication Critical patent/JPWO2006064882A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

容易に光散乱源の除去が可能なホウ酸化合物結晶の製造方法を提供する。 ホウ酸化合物原料結晶に対し、前記原料結晶の融点−140℃から融点又は分解点−140℃から分解点の範囲の温度まで加熱して一定時間保持し、その後、冷却することで光散乱源を除去する。前記加熱は、例えば、前記原料結晶にクラックが入らない程度で昇温させ、この加熱状態で2時間以上保持することが好ましい。また、前記冷却は、例えば、少なくとも650〜300℃の温度帯を、冷却速度60℃/分で急速に冷却することが好ましい。本発明の製造方法により得られた結晶の一例を、図1に示す。同図に示すように、本発明の製造方法により得られる結晶は、光散乱が除去され高品質である。Provided is a method for producing a boric acid compound crystal capable of easily removing a light scattering source. The boric acid compound raw material crystal is heated from the melting point of the raw material crystal to −140 ° C. to the melting point or the temperature in the range of the decomposition point to −140 ° C. Remove. In the heating, for example, it is preferable to raise the temperature so as not to cause cracks in the raw material crystal, and hold in this heated state for 2 hours or more. Moreover, it is preferable that the said cooling rapidly cools the temperature range of at least 650-300 degreeC with the cooling rate of 60 degreeC / min, for example. An example of the crystal obtained by the production method of the present invention is shown in FIG. As shown in the figure, the crystal obtained by the production method of the present invention has high quality with light scattering removed.

Description

本発明は、ホウ酸化合物結晶の製造方法及びそれにより得られたホウ酸化合物結晶に関する。  The present invention relates to a method for producing a boric acid compound crystal and a boric acid compound crystal obtained thereby.

ホウ酸化合物結晶の中で、CsB結晶(以下、「CBO結晶」ともいう)は、1993年に非線形光学特性が報告された材料であり、紫外領域への波長変換応用に優れていることが分かっている(非特許文献1)。特に、Nd:YAGレーザーなどの波長1064nm光の第3高調波発生(Third−harmonic generation:THG)素子(基本波と第2高調波との和周波混合により発生)としては、既存のLiB結晶(LBO)を大きく上回る性能を有している(非特許文献2、3)。しかしながら、CBO結晶は、結晶成長が困難であるため実用化に至らず、結晶育成に関する報告例も数件程度にとどまっている。CBO結晶の代表的な結晶育成方法としては、セルフフラックスを用いたtop−seeded solution growth(TSSG)法があげられる。この方法は、高温で溶解したCsO−B溶液面に種子結晶を浸して回転させた状態で、溶液の温度を降下させながら液中において結晶を育成する方法である。この方法において、B濃度が73.3mol%の育成溶液を用いて種子結晶を高速回転させることで、比較的大きな結晶が得られることが、影林等により報告されている(非特許文献4)。しかし、この方法により得られた結晶は、外見上良質な単結晶に見えるものの、内部には微小な光散乱源が全体にわたって分布しているため、紫外光発生時に損傷が生じるなど実用面で大きな問題を抱えている(非特許文献3)。一方、本発明者等は、前記TSSG法において、育成溶液のB濃度を70mol%にすると、内部に光散乱源の無い結晶が得られることを見いだしている(非特許文献5)。また、本発明者等は、この条件では、育成溶液の蒸発の影響によって結晶育成が極めて困難であることも同時に突き止めている。そして、本発明者等は、育成溶液のB濃度をCBO結晶の結晶組成である化学量論比(75mol%)近くの組成74mol%から育成した場合には、影林等の結果と同様に大きな単結晶が得られることも確認している。ただし、この74mol%の条件で育成した結晶は、その内部に光散乱源が一様に分布している。このように、本発明者等は、CBO結晶において、結晶成長の観点(難易度)からみて適した育成条件と、結晶の品質(光散乱源の有無)についての最適育成条件とが異なることを見出している。このような、育成条件と光散乱源の問題は、CBO結晶に限らず、他のホウ酸化合物結晶においても問題になっている場合がある。
Y.Wu,T.Sasaki,S.Nakai,A.Yokotani,H.Tang,and C.Chen,Appl.Phys.Lett.62,2614(1993). Y.Wu,P.Fu,J.Wang,Z.Xu,L.Zhang,Y.Kong,and C.Chen,Op.Lett.22,1840(1997). H.Kitano,T.Matsui,K.Sato,N.Ushiyama,M.Yoshimura,Y.Mori,and T.Sasaki,Opt.Lett.28,263(2003). Y.Kagebayashi,Y.Mori,and T.Sasaki,Bull.Mater.Sci.22,971(1999). T.Saji,N.Hisaminato,M.Nishioka,M.Yoshimura,Y.Mori,and T.Sasaki,J.Crystal Growth,in press.
Among boric acid compound crystals, CsB 3 O 5 crystal (hereinafter also referred to as “CBO crystal”) is a material whose nonlinear optical properties were reported in 1993, and is excellent in wavelength conversion applications to the ultraviolet region. (Non-Patent Document 1). In particular, as a third-harmonic generation (THG) element (generated by the sum frequency mixing of the fundamental wave and the second harmonic) of light having a wavelength of 1064 nm, such as an Nd: YAG laser, the existing LiB 3 O It has performance far exceeding 5 crystals (LBO) (Non-patent Documents 2 and 3). However, since CBO crystals are difficult to grow, they have not been put to practical use, and there are only a few reports on crystal growth. As a typical crystal growth method of the CBO crystal, a top-seed solution growth (TSSG) method using self-flux can be mentioned. This method is a method for growing crystals in the liquid while lowering the temperature of the solution while the seed crystals are immersed in the Cs 2 O—B 2 O 3 solution surface dissolved at high temperature and rotated. In this method, it has been reported by Kagebayashi et al. That a relatively large crystal can be obtained by rotating a seed crystal at a high speed using a growth solution having a B 2 O 3 concentration of 73.3 mol% (non-patent document). Reference 4). However, although the crystals obtained by this method appear to be single crystals of good quality, they are very practical in terms of damage due to the occurrence of ultraviolet light because minute light scattering sources are distributed throughout. I have a problem (Non-Patent Document 3). On the other hand, the present inventors have found that in the TSSG method, when the B 2 O 3 concentration of the growth solution is set to 70 mol%, a crystal having no light scattering source inside can be obtained (Non-patent Document 5). In addition, the present inventors have also found out that crystal growth is extremely difficult under the conditions under the influence of evaporation of the growth solution. Then, the present inventors have, when growing a B 2 O 3 concentration in the grown solution from the stoichiometric ratio (75 mol%) near the composition 74 mol% is a crystalline composition of the CBO crystals, the result of such Kagerin and It has also been confirmed that large single crystals can be obtained. However, the crystal grown under the condition of 74 mol% has light scattering sources uniformly distributed therein. As described above, the present inventors have found that the growth conditions suitable for the CBO crystal from the viewpoint of crystal growth (degree of difficulty) and the optimum growth conditions for the quality of the crystal (the presence or absence of a light scattering source) are different. Heading. Such problems of the growth conditions and the light scattering source are not limited to CBO crystals but may be a problem in other boric acid compound crystals.
Y. Wu, T .; Sasaki, S .; Nakai, A .; Yokotani, H .; Tang, and C.I. Chen, Appl. Phys. Lett. 62, 2614 (1993). Y. Wu, P .; Fu, J. et al. Wang, Z .; Xu, L .; Zhang, Y. et al. Kong, and C.K. Chen, Op. Lett. 22, 1840 (1997). H. Kitano, T .; Matsui, K .; Sato, N .; Ushiyama, M .; Yoshimura, Y. et al. Mori, and T.M. Sasaki, Opt. Lett. 28, 263 (2003). Y. Kagebayashi, Y. et al. Mori, and T.M. Sasaki, Bull. Mater. Sci. 22, 971 (1999). T. T. Saji, N .; Hisaminato, M .; Nishioka, M .; Yoshimura, Y. et al. Mori, and T.M. Sasaki, J .; Crystal Growth, in press.

そこで、本発明は、結晶の育成が容易であり、かつ光散乱源が生成しても、それを除去可能なホウ酸化合物結晶の製造方法の提供を、その目的とする。  Therefore, an object of the present invention is to provide a method for producing a boric acid compound crystal that can be easily grown and can be removed even if a light scattering source is generated.

前記目的を達成するために、本発明の製造方法は、ホウ酸化合物結晶の製造方法であって、内部に光散乱源を有するホウ酸化合物原料結晶を、前記原料結晶の融点−140℃から融点又は分解点−140℃から分解点の範囲の温度で加熱する加熱処理工程と、前記加熱した前記原料結晶を300℃以下に冷却する冷却処理工程とを有する製造方法である。  In order to achieve the above object, a manufacturing method of the present invention is a manufacturing method of a boric acid compound crystal, wherein a boric acid compound raw crystal having a light scattering source inside is converted from a melting point of the raw crystal to -140 ° C. Or it is a manufacturing method which has the heat processing process heated at the temperature of the range of decomposition point -140 degreeC to a decomposition point, and the cooling process process which cools the said said raw material crystal | crystallization heated to 300 degrees C or less.

このように、本発明の製造方法は、内部に光散乱源を有する原料結晶に対し、前記加熱処理工程と冷却処理工程とを施すことにより、前記光散乱源を除去し、光散乱源を含まないホウ酸化合物結晶を得る方法である。本発明の製造方法は、加熱と冷却という簡単な処理により、光散乱源を除去することができ、実用的な方法である。また、本発明の製造方法は、光散乱源を有する原料結晶に対し、その光散乱源を除去する方法であり、前記原料結晶は、前述のように育成が容易な条件で製造できる。したがって、本発明の製造方法によれば、光散乱源の除去された高品質のホウ酸化合物結晶が容易に製造可能となり、特に、CBO結晶の製造に有効な方法である。なお、本発明の製造方法により、光散乱源が除去できる理由は不明であるが、前記加熱処理工程で光散乱源が固溶し、光散乱体として振る舞わなくなると、本発明者等は推定している。なお、この推定は、本発明を制限するものではない。  Thus, the manufacturing method of the present invention includes the light scattering source by removing the light scattering source by applying the heat treatment step and the cooling treatment step to the raw material crystal having the light scattering source therein. This is a method of obtaining no boric acid compound crystals. The production method of the present invention is a practical method that can remove the light scattering source by a simple process of heating and cooling. In addition, the production method of the present invention is a method for removing a light scattering source from a raw material crystal having a light scattering source, and the raw material crystal can be produced under conditions that allow easy growth as described above. Therefore, according to the production method of the present invention, it is possible to easily produce a high-quality boric acid compound crystal from which a light scattering source has been removed, and this method is particularly effective for producing a CBO crystal. Although the reason why the light scattering source can be removed by the manufacturing method of the present invention is unknown, the present inventors presume that the light scattering source dissolves in the heat treatment step and does not behave as a light scattering body. ing. Note that this estimation does not limit the present invention.

図1は、本発明の製造方法の一実施例により得られた結晶の光散乱の状態を示す写真である。FIG. 1 is a photograph showing the light scattering state of a crystal obtained by an example of the production method of the present invention. 図2は、本発明の製造方法のその他の実施例における冷却条件を示すグラフである。FIG. 2 is a graph showing cooling conditions in another example of the manufacturing method of the present invention. 図3は、TSSG法により得られた原料結晶の一例を示す写真である。FIG. 3 is a photograph showing an example of a raw material crystal obtained by the TSSG method. 図4は、前記例の原料結晶の光散乱を示す写真である。FIG. 4 is a photograph showing light scattering of the raw material crystal of the above example. 図5は、本発明の製造方法のさらにその他の実施例により得られた結晶の光散乱の状態を示す写真である。FIG. 5 is a photograph showing the light scattering state of the crystals obtained by yet another example of the production method of the present invention. 図6は、前記例の原料結晶の光散乱を示す写真である。FIG. 6 is a photograph showing light scattering of the raw material crystal of the above example.

つぎに、本発明の製造方法について、CBO結晶の製造方法を例に挙げ、説明する。なお、その他のホウ酸化合物結晶、例えば、LiB結晶(分解点約834℃)、Li結晶(融点約917℃)、CsLiB10結晶(融点約850℃)などについても、CBO結晶と同様にして実施できる。Next, the production method of the present invention will be described by taking the production method of CBO crystal as an example. Other boric acid compound crystals, such as LiB 3 O 5 crystals (decomposition point about 834 ° C.), Li 2 B 4 O 7 crystals (melting point about 917 ° C.), CsLiB 6 O 10 crystals (melting point about 850 ° C.), etc. Can be carried out in the same manner as the CBO crystal.

本発明において、前記加熱処理工程および前記冷却処理工程の温度は、加熱雰囲気および冷却雰囲気の温度を意味し、例えば、容器(例えば、坩堝)に前記原料結晶を入れて加熱処理および冷却処理する場合は、その容器内部の温度である。その雰囲気温度の測定は、特に制限されず、例えば、雰囲気中に配置された温度計や温度センサ等で測定できる。例えば、前記加熱処理工程および冷却処理工程において、CBO結晶の近傍の温度を測定すればよい。この測定には、例えば、熱電対などが利用できる。加熱処理工程には、例えば、抵抗加熱式のヒーターを使用することができる。  In the present invention, the temperature of the heat treatment step and the cooling treatment step means the temperature of the heating atmosphere and the cooling atmosphere. For example, when the raw material crystal is put in a container (for example, a crucible), the heat treatment and the cooling treatment are performed. Is the temperature inside the container. The measurement of the atmospheric temperature is not particularly limited, and can be measured by, for example, a thermometer or a temperature sensor arranged in the atmosphere. For example, the temperature in the vicinity of the CBO crystal may be measured in the heat treatment step and the cooling treatment step. For example, a thermocouple can be used for this measurement. For the heat treatment step, for example, a resistance heating type heater can be used.

また、本発明において、前記光散乱源とは、結晶内部に可視光レーザーを照射した際に、前記光が散乱し、目視により点光源が確認できる個所をいう。本発明で取り扱う、光散乱源を有する結晶というのは、特に結晶内部の全域にわたって微小な点光源が分布する傾向を示す結晶を指すものである。この光散乱源の生成メカニズムは不明であるが、例えば、CsB結晶の場合、育成直後の冷却過程において、Cs成分が、CsB結晶内部から拡散、表面から蒸散し、その結果、結晶内部に生じたCsが不足した領域が、光散乱源の生成に関与しているのではないかと、本発明者等は推定している。なお、この推定は、本発明を制限しない。また、本発明において、前記加熱処理工程および前記冷却処理工程における前記ホウ酸化合物原料結晶の光散乱源の除去は、全部除去してもよいし、その一部の除去であってもよい。光散乱源を一部除去した場合であっても、実用上問題なく使用できる場合もあるし、また、光散乱源が一部除去された結晶をカットして、光散乱源がない素子とすることも可能だからである。In the present invention, the light scattering source refers to a portion where the light is scattered when a visible light laser is irradiated inside the crystal and a point light source can be visually confirmed. The crystal having a light scattering source handled in the present invention particularly refers to a crystal that shows a tendency that minute point light sources are distributed over the entire area inside the crystal. Although the generation mechanism of this light scattering source is unknown, for example, in the case of CsB 3 O 5 crystal, in the cooling process immediately after growth, the Cs component diffuses from the inside of the CsB 3 O 5 crystal and evaporates from the surface. The present inventors presume that the region where Cs generated inside the crystal is deficient is involved in the generation of the light scattering source. Note that this estimation does not limit the present invention. Moreover, in this invention, the removal of the light-scattering source of the said boric-acid-compound raw material crystal | crystallization in the said heat processing process and the said cooling process process may be removed entirely, and the one part removal may be sufficient as it. Even if the light scattering source is partially removed, it can be used without any problem in practice, and the crystal from which the light scattering source has been partially removed is cut to obtain an element without the light scattering source. Because it is possible.

前記原料結晶は、その内部に光散乱源を有するものである。育成直後の結晶は、例えばa軸×b軸×c軸方向で30×40×40mmといったサイズを有するが、加熱処理工程を施すには、熱歪みによる割れが生じないように、波長変換素子用の小さなサイズに、前もって切り出しておくことが望ましい。素子の形状は、四角柱形状が一般的であり、応用面で求められるサイズは、用いるレーザーやその用途により異なるが、例えば、(3〜5)×(3〜5)mmの正方形断面を有し、長さ8〜18mmを有する素子がある。例えば、Nd:YAGレーザーから355nm光を発生させる場合では、断面4×4mm、長さ8mmの素子を利用して高出力な波長変換を実施している。加熱処理により割れない大きなサイズの例としては、6×10×12mmの四角柱状のものがあげられる。なお、本発明において、原料結晶およびこれから得られる結晶のサイズは、特に制限されない。The raw material crystal has a light scattering source therein. The crystal immediately after the growth has, for example, a size of 30 × 40 × 40 mm 3 in the a-axis × b-axis × c-axis direction. However, when performing the heat treatment process, the wavelength conversion element is used so that cracking due to thermal strain does not occur. It is desirable to cut out in advance to a small size for use. The shape of the element is generally a quadrangular prism shape, and the size required for application varies depending on the laser used and its application, but for example, a square cross section of (3-5) × (3-5) mm 2 is used. There is an element having a length of 8 to 18 mm. For example, when 355 nm light is generated from an Nd: YAG laser, high-output wavelength conversion is performed using an element having a cross section of 4 × 4 mm 2 and a length of 8 mm. As an example of a large size that does not break by heat treatment, a 6 × 10 × 12 mm 3 square columnar shape can be given. In the present invention, the size of the raw crystal and the crystal obtained therefrom is not particularly limited.

前記原料結晶は、例えば、溶液成長法により製造することができる。前記溶液成長法としては、CsO−Bを含むセルフフラックスを用いた方法であり、前記セルフフラックスにおけるBの割合(mol%)が、71mol%以上75mol%以下である方法が好ましい。この方法によれば、CBO結晶の育成が容易になるからである。また、前記溶液成長法において、その溶液には、例えば、NaFやCsFなどの少量の添加剤を含ませてもよい。また、前記溶液成長法としては、例えば、top−seeded solution growth(TSSG)法、submerged−seeded solution growth法、Czochralski法等があげられ、このなかでも、TSSG法が好ましい。大きな結晶が得られるという観点から、前記TSSG方法において、CsO−BにおけるBの割合(mol%)は、例えば、71mol%以上75mol%以下であることが好ましく、より好ましくは73.5〜74.5mol%の範囲である。以下に、TSSG法による原料結晶の製造の一例を示す。なお、前記原料結晶は、自家製造したものを使用してもよいし、第三者が製造したもの(例えば、市販品)を使用してもよい。The raw material crystal can be produced, for example, by a solution growth method. The solution growth method is a method using self-flux containing Cs 2 O—B 2 O 3 , and the ratio (mol%) of B 2 O 3 in the self-flux is 71 mol% or more and 75 mol% or less. The method is preferred. This is because this method makes it easy to grow CBO crystals. In the solution growth method, the solution may contain a small amount of additives such as NaF and CsF. Examples of the solution growth method include a top-seed solution growth (TSSG) method, a submerged-seed solution growth method, a Czochralski method, and the TSSG method is preferable. From the viewpoint of large crystals are obtained, in the TSSG method, the ratio of B 2 O 3 in the CsO 2 -B 2 O 3 (mol %) , for example, is preferably from more than 71 mol% 75 mol%, more preferably Is in the range of 73.5-74.5 mol%. Below, an example of manufacture of the raw material crystal by TSSG method is shown. In addition, the said raw material crystal | crystallization may use what was made homemade, and may use what was manufactured by the third party (for example, commercial item).

この例では、B濃度が74mol%の場合のセルフフラックスによるTSSG法を使った結晶製造方法を示す。育成の温度プログラムは、用いる組成比によって適宜決定できる。まず、炭酸セシウム及び酸化ホウ素を素原料とし、所定の原料比で混合したものを、白金坩堝に充填する。なお、CsBを作製する素原料化合物は、これ以外のものを用いてもよい。ここで、原料はあらかじめ、水などの液体を用いて効果的に混合しておいても良い。また、混合しておいた原料をあらかじめ700℃に加熱し、固相反応を利用して結晶性の粉体としておく場合もある。この白金坩堝を、一般に用いられる抵抗加熱型の結晶育成炉(抵抗加熱式ヒーター)にセットし、850℃に加熱し、12時間程度、白金製プロペラで撹拌しながら混合する。溶液の撹拌が終了した後、結晶成長温度である830℃まで冷却し、温度が安定した後に、溶液の上空から種子結晶を溶液に浸し、その後約0.1℃/日の温度降下速度で溶液を冷却する。種子結晶は、CBO結晶を四角柱状に切り出したもので、大きさは、例えば、3×3×5mmである。育成炉への種子結晶のセットは、例えば、結晶のa軸が、鉛直方向となるようにセットしてもよい。種子結晶は、溶液を撹拌させるために、約60rpmなどの高速で回転させておくことが好ましい。この状態で、約7日間結晶育成を実施した場合、例えば、図3の写真に示すような大きさの結晶が成長する。その後、結晶を溶液から引き上げ、冷却速度約17℃/時間で室温付近まで冷却し、結晶を取り出す。その後、加熱処理工程に適した大きさ、波長変換応用に適した方位に結晶を切り出し、原料結晶とする。In this example, a crystal manufacturing method using the TSSG method by self-flux when the B 2 O 3 concentration is 74 mol% is shown. The temperature program for growth can be appropriately determined depending on the composition ratio used. First, a platinum crucible is filled with cesium carbonate and boron oxide as raw materials mixed at a predetermined raw material ratio. In addition, as the raw material compound for producing CsB 3 O 5 , other materials may be used. Here, the raw materials may be effectively mixed in advance using a liquid such as water. In some cases, the mixed raw material is heated in advance to 700 ° C. and is made into a crystalline powder using a solid phase reaction. This platinum crucible is set in a generally used resistance heating type crystal growth furnace (resistance heating type heater), heated to 850 ° C., and mixed with stirring by a platinum propeller for about 12 hours. After the stirring of the solution is completed, it is cooled to 830 ° C. which is the crystal growth temperature. After the temperature is stabilized, the seed crystals are immersed in the solution from above the solution, and then the solution is cooled at a rate of about 0.1 ° C./day. Cool down. The seed crystal is obtained by cutting a CBO crystal into a square column shape, and the size is, for example, 3 × 3 × 5 mm 3 . For example, the seed crystal may be set in the growth furnace so that the a-axis of the crystal is in the vertical direction. The seed crystal is preferably rotated at a high speed such as about 60 rpm in order to stir the solution. When crystal growth is performed in this state for about 7 days, for example, a crystal having a size as shown in the photograph of FIG. 3 grows. Thereafter, the crystal is pulled up from the solution, cooled to near room temperature at a cooling rate of about 17 ° C./hour, and the crystal is taken out. Thereafter, the crystal is cut into a size suitable for the heat treatment step and an orientation suitable for wavelength conversion application to obtain a raw material crystal.

続いて、本発明の製造方法における加熱処理工程及び冷却処理工程を、以下の二つの形態を例に挙げて説明する。なお、本発明の製造方法は、これらの形態により限定されない。  Subsequently, the heat treatment step and the cooling step in the production method of the present invention will be described by taking the following two forms as examples. In addition, the manufacturing method of this invention is not limited by these forms.

(第1の形態)
前記原料結晶に対し、まず、加熱処理を施す。この加熱処理工程は、前記原料結晶の融点(又は分解点、以下同様)付近の温度まで加熱し、この状態で一定時間保持することが好ましい。前記融点付近の温度は、前記融点−140℃から前記融点の範囲であり、好ましくは、融点−120℃から前記融点の範囲であり、より好ましくは、前記融点−40℃から前記融点の範囲であり、さらに好ましくは、前記融点−20℃から前記融点の範囲である。CBO結晶の融点は、約835℃であるので、前記加熱処理の温度は、具体的には、例えば、785〜835℃の範囲であり、好ましくは、795〜835℃の範囲であり、より好ましくは、815〜835℃の範囲である。また、別の観点からの前記加熱処理温度は、好ましくは、790℃以上であり、より好ましくは、815〜830℃の範囲であり、さらに好ましくは、815〜825℃の範囲である。前記加熱状態で保持する時間は、例えば、2時間以上であり、好ましくは3時間である。3時間加熱状態で保持すれば、より一層効果的に光散乱源を除去できる。また、光散乱源の除去および結晶溶解防止等の観点から、より好ましい加熱状態保持時間は、2〜5時間であり、特に好ましくは3〜5時間である。前記一定の加熱温度までの昇温速度は、特に制限されず、前記原料結晶にクラックが入らないような昇温速度が好ましく、例えば、0を超え60℃/分以下である。この昇温の仕方は、特に制限されず、連続的な昇温でも段階的な昇温でもよく、途中で昇温速度を変化させてもよい。加熱処理工程は、例えば、前述の原料結晶の製造(育成)に使用した抵抗加熱式ヒーターを使用することができる。このヒーターは、電流のオンオフによって加熱速度および冷却速度を制御するものである。また、この加熱処理工程は、原料結晶の結晶育成溶液が、結晶下方で同様に加熱されている状況で行うことが好ましい。この状態で、下方にある結晶育成溶液からは、Csを含む蒸発成分が雰囲気に充満する。その結果、結晶の表面の溶解が生じにくくなり、より融点に近い温度での加熱処理ができるようになる。その結果として、光散乱源のより効果的な除去ができるからである。なお、このメカニズムは不明であるが、Csが雰囲気中に存在することで結晶内部、及び表面からのCsの拡散が抑制され、Cs不足のセルフフラックス溶液として表面が溶解することを抑制でき、かつ内部光散乱源と考えられる微小結晶の溶解が十分に促進できると推察しているが、この推察は本発明を制限しない。Csを含む蒸発成分の発生方法として、原料結晶の育成溶液、あるいは異なる組成の溶液をそのまま加熱する以外にも、様々な方法が想定できるが、その手段は特に制限しない。
(First form)
First, the raw crystal is subjected to a heat treatment. In this heat treatment step, it is preferable to heat to a temperature near the melting point (or decomposition point, the same shall apply hereinafter) of the raw crystal, and hold in this state for a certain time. The temperature in the vicinity of the melting point is in the range from the melting point −140 ° C. to the melting point, preferably in the range from the melting point −120 ° C. to the melting point, and more preferably in the range from the melting point −40 ° C. to the melting point. More preferably, the melting point is in the range of -20 ° C to the melting point. Since the melting point of the CBO crystal is about 835 ° C., the temperature of the heat treatment is specifically, for example, in the range of 785 to 835 ° C., preferably in the range of 795 to 835 ° C., more preferably Is in the range of 815 to 835 ° C. Moreover, the said heat processing temperature from another viewpoint becomes like this. Preferably it is 790 degreeC or more, More preferably, it is the range of 815-830 degreeC, More preferably, it is the range of 815-825 degreeC. The holding time in the heated state is, for example, 2 hours or more, and preferably 3 hours. If held in a heated state for 3 hours, the light scattering source can be more effectively removed. Further, from the viewpoint of removal of the light scattering source and prevention of crystal dissolution, a more preferable heating state holding time is 2 to 5 hours, and particularly preferably 3 to 5 hours. The rate of temperature rise to the constant heating temperature is not particularly limited, and is preferably a rate of temperature rise that does not cause cracks in the raw material crystal, for example, more than 0 and 60 ° C./min. The method of raising the temperature is not particularly limited, and may be a continuous temperature increase or a stepwise temperature increase, and the temperature increase rate may be changed in the middle. In the heat treatment step, for example, the resistance heating heater used in the production (growth) of the raw material crystals described above can be used. This heater controls the heating rate and the cooling rate by turning on and off the current. In addition, this heat treatment step is preferably performed in a state where the crystal growth solution of the raw crystal is similarly heated below the crystal. In this state, the evaporation component containing Cs fills the atmosphere from the lower crystal growth solution. As a result, it becomes difficult for the surface of the crystal to dissolve, and heat treatment at a temperature closer to the melting point can be performed. As a result, the light scattering source can be removed more effectively. Although this mechanism is unknown, the presence of Cs in the atmosphere can suppress the diffusion of Cs from the inside of the crystal and from the surface, can suppress the dissolution of the surface as a self-flux solution lacking Cs, and Although it is speculated that the dissolution of microcrystals considered to be an internal light scattering source can be sufficiently promoted, this inference does not limit the present invention. Various methods can be envisaged as a method for generating the evaporation component containing Cs other than heating the raw crystal growth solution or a solution having a different composition as it is, but the means is not particularly limited.

前記加熱処理工程につづき、300℃以下まで冷却する前記冷却処理工程を実施する。この冷却処理工程は、例えば、少なくとも600℃から300℃までの間の温度帯を急速冷却することが好ましく、より好ましくは650℃から300℃までの間の温度帯を急速冷却することである。前記急速冷却の速度は、特に制限されないが、例えば、50℃/分以上であり、好ましくは、60℃/分以上である。前記急速冷却速度の上限は、特に制限されないが、結晶におけるクラック発生防止等の観点から、例えば、200℃/分以下であり、好ましくは、100℃/分以下である。したがって、前記急速冷却速度の具体的条件は、例えば、50〜200℃/分の範囲であり、好ましくは、60〜200℃/分の範囲であり、より好ましくは、50〜100℃の範囲であり、特に好ましくは60〜100℃の範囲である。なお、600℃若しくは650℃までの温度降下(冷却)の方法は、特に制限されず、前述と同様に急速冷却して一気に300℃以下まで冷却してもよいし、600℃若しくは650℃までは、徐々に温度を降下させ、600℃若しくは650℃から前述のように急速冷却してもよい。また、300℃以下から室温まで、冷却することが好ましく、その冷却条件は、特に制限されず、例えば、600℃若しくは650℃から室温まで、前述の条件で一気に急速冷却してもよい。前記冷却処理工程は、例えば、前述の抵抗加熱式ヒーターで行うことができる。また、急速冷却を実施するために、前述の電流のオンオフに加え、若しくは代えて、結晶を炉内から外に出して外気と接触させる冷却方法や、水や空気などの冷媒を用いた冷却方法等を適用してもよい。前記加熱処理工程と同様に、この冷却処理工程も、Csガス雰囲気で実施することが好ましく、その方法は、前述と同様である。  Following the heat treatment step, the cooling treatment step of cooling to 300 ° C. or lower is performed. In this cooling treatment step, for example, it is preferable to rapidly cool at least a temperature zone between 600 ° C. and 300 ° C., and more preferably, rapidly cool a temperature zone between 650 ° C. and 300 ° C. The speed of the rapid cooling is not particularly limited, but is, for example, 50 ° C./min or more, and preferably 60 ° C./min or more. The upper limit of the rapid cooling rate is not particularly limited, but is, for example, 200 ° C./min or less, preferably 100 ° C./min or less, from the viewpoint of preventing the occurrence of cracks in crystals. Therefore, the specific conditions for the rapid cooling rate are, for example, in the range of 50 to 200 ° C./min, preferably in the range of 60 to 200 ° C./min, and more preferably in the range of 50 to 100 ° C. Yes, particularly preferably in the range of 60 to 100 ° C. In addition, the method of temperature drop (cooling) to 600 ° C. or 650 ° C. is not particularly limited, and may be rapidly cooled to 300 ° C. or less at once, similarly to the above, or up to 600 ° C. or 650 ° C. Alternatively, the temperature may be gradually decreased, and rapid cooling may be performed from 600 ° C. or 650 ° C. as described above. Moreover, it is preferable to cool from 300 degrees C or less to room temperature, The cooling conditions in particular are not restrict | limited, For example, you may rapidly cool at a stretch on the above-mentioned conditions from 600 degrees C or 650 degrees C to room temperature. The cooling treatment step can be performed, for example, with the above-described resistance heating heater. Also, in order to implement rapid cooling, in addition to or instead of the above-described current on / off, a cooling method in which the crystal is brought out of the furnace and brought into contact with the outside air, or a cooling method using a coolant such as water or air Etc. may be applied. Like the heat treatment step, this cooling treatment step is also preferably performed in a Cs gas atmosphere, and the method is the same as described above.

(第2の形態)
第2の形態は、前記原料結晶の育成溶液を配置した容器を準備し、前記容器内において、前記溶液中の前記原料結晶成分のうち少なくとも一つの成分を蒸発させて、前記成分雰囲気で前記加熱処理工程を行う方法である。なお、蒸発させるのは、前記溶液中の前記原料結晶成分の全成分であってもよい。また、前記冷却処理工程も同様に、前記原料結晶の育成溶液を配置した容器を準備し、前記容器内において、前記溶液中の前記原料結晶成分のうち少なくとも一つの成分を蒸発させた前記成分雰囲気で行うことが好ましく、特に好ましくは、前記加熱処理工程および前記冷却処理工程の両工程を連続して前記雰囲気下で実施することである。また、前記成分雰囲気は、CBO結晶の場合、Csガス雰囲気が好ましい。
(Second form)
In the second embodiment, a container in which the raw crystal growth solution is disposed is prepared, and at least one of the raw crystal components in the solution is evaporated in the container, and the heating is performed in the component atmosphere. It is a method of performing a processing step. In addition, all the components of the raw material crystal component in the solution may be evaporated. Similarly, in the cooling treatment step, a container in which the raw crystal growth solution is arranged is prepared, and the component atmosphere in which at least one component of the raw crystal components in the solution is evaporated in the container. It is preferable to carry out both of the heat treatment step and the cooling treatment step continuously in the atmosphere. The component atmosphere is preferably a Cs gas atmosphere in the case of CBO crystals.

前記育成溶液は、ホウ素化合物原料結晶を育成させるために使用可能な溶液であれば特に制限されず、例えば、CsO−Bを含む溶液等があげられる。この場合、前記溶液におけるBの割合(mol%)は、例えば、60mol%以上、好ましくは66〜81mol%の範囲、より好ましくは67〜75mol%の範囲である。また、前記溶液におけるCsOの割合(mol%)は、例えば、40mol%以下であり、19〜34mol%の範囲が好ましく、より好ましくは25〜33mol%の範囲である。The growing solution is not particularly limited as long as it is a solution that can be used for growing a boron compound raw material crystal, and examples thereof include a solution containing Cs 2 O—B 2 O 3 . In this case, the ratio (mol%) of B 2 O 3 in the solution is, for example, 60 mol% or more, preferably in the range of 66 to 81 mol%, more preferably in the range of 67 to 75 mol%. The ratio of Cs 2 O in the solution (mol%) is, for example, not more than 40 mol%, preferably in the range of 19~34Mol%, more preferably from 25~33mol%.

前記成分雰囲気での加熱処理工程(任意的に冷却処理工程も)は、例えば、前記容器を密閉状態にして前記処理を行うことが好ましく、具体例としては、開閉可能な密閉容器を使用したり、容器の開口部を白金箔等で覆うことによって、前記容器内部を密閉状態にすることができる。なお、前記密閉状態とは、完全密閉でなくてもよい。  The heat treatment step (optionally a cooling treatment step) in the component atmosphere is preferably performed, for example, by closing the container, and as a specific example, an openable / closable sealed container is used. By covering the opening of the container with platinum foil or the like, the inside of the container can be sealed. The sealed state may not be completely sealed.

前記加熱処理工程において、前記加熱温度は、前記融点−140℃から前記融点の範囲であり、好ましくは前記融点−125℃から前記融点の範囲であり、より好ましくは前記融点−115℃から融点の範囲であり、さらに好ましくは前記融点−115℃から融点−85℃の範囲である。例えば、CBO結晶の場合、前記加熱温度は、695℃以上融点以下の範囲であり、好ましくは720℃以上融点以下の範囲であり、より好ましくは720℃から750℃の範囲である。また、前記第1の形態と同様、前記範囲の温度に加熱した状態で一定時間保持することが好ましく、前記加熱保持時間は、特に制限されず、ホウ酸化合物結晶原料の大きさや種類などにより適宜決定され、例えば、36時間以上である。その他、昇温速度及び加熱方法等は、例えば、前記第1の形態と同様に実施できる。  In the heat treatment step, the heating temperature ranges from the melting point −140 ° C. to the melting point, preferably the melting point −125 ° C. to the melting point, more preferably the melting point −115 ° C. to the melting point. It is a range, More preferably, it is the range of the said melting | fusing point-115 degreeC to melting | fusing point -85 degreeC. For example, in the case of CBO crystal, the heating temperature is in the range of 695 ° C. or higher and the melting point or lower, preferably 720 ° C. or higher and the melting point or lower, more preferably 720 ° C. to 750 ° C. Further, as in the first embodiment, it is preferable to hold for a certain period of time while being heated to the temperature in the above range, and the heating and holding time is not particularly limited, and may be appropriately determined depending on the size and type of the boric acid compound crystal raw material. For example, 36 hours or more. In addition, the temperature increase rate, the heating method, and the like can be implemented in the same manner as in the first embodiment, for example.

前記加熱処理工程につづき、300℃以下まで冷却する前記冷却処理工程を実施する。前記冷却処理工程の条件は、特に制限されず、例えば、徐々に冷却させてもよいし、前記第1の形態と同様にして冷却させてもよい。例えば、2〜48時間かけて加熱温度から室温まで冷却する。また、冷却速度も、特に制限されず、例えば、0.1〜10℃/分である。  Following the heat treatment step, the cooling treatment step of cooling to 300 ° C. or lower is performed. The conditions for the cooling treatment step are not particularly limited, and may be gradually cooled, for example, or may be cooled in the same manner as in the first embodiment. For example, it cools from heating temperature to room temperature over 2 to 48 hours. Further, the cooling rate is not particularly limited, and is, for example, 0.1 to 10 ° C./min.

これらの第1の形態および第2の形態で示す加熱処理工程および冷却処理工程を経ることにより、前記原料結晶中の光散乱源が除去でき、目的とするCsB非線形光学結晶が得られる。この結晶は、紫外線レーザーに使用しても、散乱がないためレーザー出力が向上し、素子の劣化特性が大幅に改善される。その結果、高効率に長時間使用できることが期待される。なお、本発明の製造方法は、前記第1の形態および第2の形態に限定されず、その他の形態で実施してもよい。By passing through the heat treatment step and the cooling treatment step shown in these first and second embodiments, the light scattering source in the raw material crystal can be removed, and the intended CsB 3 O 5 nonlinear optical crystal can be obtained. . Even if this crystal is used for an ultraviolet laser, since there is no scattering, the laser output is improved and the deterioration characteristics of the device are greatly improved. As a result, it can be expected to be used for a long time with high efficiency. In addition, the manufacturing method of this invention is not limited to the said 1st form and 2nd form, You may implement in another form.

つぎに、本発明の光散乱源除去方法は、光散乱源を有するホウ酸化合物結晶の前記光散乱源の除去方法であって、前記原料結晶の融点−140℃から融点又は分解点−140℃から分解点までの範囲の温度で加熱する加熱処理工程と、前記加熱した前記原料結晶を300℃以下に冷却する冷却処理工程とを含む処理方法である。この方法において、前記加熱処理工程および前記冷却工程は、本発明の前記製造方法と同様にして実施可能である。  Next, the light scattering source removal method of the present invention is a method for removing the light scattering source of a boric acid compound crystal having a light scattering source, wherein the melting point or decomposition point of the raw material crystal is −140 ° C. It is the processing method including the heat processing process heated at the temperature of the range to a decomposition point, and the cooling process process which cools the said heated said raw material crystal to 300 degrees C or less. In this method, the heat treatment step and the cooling step can be performed in the same manner as the manufacturing method of the present invention.

つぎに、本発明の実施例について説明する。なお、本発明は、下記の実施例に制限されない。  Next, examples of the present invention will be described. In addition, this invention is not restrict | limited to the following Example.

(原料結晶の製造)
CsCOおよびBを素原料として、純水中で混合した後、水を蒸発させ、乾燥させた粉体を作製した。これを700℃に加熱し、固相反応によりCBO結晶相を有する焼結体を作製した。この原料を白金製の育成坩堝に充填した。ここでの育成原料におけるB濃度は、74mol%とした。結晶育成は、前述のTSSG法の育成炉を用い、同方法により行った。種子結晶の方位は結晶のa軸方向、溶液を撹拌するための種子結晶回転速度は60rpmとした。結晶成長が始まる飽和点(約830℃)に保ち、その後、炉全体の温度を0.1℃/日の速度で降下させた。その結果、7日間で31×41×41mmのCsB単結晶が得られた。この原料結晶を図3の写真に示す。この原料結晶から(011)自然面を有する断片を切り出し、素子を得た。この素子に対し、前記自然面に垂直に赤色のHe−Neレーザー(4mW、入射方向⊥(011)面、偏光方向<100>、観察方向は入射方向に対して垂直な、もう1つの(011)面)を照射して光散乱を観察した。この結果を、図4の写真に示す。図示のように、この原料結晶の素子において、光路に沿って光散乱源が入っている様子が確認できた。ここで述べた照射、観察方位は、実験により光散乱の観察が容易にできる条件を選んだ結果である。なお、前記素子の切り出しは、as−grownのファセット面を利用して切り出しているが、本発明はこれに限定せず。その他に、位相整合方向に切り出すことも可能である。
(Manufacture of raw crystal)
Cs 2 CO 3 and B 2 O 3 were used as raw materials, mixed in pure water, and then water was evaporated to prepare a dried powder. This was heated to 700 ° C., and a sintered body having a CBO crystal phase was produced by a solid phase reaction. This raw material was filled in a growth crucible made of platinum. B 2 O 3 concentration in the growth material here was a 74 mol%. Crystal growth was performed by the above-described TSSG method growth furnace. The orientation of the seed crystal was the a-axis direction of the crystal, and the seed crystal rotation speed for stirring the solution was 60 rpm. The saturation point (about 830 ° C.) at which crystal growth began was maintained, and then the temperature of the entire furnace was decreased at a rate of 0.1 ° C./day. As a result, 31 × 41 × 41 mm 3 CsB 3 O 5 single crystals were obtained in 7 days. This raw crystal is shown in the photograph of FIG. A fragment having a (011) natural surface was cut out from the raw crystal to obtain an element. For this element, a red He—Ne laser (4 mW, incident direction ⊥ (011) plane, polarization direction <100>, perpendicular to the natural surface, the observation direction is perpendicular to the incident direction, another (011 ) Surface) and light scattering was observed. The result is shown in the photograph of FIG. As shown in the figure, it was confirmed that a light scattering source was inserted along the optical path in this raw crystal element. The irradiation and observation directions described here are the results of selecting conditions that facilitate observation of light scattering through experiments. The element is cut out using an as-grown facet, but the present invention is not limited to this. In addition, it is possible to cut out in the phase matching direction.

(加熱処理工程および冷却処理工程)
つぎに、前記原料結晶素子に対し、前記加熱処理および前記冷却処理を施し、光散乱源の除去を行った。すなわち、まず、育成後、白金坩堝に残留している原料をそのまま前記育成炉に入れ、炉内の温度を加熱温度に上昇させた。この状態で炉内部の空間にはCsを含む蒸気が満たされていた。熱処理を施す原料結晶を支持棒に固定して前記育成炉の上蓋に開いた穴から導入し、結晶を昇温した。この時、結晶の近傍に温度を計測する熱電対を取り付け、室温から825℃まで15分かけて上昇させた。この温度で3時間保持し(加熱処理工程)、その後10分以内で、室温まで急速冷却し(冷却処理工程)、目的とするCsB結晶を得た。この結晶について、前述と同様にして、赤色のHe−Neレーザー光を照射し、光散乱の有無を確認した。この結果を、図1の写真に示す。図示のように、この結晶では、光散乱は生じておらず、光散乱源が除去できたことが分かる。
(Heat treatment process and cooling process)
Next, the heat treatment and the cooling treatment were performed on the raw crystal element, and the light scattering source was removed. That is, first, after the growth, the raw material remaining in the platinum crucible was directly put into the growth furnace, and the temperature in the furnace was raised to the heating temperature. In this state, the space inside the furnace was filled with steam containing Cs. A raw material crystal to be heat-treated was fixed to a support rod and introduced from a hole opened in the upper lid of the growth furnace, and the crystal was heated. At this time, a thermocouple for measuring the temperature was attached in the vicinity of the crystal, and the temperature was raised from room temperature to 825 ° C. over 15 minutes. This temperature was maintained for 3 hours (heat treatment step), and then rapidly cooled to room temperature (cooling treatment step) within 10 minutes to obtain the intended CsB 3 O 5 crystal. This crystal was irradiated with red He—Ne laser light in the same manner as described above to confirm the presence or absence of light scattering. The result is shown in the photograph of FIG. As shown in the figure, in this crystal, no light scattering occurs, and it can be seen that the light scattering source could be removed.

実施例1と同様にして、原料結晶を製造し、実施例1と同様にして素子を得た。この素子について、結晶にクラックが入らない程度の昇温速度で825℃まで加熱し、この温度で3時間保持した以外は、実施例1と同様にして加熱処理を行った。その後、後述の種々条件で、冷却処理し、目的とするCsB結晶を得た。前記冷却条件は、825℃から、17℃/時間若しくは69℃/時間の2種類の冷却速度で、ある一定温度まで冷却し、その後、60℃/分の条件で急速冷却した。そして、得られた結晶について、実施例1と同様にして、光散乱を調べて光散乱源の有無を確認した。この結果を、図2のグラフに示す。同図において、実線が、17℃/時間の冷却速度により一定温度まで冷却したグラフであり、点線が、69℃/時間の冷却速度により一定温度まで冷却したグラフである。このグラフにおいて、いずれの冷却パターンであっても、光散乱源の消失が認められた。その中で、600℃から300℃までの温度帯を60℃/分の速度で急速冷却すれば、光散乱源は、ほぼ消滅し、650℃から300℃までの温度帯を60℃/分の速度で急速冷却すれば、前述のHe−Neレーザーの照射での光散乱がまったく確認できなかった。A raw material crystal was produced in the same manner as in Example 1, and an element was obtained in the same manner as in Example 1. About this element, heat treatment was performed in the same manner as in Example 1 except that the element was heated to 825 ° C. at a temperature increase rate that did not cause cracks in the crystal and maintained at this temperature for 3 hours. Thereafter, in various conditions will be described later, cooling treatment to obtain a CsB 3 O 5 crystal of interest. The cooling conditions were from 825 ° C. to two constant cooling rates of 17 ° C./hour or 69 ° C./hour to a certain temperature, followed by rapid cooling at 60 ° C./minute. And about the obtained crystal | crystallization, it carried out similarly to Example 1, and investigated the light scattering, and confirmed the presence or absence of the light-scattering source. The result is shown in the graph of FIG. In the figure, the solid line is a graph cooled to a constant temperature at a cooling rate of 17 ° C./hour, and the dotted line is a graph cooled to a constant temperature at a cooling rate of 69 ° C./hour. In this graph, disappearance of the light scattering source was observed in any cooling pattern. Among them, if the temperature zone from 600 ° C. to 300 ° C. is rapidly cooled at a rate of 60 ° C./min, the light scattering source will almost disappear and the temperature zone from 650 ° C. to 300 ° C. will be 60 ° C./min. If it was rapidly cooled at a speed, no light scattering could be confirmed by the irradiation of the aforementioned He—Ne laser.

実施例1と同様にして、CBO原料結晶を製造し、実施例1と同様にして素子を得た。この素子に対し、前記自然面に垂直に赤色のHe−Neレーザー(4mW、入射方向⊥(011)面、偏光方向<100>、観察方向は入射方向に対して垂直な、もう1つの(011)面)を照射して光散乱を観察した。この結果を、図6の写真に示す。図示のように、この原料結晶の素子において、光路に沿って光散乱源が入っている様子が確認できた。  A CBO raw material crystal was produced in the same manner as in Example 1, and an element was obtained in the same manner as in Example 1. For this element, a red He—Ne laser (4 mW, incident direction ⊥ (011) plane, polarization direction <100>, perpendicular to the natural surface, the observation direction is perpendicular to the incident direction, another (011 ) Surface) and light scattering was observed. The result is shown in the photograph of FIG. As shown in the figure, it was confirmed that a light scattering source was inserted along the optical path in this raw crystal element.

つぎに、白金坩堝内(直径:20mm、高さ:20mm)にCsO−B溶液(CsO:B=30:70(モル比))を5g配置し、前記溶液の表面から2〜3mmの位置となるように、前記坩堝内の上部に前記素子を配置した後、前記坩堝の開口部を白金箔で覆い、密閉した。ついで、室温から730℃まで2時間かけて加熱し、730℃で36時間保持し(加熱処理工程)、その後、4時間かけて室温まで冷却した(冷却処理工程)。この結果、得られたCBO結晶の光散乱源は消失していた。得られた結晶に、前述と同様に赤色のHe−Neレーザー光を照射し、光散乱の有無を確認した。この結果を、図5の写真に示す。図示のように、この結晶では、光散乱は生じておらず、光散乱源が除去できたことが分かる。Next, 5 g of Cs 2 O—B 2 O 3 solution (Cs 2 O: B 2 O 3 = 30: 70 (molar ratio)) is placed in the platinum crucible (diameter: 20 mm, height: 20 mm), After placing the element on the upper part of the crucible so that the position was 2 to 3 mm from the surface of the solution, the crucible opening was covered with platinum foil and sealed. Subsequently, it heated from room temperature to 730 degreeC over 2 hours, hold | maintained at 730 degreeC for 36 hours (heat-processing process), and cooled to room temperature over 4 hours after that (cooling process process). As a result, the light scattering source of the obtained CBO crystal disappeared. The obtained crystal was irradiated with red He—Ne laser light in the same manner as described above to confirm the presence or absence of light scattering. The result is shown in the photograph of FIG. As shown in the figure, in this crystal, no light scattering occurs, and it can be seen that the light scattering source could be removed.

以上のように、本発明の製造方法によれば、容易な育成条件で、光散乱源が除去されたホウ酸化合物結晶が製造できる。ホウ酸化合物結晶としては、例えば、CBO結晶があり、この結晶は、例えば、紫外線レーザーへの波長変換素子として有用である。  As described above, according to the production method of the present invention, a boric acid compound crystal from which the light scattering source is removed can be produced under easy growth conditions. As the boric acid compound crystal, for example, there is a CBO crystal, and this crystal is useful, for example, as a wavelength conversion element for an ultraviolet laser.

Claims (14)

ホウ酸化合物結晶の製造方法であって、内部に光散乱源を有するホウ酸化合物原料結晶を、前記原料結晶の融点−140℃から融点又は分解点−140℃から分解点までの範囲の温度で加熱する加熱処理工程と、前記加熱した前記原料結晶を300℃以下に冷却する冷却処理工程とを含む製造方法。  A method for producing a boric acid compound crystal, wherein a boric acid compound raw material crystal having a light scattering source therein is heated at a temperature ranging from the melting point of the raw material crystal to -140 ° C or the melting point or from the decomposition point to -140 ° C to the decomposition point. A manufacturing method comprising: a heat treatment step for heating; and a cooling treatment step for cooling the heated raw material crystal to 300 ° C. or lower. 前記ホウ酸化合物結晶が、CsB結晶又はCsLiB10結晶である請求の範囲1記載の製造方法。The manufacturing method according to claim 1, wherein the boric acid compound crystal is a CsB 3 O 5 crystal or a CsLiB 6 O 10 crystal. 前記冷却処理工程が、少なくとも600℃から300℃までの範囲を、50℃/分以上の冷却速度で冷却する工程を含む請求の範囲1記載の製造方法。  The manufacturing method according to claim 1, wherein the cooling treatment step includes a step of cooling at least a range from 600 ° C. to 300 ° C. at a cooling rate of 50 ° C./min or more. 前記冷却処理工程が、少なくとも650℃から300℃までの範囲を、60℃/分以上の冷却速度で冷却する工程を含む請求の範囲1記載の製造方法。  The manufacturing method according to claim 1, wherein the cooling treatment step includes a step of cooling at least a range from 650 ° C. to 300 ° C. at a cooling rate of 60 ° C./min. 前記加熱処理工程が、790℃以上融点以下の範囲の温度で加熱する工程である請求の範囲2記載の製造方法。  The manufacturing method according to claim 2, wherein the heat treatment step is a step of heating at a temperature in a range of 790 ° C or higher and a melting point or lower. 前記加熱処理工程が、815〜825℃の範囲の温度で3時間以上加熱する工程である請求の範囲2記載の製造方法。  The manufacturing method according to claim 2, wherein the heat treatment step is a step of heating at a temperature in the range of 815 to 825 ° C for 3 hours or more. 前記ホウ酸化合物原料結晶の育成溶液を配置した容器を準備し、前記容器内において、前記溶液中の前記原料結晶成分のうち少なくとも一つの成分を蒸発させた前記成分雰囲気で前記加熱処理工程を行う請求の範囲1記載の製造方法。  A container in which the boric acid compound raw crystal growth solution is arranged is prepared, and the heat treatment step is performed in the container in the component atmosphere in which at least one of the raw crystal components in the solution is evaporated. The manufacturing method according to claim 1. 前記容器が、密閉容器である請求の範囲7記載の製造方法。  The manufacturing method according to claim 7, wherein the container is a sealed container. 前記成分雰囲気が、Csガス雰囲気である請求の範囲7記載の製造方法。  The manufacturing method according to claim 7, wherein the component atmosphere is a Cs gas atmosphere. 前記加熱処理工程が、720℃以上融点又は分解点以下の範囲の温度で加熱する工程である請求の範囲7記載の製造方法。  The manufacturing method according to claim 7, wherein the heat treatment step is a step of heating at a temperature in a range of 720 ° C or higher and a melting point or lower than a decomposition point. 前記CsB原料結晶が、溶液成長法により製造された結晶である請求の範囲2記載の製造方法。The production method according to claim 2, wherein the CsB 3 O 5 raw material crystal is a crystal produced by a solution growth method. 前記溶液成長法が、CsO−Bを含むセルフフラックスを用いた方法であり、前記セルフフラックスにおけるBの割合(mol%)が、71mol%以上である請求の範囲11記載の製造方法。12. The solution growth method is a method using a self-flux containing Cs 2 O—B 2 O 3 , and a ratio (mol%) of B 2 O 3 in the self-flux is 71 mol% or more. The manufacturing method as described. 前記溶液成長法が、top−seeded solution growth(TSSG)法である請求の範囲11記載の製造方法。  The manufacturing method according to claim 11, wherein the solution growth method is a top-seed solution growth (TSSG) method. ホウ酸化合物結晶であって、請求の範囲1記載の製造方法により得られたホウ酸化合物結晶。  A boric acid compound crystal obtained by the production method according to claim 1.
JP2006548908A 2004-12-15 2005-12-15 Method for producing boric acid compound crystal and boric acid compound crystal obtained thereby Pending JPWO2006064882A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004363380 2004-12-15
JP2004363380 2004-12-15
PCT/JP2005/023072 WO2006064882A1 (en) 2004-12-15 2005-12-15 Process for producing boric acid compound crystal and boric acid compound crystal produced by said process

Publications (1)

Publication Number Publication Date
JPWO2006064882A1 true JPWO2006064882A1 (en) 2008-06-12

Family

ID=36587936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006548908A Pending JPWO2006064882A1 (en) 2004-12-15 2005-12-15 Method for producing boric acid compound crystal and boric acid compound crystal obtained thereby

Country Status (2)

Country Link
JP (1) JPWO2006064882A1 (en)
WO (1) WO2006064882A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001166346A (en) * 1999-12-07 2001-06-22 Ushio Sogo Gijutsu Kenkyusho:Kk Method for heat treatment of nonlinear optical crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001166346A (en) * 1999-12-07 2001-06-22 Ushio Sogo Gijutsu Kenkyusho:Kk Method for heat treatment of nonlinear optical crystal

Also Published As

Publication number Publication date
WO2006064882A9 (en) 2006-10-19
WO2006064882A1 (en) 2006-06-22

Similar Documents

Publication Publication Date Title
Isaenko et al. Ternary chalcogenides LiBC2 (B= In, Ga; C= S, Se, Te) for mid-IR nonlinear optics
Feigelson et al. Recent developments in the growth of chalcopyrite crystals for nonlinear infrared applications
CN102976287B (en) BaGa2GeSe6 compound, BaGa2GeSe6 non-linear optical crystal and their preparation methods and use
US10626519B2 (en) Lead oxychloride, infrared nonlinear optical crystal, and preparation method thereof
WO2017005081A1 (en) BaHgSe2 NONLINEAR OPTICAL CRYSTAL, PREPARATION METHOD THEREFOR, AND APPLICATION THEREOF
CN105506743B (en) A kind of Li6Cd5Sn4Se16Nonlinear optical crystal and its preparation method and purposes
Sankaranarayanan Growth of large size< 1 1 0> benzophenone crystal using uniaxially solution-crystallization method of Sankaranarayanan–Ramasamy (SR)
Zhang et al. Growth of new laser crystal Nd: LuVO4 by the Czochralski method
US11932965B2 (en) Nonlinear optical crystal, method for preparing the same and application thereof
JP2008050240A (en) Method for producing cesium boric acid compound crystal and cesium boric acid compound obtained by the same
JP2009215167A (en) Method for producing borate-based crystal and laser oscillation apparatus
Feigelson et al. Growth of nonlinear crystals for frequency conversion
JPWO2006064882A1 (en) Method for producing boric acid compound crystal and boric acid compound crystal obtained thereby
Wang et al. Growth and properties of KBe2BO3F2 crystal
Shen et al. Influence of the pulling rate on the properties of ZnGeP2 crystal grown by vertical Bridgman method
Dagdale et al. High Temperature Crystal Growth: An Overview
Luo et al. Growth of Ca4YO (BO3) 3 crystals by vertical Bridgman method
Wang et al. Optimized Bridgman growth and quality improvement of LiInSe2 crystal by annealing in Li2Se vapor atmosphere
Shen et al. Growth of low etch pit density ZnGeP2 crystals by the modified vertical Bridgman method
Wang et al. Czochralski and flux growth of crystals for lasers and nonlinear optics
CN109656079B (en) Application of BaHgSnS4 nonlinear optical crystal
JP5208364B2 (en) Single crystal component for laser and manufacturing method thereof
Pan et al. Crack-free K3Li2− xNb5+ 2xO15+ 2x crystals grown by the resistance-heated Czochralski technique
CN106811800A (en) Lithium aluminosilicate nonlinear optical crystal and its production and use
CN117966249A (en) Ultraviolet nonlinear optical CLBO crystal fluxing agent and crystal growth method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110111