JPWO2006054755A1 - Method for screening drug candidate substance - Google Patents

Method for screening drug candidate substance Download PDF

Info

Publication number
JPWO2006054755A1
JPWO2006054755A1 JP2006545199A JP2006545199A JPWO2006054755A1 JP WO2006054755 A1 JPWO2006054755 A1 JP WO2006054755A1 JP 2006545199 A JP2006545199 A JP 2006545199A JP 2006545199 A JP2006545199 A JP 2006545199A JP WO2006054755 A1 JPWO2006054755 A1 JP WO2006054755A1
Authority
JP
Japan
Prior art keywords
drug
drug candidate
candidate substance
mouse
chimeric mouse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006545199A
Other languages
Japanese (ja)
Inventor
知世 向谷
知世 向谷
吉里 勝利
勝利 吉里
康史 西倉
康史 西倉
透 掘江
透 掘江
宏 中澤
宏 中澤
博 金丸
博 金丸
千晶 上田
千晶 上田
智恵美 日根
智恵美 日根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumika Chemical Analysis Service Ltd
Phoenixbio Co Ltd
Original Assignee
Sumika Chemical Analysis Service Ltd
Phoenixbio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumika Chemical Analysis Service Ltd, Phoenixbio Co Ltd filed Critical Sumika Chemical Analysis Service Ltd
Publication of JPWO2006054755A1 publication Critical patent/JPWO2006054755A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • G01N33/5088Supracellular entities, e.g. tissue, organisms of vertebrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5067Liver cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/795Porphyrin- or corrin-ring-containing peptides
    • G01N2333/80Cytochromes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

ヒト肝細胞を移植したキメラマウスを用いて、薬物代謝酵素CYP2D6,CYP2C9,CYP2C19によって主として代謝される医薬候補品をスクリーニングする方法であって、医薬候補物質が、CYP2D6、CYP2C9、またはCYP2C19欠損者で代謝されるか否かを判定する方法を提供する。また、ヒト肝臓移植キメラマウスを用いて、医薬候補物質が薬物代謝酵素CYP1A2、CYP2C9、CYP2C19、CYP2D6またはCYP3A4のいずれか対してその活性を誘導または阻害するかを判定する方法を提供する。A method for screening a drug candidate mainly metabolized by the drug metabolizing enzymes CYP2D6, CYP2C9, and CYP2C19 using a chimeric mouse transplanted with human hepatocytes, wherein the drug candidate substance is CYP2D6, CYP2C9, or CYP2C19 deficient A method for determining whether or not it is metabolized is provided. Also provided is a method for determining whether a drug candidate induces or inhibits the activity of any one of the drug metabolizing enzymes CYP1A2, CYP2C9, CYP2C19, CYP2D6 or CYP3A4 using a human liver transplanted chimeric mouse.

Description

この出願の発明は、薬物代謝酵素CYP2D6、CYP2C9、またはCYP2C19によって主として代謝される医薬候補物質をスクリーニングする方法に関するものである。また、医薬候補物質がCYP群薬物代謝酵素のいずれに対してその活性を誘導または阻害するかを判定する方法に関するものである。  The invention of this application relates to a method for screening drug candidates that are mainly metabolized by the drug metabolizing enzymes CYP2D6, CYP2C9, or CYP2C19. The present invention also relates to a method for determining which of the CYP group drug metabolizing enzymes the drug candidate substance induces or inhibits its activity.

医薬品開発において医薬候補物質を選択する段階は製薬会社においてもっとも関心が高い。医薬品開発については300億円以上の膨大な研究開発費と10年以上の歳月を要することは衆知の事実である。それゆえ、医薬候補物質が研究開発の途中で開発を中止するようなことが生じることは避けなければならない。また、最近、国内製薬企業は日米欧同時開発を進めており、有効性に人種差、民族差などが生じることは同時開発の妨げとなり、企業は人種差のでる医薬候補物質の開発を避けているのが現状である。一般に、薬物動態に人種差が生じる要因として、薬物代謝酵素の人種差が考えられており、特に薬物代謝酵素Cytochrome P450(CYP)2D6、CYP2C9、またはCYP2C19の遺伝多型が、これらの酵素で主として代謝される医薬候補物質の薬物動態に人種差を生じるものと考えられている。たとえば、CYP2D6は欧米人で約10%の欠損患者(PM:Poor Metabolizer)がおり、CYP2D6で主として代謝される化合物等は、医薬候補物質としては選択されないのが現状である。
また、医薬品の薬物相互作用に関しては、薬の組み合わせによっては重篤な症状を引き起こすなど、医療現場において重要な問題となっている。薬物相互作用の問題が生じた場合、製薬企業は市場から医薬品を回収する事態に発展することもある。したがって、薬物代謝酵素の誘導、阻害に基づく薬物相互作用は、医薬品の研究開発上の重要な意思決定要因となっているため、ヒトにおける薬物相互作用の予測は研究開発の重要な関心事になっている。
なお、この出願の発明者らは、ヒトの薬物代謝に係わるヒト肝細胞が、マウス肝臓内でマウス肝細胞を高い割合で置換したキメラマウスを作出することに成功し、特許出願している(特許文献1、2)。
日本特許公開2002−45087号公報 国際特許公開WO2003/080821号パンフレット
The stage of selecting drug candidates in drug development is of greatest interest to pharmaceutical companies. It is common knowledge that pharmaceutical development requires a huge R & D cost of more than 30 billion yen and more than 10 years. Therefore, it must be avoided that the drug candidate substance is canceled during the course of research and development. Recently, domestic pharmaceutical companies have been developing Japan, the United States and Europe at the same time. Racial and ethnic differences in the effectiveness have hindered simultaneous development, and companies have avoided the development of drug candidate substances that have racial differences. This is the current situation. In general, racial differences in drug metabolizing enzymes are considered as factors causing racial differences in pharmacokinetics. In particular, genetic polymorphisms of drug metabolizing enzymes Cytochrome P450 (CYP) 2D6, CYP2C9, or CYP2C19 are mainly used in these enzymes. It is thought to cause racial differences in the pharmacokinetics of metabolized drug candidates. For example, about 10% of CYP2D6 is Western and there are deficient patients (PM: Poor Metabolizer). Currently, compounds mainly metabolized by CYP2D6 are not selected as drug candidate substances.
In addition, the drug interaction of pharmaceuticals is an important problem in the medical field, such as causing serious symptoms depending on the combination of drugs. In the event of drug interaction problems, pharmaceutical companies may develop a situation where drugs are withdrawn from the market. Therefore, drug interactions based on the induction and inhibition of drug-metabolizing enzymes are important decision-making factors in pharmaceutical research and development, so prediction of drug interactions in humans is an important research and development concern. ing.
The inventors of this application have succeeded in creating a chimeric mouse in which human hepatocytes involved in human drug metabolism are substituted in a high proportion of mouse hepatocytes in the mouse liver, and have filed a patent application ( Patent Documents 1 and 2).
Japanese Patent Publication No. 2002-45087 International Patent Publication WO2003 / 080821 Pamphlet

しかしながら、CYP2D6、CYP2C9、またはCYP2C19で主として代謝される医薬候補物質かどうかの判定を放射性同位元素によるラベル化合物がない段階で判定するのは困難である。医薬候補物質のラベル化合物を用いてADME試験を実施すると、全体の代謝経路が判明しCYP2D6、CYP2C9、またはCYP2C19が関与する代謝過程がその医薬候補物質の代謝のどのくらいを占めているかがわかる。従って、探索段階においてラベル化合物がない状況では、医薬候補物質に対するCYP2D6、CYP2C9、またはCYP2C19代謝の関与を的確に見積もることはできない。
この出願の発明は、以上のとおりの事情に鑑みてなされたものであって、医薬候補物質がCYP2D6、CYP2C9、またはCYP2C19によって主として代謝される物質であった場合、その薬物動態に遺伝多型が生じるか否かを判定するスクリーニング方法を提供することを課題としている。
また、これまで、ヒトの薬物相互作用を検出するin vivoの系は存在しなかった。In vitroの系では、細胞に対する薬物暴露濃度が常に高い状態にあるため、ヒトの体の中での薬物相互作用を予測することが困難であった。したがって、この出願の発明は、in vivoにおけるヒトの薬物相互作用を検出するスクリーニング方法を提供することを課題としている。
この出願は、前記の課題を解決するための第1の発明として、薬物代謝酵素CYP2D6、CYP2C9、またはCYP2C19で主として代謝される医薬候補物質が、CYP2D6、CYP2C9、またはCYP2C19欠損者で代謝されるか否かを判定する方法であって、
(1) 移植されたヒト肝細胞がマウス肝臓の70%以上を占めている高置換キメラマウスと、ヒト肝細胞がほとんど生着していない低置換キメラマウスのそれぞれに医薬候補物質を投与する工程;
(2) 高置換キメラマウスと低置換キメラマウスのそれぞれから採取した血清中の医薬候補物質の濃度を経時的に測定する工程;
を含み、低置換キメラマウスに比較して高置換キメラマウスで有意に早く代謝される医薬候補物質が、CYP2D6、CYP2C9、またはCYP2C19欠損者では代謝されない物質であると判定することを特徴とする方法を提供する。
またこの出願は、第2の発明として、医薬候補物質が、薬物代謝酵素の活性を促進または阻害するか否かを判定する方法であって、
(1) 高置換キメラマウスに医薬候補物質を投与する工程;
(2) 高置換キメラマウスに、複数の薬物代謝酵素のそれぞれによって代謝される複数の指標化合物を投与する工程;
(3) 高置換キメラマウスから採取した血清中の指標化合物の濃度を経時的に測定する工程;
を含み、医薬候補物質を投与していない時の血清中の指標化合物の濃度と比較することにより、医薬候補物質がいずれの薬物代謝酵素に対してその活性を誘導または阻害するかを判定することを特徴とする方法を提供する。
However, it is difficult to determine whether a drug candidate substance is mainly metabolized by CYP2D6, CYP2C9, or CYP2C19 at a stage where there is no radiolabeled label compound. When an ADME test is performed using a label compound of a drug candidate substance, the overall metabolic pathway is revealed, and it can be understood how much the metabolic process involving CYP2D6, CYP2C9, or CYP2C19 occupies the metabolism of the drug candidate substance. Therefore, in the situation where there is no label compound in the search stage, it is not possible to accurately estimate the involvement of CYP2D6, CYP2C9, or CYP2C19 metabolism in the drug candidate substance.
The invention of this application has been made in view of the circumstances as described above, and when the drug candidate substance is a substance mainly metabolized by CYP2D6, CYP2C9, or CYP2C19, the genetic polymorphism is present in the pharmacokinetics. It is an object to provide a screening method for determining whether or not it occurs.
To date, there has been no in vivo system for detecting human drug interactions. In the in vitro system, the drug exposure concentration to the cells is always in a high state, so it is difficult to predict the drug interaction in the human body. Therefore, an object of the invention of this application is to provide a screening method for detecting a human drug interaction in vivo.
In this application, as a first invention for solving the above-mentioned problem, whether a drug candidate substance mainly metabolized by the drug metabolizing enzyme CYP2D6, CYP2C9, or CYP2C19 is metabolized by a CYP2D6, CYP2C9, or CYP2C19 deficient person. A method for determining whether or not
(1) A step of administering a drug candidate substance to each of a highly substituted chimeric mouse in which transplanted human hepatocytes occupy 70% or more of the mouse liver and a low substituted chimeric mouse in which almost no human hepatocytes are engrafted. ;
(2) a step of measuring the concentration of a drug candidate substance in serum collected from each of a high-substituted chimeric mouse and a low-substituted chimeric mouse over time;
And a drug candidate substance that is metabolized significantly faster in a highly substituted chimeric mouse than a low substituted chimeric mouse, is determined to be a substance that is not metabolized in a CYP2D6, CYP2C9, or CYP2C19 deficient person I will provide a.
In addition, as a second invention, this application is a method for determining whether or not a drug candidate substance promotes or inhibits the activity of a drug metabolizing enzyme,
(1) a step of administering a drug candidate substance to a highly substituted chimeric mouse;
(2) administering a plurality of indicator compounds metabolized by each of a plurality of drug metabolizing enzymes to a highly substituted chimeric mouse;
(3) A step of measuring the concentration of the indicator compound in the serum collected from the highly substituted chimeric mouse over time;
To determine which drug metabolizing enzyme induces or inhibits the activity of the drug candidate substance by comparing with the concentration of the indicator compound in the serum when the drug candidate substance is not administered A method is provided.

図1は、5化合物を同時に投与したマウス血清サンプルをLC−MS/MSで解析し、検出されたピークの1例を示す図である。
図2は、カフェインをマウスに投与した時のマウス血清中に検出されたカフェイン濃度の経時的変化を示す図である。ドナー細胞(IVT079)を移植したキメラマウスを用いた。
図3は、トルブタミドをマウスに投与した時のマウス血清中に検出されたトルブタミド濃度の経時的変化を示す図である。ドナー細胞(IVT079)を移植したキメラマウスを用いた。
図4は、オメプラゾールをマウスに投与した時のマウス血清中に検出されたオメプラゾール濃度の経時的変化を示す図である。ドナー細胞(IVT079)を移植したキメラマウスを用いた。
図5は、デキストロメトルファンをマウスに投与した時のマウス血漿中に検出されたデキストロメトルファン濃度の経時的変化を示す図である。ドナー細胞(IVT079)を移植したキメラマウスを用いた。
図6は、エリスロマイシンをマウスに投与した時のマウス血漿中に検出されたエリスロマイシン濃度の経時的変化を示す図である。ドナー細胞(IVT079)を移植したキメラマウスを用いた。
図7は、カフェインまたはトルブタミドをマウスに投与した時のマウス血漿中に検出されたカフェインまたはトルブタミド濃度の経時的変化を示す図である。ドナー細胞(BD51)を移植したキメラマウスを用いた。
図8は、オメプラゾールまたはデキストロメトルファンをマウスに投与した時のマウス血漿中に検出されたオメプラゾールまたはデキストロメトルファン濃度の経時的変化を示す図である。ドナー細胞(BD51)を移植したキメラマウスを用いた。
図9は、エリスロマイシンをマウスに投与した時のマウス血漿中に検出されたエリスロマイシン濃度の経時的変化を示す図である。ドナー細胞(BD51)を移植したキメラマウスを用いた。
図10は、パロキセチン非投与または投与後にカフェイン、トルブタミド、オメプラゾール、デキストロメトルファン、エリスロマイシンをマウスに投与した時の高置換キメラマウス血漿中に検出されたそれぞれの投与物質の濃度の経時的変化を示す図である。ドナー細胞(BD51)を移植したキメラマウスを用いた。
FIG. 1 is a diagram showing an example of a detected peak obtained by analyzing a mouse serum sample to which 5 compounds have been simultaneously administered by LC-MS / MS.
FIG. 2 is a graph showing changes over time in the caffeine concentration detected in mouse serum when caffeine was administered to mice. Chimeric mice transplanted with donor cells (IVT079) were used.
FIG. 3 is a graph showing the change over time in the concentration of tolbutamide detected in mouse serum when tolbutamide was administered to mice. Chimeric mice transplanted with donor cells (IVT079) were used.
FIG. 4 is a diagram showing the change over time of the concentration of omeprazole detected in mouse serum when omeprazole was administered to mice. Chimeric mice transplanted with donor cells (IVT079) were used.
FIG. 5 is a graph showing the change over time in the concentration of dextromethorphan detected in mouse plasma when dextromethorphan is administered to mice. Chimeric mice transplanted with donor cells (IVT079) were used.
FIG. 6 is a graph showing the change over time of the erythromycin concentration detected in mouse plasma when erythromycin was administered to mice. Chimeric mice transplanted with donor cells (IVT079) were used.
FIG. 7 is a graph showing changes over time in the concentration of caffeine or tolbutamide detected in mouse plasma when caffeine or tolbutamide was administered to mice. Chimeric mice transplanted with donor cells (BD51) were used.
FIG. 8 is a graph showing the change over time in the concentration of omeprazole or dextromethorphan detected in mouse plasma when omeprazole or dextromethorphan was administered to mice. Chimeric mice transplanted with donor cells (BD51) were used.
FIG. 9 is a graph showing changes over time in the erythromycin concentration detected in mouse plasma when erythromycin was administered to mice. Chimeric mice transplanted with donor cells (BD51) were used.
FIG. 10 shows the change over time in the concentration of each administered substance detected in the plasma of highly substituted chimeric mice when caffeine, tolbutamide, omeprazole, dextromethorphan, and erythromycin were administered to mice without or after administration of paroxetine. FIG. Chimeric mice transplanted with donor cells (BD51) were used.

第1発明の方法は、
(1):高置換キメラマウスと、低置換キメラマウスのそれぞれに医薬候補物質を投与する工程;
(2):高置換キメラマウスと低置換キメラマウスのそれぞれから採取した血清中の医薬候補物質の濃度を経時的に測定する工程;
を含む。そして、低置換キメラマウスに比較して高置換キメラマウスで有意に早く代謝される医薬候補物質が、CYP2D6、CYP2C9、またはCYP2C19欠損者では代謝されない物質であると判定することを特徴とする方法である。
高置換キメラマウスは移植されたヒト肝細胞がマウス肝臓の70%以上を占めているマウスであり、特許文献1または2に記載された方法によって得ることができる。特に、特許文献2の方法(移植したヒト肝細胞の産生するヒト補体の攻撃から防御させた状態でマウスを飼育する方法)は、70%以上のヒト肝細胞置換率を達成する方法として好ましい。また、低置換キメラマウスは、ヒト肝細胞がほとんど定着していない(具体的には、ヒト肝細胞の置換率が1%未満)マウスである。
これらのキメラマウスは、例えば、ヒト肝細胞の移植から60日程度後に医薬候補物質の投与に使用する。また、キメラマウスのヒト肝細胞置換率は、マウス血中のヒトアルブミン濃度の測定等の方法により事前に確認することができる。さらに、試験後のキメラマウスの肝臓を特許文献2等に記載された方法で解剖検査することによって、より正確な置換率を確認することができる。
医薬候補物質は、医薬品開発の過程にある物質であり、ヒトにおける薬物相互作用の予測を必要とする物質である。このような物質は、医薬品の薬効に対する主成分物質であってもよく、あるいは主成分物質を含む組成物であってもよい。医薬候補物質の投与量は、その物質が対象とする疾患の種類や物質組成の種類、あるいは投与経路等によって異なるが、0.1mg/kg体重から2000mg/kg体重程度とすることができる。また投与経路は、医薬候補物質の種類やその適した剤型等に応じて、経口、皮下、静脈内または腹腔内投与等とすることができる。
キメラマウスの肝臓内における医薬候補物質の代謝の程度は、マウス血清における医薬候補物質の濃度を、当該技術分野における定法(例えば、実施例に記載したクロマトグラフ法など)によって行うことができる。また、測定は、候補物質の投与から30分から24時間程度まで、経時的(15分〜24時間間隔程度)で行うことができる。
そして、この血清中の医薬候補物質の濃度(肝臓において薬物代謝酵素によって代謝された物質の濃度)によって、医薬候補物質が、CYP2D6、CYP2C9、またはCYP2C19欠損者で代謝されやすい物質か代謝されにくい物質かを判定する。具体的には、低置換キメラマウスに比較して高置換キメラマウスで血清中の医薬候補物質が有意に早く代謝される場合、その医薬候補物質はCYP2D6、CYP2C9、またはCYP2C19で代謝されると考えられる。そのため、この医薬候補物質がCYP2D6、CYP2C9、またはCYP2C19欠損者では代謝されない物質であると判定する。
なお、「有意に早く代謝される」とは、マウス血中の医薬候補品の濃度より算出したAUC(Area under the curve:濃度曲線下面積)が2/3程度を示した場合であり、好ましくは低置換マウスに比較して1/2から1/3程度の平均AUC値を示すことを意味する。
第2発明の方法は、
(1):高置換キメラマウスに医薬候補物質を投与する工程;
(2):高置換キメラマウスに、複数の薬物代謝酵素のそれぞれによって代謝される複数の指標化合物を投与する工程;および
(3):高置換キメラマウスから採取した血清中の指標化合物の濃度を経時的に測定する工程;
を含む。そして、医薬候補物質を投与していない時の血清中の指標化合物の濃度と比較することにより、医薬候補物質がいずれの薬物代謝酵素に対してその活性を誘導または阻害するかを判定する方法である。
ヒトの薬物代謝酵素は、CYP群酵素に属するCYP1A1、CYP1A2、CYP1B1、CYP2A6、CYP2B6、CYP2C8、CYP2C9、CYP2C10、CYP2C18、CYP2C19、CYP2D6、CYP2E1、CYP3A3、CYP3A4、CYP3A5、CYP3A7、CYP4F1、CYP4A2、CYP4A3等であり、それぞれの指標化合物は、例えば、CYP1A2で代謝される指標化合物はカフェイン、CYP2C9はトルブタミド、CYP2D6はデキストロメトルファン、CYP2C19はオメプラゾール、CYP3A4はエリスロマイシン等である。高置換キメラマウスに医薬候補物質を投与した後、これらの指標化合物の混合物を投与し、経時的に各化合物の血清中濃度を測定することによって、医薬候補物質が各酵素の活性を促進する物質か、あるいは阻害する物質であるかを判定することができる。例えば、指標化合物の混合物のうち、カフェインの代謝が促進して血清中濃度が減少していれば、その医薬候補物質はCYP1A2の活性を特異的に促進する物質であると判定することができる。
以下、実施例を示してこの発明をさらに詳細かつ具体的に説明するが、この発明は以下の例によって限定されるものではない。
The method of the first invention is:
(1): a step of administering a drug candidate substance to each of a highly substituted chimeric mouse and a low substituted chimeric mouse;
(2): a step of measuring the concentration of a drug candidate substance in serum collected from each of a high-substituted chimeric mouse and a low-substituted chimeric mouse over time;
including. And determining that the drug candidate substance that is metabolized significantly faster in the high substitution chimeric mouse than in the low substitution chimera mouse is a substance that is not metabolized in a CYP2D6, CYP2C9, or CYP2C19 deficient person. is there.
A highly substituted chimeric mouse is a mouse in which transplanted human hepatocytes occupy 70% or more of the mouse liver, and can be obtained by the method described in Patent Document 1 or 2. In particular, the method of Patent Document 2 (a method of rearing a mouse in a state protected from the attack of human complement produced by transplanted human hepatocytes) is preferable as a method of achieving a human hepatocyte replacement rate of 70% or more. . The low-replacement chimeric mouse is a mouse in which human hepatocytes are hardly established (specifically, the replacement ratio of human hepatocytes is less than 1%).
These chimeric mice are used for administration of drug candidate substances, for example, about 60 days after transplantation of human hepatocytes. The human hepatocyte replacement rate of the chimeric mouse can be confirmed in advance by a method such as measurement of the human albumin concentration in the mouse blood. Furthermore, a more accurate replacement rate can be confirmed by performing anatomical examination of the liver of the chimeric mouse after the test by the method described in Patent Document 2 and the like.
A drug candidate substance is a substance in the process of drug development and is a substance that requires prediction of drug interaction in humans. Such a substance may be a main component for the medicinal effect of a pharmaceutical or a composition containing the main component. The dosage of the drug candidate substance varies depending on the type of the disease targeted by the substance, the type of substance composition, the administration route, etc., but can be about 0.1 mg / kg body weight to 2000 mg / kg body weight. The route of administration can be oral, subcutaneous, intravenous or intraperitoneal administration depending on the type of drug candidate substance and its suitable dosage form.
The degree of metabolism of the drug candidate substance in the liver of the chimeric mouse can be determined by the standard method in the technical field (for example, the chromatographic method described in the Examples, etc.) with respect to the concentration of the drug candidate substance in mouse serum. The measurement can be performed over time (approximately 15 minutes to 24 hours) from 30 minutes to 24 hours after administration of the candidate substance.
Depending on the concentration of the drug candidate substance in the serum (the concentration of the substance metabolized by the drug metabolizing enzyme in the liver), the drug candidate substance is a substance that is easily metabolized by a CYP2D6, CYP2C9, or CYP2C19 deficient person, or a substance that is difficult to metabolize. Determine whether. Specifically, when a drug candidate substance in serum is metabolized significantly faster in a high substitution chimeric mouse than in a low substitution chimera mouse, the drug candidate substance is considered to be metabolized by CYP2D6, CYP2C9, or CYP2C19. It is done. Therefore, it is determined that this drug candidate substance is a substance that is not metabolized by a CYP2D6, CYP2C9, or CYP2C19 deficient person.
“Significantly metabolized” means that the AUC (Area under the curve) calculated from the concentration of the drug candidate in mouse blood is about 2/3, preferably Means an average AUC value of about 1/2 to 1/3 compared to low-substituted mice.
The method of the second invention is
(1): a step of administering a drug candidate substance to a highly substituted chimeric mouse;
(2): a step of administering a plurality of indicator compounds metabolized by each of a plurality of drug metabolizing enzymes to a highly substituted chimeric mouse; and (3): a concentration of the indicator compound in serum collected from the highly substituted chimeric mouse. Measuring over time;
including. Then, by comparing with the concentration of the indicator compound in the serum when the drug candidate substance is not administered, it is possible to determine which drug metabolizing enzyme induces or inhibits the activity of the drug candidate substance. is there.
Human drug-metabolizing enzymes are CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C10, CYP2C18, CYP2C3, CYP2A3, CYP2C3, CYP2E3, CYP2E3 For example, the indicator compounds metabolized by CYP1A2 are caffeine, CYP2C9 is tolbutamide, CYP2D6 is dextromethorphan, CYP2C19 is omeprazole, CYP3A4 is erythromycin, and the like. Substance that promotes the activity of each enzyme by administering a drug candidate substance to a highly substituted chimeric mouse, then administering a mixture of these indicator compounds, and measuring the serum concentration of each compound over time It is possible to determine whether the substance is an inhibitory substance. For example, if caffeine metabolism is promoted in the mixture of indicator compounds and the serum concentration is decreased, the drug candidate substance can be determined to be a substance that specifically promotes the activity of CYP1A2. .
Hereinafter, the present invention will be described in more detail and specifically with reference to examples, but the present invention is not limited to the following examples.

キメラマウスを用いた薬物動態試験
1 材料と方法
1−1 被験物質
指標薬物を用いてヒト肝細胞キメラマウスにおける薬物動態を評価するために、cytochrome P450(CYP)の標準薬物であるカフェイン(CYP1A2)、トルブタミド(CYP2C9)、オメプラゾール(CYP2C19)、デキストロメトルファン(CYP2D6)、エリスロマイシン(CYP3A4)の5化合物を用いた。
1−2 使用動物
キメラマウスは広島県産業科学技術研究所または(株)フェニックスバイオにおいて作製したものを用いた。すなわち、肝障害と免疫不全の性質を有するマウスであるuPA(+/+)/SCIDマウスの脾臓にヒト肝細胞(IVT079,In Vitro Tcchnology社より購入、またはBD51,BD Gentest社より購入)を移植し、ヒト肝細胞がマウス肝臓に生着し増殖したマウスを作製した。マウス肝臓がヒト肝細胞で70%以上置換されたマウス(高置換キメラマウス)及びヒト肝細胞を移植したが置換率がほぼ0%の低置換キメラマウス、または非移植マウス(ゼロ置換マウス)を各3匹ずつ用いた。また、コントロールとして、uPA(−/−)/SCIDマウスを3匹用いた。
各マウスは水(0.012%次亜塩素酸含有)及びビタミンC含有滅菌固形飼料(CRF−1、オリエンタル酵母)を自由に摂取させ、室温24±2℃条件下で飼育した。なお、高置換キメラマウスには、1日2回メシル酸ナファモスタット注射液(0.3mg/0.2ml/body)を腹腔内に投与した。
1−3 投与薬物の調製
それぞれの薬物を投与濃度の5倍で調製し、投与直前に5化合物を混合して最終濃度がそれぞれの投与濃度となるようにした。CYP1A2の標準薬物であるカフェインの投与濃度は25mg/kg b.w.であり、12.5mg秤量しメノウ乳鉢中でCMC液1mlに懸濁させ投与濃度の5倍の12.5mg/ml懸濁液を調製した。CYP2C9の標準薬物であるトルブタミドの投与濃度は8.35mg/kg b.w.であり、4.175mgを秤量しメノウ乳鉢中でCMC液1mlに懸濁させ投与濃度の5倍の4.175mg/ml懸濁液を調製した。CYP2D6の標準薬物であるデキストロメトルファンの投与濃度は2.5mg/kg b.w.でありデキストロメトルファンハイドロマイドモノハイドレイト20mgを秤量しメノウ乳鉢中でCMC液16mlに懸濁させ投与濃度の5倍の1.25mg/ml懸濁液を調製した。CYP2C19の標準薬物であるオメプラゾールの投与濃度は8.35mg/kg b.w.であり、1バイアル20mgをミリQ水4.76mlに溶かし投与濃度5倍の4.2mg/mlの水溶液を調製した。CYP3A4の標準薬物であるエリスロマイシンの投与濃度は125mg/kg b.w.であり、エリスロマイシンラクトバイオネイト1バイアル500mgをミリQ水8mlに溶かし投与濃度の5倍の62.5mg/mlの水溶液を調製した。調製した各薬物1mlずつを混合し5mlにし、懸濁液を10μl/g b.wマウスに投与した。
1−4 投与方法及び血清採取方法
高置換キメラマウス、低置換キメラマウス(またはゼロ置換マウス)、uPA(−/−)/SCIDマウス各3匹ずつに、5化合物同時に強制経口投与、または静脈投与を行った。採血は投与後0.25(静脈投与のみ)、0.5、1、2、4(経口投与のみ)、8時間後にマウス尾静脈からそれぞれ15μlずつ採血し、さらに3,500rpm、5分間遠心分離後に血清(上清)を採取し、−30℃の冷凍庫に保存した。
1−5 血清中薬物の定量及び分析
血漿サンプルはドライアイス中にて(株)住化分析センターに輸送し、以下の方法でLC−MS/MSにより測定した。
1−5−1 測定対象物質標準溶液およびI.S.標準溶液の調製
カフェイン、トルブタミド、オメプラゾール、デキストロメトルファンハイドロブロマイドモノハイドレイト、エリスロマイシンラクトバイオネイトをメタノールで希釈し、2000,1000,500,100,50,10,5,1,0.5,0.1ng/mlの標準溶液を調製した。フェニトインをメタノールに溶解し、10,1mg/mlの標準溶液を調製し、I.S.標準溶液とした。
1−5−2 測定装置および測定条件(LC−MS/MS)
液体クロマトグラフは、SIL−HTCおよびLC−10Aシリーズ(島津製作所)を用い、カラムはSynergi 4μ Polar−RP 80A,150mm L.x 2.00mmI.D.,4μm(Phenomenex社)を、30℃で用いた。移動相としてメタノール/10mmol/l酢酸アンモニウム溶液/酢酸(700:300:2,v/v/v)を用い、流速0.2ml/minとした。注入量は2μl、測定時間10minでオートサンプラーの設定温度は4℃とした。質量分析計は、Tandem Mass Spectrometer API4000(Applied Biosystems/MDS SCIEX社)を用いた。API interface はTurbo V(ESIプローブ)とし、Ionization modeはPositive ion detection modeを用いた。Detection MRMのprecursor product ionは、カフェイン:m/z195.1→m/z138.2(170msec/l scan)、トルブタミド:m/z271.1→m/z74.3(170msec/l scan)、オメプラゾール:m/z346.1→m/z198.2(150msec/l scan)、デキストロメトルファン:m/z272.2→m/z215.3(150msec/l scan)、エリスロマイシン:m/z734.4→m/z158.4(150msec/l scan)、フェニトイン:m/z253.1→m/z182.3(150msec/l scan)とした。
1−5−3 添加検量線試料の調製
エッペンドルフチューブに、コントロールマウス血清を5μlずつ計り取り、測定対象物質標準溶液(5化合物混合)100μlを添加し、最終濃度0.1,0.5,1,5,10,50,100,500,1000ng/mlを調製した。次に1μg/mlのI.S.標準溶液を10μl添加し、超音波処理およびボルテックスミキサーにより十分混和した。これを遠心分離(15,000rpm,5min,室温)した後、上清をろ過フィルターにて遠心濾過(10,000rpm,2min,室温)して、LC−MS/MS注入試料とした。
1−5−4 測定試料の調製
測定試料(血漿)5μlの入ったエッペンドルフチューブにメタノールを100μl添加し、1μg/mlのI.S.標準溶液を10μl添加した後、超音波処理およびボルテックスミキサーにより十分混和した。これを遠心分離(15,000rpm,5min,室温)した後、上清をろ過フィルターにて遠心濾過(10,000rpm,2min,室温)して、LC−MS/MS注入試料とした。
2 試験結果
血漿中薬物濃度の定量値は添加検量線試料のLS−MS/MS測定で得られたピーク面積比より求めた。図1にLS−MS/MS測定により得られたピークの例を示す。定量値から採血時間と血中の投与薬物の濃度の関係をグラフにした(図2−9)。グラフより最高血漿中濃度(Cmax)、半減期(t1/2)、血中濃度曲線下面積(Area under the curve:AUC)、生体利用率及び、クリアランスの解析を行い、ヒトの薬物動態の予測を行った。結果は表1、2、および3に示した。
ほとんどすべてのCYPが関与するAUCは、高置換キメラマウスの方が低置換キメラマウスに比べて低かった。ドナー肝細胞にIVT079を用いたキメラマウスでは、トルブタミド(CYP2C9)、およびデキストロメトルファン(CYP2D6)を投与した時のAUCが、低置換率キメラマウスよりも高置換率キメラマウスの方が著しく低かった。また、生体利用率においても同様の結果が得られた。ドナー肝細胞にBD51を用いたキメラマウスでは、カフェイン(CYP1A2)およびトルブタミド(CYP2C9)を投与した時のAUCが、低置換率キメラマウスよりも高置換率キメラマウスの方が著しく低かった。

Figure 2006054755
Figure 2006054755
Figure 2006054755
以上の結果から、高置換キメラマウスと低置換キメラマウスにおける各種指標薬物のファーマコキネティクスを比較すると、2C19と3A4の指標薬物を投与した場合には顕著な差は認められなかったが、移植に用いたドナー肝細胞によっては、CYP1A2,CYP2C9,およびCYP2D6の指標薬物を投与した場合、高置換キメラマウスに比べて、低置換キメラマウスで代謝速度が遅いことが判明した。すなわち、CYP1A2,CYP2C9,またはCYP2D6に関して、低置換キメラマウスはヒトでのPM(Poor Metabolizer)、高置換キメラマウスは代謝速度が速いEM(Extensive Metabolizer)に相当することが明らかになった。これにより、医薬品開発において、CYP2C9、またはCYP2D6で主として代謝される医薬候補物質の遺伝多型における薬物動態の違いを判定できる。また、移植に用いるドナー肝細胞を選択することにより、CYP2C19で主として代謝される医薬候補物質の遺伝多型における薬物動態の違いも判定できると考えられた。
CYP2C9、CYP2C19、またはCYP2D6で主として代謝される医薬候補物質の高置換および低置換キメラマウスにおけるファーマコキネティックスを調べることにより、医薬候補物質の開発継続かあるいは中止かの意思決定をすることが可能となる。Pharmacokinetic Test 1 Using Chimeric Mouse Material and Method 1-1 Test Substance Caffeine (CYP1A2), a standard drug of cytochrome P450 (CYP), was used to evaluate pharmacokinetics in human hepatocyte chimeric mice using an index drug. ), Tolbutamide (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), and erythromycin (CYP3A4).
1-2 Animals Used Chimera mice produced at Hiroshima Prefectural Institute of Industrial Science and Technology or Phoenix Bio Inc. were used. That is, human hepatocytes (purchased from IVT079, In Vitro Tcnology, or purchased from BD51, BD Genest) were transplanted into the spleen of uPA (+ / +) / SCID mice, which are mice with liver damage and immunodeficiency properties. Then, a mouse in which human hepatocytes were engrafted in the mouse liver and proliferated was prepared. Mice in which the mouse liver was replaced with human hepatocytes by 70% or more (highly substituted chimeric mice) and low-substituted chimeric mice in which human hepatocytes were transplanted but the substitution rate was almost 0%, or non-transplanted mice (zero-substituted mice) Three of each were used. In addition, three uPA (− / −) / SCID mice were used as controls.
Each mouse was allowed to freely receive water (containing 0.012% hypochlorous acid) and a sterilized solid feed containing vitamin C (CRF-1, oriental yeast), and was bred at room temperature of 24 ± 2 ° C. The highly substituted chimeric mice were intraperitoneally administered nafamostat mesylate injection (0.3 mg / 0.2 ml / body) twice a day.
1-3 Preparation of Administered Drug Each drug was prepared at 5 times the administration concentration, and 5 compounds were mixed immediately before administration so that the final concentration would be the respective administration concentration. The administration concentration of caffeine, which is a standard drug of CYP1A2, is 25 mg / kg b. w. 12.5 mg was weighed and suspended in 1 ml of CMC solution in an agate mortar to prepare a 12.5 mg / ml suspension of 5 times the administration concentration. The dose concentration of tolbutamide, the standard drug for CYP2C9, was 8.35 mg / kg b. w. 4. 175 mg was weighed and suspended in 1 ml of CMC solution in an agate mortar to prepare a 4.175 mg / ml suspension having a dose concentration 5 times higher. The dose concentration of dextromethorphan, the standard drug for CYP2D6, is 2.5 mg / kg b. w. 20 mg of dextromethorphan hydromide monohydrate was weighed and suspended in 16 ml of CMC solution in an agate mortar to prepare a 1.25 mg / ml suspension of 5 times the administration concentration. The administration concentration of omeprazole, the standard drug for CYP2C19, was 8.35 mg / kg b. w. 20 mg of 1 vial was dissolved in 4.76 ml of milli-Q water to prepare a 4.2 mg / ml aqueous solution having a dose concentration 5 times. The administration concentration of erythromycin, the standard drug for CYP3A4, was 125 mg / kg b. w. A 500 mg erythromycin lactobionate vial was dissolved in 8 ml of milli-Q water to prepare an aqueous solution of 62.5 mg / ml, 5 times the dose concentration. 1 ml of each prepared drug is mixed to 5 ml, and the suspension is 10 μl / g b. w was administered to mice.
1-4 Administration Method and Serum Collection Method Three compounds each of high substitution chimera mouse, low substitution chimera mouse (or zero substitution mouse), uPA (− / −) / SCID mouse are forcibly orally administered or administered intravenously at the same time. Went. Blood samples were collected at 0.25 (only intravenous administration), 0.5, 1, 2, 4 (only oral administration) after administration, 15 μl each from the tail vein of the mouse 8 hours later, and further centrifuged at 3,500 rpm for 5 minutes Later, serum (supernatant) was collected and stored in a freezer at −30 ° C.
1-5 Quantitative Analysis and Analysis of Serum Drug Plasma samples were transported to Sumika Analysis Center, Inc. in dry ice, and measured by LC-MS / MS by the following method.
1-5-1 Measurement target substance standard solution and I.I. S. Preparation of standard solution Caffeine, tolbutamide, omeprazole, dextromethorphan hydrobromide monohydrate, erythromycin lactobionate were diluted with methanol, 2000, 1000, 500, 100, 50, 10, 5, 1, 0.5, A standard solution of 0.1 ng / ml was prepared. Dissolve phenytoin in methanol to prepare a standard solution of 10,1 mg / ml. S. A standard solution was used.
1-5-2 Measuring equipment and measuring conditions (LC-MS / MS)
The liquid chromatograph was SIL-HTC and LC-10A series (Shimadzu Corporation), and the column was Synergi 4μ Polar-RP 80A, 150 mm L.P. x 2.00 mmI. D. , 4 μm (Phenomenex) was used at 30 ° C. Methanol / 10 mmol / l ammonium acetate solution / acetic acid (700: 300: 2, v / v / v) was used as the mobile phase, and the flow rate was 0.2 ml / min. The injection amount was 2 μl, the measurement time was 10 min, and the set temperature of the autosampler was 4 ° C. As the mass spectrometer, a Tandem Mass Spectrometer API 4000 (Applied Biosystems / MDS SCIEX) was used. The API interface was Turbo V (ESI probe), and the ionization mode was the positive ion detection mode. The detection product of Detection MRM is caffeine: m / z 195.1 → m / z 138.2 (170 msec / l scan), tolbutamide: m / z 271.1 → m / z 74.3 (170 msec / l scan), omeprazole : M / z 346.1 → m / z 198.2 (150 msec / l scan), dextromethorphan: m / z 272.2 → m / z 215.3 (150 msec / l scan), erythromycin: m / z 734.4 → m /Z158.4 (150 msec / l scan), phenytoin: m / z 253.1 → m / z 182.3 (150 msec / l scan).
1-5-3 Preparation of added calibration curve sample Weigh 5 μl of control mouse serum into an Eppendorf tube, add 100 μl of the standard solution for the substance to be measured (mixture of 5 compounds), final concentration 0.1, 0.5, 1 5, 10, 50, 100, 500, 1000 ng / ml. Next, 1 μg / ml of I.V. S. 10 μl of the standard solution was added and mixed well by sonication and vortex mixer. This was centrifuged (15,000 rpm, 5 min, room temperature), and then the supernatant was subjected to centrifugal filtration (10,000 rpm, 2 min, room temperature) with a filtration filter to obtain an LC-MS / MS injection sample.
1-5-4 Preparation of Measurement Sample 100 μl of methanol was added to an Eppendorf tube containing 5 μl of the measurement sample (plasma), and 1 μg / ml of I.D. S. After adding 10 μl of the standard solution, it was thoroughly mixed by sonication and vortex mixer. This was centrifuged (15,000 rpm, 5 min, room temperature), and then the supernatant was subjected to centrifugal filtration (10,000 rpm, 2 min, room temperature) with a filtration filter to obtain an LC-MS / MS injection sample.
2 Test Results The quantitative value of the plasma drug concentration was determined from the peak area ratio obtained by LS-MS / MS measurement of the added calibration curve sample. FIG. 1 shows an example of peaks obtained by LS-MS / MS measurement. The relationship between the blood collection time and the concentration of the administered drug in the blood was graphed from the quantitative value (FIG. 2-9). Analyzing the maximum plasma concentration (Cmax), half-life (t1 / 2), area under the blood concentration curve (AUC), bioavailability, and clearance from the graph, predicting human pharmacokinetics Went. The results are shown in Tables 1, 2 and 3.
The AUC involving almost all CYPs was lower in the highly substituted chimeric mice compared to the low substituted chimeric mice. In chimeric mice using IVT079 for donor hepatocytes, the AUC when tolbutamide (CYP2C9) and dextromethorphan (CYP2D6) were administered was significantly lower in the high substitution rate chimeric mice than in the low substitution rate chimeric mice . Similar results were obtained for the bioavailability. In chimeric mice using BD51 for donor hepatocytes, AUC when caffeine (CYP1A2) and tolbutamide (CYP2C9) were administered was significantly lower in high substitution rate chimeric mice than in low substitution rate chimeric mice.
Figure 2006054755
Figure 2006054755
Figure 2006054755
From the above results, when comparing the pharmacokinetics of various index drugs in high substitution chimera mice and low substitution chimera mice, no significant difference was observed when 2C19 and 3A4 index drugs were administered. Depending on the donor hepatocytes used, it was found that when the index drugs CYP1A2, CYP2C9, and CYP2D6 were administered, the metabolic rate was low in the low substitution chimeric mice compared to the high substitution chimeric mice. That is, with regard to CYP1A2, CYP2C9, or CYP2D6, it has been clarified that a low-substituted chimeric mouse corresponds to human PM (Poor Metabolizer) and a high-substituted chimeric mouse corresponds to EM (Extensible Metabolizer) having a high metabolic rate. Thereby, in drug development, the difference in the pharmacokinetics in the genetic polymorphism of the drug candidate substance mainly metabolized by CYP2C9 or CYP2D6 can be determined. Moreover, it was thought that the difference in the pharmacokinetics in the genetic polymorphism of the drug candidate substance mainly metabolized by CYP2C19 could be determined by selecting the donor hepatocytes used for transplantation.
By investigating pharmacokinetics in high-substitution and low-substitution chimera mice with drug candidates mainly metabolized by CYP2C9, CYP2C19, or CYP2D6, it is possible to decide whether to continue or stop the development of drug candidates It becomes.

キメラマウスを用いたCYP2D6阻害における薬物動態試験
1 材料と方法
1−1 被験物質
(CYP2D6酵素阻害剤)によりCYP2D6酵素を阻害した状態で、指標薬物を用いてヒト肝細胞キメラマウスにおける薬物動態を評価するために、cytochrome P450(CYP)の指標薬物であるカフェイン(CYP1A2)、トルブタミド(CYP2C9)、オメプラゾール(CYP2C19)、デキストロメトルファン(CYP2D6)、エリスロマイシン(CYP3A4)の5化合物を用いた。
1−2 使用動物
キメラマウスは(株)フェニックスバイオにおいて作製したものを用いた。すなわち、肝障害と免疫不全の性質を有するマウスであるuPA(+/+)/SCIDマウスの脾臓にヒト肝細胞(BD51,BD Gentist社より購入)を移植し、ヒト肝細胞がマウス肝臓に生着し増殖したマウスを3匹作製した。
各マウスは実施例1と同様に水及び飼料を摂取および飼育した。なお、高置換キメラマウスには、実施例1と同様に1日2回メシル酸ナファモスタット注射液(0.3mg/0.2ml/body)を腹腔内に投与した。
1−3 阻害薬物の調製
パロキセチンをミリQ水に溶解(バス型超音波を使用)し、6mg/mlとなるように調製した。調製した薬物は5μl/g b.w.(30mg/kg b.w./day)でマウス腹腔内に投与した。
1−4 指標薬物の調製
実施例1と同様に行った。
1−5 投与方法及び血漿採取方法
高置換キメラマウスに、パロキセチンを3日間腹腔内投与した。その後実施例1と同様に5化合物同時に強制経口投与し、経時的に採血後、血漿を保存した。
1−6 血漿中薬物の定量及び分析
実施例1と同様に行った。
1−6−1 測定対象物質標準溶液およびI.S.標準溶液の調整
実施例1と同様に行った。
1−6−2 測定装置および測定条件(LC−MS/MS)
実施例1と同様に行った。
1−6−3 添加検量線試料の調整
実施例1と同様に行った。
1−6−4 測定試料の調整
実施例1と同様に行った。
2 試験結果
血漿中薬物濃度の定量値は添加検量線試料のLS−MS/MS測定で得られたピーク面積比より求めた。定量値から採血時間と血中の投与薬物の濃度の関係をグラフにした(図10)。グラフよりCmax、t1/2、AUCの解析を行った。
結果は表4に示した。パロキセチン投与により、CYP1A2,2C19,2D6,3A4の代謝活性の阻害が認められた。パロキセチンが特異的に阻害すると言われているCYP2D6の代謝活性は特に阻害された。

Figure 2006054755
以上の結果から、高置換キメラマウスに被検物質を投与し各指標物質のAUCの変化を調べることにより、被検物質の誘導または阻害活性を調べることが可能である。したがって、キメラマウスを用いることにより、ヒトにおける薬物相互作用を予測することが可能である。Pharmacokinetics test in CYP2D6 inhibition using chimeric mice 1 Materials and methods 1-1 Evaluation of pharmacokinetics in human hepatocyte chimeric mice using CYP2D6 enzyme with test substance (CYP2D6 enzyme inhibitor) using indicator drug For this purpose, five compounds of caffeine (CYP1A2), tolbutamide (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), and erythromycin (CYP3A4), which are index drugs of cytochrome P450 (CYP), were used.
1-2 Animals Used Chimera mice produced by Phoenix Bio Inc. were used. That is, human hepatocytes (BD51, purchased from BD Genist) were transplanted into the spleen of uPA (+ / +) / SCID mice, which are mice with liver damage and immunodeficiency properties, and human hepatocytes live in the mouse liver. Three mice that had arrived and proliferated were prepared.
Each mouse ingested and raised water and feed as in Example 1. In addition, to the highly substituted chimeric mice, nafamostat mesylate injection solution (0.3 mg / 0.2 ml / body) was intraperitoneally administered twice a day as in Example 1.
1-3 Preparation of Inhibitory Drug Paroxetine was dissolved in milli-Q water (using bath-type ultrasound) to prepare 6 mg / ml. The prepared drug was 5 μl / g b. w. (30 mg / kg bw / day) was administered intraperitoneally to mice.
1-4 Preparation of index drug The same procedure as in Example 1 was performed.
1-5 Administration Method and Plasma Collection Method Paroxetine was intraperitoneally administered to highly substituted chimeric mice for 3 days. Thereafter, five compounds were simultaneously orally administered as in Example 1 and blood was collected over time, and plasma was stored.
1-6 Quantification and analysis of drug in plasma The same procedure as in Example 1 was performed.
1-6-1 Measurement target substance standard solution and I.I. S. Preparation of standard solution The same procedure as in Example 1 was performed.
1-6-2 Measuring equipment and measuring conditions (LC-MS / MS)
The same operation as in Example 1 was performed.
1-6-3 Preparation of additive calibration curve sample The same procedure as in Example 1 was performed.
1-6-4 Preparation of measurement sample The same procedure as in Example 1 was performed.
2 Test Results The quantitative value of the plasma drug concentration was determined from the peak area ratio obtained by LS-MS / MS measurement of the added calibration curve sample. The relationship between the blood collection time and the concentration of the administered drug in the blood was graphed from the quantitative value (FIG. 10). Cmax, t1 / 2, and AUC were analyzed from the graph.
The results are shown in Table 4. Inhibition of metabolic activity of CYP1A2, 2C19, 2D6, 3A4 was observed by administration of paroxetine. The metabolic activity of CYP2D6, which is said to be specifically inhibited by paroxetine, was particularly inhibited.
Figure 2006054755
From the above results, it is possible to examine the induction or inhibition activity of the test substance by administering the test substance to the highly substituted chimeric mouse and examining the change in AUC of each indicator substance. Therefore, it is possible to predict drug interactions in humans by using chimeric mice.

Claims (2)

薬物代謝酵素CYP2D6、CYP2C9、またはCYP2C19で主として代謝される医薬候補物質が、CYP2D6、CYP2C9、またはCYP2C19欠損者で代謝されるか否かを判定する方法であって、
(1) 移植されたヒト肝細胞がマウス肝臓の70%以上を占めている高置換キメラマウスと、ヒト肝細胞がほとんど生着していない低置換キメラマウスのそれぞれに医薬候補物質を投与する工程;
(2) 高置換キメラマウスと低置換キメラマウスのそれぞれから採取した血清中の医薬候補物質の濃度を経時的に測定する工程;
を含み、低置換キメラマウスに比較して高置換キメラマウスで有意に早く代謝される医薬候補物質が、CYP2D6、CYP2C9、またはCYP2C19欠損者では代謝されない物質であると判定することを特徴とする方法。
A method for determining whether or not a drug candidate substance that is mainly metabolized by a drug metabolizing enzyme CYP2D6, CYP2C9, or CYP2C19 is metabolized by a CYP2D6, CYP2C9, or CYP2C19 deficient person,
(1) A step of administering a drug candidate substance to each of a highly substituted chimeric mouse in which transplanted human hepatocytes occupy 70% or more of the mouse liver and a low substituted chimeric mouse in which almost no human hepatocytes are engrafted. ;
(2) a step of measuring the concentration of a drug candidate substance in serum collected from each of a high-substituted chimeric mouse and a low-substituted chimeric mouse over time;
And a drug candidate substance that is metabolized significantly faster in a highly substituted chimeric mouse than a low substituted chimeric mouse, is determined to be a substance that is not metabolized in a CYP2D6, CYP2C9, or CYP2C19 deficient person .
医薬候補物質が、薬物代謝酵素の活性を促進または阻害するか否かを判定する方法であって、
(1) 高置換キメラマウスに医薬候補物質を投与する工程;
(2) 高置換キメラマウスに、複数の薬物代謝酵素のそれぞれによって代謝される複数の指標化合物を投与する工程;
(3) 高置換キメラマウスから採取した血清中の指標化合物の濃度を経時的に測定する工程;
を含み、医薬候補物質を投与していない時の血清中の指標化合物の濃度と比較することにより、医薬候補物質がいずれの薬物代謝酵素に対してその活性を誘導または阻害するかを判定することを特徴とする方法。
A method for determining whether a drug candidate substance promotes or inhibits the activity of a drug metabolizing enzyme, comprising:
(1) a step of administering a drug candidate substance to a highly substituted chimeric mouse;
(2) administering a plurality of indicator compounds metabolized by each of a plurality of drug metabolizing enzymes to a highly substituted chimeric mouse;
(3) A step of measuring the concentration of the indicator compound in the serum collected from the highly substituted chimeric mouse over time;
To determine which drug metabolizing enzyme induces or inhibits the activity of the drug candidate substance by comparing with the concentration of the indicator compound in the serum when the drug candidate substance is not administered A method characterized by.
JP2006545199A 2004-11-16 2005-11-16 Method for screening drug candidate substance Pending JPWO2006054755A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004332376 2004-11-16
JP2004332376 2004-11-16
PCT/JP2005/021393 WO2006054755A1 (en) 2004-11-16 2005-11-16 Method of screening candidate for drug

Publications (1)

Publication Number Publication Date
JPWO2006054755A1 true JPWO2006054755A1 (en) 2008-06-05

Family

ID=36407287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006545199A Pending JPWO2006054755A1 (en) 2004-11-16 2005-11-16 Method for screening drug candidate substance

Country Status (5)

Country Link
US (1) US20090047655A1 (en)
EP (1) EP1816208A4 (en)
JP (1) JPWO2006054755A1 (en)
CA (1) CA2587886A1 (en)
WO (1) WO2006054755A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220412955A1 (en) * 2019-11-25 2022-12-29 H. Lee Moffitt Cancer Center And Research Institute, Inc. A model of clinical synergy in cancer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6525242B1 (en) * 1999-11-02 2003-02-25 The University Of Connecticut Propagation of human hepatocytes in non-human mammals
US6509514B1 (en) * 2000-03-17 2003-01-21 Kmt Hepatech, Inc. Chimeric animal model susceptible to human hepatitis C virus infection
JP2002045087A (en) * 2000-05-19 2002-02-12 Japan Science & Technology Corp Chimera animal
CA2480559A1 (en) * 2002-03-25 2003-10-02 Japan Science And Technology Agency Antibody recognizing proliferative human liver cells, proliferative human liver cells and functional human liver cells
KR101159573B1 (en) * 2004-08-20 2012-06-26 가부시키가이샤 페닉스바이오 Method of presuming the metabolism of drug in human liver and liver function

Also Published As

Publication number Publication date
WO2006054755A1 (en) 2006-05-26
CA2587886A1 (en) 2006-05-26
US20090047655A1 (en) 2009-02-19
EP1816208A1 (en) 2007-08-08
EP1816208A4 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
Carlile et al. Microsomal prediction of in vivo clearance of CYP2C9 substrates in humans
Takashima et al. PET imaging–based evaluation of hepatobiliary transport in humans with (15R)-11C-TIC-Me
Kanebratt et al. Cytochrome P450 induction by rifampicin in healthy subjects: determination using the Karolinska cocktail and the endogenous CYP3A4 marker 4β‐hydroxycholesterol
Paine et al. The human intestinal cytochrome P450 “pie”
Mathijssen et al. Prediction of irinotecan pharmacokinetics by use of cytochrome P450 3A4 phenotyping probes
Castell et al. Hepatocyte cell lines: their use, scope and limitations in drug metabolism studies
Turpeinen et al. Functional expression, inhibition and induction of CYP enzymes in HepaRG cells
Kirby et al. Complex drug interactions of HIV protease inhibitors 2: in vivo induction and in vitro to in vivo correlation of induction of cytochrome P450 1A2, 2B6, and 2C9 by ritonavir or nelfinavir
VanWert et al. Organic anion transporter 3 (oat3/slc22a8) interacts with carboxyfluoroquinolones, and deletion increases systemic exposure to ciprofloxacin
Kaneko et al. A clinical quantitative evaluation of hepatobiliary transport of [11C] dehydropravastatin in humans using positron emission tomography
Takahashi et al. Absorption, metabolism, excretion, and the contribution of intestinal metabolism to the oral disposition of [14C] cobimetinib, a MEK inhibitor, in humans
Sane et al. Mechanisms underlying benign and reversible unconjugated hyperbilirubinemia observed with faldaprevir administration in hepatitis C virus patients
Takahashi et al. Pitavastatin as an in vivo probe for studying hepatic organic anion transporting polypeptide-mediated drug–drug interactions in cynomolgus monkeys
Zagórska et al. Differential regulation of hepatic physiology and injury by the TAM receptors Axl and Mer
Zientek et al. In vitro kinetic characterization of axitinib metabolism
de Oliveira Cardoso et al. In vitro metabolism of montelukast by cytochrome P450s and UDP-glucuronosyltransferases
Koyanagi et al. Age-related changes of hepatic clearances of cytochrome P450 probes, midazolam and R-/S-warfarin in combination with caffeine, omeprazole and metoprolol in cynomolgus monkeys using in vitro–in vivo correlation
Kacevska et al. Extrahepatic cancer suppresses nuclear receptor–regulated drug metabolism
Coriat et al. Pharmacokinetics and safety of DTS-108, a human oligopeptide bound to SN-38 with an esterase-sensitive cross-linker in patients with advanced malignancies: a Phase I study
Okamura et al. Imaging of activity of multidrug resistance–associated protein 1 in the lungs
Tran et al. Disposition of asciminib, a potent BCR-ABL1 tyrosine kinase inhibitor, in healthy male subjects
Ohtsuka et al. Alprazolam as an in vivo probe for studying induction of CYP3A in cynomolgus monkeys
Pearson et al. Absorption, distribution, metabolism, and excretion of the oral prostaglandin D2 receptor 2 antagonist fevipiprant (QAW039) in healthy volunteers and in vitro
Ohnishi et al. In vivo metabolic activity of CYP2C19 and CYP3A in relation to CYP2C19 genetic polymorphism in chronic liver disease
Tong et al. Absorption, distribution, metabolism and excretion of an isocitrate dehydrogenase-2 inhibitor enasidenib in rats and humans