JPWO2005113133A1 - Cooling microwave chemical reactor - Google Patents

Cooling microwave chemical reactor Download PDF

Info

Publication number
JPWO2005113133A1
JPWO2005113133A1 JP2006513675A JP2006513675A JPWO2005113133A1 JP WO2005113133 A1 JPWO2005113133 A1 JP WO2005113133A1 JP 2006513675 A JP2006513675 A JP 2006513675A JP 2006513675 A JP2006513675 A JP 2006513675A JP WO2005113133 A1 JPWO2005113133 A1 JP WO2005113133A1
Authority
JP
Japan
Prior art keywords
cooling
chemical reaction
microwave
reaction
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006513675A
Other languages
Japanese (ja)
Other versions
JP5259956B2 (en
Inventor
垰田 博史
博史 垰田
和重 久保
和重 久保
博文 曽我
博文 曽我
岡本 卓也
卓也 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Instrumentation Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Shikoku Instrumentation Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Instrumentation Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Shikoku Instrumentation Co Ltd
Priority to JP2006513675A priority Critical patent/JP5259956B2/en
Publication of JPWO2005113133A1 publication Critical patent/JPWO2005113133A1/en
Application granted granted Critical
Publication of JP5259956B2 publication Critical patent/JP5259956B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • H05B6/806Apparatus for specific applications for laboratory use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Clinical Laboratory Science (AREA)
  • Toxicology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Devices For Use In Laboratory Experiments (AREA)

Abstract

循環冷媒により反応物を冷却しながらマイクロ波照射することが可能な化学反応装置において、簡便性、汎用性、メンテナンス性に優れ、且つ高出力のマイクロ波を照射することが可能な冷却式マイクロ波化学反応装置を提供することを課題とする。中空構造の内部を冷媒が循環する冷却部を有する化学反応装置であって、前記冷却部は、マイクロ波吸透過性の材質で作られており、且つ冷媒としてマイクロ波透過性の液体冷媒を使用することを特徴とする冷却式マイクロ波化学反応装置。Cooling-type microwave that can irradiate microwaves while cooling reactants with circulating refrigerant, and that can irradiate microwaves with high convenience, versatility, and maintainability and high-power microwaves It is an object to provide a chemical reaction apparatus. A chemical reaction device having a cooling part in which a refrigerant circulates inside a hollow structure, wherein the cooling part is made of a microwave-absorbing and permeable material, and a microwave-permeable liquid refrigerant is used as the refrigerant A cooling-type microwave chemical reaction apparatus characterized by:

Description

本発明は、反応物を冷却しながらマイクロ波を照射することが可能な化学反応装置に関し、特に簡便性、汎用性、メンテナンス性に優れ、且つ高出力のマイクロ波を照射することが可能な冷却式マイクロ波化学反応装置に関する。   The present invention relates to a chemical reaction apparatus that can irradiate microwaves while cooling a reactant, and particularly, cooling that is excellent in simplicity, versatility, maintainability, and capable of irradiating high-power microwaves. The present invention relates to a microwave chemical reaction apparatus.

従来マイクロ波はレーダーや電子レンジの加熱源などの限定された用途での利用がなされていた。しかし、最近の研究開発から、化学反応系にマイクロ波を照射することで反応速度が1〜3桁ほど向上することや特異な立体・位置選択性を示すなどが報告されているほか、有害物質の高効率分解、ポリマー(ポリスチレン等)から高収率でモノマーが再生できることが明らかとなってきた。
マイクロ波に、反応速度の向上や従来の加熱法とは異なる反応が促進するなどの化学反応促進効果が認められていることは公知であり、これらの効果はしばしばマイクロ波による加熱効果以外の効果または加熱効果以上の効果という観点からマイクロ波効果またはマイクロ波電界効果或いは非熱的効果と呼ばれている。これらの優れた特性を示す要因として、(1)内部・非接触・局所・高速加熱、(2)局所反応場の形成、(3)非熱的反応促進効果が指摘されている。
Conventionally, microwaves have been used in limited applications such as radar and microwave heating sources. However, recent research and development have reported that the chemical reaction system is irradiated with microwaves to improve the reaction rate by 1 to 3 orders of magnitude and exhibit specific steric and regioselective properties. It has become clear that monomers can be regenerated from polymers (polystyrene and the like) with high yield.
It is well known that microwaves have been recognized to promote chemical reactions such as reaction rate improvement and reactions different from conventional heating methods, and these effects are often other than microwave heating effects. Alternatively, it is called a microwave effect, a microwave electric field effect, or a non-thermal effect from the viewpoint of an effect higher than the heating effect. Factors that show these excellent characteristics are (1) internal / non-contact / local / fast heating, (2) formation of local reaction fields, and (3) non-thermal reaction promoting effects.

従来のマイクロ波による加熱化学反応装置は、温度管理が困難であった。そこで、反応温度等を管理および制御するために、反応槽内に熱電対等の金属性機器をマイクロ波電磁界のTEモードのマイクロ波の電界に対しほぼ直交するように挿入するものが提言されている(特許文献1)。   Conventional microwave heating chemical reactors have difficulty in temperature control. Therefore, in order to manage and control the reaction temperature and the like, it has been proposed that a metallic device such as a thermocouple is inserted into the reaction vessel so as to be substantially orthogonal to the microwave electric field of the TE mode of the microwave electromagnetic field. (Patent Document 1).

従来の循環冷媒により反応物を冷却しながらマイクロ波照射することが可能な化学反応装置としては、図1に示すように容器中に被冷却物を注入し、そこに冷却管を挿入し冷媒を循環させる方式のもの(非特許文献1)、図2に示すように別途に設けた冷却用容器内に被冷却物を注入し、密封された反応容器内に冷却棒に挿入し冷却するものがあった(非特許文献2)。   As a chemical reaction apparatus capable of irradiating microwaves while cooling a reactant with a conventional circulating refrigerant, an object to be cooled is poured into a container as shown in FIG. A circulating system (Non-Patent Document 1), an object to be cooled is poured into a cooling vessel provided separately as shown in FIG. 2, and inserted into a cooling rod into a sealed reaction vessel for cooling. (Non-Patent Document 2).

一方で、マイクロ波の照射が不要な被冷却物においては、図3に示すとおり、反応容器の表面で冷却が行われる化学反応装置が使用されている(特許文献2)。
電熱No.68 第60頁(1993年)柴田長吉郎 Aust. J. Chem.1995、48、1675頁 Strauss(CSIRO) 特開2002−79078号公報 特開平08−117587号公報
On the other hand, as shown in FIG. 3, a chemical reaction apparatus that cools the surface of a reaction vessel is used for an object to be cooled that does not require microwave irradiation (Patent Document 2).
Electric heat No. 68 page 60 (1993) Nagakichi Shibata Aust. J. Chem. 1995, 48, 1675 Strauss (CSIRO) JP 2002-79078 A Japanese Patent Application Laid-Open No. 08-117587

特許文献1に記載の装置では、冷却を行わない構造上、多量のマイクロ波を照射することができなかった。すなわち、冷却を伴わないマイクロ波加熱法により反応熱を伴う化学反応を行う場合には、大きな除熱を見込む事ができないため、自らの反応熱により制御不能な反応暴走(熱暴走)を起こす危険性があり、これを回避するために、マイルドな反応条件を設定したり、溶媒の気化熱を利用して沸点で反応温度を制御したりする必要があった。   The apparatus described in Patent Document 1 cannot irradiate a large amount of microwaves due to the structure in which cooling is not performed. In other words, when a chemical reaction with reaction heat is performed by a microwave heating method that does not involve cooling, large heat removal cannot be expected, and the risk of uncontrollable reaction runaway (thermal runaway) due to its own reaction heat In order to avoid this, it is necessary to set mild reaction conditions or to control the reaction temperature at the boiling point using the heat of vaporization of the solvent.

図1に示すような化学反応装置の場合、被冷却物が液体に限定されてしまうこと、被反応物が冷却部に付着した際のメンテナンス性が悪いこと、被冷却物を入れる容器の形状が制限されること、被冷却物が少量の場合は冷却能力が得られないこと、冷却効率が悪いこと等の問題があった。   In the case of a chemical reaction apparatus as shown in FIG. 1, the object to be cooled is limited to a liquid, the maintainability when the object to be cooled adheres to the cooling part, the shape of the container for storing the object to be cooled is There are problems such as limitations, cooling capacity not being obtained when the amount of objects to be cooled is small, and poor cooling efficiency.

また、図2に示すような化学反応装置の場合、被冷却物が液体に限定されてしまうこと、被冷却物が少量の場合は冷却能力が得られないこと、簡便性、汎用性に乏しいこと等の問題があった。   In addition, in the case of a chemical reaction apparatus as shown in FIG. 2, the object to be cooled is limited to liquid, the cooling capacity cannot be obtained when the object to be cooled is small, and the convenience and versatility are poor. There was a problem such as.

また、マイクロ波化学反応装置においては、マイクロ波により直接反応物が加熱されるため、加熱しすぎた場合或いは反応に伴う自己発熱により熱暴走が生じそうな場合には即座に冷却して温度調整を行う必要がある。反応速度を上げるために加熱し、必要以上の反応熱が出だしたら即座に除熱することを可能とするために、高い冷却能力を有することも、本発明が解決しなければならない課題である。   Also, in microwave chemical reactors, reactants are directly heated by microwaves, so if they are overheated or if thermal runaway is likely to occur due to self-heating due to the reaction, they are immediately cooled to adjust the temperature. Need to do. It is a problem to be solved by the present invention to have a high cooling capacity in order to perform heating to increase the reaction rate, and to immediately remove the heat when reaction heat more than necessary is generated.

一方、上記図3に示す冷却装置においては、被反応物を冷媒が充填された反応容器が包囲しているため、マイクロ波を照射すると冷媒や反応容器がマイクロ波により加熱されてしまうため、一定の温度を保つために循環冷媒の制御を行うことが極めて困難であった。
また、加熱時には熱源→熱楳→反応釜→反応物の順に温度が伝達されるためタイムラグが生じてしまうし、冷却時に熱源を落としても熱楳の温度が直ぐには下がらないため迅速な冷却は困難であった。
On the other hand, in the cooling device shown in FIG. 3, since the reaction container filled with the refrigerant surrounds the object to be reacted, the refrigerant and the reaction container are heated by the microwave when irradiated with microwaves. It was extremely difficult to control the circulating refrigerant in order to maintain the temperature.
Also, during heating, the temperature is transmitted in the order of heat source → hot metal → reaction kettle → reactants, so there will be a time lag, and even if the heat source is dropped during cooling, the temperature of the hot metal will not decrease immediately, so rapid cooling is not possible. It was difficult.

そこで、本発明は、循環冷媒により反応物を冷却しながらマイクロ波照射することが可能な化学反応装置において、簡便性、汎用性、メンテナンス性に優れ、且つ高出力のマイクロ波を照射することが可能な冷却式マイクロ波化学反応装置を提供することを目的とする。   Therefore, the present invention provides a chemical reaction apparatus capable of irradiating microwaves while cooling a reactant with a circulating refrigerant, and is excellent in simplicity, versatility, maintainability, and capable of irradiating high-power microwaves. An object is to provide a possible cooled microwave chemical reactor.

上記課題を解決するために、本発明に係る冷却式マイクロ波化学反応装置は、被反応物と冷却部との接触面を可能な限り大きくなるような構造とし、且つ、冷却部がマイクロ波の照射による影響を受けないもので構成することで、大きな除熱能力が得られ、多量のマイクロ波を照射することを可能とした。すなわち、大きな除熱能力が得られた事により、よりタイトな高温条件で、溶媒の気化熱を利用した温度制御を行うことなく、発熱反応の熱暴走を防止する事が可能となった。また、多量のマイクロ波照射が可能となったことにより、冷却加熱によるホットスポットが多くできるため、マイクロ波効果を引き出すことが可能となる。マイクロ波効果の原因の一つとしては、局所的な高温場(ローカルスーパーヒーティング[LSH])があると考えられている。すなわち、本発明によれば、同じバルクの制御温度であってもより高出力のマイクロ波を照射することが可能となるため、不均一場を形成しやすく、LSHの数を増やしたり、LSHをより高温状態にすることが期待できる(図13参照)。   In order to solve the above problems, a cooling type microwave chemical reaction device according to the present invention has a structure in which a contact surface between an object to be reacted and a cooling unit is as large as possible, and the cooling unit has a microwave. By using a configuration that is not affected by irradiation, a large heat removal capability was obtained, and a large amount of microwaves could be irradiated. That is, since a large heat removal capability was obtained, it was possible to prevent thermal runaway of the exothermic reaction without performing temperature control using the heat of vaporization of the solvent under tighter high temperature conditions. In addition, since a large amount of microwave irradiation can be performed, hot spots due to cooling and heating can be increased, so that the microwave effect can be extracted. One of the causes of the microwave effect is considered to be a local high temperature field (local superheating [LSH]). That is, according to the present invention, since it is possible to irradiate higher-power microwaves even at the same bulk control temperature, it is easy to form a non-uniform field, increase the number of LSH, A higher temperature can be expected (see FIG. 13).

すなわち、本発明は下記(1)ないし(8)の冷却式マイクロ波化学反応装置を要旨とする。
(1)中空構造の内部を冷媒が循環する冷却部を有する化学反応装置であって、前記冷却部は、マイクロ波吸透過性の材質で作られており、且つ冷媒としてマイクロ波透過性の液体冷媒を使用することを特徴とする冷却式マイクロ波化学反応装置。
(2)前記冷却部は、被冷却物との接触面以外の熱伝導率が、接触面と比べ低いことを特徴とする(1)の冷却式マイクロ波化学反応装置。
(3)循環冷媒の温度および/または流量を制御することにより冷却能力を調整することを特徴とする(1)または(2)の冷却式マイクロ波化学反応装置。
(4)前記冷却部は、被冷却物の反応容器となる管状容器を有することを特徴とする(1)ないし(3)のいずれかの冷却式マイクロ波化学反応装置。
(5)前記冷却部は、シート状であることを特徴とする(1)ないし(3)のいずれかの冷却式マイクロ波化学反応装置。
(6)前記冷却部は、凹形状であり、凹み部が被冷却物の反応容器となる(1)ないし(3)のいずれかの冷却式マイクロ波化学反応装置。
(7)前記冷却部は、脱着可能な被冷却物の反応容器とその外側を包囲する冷媒槽とから構成されることを特徴とする(1)ないし(3)のいずれかの冷却式マイクロ波化学反応装置。
(8)前記冷却部がマイクロ波を反射するチャンバー内に備えられ、マイクロ波の照射がチャンバー内の冷却部全体になされるよう構成された(1)ないし(7)のいずれかのマイクロ波化学反応装置。
That is, the gist of the present invention is the cooling microwave chemical reaction device of the following (1) to (8).
(1) A chemical reaction device having a cooling part in which a refrigerant circulates in a hollow structure, wherein the cooling part is made of a microwave-absorbing and permeable material, and a microwave-permeable liquid as a refrigerant. A cooling-type microwave chemical reaction apparatus characterized by using a refrigerant.
(2) The cooling type microwave chemical reaction device according to (1), wherein the cooling unit has a thermal conductivity lower than that of the contact surface with the object to be cooled.
(3) The cooling microwave chemical reaction device according to (1) or (2), wherein the cooling capacity is adjusted by controlling the temperature and / or flow rate of the circulating refrigerant.
(4) The cooling type microwave chemical reaction device according to any one of (1) to (3), wherein the cooling unit includes a tubular container serving as a reaction container for an object to be cooled.
(5) The cooling type microwave chemical reaction device according to any one of (1) to (3), wherein the cooling section has a sheet shape.
(6) The cooling type microwave chemical reaction device according to any one of (1) to (3), wherein the cooling section has a concave shape, and the concave section serves as a reaction container for an object to be cooled.
(7) The cooling microwave according to any one of (1) to (3), wherein the cooling unit includes a reaction vessel for a detachable object to be cooled and a refrigerant tank that surrounds the reaction vessel. Chemical reactor.
(8) The microwave chemistry according to any one of (1) to (7), wherein the cooling unit is provided in a chamber that reflects microwaves, and microwave irradiation is performed on the entire cooling unit in the chamber. Reactor.

本発明に係る冷却式マイクロ波化学反応装置によれば、従来のマイクロ波化学反応装置と比べ、高出力のマイクロ波を照射することが可能となる。
また、被冷却物の反応温度を、マイクロ波照射による加熱と、循環冷媒による除熱を同時に行うことにより一定に保つため、温度制御を容易に行うことができる。すなわち、加熱したいときには即座に加熱することができ、冷却したいときには即座に除熱することができるマイクロ波化学反応装置を提供することが可能となる。
According to the cooling type microwave chemical reaction device according to the present invention, it becomes possible to irradiate a high-power microwave compared with the conventional microwave chemical reaction device.
In addition, since the reaction temperature of the object to be cooled is kept constant by simultaneously performing heating by microwave irradiation and heat removal by the circulating refrigerant, temperature control can be easily performed. That is, it is possible to provide a microwave chemical reaction apparatus that can be heated immediately when it is desired to be heated and can be immediately removed when it is desired to be cooled.

また、制御装置の構造が簡易である点、冷却部を多様な態様な形状とすることが可能である点で汎用性に優れる。
容器型の冷媒を備える構成においては、少量実験で冷却効率を得るために冷却部を複雑な形状にする必要がないため、実験終了後の洗浄時間を短縮することができ、メンテナンス性に優れる。
Moreover, it is excellent in versatility in that the structure of the control device is simple and the cooling unit can be formed in various forms.
In the configuration including the container-type refrigerant, since it is not necessary to make the cooling part in a complicated shape in order to obtain the cooling efficiency in a small amount experiment, the cleaning time after the end of the experiment can be shortened, and the maintainability is excellent.

また、従来装置における温度ムラの問題を改善することができる。特に、管型の冷媒を備える構成においては、温度ムラの問題を解決することができ、しかも被冷却物が少量でも十分な冷却能力が得ることができる。   Moreover, the problem of temperature unevenness in the conventional apparatus can be improved. In particular, in a configuration including a tube-type refrigerant, the problem of temperature unevenness can be solved, and sufficient cooling capacity can be obtained even with a small amount of object to be cooled.

板型の冷媒を備える構成においては、シート形状をした固体やゲルの被冷却物においても、マイクロ波を照射しながら冷却式化学反応をさせることが可能となる。   In a configuration including a plate-type refrigerant, a cooling chemical reaction can be performed while irradiating microwaves even on a solid or gel object to be cooled in the form of a sheet.

反応容器を着脱可能とした構成においては、同じ形状の反応容器で実験を行う際に、冷媒循環装置を取り外すことなく反応容器の交換が行えるようになり、実験時間の短縮が図れる。   In the configuration in which the reaction vessel is detachable, the reaction vessel can be exchanged without removing the refrigerant circulation device when the experiment is performed with the reaction vessel having the same shape, and the experiment time can be shortened.

従来型の冷却式マイクロ波化学反応装置1の構成図である。1 is a configuration diagram of a conventional cooling-type microwave chemical reaction device 1. FIG. 従来型の冷却式マイクロ波化学反応装置2の構成図である。1 is a configuration diagram of a conventional cooled microwave chemical reaction device 2. FIG. 従来型の通常の冷却式化学反応装置の構成図である。It is a block diagram of the conventional normal cooling type chemical reaction apparatus. 本発明に係るバッチ状反応容器の模式図である。It is a schematic diagram of the batch-shaped reaction container concerning this invention. 本発明に係る管状反応容器の模式図である。It is a schematic diagram of the tubular reaction container which concerns on this invention. 本発明に係る蛇管状反応容器の模式図である。It is a schematic diagram of the serpentine tubular reaction container according to the present invention. 本発明に係る板状反応容器の模式図である。It is a schematic diagram of the plate-shaped reaction container concerning this invention. 実施例1に係る冷却式マイクロ波化学反応装置の構成図である。1 is a configuration diagram of a cooling type microwave chemical reaction device according to Example 1. FIG. 従来型のマイクロ波化学反応装置におけるマイクロ波投入エネルギーのグラフである。It is a graph of the microwave input energy in the conventional microwave chemical reaction apparatus. 実施例1に係るマイクロ波化学反応装置におけるマイクロ波投入エネルギーのグラフである。2 is a graph of microwave input energy in the microwave chemical reaction device according to Example 1. 実施例2に係るマイクロ波化学反応装置の構成図である。6 is a configuration diagram of a microwave chemical reaction device according to Example 2. FIG. 実施例3に係るマイクロ波化学反応装置の構成図である。3 is a configuration diagram of a microwave chemical reaction device according to Example 3. FIG. LSH促進の模式図である。It is a schematic diagram of LSH promotion. マイクロ波による入熱と、冷却装置による除熱の位置関係を比較した模式図である。It is the schematic diagram which compared the positional relationship of the heat input by a microwave, and the heat removal by a cooling device. 実施例4に係る除熱能力を示したグラフである。6 is a graph showing the heat removal capability according to Example 4. 実施例5に係る蛇管状反応容器における温度ムラの測定結果を示したグラフである。6 is a graph showing measurement results of temperature unevenness in a serpentine tubular reaction container according to Example 5.

符号の説明Explanation of symbols

1 反応容器
2 冷却部
3 冷媒
10 被反応物
12 蛇管形状の反応容器
13 冷却槽
14 冷媒出口
15 冷却槽上蓋
16 三口フラスコ状反応容器上部
18 磨りガラスジョイント部
DESCRIPTION OF SYMBOLS 1 Reaction container 2 Cooling part 3 Refrigerant 10 To-be-reacted object 12 Cathode-shaped reaction container 13 Cooling tank 14 Refrigerant outlet 15 Cooling tank upper cover 16 Three-necked flask-shaped reaction container upper part 18 Polished glass joint part

本発明に係る冷却式マイクロ波化学反応装置は、中空構造の内部を冷媒が循環する冷却部を有する化学反応装置であって、前記反応容器は、マイクロ波吸透過性の材質で作られており、且つ冷媒としてマイクロ波透過性の液体冷媒を使用することを特徴とする。ここで、対象となる被反応物は様々な物質が想定されるため、充分な冷却効果を得るためには、各物質の備える特性、分量によって異なる形状の反応容器を用いる必要がある。例えば、粘度の高い液体の場合や少量で実験を行う場合は、図4に示すようなバッチ状反応容器が適しているし、大きな冷却能を必要とする場合や連続反応にて実験を行う場合には図5に示すような管状容器が適している。また、大きな冷却能を必要とする場合や連続反応において反応時間を長く取りたい場合には、図6に示すような蛇管反応容器が適している。また、被冷却物がシート状の固体やゲルである場合には、図7に示すような板状反応容器が適している。   The cooling type microwave chemical reaction device according to the present invention is a chemical reaction device having a cooling part in which a refrigerant circulates inside a hollow structure, and the reaction vessel is made of a material that absorbs and absorbs microwaves. In addition, a microwave permeable liquid refrigerant is used as the refrigerant. Here, since various substances are assumed as the target reaction object, in order to obtain a sufficient cooling effect, it is necessary to use reaction containers having different shapes depending on the characteristics and quantity of each substance. For example, in the case of a high-viscosity liquid or when performing an experiment with a small amount, a batch reaction vessel as shown in FIG. 4 is suitable, and when a large cooling capacity is required or when an experiment is performed in a continuous reaction. For this, a tubular container as shown in FIG. 5 is suitable. In addition, when a large cooling capacity is required or when it is desired to take a long reaction time in a continuous reaction, a serpentine reaction vessel as shown in FIG. 6 is suitable. Further, when the object to be cooled is a sheet-like solid or gel, a plate-like reaction container as shown in FIG. 7 is suitable.

なお、マイクロ波照射型化学反応装置の問題点として、他の加熱手段よりコストが高いということが挙げられるが、マイクロ波照射の目的(マイクロ波非熱効果、マイクロ波加熱特性等)に必要な最低限のエネルギーをマイクロ波照射し、それ以外は安価な他の加熱法で賄う構成としてもよい。一般的な化学反応の場合、室温より高い状態で温度制御を行うケースが多いが、「室温<冷媒温度<反応温度」の場合には、冷媒は原料を予熱する「熱媒」として作用する一面を持つことととなる。   A problem with the microwave irradiation type chemical reaction apparatus is that it is more expensive than other heating means, but it is necessary for the purpose of microwave irradiation (microwave non-thermal effect, microwave heating characteristics, etc.). The minimum energy may be irradiated with microwaves, and the rest may be covered by another inexpensive heating method. In general chemical reactions, temperature control is often performed at a temperature higher than room temperature. However, when “room temperature <refrigerant temperature <reaction temperature”, the refrigerant acts as a “heating medium” for preheating the raw material. Will have.

以下では、本発明の詳細を実施例で説明するが、本発明は実施例によって何ら限定されるものではない。   Hereinafter, the details of the present invention will be described with reference to examples, but the present invention is not limited to the examples.

図8は、実施例1に係る冷却式マイクロ波化学反応装置の構成図である。
図8に示すとおり、実施例1に係る冷却式マイクロ波化学反応装置は、アプリケータ部84と、冷却装置94とそれらを接続するフッ素系樹脂チューブ95とから構成される。冷却装置94は、冷媒液が貯留される液槽92と冷媒液を送り出すためのポンプ93とから構成される。ポンプ93から送出された冷媒液の流量は、計測器88と連動する流速制御ボックス89が電磁弁87を制御することにより自動調整される。なお、冷媒液の流量は、流量調節用バルブ86により手動で調節することもできる。
冷却部80は中空構造となっており、冷媒液を循環させるための冷媒液循環部82が設けられている。冷却部80は、マイクロ波吸収透過性のガラス材で作られており、冷媒液はマイクロ波透過性の無極性油液を利用している。反応容器81内には、被反応物85が入れられており、被反応物85の温度は被反応物内に挿入された光ファイバ温度計91により測定され、計測器88に記憶される。
FIG. 8 is a configuration diagram of a cooling type microwave chemical reaction device according to the first embodiment.
As shown in FIG. 8, the cooling type microwave chemical reaction device according to the first embodiment includes an applicator portion 84, a cooling device 94, and a fluorine-based resin tube 95 that connects them. The cooling device 94 includes a liquid tank 92 in which the refrigerant liquid is stored and a pump 93 for sending out the refrigerant liquid. The flow rate of the refrigerant liquid delivered from the pump 93 is automatically adjusted by controlling the solenoid valve 87 by the flow rate control box 89 that is linked to the measuring device 88. Note that the flow rate of the refrigerant liquid can be manually adjusted by the flow rate adjusting valve 86.
The cooling unit 80 has a hollow structure, and is provided with a refrigerant liquid circulation unit 82 for circulating the refrigerant liquid. The cooling unit 80 is made of a glass material that is permeable to microwave absorption, and the refrigerant liquid uses a non-polar oil liquid that is permeable to microwaves. A reaction object 85 is placed in the reaction vessel 81, and the temperature of the reaction object 85 is measured by an optical fiber thermometer 91 inserted in the reaction object and stored in the measuring device 88.

反応容器81はマイクロ波透過性の材で構成されれば、ガラスに限定されることはなく、好ましい材としてはフッ素系樹脂、セラミックなどがあげられる。また、冷媒液としては無極性溶液でもよい。   The reaction vessel 81 is not limited to glass as long as it is made of a microwave permeable material, and preferable materials include fluororesin and ceramic. Further, the refrigerant liquid may be a nonpolar solution.

アプリケータ部84は、電子レンジの筐体のようにマイクロ波を反射するチャンバーであり、マイクロ波透過性の反応容器81を透過することにより高い加熱効果を奏するものである。すなわち、アプリケータ部84の外部から照射されたマイクロ波は、アプリケータ部84内で反射され、上下左右から反応容器81を透過しながら反応物を加熱するのである。
図14に従来の反応容器とマイクロ波照射位置の関係と、本実施例における反応容器とマイクロ波照射位置の関係を示す。
比較例は冷却器が内部にある装置である。冷媒が反応物の中にある構成においては、例えば高粘度反応物で撹拌が充分に行えない場合、照射部で生じた反応熱を冷却部で除去することができない。
The applicator section 84 is a chamber that reflects microwaves like a casing of a microwave oven, and exhibits a high heating effect by passing through the microwave-permeable reaction vessel 81. That is, the microwave irradiated from the outside of the applicator part 84 is reflected in the applicator part 84 and heats the reactant while passing through the reaction vessel 81 from the top, bottom, left and right.
FIG. 14 shows the relationship between the conventional reaction vessel and the microwave irradiation position, and the relationship between the reaction vessel and the microwave irradiation position in this example.
The comparative example is a device with a cooler inside. In the configuration in which the refrigerant is in the reactant, for example, when the high-viscosity reactant cannot sufficiently stir, the heat of reaction generated in the irradiation unit cannot be removed by the cooling unit.

なお、反応容器(金属製ジャケット釜)がチャンバーを兼ねている形態の場合は、反応容器が高圧・腐食などにより破損した場合には即事故に繋がるが、本実施例の構成においては、チャンバーが安全カバーの役割を果たすことができる。   In the case where the reaction vessel (metal jacket pot) also serves as a chamber, if the reaction vessel is damaged due to high pressure, corrosion, etc., an accident will occur immediately. Can act as a safety cover.

本実施例に係る冷却式マイクロ波化学反応装置と非冷却式マイクロ波化学反応装置を用いて、酸化チタン(光触媒)にヒドロキシアパタイトを析出させる実験を行ったところ、非冷却式と比べ5倍のマイクロ波を照射することができた。
図9が従来型のマイクロ波化学反応装置におけるマイクロ波投入エネルギーのグラフであり、図10が実施例1に係るマイクロ波化学反応装置におけるマイクロ波投入エネルギーのグラフである。
図9及び10を見ると分かるとおり、非冷却式マイクロ波化学反応装置では、反応温度を40℃に保つために、平均30Wのマイクロ波しか照射できなかったが、本実施例に係る冷却式マイクロ波化学反応装置では、−5℃の冷媒を循環させながらマイクロ波照射したところ反応温度を40℃に保ちながら、平均150Wのマイクロ波を照射することができた。
Using the cooling microwave chemical reaction apparatus and the non-cooling microwave chemical reaction apparatus according to this example, an experiment was performed to deposit hydroxyapatite on titanium oxide (photocatalyst). Microwave could be irradiated.
FIG. 9 is a graph of microwave input energy in the conventional microwave chemical reaction apparatus, and FIG. 10 is a graph of microwave input energy in the microwave chemical reaction apparatus according to Example 1.
As can be seen from FIGS. 9 and 10, in the uncooled microwave chemical reaction apparatus, in order to keep the reaction temperature at 40 ° C., only microwaves with an average of 30 W could be irradiated. In the wave chemical reaction apparatus, microwave irradiation with an average of 150 W was able to be performed while maintaining the reaction temperature at 40 ° C. when microwave irradiation was performed while circulating a −5 ° C. refrigerant.

実施例2に係る冷却式マイクロ波化学反応装置は、冷却部2をチャンバー内に配置し、チャンバー内に導波路(導波管、同軸ケーブル等)を経由してマイクロ波発信器からのマイクロ波を照射する態様の冷却式マイクロ波化学反応装置である。例えるなら、電子レンジのような箱体の中に冷却部ごと配置する態様である。   In the cooling type microwave chemical reaction device according to the second embodiment, the cooling unit 2 is disposed in the chamber, and the microwave from the microwave transmitter is passed through the waveguide (waveguide, coaxial cable, etc.) in the chamber. It is a cooling type microwave chemical reaction device of the mode which irradiates. For example, the cooling unit is arranged in a box such as a microwave oven.

図11に示すように、冷却部2は、冷媒3が循環する冷却槽13と反応容器1から構成され、冷媒槽13は反応容器挿入穴と冷媒出口14用穴が開いた冷媒槽上蓋15により覆われている。
なお、シート用上蓋15を、反応容器挿入穴のないものと変えることにより、シート状の反応物を冷却することも可能である。
As shown in FIG. 11, the cooling unit 2 includes a cooling tank 13 in which the refrigerant 3 circulates and the reaction container 1, and the refrigerant tank 13 is formed by a refrigerant tank upper lid 15 having a reaction container insertion hole and a refrigerant outlet 14 hole. Covered.
In addition, it is also possible to cool the sheet-like reactant by changing the upper lid 15 for the sheet to one without a reaction vessel insertion hole.

実施例3に係る冷却式マイクロ波化学反応装置は、図12に示すとおり、実施例2の構成において、三口フラスコ状反応容器上部16を反応容器1に設けられた磨りガラスジョイント部18で嵌合させた構成となっている。   As shown in FIG. 12, the cooling type microwave chemical reaction device according to Example 3 is configured by fitting the three-necked flask-shaped reaction vessel upper portion 16 with the polished glass joint portion 18 provided in the reaction vessel 1 in the configuration of Example 2. It is the composition made to do.

有機反応などの場合は、還流冷却を行ったり、窒素などの希ガス雰囲気下で反応を行うこともあるが、そのような反応を行う際には、本実施例に係る構成が適している。   In the case of an organic reaction or the like, reflux cooling may be performed, or the reaction may be performed in an atmosphere of a rare gas such as nitrogen. When performing such a reaction, the configuration according to this embodiment is suitable.

自己発熱(反応熱)による熱暴走を抑える方法は2つある。一つは反応温度を低くする事などにより反応速度を遅くし、反応熱の発生を分散させる方法であり、もう一つは溶媒の気化熱を利用して反応熱を除去する方法である。前者の場合、反応速度が遅くなるため、一気に反応熱を生じる危険性は低減できるが、長時間の反応が必要となるという問題がある。後者の場合は、反応温度が溶媒の沸点により決まってしまうことや溶媒の加熱・気化熱など余分のエネルギーが必要になるという問題点がある。自然放熱(Natural Cooling)においても、一定の除熱は可能であるが、除熱能力が低く、熱暴走を抑止することは困難である(図15参照)。
そこで、冷媒等による冷却システムが必要となるが、マイクロ波化学反応装置においては、マイクロ波の即時加熱という特性があるため、高い除熱能力と即応性が要求される。
There are two ways to suppress thermal runaway due to self-heating (reaction heat). One is a method of slowing the reaction rate by lowering the reaction temperature and dispersing the generation of reaction heat, and the other is a method of removing the reaction heat using the heat of vaporization of the solvent. In the former case, since the reaction rate is slow, the risk of generating reaction heat at once can be reduced, but there is a problem that a long-time reaction is required. In the latter case, there are problems that the reaction temperature is determined by the boiling point of the solvent and that extra energy such as heating and vaporization of the solvent is required. Even in natural cooling, a constant heat removal is possible, but the heat removal capability is low and it is difficult to suppress thermal runaway (see FIG. 15).
Therefore, a cooling system using a refrigerant or the like is necessary. However, since the microwave chemical reaction apparatus has a characteristic of immediate heating of microwaves, high heat removal capability and quick response are required.

本実施例においては、図4に示すようなバッチ状タイプの反応容器を用いた場合の装置の除熱能力を測定した。図15は、制御温度および冷媒温度の関係を示したものであり、本実施例の装置の除熱能力を確認することができる。横軸は反応物の温度を示しており、縦軸は冷却能力を示しており、冷媒の温度別(0〜40℃)にプロットしたものと自然放冷したものとを比較した。モデル物質としては水を用いているが、除熱能力(冷却能力)は物質に大きく依存はしないため、実反応でも除熱能力はほぼ同じとなる。
なお、本実施例は、装置の除熱能力を測定することを主たる目的としているため、マイクロ波の照射は行っていない。
In this example, the heat removal ability of the apparatus when a batch-type reaction vessel as shown in FIG. 4 was used was measured. FIG. 15 shows the relationship between the control temperature and the refrigerant temperature, and the heat removal capability of the apparatus of this embodiment can be confirmed. The horizontal axis indicates the temperature of the reaction product, and the vertical axis indicates the cooling capacity, and the plots for each refrigerant temperature (0 to 40 ° C.) were compared with those naturally cooled. Although water is used as a model substance, the heat removal ability (cooling ability) does not depend greatly on the substance, so the heat removal ability is almost the same even in actual reactions.
In addition, since the present Example mainly aims to measure the heat removal capability of the apparatus, microwave irradiation is not performed.

化学反応を制御する因子として「反応温度」が重要である事は公知である。タイトな反応温度制御が要求される実験においては、反応容器内で温度のバラツキが無く、一定の温度で制御できるのが好ましい。管型の反応容器を全体的に加熱することにより、加熱ムラを最小限とすることができるが、冷却を自然放冷により行った場合には温度ムラが起こってしまうという問題がある(図16参照)。   It is known that “reaction temperature” is important as a factor for controlling a chemical reaction. In experiments where tight reaction temperature control is required, it is preferable that there is no temperature variation in the reaction vessel and that the reaction can be controlled at a constant temperature. Although heating unevenness can be minimized by heating the tubular reaction vessel as a whole, there is a problem that temperature unevenness occurs when cooling is performed by natural cooling (FIG. 16). reference).

本実施例においては、図6に示すような蛇管反応容器における温度ムラの発生を冷媒循環時と自然放冷時とで比較した。実験条件は下記のとおりである。   In this example, the occurrence of temperature unevenness in the serpentine tube reaction vessel as shown in FIG. 6 was compared between when the refrigerant was circulated and when naturally cooled. The experimental conditions are as follows.

(実験条件)
・反応物:エチレングリコール
・冷媒温度:52.0℃
・冷媒の流量:約4.5L/min
・反応物の流量の設定値:20ml/min
・マイクロ波照射量:図16を参照
(Experimental conditions)
・ Reactant: Ethylene glycol ・ Refrigerant temperature: 52.0 ℃
・ Refrigerant flow rate: Approximately 4.5L / min
・ Set value of reactant flow rate: 20ml / min
・ Microwave dose: See Fig. 16

冷媒循環時の実験は、誤差が生じることを想定して同一条件で2回行った。温度の測定点は、蛇管の半周毎に設定し、11箇所設けた。制御温度70℃の自然放冷時のマイクロ波照射量と同じだけのマイクロ波を照射し、(11)の位置で70℃となるように冷媒温度を調節して蛇管反応容器内の温度ムラを検証した。
なお、本実施例は、入熱と除熱による温度ムラを検証することが目的であるため、特定の化学反応は伴うものではない。
The experiment during the circulation of the refrigerant was performed twice under the same conditions assuming that an error occurred. The temperature measurement points were set for every half circumference of the serpentine tube, and 11 points were provided. Irradiate the same amount of microwave as the amount of microwave irradiation at the time of natural cooling at a control temperature of 70 ° C, and adjust the refrigerant temperature so that it becomes 70 ° C at the position of (11), thereby eliminating the temperature unevenness in the tube reaction vessel. Verified.
In addition, since a present Example aims at verifying the temperature nonuniformity by heat input and heat removal, a specific chemical reaction is not accompanied.

上記実験条件において、冷媒循環時と自然放冷時のそれぞれにマイクロ波照射したところ、図16に示すとおり自然放冷時と比べて温度ムラを小さくなることを確認することができた。すなわち、加熱および冷却が管状流路全体に対して行われるため、化学反応時における温度ムラの問題を解消することができる。   Under the above experimental conditions, when microwave irradiation was performed for each of the refrigerant circulation and natural cooling, it was confirmed that the temperature unevenness was reduced as compared with the natural cooling as shown in FIG. That is, since heating and cooling are performed on the entire tubular flow path, the problem of temperature unevenness during chemical reaction can be solved.

これまでのマイクロ波による実用化技術としては、工業用加熱、低温殺菌、セラミックスの焼結・接合等が挙げられるが、最近では、有害物質の分解、有機・無機化合物の高効率生産、診断・治療、酵素反応・バイオリアクター等への応用研究も行われている。マイクロ波による化学反応系への応用では、ターゲット分子への効率的な内部加熱や選択加熱によりプロセスの簡素化、反応装置の小型化、または溶剤等を使用しないプロセスや使用エネルギーの大幅削減が期待できるばかりでなく、非平衡組織・構造を有する高性能新素材をシンプルに合成できることになる。
本発明は、マイクロ波照射により効果が得られる全ての技術に適用できるものであり、特に高分子合成、エステル化反応、酸化反応等の分野における利用が期待されるものである。
To date, practical technologies using microwaves include industrial heating, pasteurization, sintering and bonding of ceramics, etc. Recently, decomposition of harmful substances, high-efficiency production of organic and inorganic compounds, diagnosis / Application research for treatment, enzyme reaction, bioreactor, etc. is also conducted. In microwave chemical reaction systems, efficient internal heating and selective heating of target molecules are expected to simplify the process, reduce the size of the reactor, or significantly reduce processes and energy consumption without using solvents. In addition to being able to do so, it will be possible to simply synthesize high-performance new materials with non-equilibrium structures and structures.
The present invention can be applied to all techniques that can be effective by microwave irradiation, and is expected to be used particularly in the fields of polymer synthesis, esterification reaction, oxidation reaction and the like.

Claims (8)

中空構造の内部を冷媒が循環する冷却部を有する化学反応装置であって、
前記冷却部は、マイクロ波吸透過性の材質で作られており、且つ冷媒としてマイクロ波透過性の液体冷媒を使用することを特徴とする冷却式マイクロ波化学反応装置。
A chemical reaction device having a cooling part in which a refrigerant circulates inside a hollow structure,
The cooling type microwave chemical reaction device, wherein the cooling unit is made of a material that absorbs and transmits microwaves, and uses a microwave-permeable liquid refrigerant as a refrigerant.
前記冷却部は、被冷却物との接触面以外の熱伝導率が、接触面と比べ低いことを特徴とする請求項1の冷却式マイクロ波化学反応装置。   The cooling type microwave chemical reaction device according to claim 1, wherein the cooling unit has a lower thermal conductivity than the contact surface with respect to the object to be cooled. 循環冷媒の温度および/または流量を制御することにより冷却能力を調整することを特徴とする請求項1または2の冷却式マイクロ波化学反応装置。   The cooling type microwave chemical reaction device according to claim 1 or 2, wherein the cooling capacity is adjusted by controlling the temperature and / or flow rate of the circulating refrigerant. 前記冷却部は、被冷却物の反応容器となる管状容器を有することを特徴とする請求項1ないし3のいずれかの冷却式マイクロ波化学反応装置。   The cooling type microwave chemical reaction device according to any one of claims 1 to 3, wherein the cooling section includes a tubular container serving as a reaction container for an object to be cooled. 前記冷却部は、シート状であることを特徴とする請求項1ないし3のいずれかの冷却式マイクロ波化学反応装置。   The cooling type microwave chemical reaction device according to any one of claims 1 to 3, wherein the cooling section has a sheet shape. 前記冷却部は、凹形状であり、凹み部が被冷却物の反応容器となる請求項1ないし3のいずれかの冷却式マイクロ波化学反応装置。   The cooling type microwave chemical reaction device according to any one of claims 1 to 3, wherein the cooling part has a concave shape, and the concave part serves as a reaction container for an object to be cooled. 前記冷却部は、脱着可能な被冷却物の反応容器とその外側を包囲する冷媒槽とから構成されることを特徴とする請求項1ないし3のいずれかの冷却式マイクロ波化学反応装置。   The cooling type microwave chemical reaction device according to any one of claims 1 to 3, wherein the cooling section includes a detachable reaction container for an object to be cooled and a refrigerant tank surrounding the outside. 前記冷却部がマイクロ波を反射するチャンバー内に備えられ、マイクロ波の照射がチャンバー内の冷却部全体になされるよう構成された請求項1ないし7のいずれかのマイクロ波化学反応装置。   The microwave chemical reaction device according to any one of claims 1 to 7, wherein the cooling unit is provided in a chamber that reflects microwaves, and microwave irradiation is performed on the entire cooling unit in the chamber.
JP2006513675A 2004-05-20 2005-04-01 Cooling microwave chemical reactor Active JP5259956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006513675A JP5259956B2 (en) 2004-05-20 2005-04-01 Cooling microwave chemical reactor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004149891 2004-05-20
JP2004149891 2004-05-20
JP2006513675A JP5259956B2 (en) 2004-05-20 2005-04-01 Cooling microwave chemical reactor
PCT/JP2005/006462 WO2005113133A1 (en) 2004-05-20 2005-04-01 Cooling type microwave chemical reaction apparatus

Publications (2)

Publication Number Publication Date
JPWO2005113133A1 true JPWO2005113133A1 (en) 2008-03-27
JP5259956B2 JP5259956B2 (en) 2013-08-07

Family

ID=35428282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006513675A Active JP5259956B2 (en) 2004-05-20 2005-04-01 Cooling microwave chemical reactor

Country Status (2)

Country Link
JP (1) JP5259956B2 (en)
WO (1) WO2005113133A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9699688B2 (en) 2007-08-02 2017-07-04 Qualcomm Incorporated Method for scheduling orthogonally over multiple hops
KR101527977B1 (en) 2008-10-27 2015-06-15 엘지전자 주식회사 Method of operating relay in wireless communication system
EP2491757B1 (en) 2009-10-22 2016-12-14 InterDigital Patent Holdings, Inc. Method and apparatus for a two-way relaying scheme with physical layer network coding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137057A (en) * 1983-01-27 1984-08-06 東洋製罐株式会社 Sterilization treatment
JP2003038951A (en) * 2001-07-30 2003-02-12 Shibaura Mechatronics Corp Apparatus for treating with plasma

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR880000618B1 (en) * 1985-12-28 1988-04-18 재단법인 한국화학연구소 Preparation for silicon multy crystal
JPH08222542A (en) * 1995-02-09 1996-08-30 Hitachi Ltd Surface treating apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137057A (en) * 1983-01-27 1984-08-06 東洋製罐株式会社 Sterilization treatment
JP2003038951A (en) * 2001-07-30 2003-02-12 Shibaura Mechatronics Corp Apparatus for treating with plasma

Also Published As

Publication number Publication date
JP5259956B2 (en) 2013-08-07
WO2005113133A1 (en) 2005-12-01

Similar Documents

Publication Publication Date Title
JP4145335B2 (en) Chemical reaction equipment using microwaves
JP5300014B2 (en) Method and apparatus for continuous microwave irradiation to fluid
Galema Microwave chemistry
AU677876B2 (en) Batch microwave reactor
JP5342097B2 (en) Methods and apparatus for low temperature microwave assisted organic chemical synthesis
Chandrasekaran et al. Microwave material processing—a review
Nagahata et al. Encouragements for the use of microwaves in industrial chemistry
CN1270123C (en) Superheated steam producer
Ching Lau et al. Microwave intensified synthesis: batch and flow chemistry
JP5107278B2 (en) Microwave heating apparatus and heating method
JP5259956B2 (en) Cooling microwave chemical reactor
RO125073B1 (en) Process and plant for the thermal processing of milk
JPS63285121A (en) Device for roasting-reducing by microwave heating
KR102543628B1 (en) Microwave Reactor
JP2020043051A (en) Microwave processing apparatus, microwave processing method, and chemical reaction method
US20140117008A1 (en) Pressure Vessel
US20030091487A1 (en) Continuous flow heating system
JP2011156524A (en) Simple cooling microwave chemical reactor
US8716637B2 (en) Fluidized bed heat treating system
CN106925196A (en) A kind of microwave heating equipment of High-Sr granite
Demianchuk et al. Development of microwave technology of selective heating the components of heterogeneous media
CN106732310B (en) A kind of hydro-thermal reaction device and its method, the system for handling powder body material
EP3784004B1 (en) Microwave applicator control
CN105779694B (en) A method of heating molten steel
JP2017069113A (en) Microwave heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120525

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130227

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5259956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250