JPWO2005073625A1 - Light guide for surface light source device, method for manufacturing the same, and surface light source device - Google Patents

Light guide for surface light source device, method for manufacturing the same, and surface light source device Download PDF

Info

Publication number
JPWO2005073625A1
JPWO2005073625A1 JP2005517479A JP2005517479A JPWO2005073625A1 JP WO2005073625 A1 JPWO2005073625 A1 JP WO2005073625A1 JP 2005517479 A JP2005517479 A JP 2005517479A JP 2005517479 A JP2005517479 A JP 2005517479A JP WO2005073625 A1 JPWO2005073625 A1 JP WO2005073625A1
Authority
JP
Japan
Prior art keywords
light
light source
source device
light guide
incident end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005517479A
Other languages
Japanese (ja)
Other versions
JP4716876B2 (en
Inventor
義人 野崎
義人 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2005517479A priority Critical patent/JP4716876B2/en
Publication of JPWO2005073625A1 publication Critical patent/JPWO2005073625A1/en
Application granted granted Critical
Publication of JP4716876B2 publication Critical patent/JP4716876B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer

Abstract

導光体薄型化に伴う導光体光入射端面近傍領域での輝度むらが視認されにくく、光入射端面近傍での斜め方向の特異的光出射が少ない面光源装置として、一次光源1と、光入射端面31及び光出射面33を有する板状の導光体3とを備えた面光源装置が提供される。ここで、導光体光出射面33は、粗面からなり、光入射端面31の近傍の特定領域Aでは、その表面の平均傾斜角θaが、特定領域以外の一般領域Bとの境界及び光入射端面31との境界の間において一般領域Bの平均傾斜角の平均値θa0より大きな極大値θa1をとり、光入射端面31との境界の近傍では一般領域Bの平均傾斜角の平均値θa0より小さいθa2となっている。平均傾斜角の極大値θa1は2.2°以上4.0°以下の範囲内にある。一般領域における平均傾斜角の平均値θa0は1.4°以上2.4°未満の範囲内にある。As a surface light source device in which uneven luminance in the vicinity of the light incident end face near the light guide end due to the thinning of the light guide is difficult to be visually recognized and specific light emission in the oblique direction near the light incident end face is small, the primary light source 1 and light A surface light source device including a plate-shaped light guide 3 having an incident end face 31 and a light exit surface 33 is provided. Here, the light guide light emitting surface 33 is a rough surface, and in the specific region A in the vicinity of the light incident end surface 31, the average inclination angle θa of the surface is the boundary with the general region B other than the specific region and the light. A maximum value θa1 larger than the average value θa0 of the average inclination angle of the general area B is taken between the boundary with the incident end face 31, and the average value θa0 of the average inclination angle of the general area B is taken near the boundary with the light incident end face 31. It is a small θa2. The maximum value θa1 of the average inclination angle is in the range of 2.2 ° to 4.0 °. The average value θa0 of the average inclination angle in the general region is in the range of 1.4 ° or more and less than 2.4 °.

Description

本発明は、エッジライト方式の面光源装置並びにそれに用いる導光体及びその製造方法に関するものであり、特に、輝度むらの視認性の低減を企図した面光源装置及びそれに用いる導光体に関するものである。本発明の面光源装置は、例えば、携帯用ノートパソコン等のモニターや液晶テレビやビデオ一体型液晶テレビ等の表示部として使用される液晶表示装置のバックライトに、或いは、携帯電話機などの携帯型電子機器のディスプレイパネルや各種機器のインジケータとして使用される比較的小型の液晶表示装置のバックライトに、或いは、駅や公共施設などにおける案内表示板や看板として使用される液晶表示装置のバックライトに、或いは、高速道路や一般道路における交通標識等の標示装置として使用される液晶表示装置のバックライトに、好適である。  The present invention relates to an edge light type surface light source device, a light guide used therefor, and a method for manufacturing the same, and more particularly to a surface light source device intended to reduce the visibility of luminance unevenness and a light guide used therefor. is there. The surface light source device of the present invention is, for example, a backlight of a liquid crystal display device used as a display unit of a monitor such as a portable notebook personal computer or a liquid crystal television or a video integrated liquid crystal television, or a portable type such as a mobile phone. For backlights of relatively small liquid crystal display devices used as display panels for electronic devices and indicators of various devices, or for backlights of liquid crystal display devices used as information display boards and signs in stations and public facilities Alternatively, it is suitable for a backlight of a liquid crystal display device used as a marking device such as a traffic sign on a highway or a general road.

液晶表示装置は、携帯用ノートパソコン等のモニターとして、あるいは液晶テレビやビデオ一体型液晶テレビ等の表示部として、更にはその他の種々の分野で広く使用されてきている。液晶表示装置は、基本的にバックライトと液晶表示素子とから構成されている。バックライトとしては、液晶表示装置のコンパクト化の観点からエッジライト方式のものが多用されている。従来、エッジライト方式のバックライトとしては、矩形板状の導光体の少なくとも1つの端面を光入射端面として用いて、該光入射端面に沿って直管型蛍光ランプなどの線状または棒状の一次光源を配置し、該一次光源から発せられた光を導光体の光入射端面から導光体内部へと導入し、該導光体の2つの主面のうちの一方である光出射面から出射させるものが広く利用されている。  Liquid crystal display devices have been widely used as monitors for portable notebook personal computers or the like, as display units for liquid crystal televisions and video integrated liquid crystal televisions, and in various other fields. A liquid crystal display device basically includes a backlight and a liquid crystal display element. As the backlight, an edge light type is often used from the viewpoint of making the liquid crystal display device compact. Conventionally, as an edge light type backlight, at least one end face of a rectangular plate-shaped light guide is used as a light incident end face, and a linear or rod-like shape such as a straight tube fluorescent lamp is provided along the light incident end face. A primary light source is disposed, light emitted from the primary light source is introduced from the light incident end surface of the light guide into the light guide, and the light exit surface is one of the two main surfaces of the light guide. What is emitted from the projector is widely used.

ところで、近年、液晶表示装置では、その外形寸法に対する表示画面寸法の比率をできるだけ大きくして、表示効率を高めることが要請されている。従って、面光源装置においても、その外形寸法に対する発光面寸法の比率をできるだけ大きくし、即ち発光面の周囲に枠状に存在する構造部分(「額縁」と呼ばれることがある)の寸法をできるだけ小さくすることが要求されている。  Incidentally, in recent years, liquid crystal display devices are required to increase the display efficiency by increasing the ratio of the display screen dimensions to the external dimensions as much as possible. Therefore, also in the surface light source device, the ratio of the light emitting surface dimension to the outer dimension is made as large as possible, that is, the size of the structural part (sometimes referred to as a “frame”) existing in a frame shape around the light emitting surface is made as small as possible. Is required to do.

一方、面光源装置では、その薄型化も要請されており、この要請に応ずるために導光体の薄型化が必要である。導光体が薄型化(例えば厚さ0.5mm〜3mm程度)するに従い、一次光源から発せられた光が導光体の光入射端面と光出射面との境界をなす導光体稜線において二次的な光源として機能することによる影響が面光源装置の発光面の輝度に現れるようになる。この影響は、主として光入射端面に近い領域に顕著に現れる。この現象は額縁幅が大きい場合には実際上は特に問題とならないが、上記のような小額縁幅の面光源装置では特にこの影響による輝度むらが視認されやすいという問題となる。  On the other hand, the surface light source device is also required to be thin, and in order to meet this demand, it is necessary to reduce the thickness of the light guide. As the light guide becomes thinner (for example, about 0.5 mm to 3 mm in thickness), the light emitted from the primary light source becomes two at the light guide ridge line that forms the boundary between the light incident end face and the light exit face of the light guide. The influence of functioning as the next light source appears in the luminance of the light emitting surface of the surface light source device. This effect is noticeable mainly in a region near the light incident end face. This phenomenon is not particularly a problem in practice when the frame width is large, but in the surface light source device having the small frame width as described above, the luminance unevenness due to this influence is particularly easily recognized.

このような発光面の輝度むらの視認され易さの1つの形態として、光入射端面に近接する領域において、輝度の高い部分(輝線または輝帯)と輝度の低い部分(暗線または暗帯)とが特定の間隔で発生し、光入射端面とほぼ平行に延びる複数の明暗ラインとして視認されることが挙げられる。  As one form of easily recognizing the luminance unevenness of the light emitting surface, in a region close to the light incident end surface, a high luminance portion (bright line or bright band) and a low luminance portion (dark line or dark band) Is generated at a specific interval and is visually recognized as a plurality of light and dark lines extending substantially parallel to the light incident end face.

このような光入射端面の近傍での輝度むらを防止するための手法として、例えば特開平10−153778号公報(特許文献1)には、光出射面の光入射端面近傍の領域に隣接領域に比して光散乱性の高い帯状の光拡散領域を設けることが開示されている。また、同様な目的を達成すべく、例えば特開2002−216530号公報(特許文献2)には、光出射面の光入射端面近傍の領域の表面の平均傾斜角を光出射面の他の領域より大きくすることが開示されている。
特開平10−153778号公報 特開2002−216530号公報
As a technique for preventing such luminance unevenness in the vicinity of the light incident end face, for example, in Japanese Patent Application Laid-Open No. 10-153778 (Patent Document 1), an area adjacent to the light incident end face of the light emitting face is placed adjacent to the area. It is disclosed that a band-like light diffusion region having a higher light scattering property is provided. In order to achieve the same object, for example, Japanese Patent Application Laid-Open No. 2002-216530 (Patent Document 2) describes the average inclination angle of the surface in the vicinity of the light incident end face of the light exit surface as another region of the light exit surface. Making it larger is disclosed.
JP-A-10-153778 JP 2002-216530 A

上記特許文献1及び特許文献2の手法によれば、光出射面の光入射端面近傍の領域の光散乱性または光拡散性を強くして、この領域での出射光量を増加させることで、暗帯を目立たなくし輝度むらの低減を図っている。  According to the methods of Patent Document 1 and Patent Document 2, the light scattering property or the light diffusing property in the region near the light incident end surface of the light emitting surface is strengthened, and the amount of emitted light in this region is increased. The band is made inconspicuous to reduce brightness unevenness.

しかしながら、小額縁幅の面光源装置における導光体薄型化に伴う問題は、上記のもの以外にも存在する。即ち、一次光源から発せられた光が導光体の光入射端面と光出射面との境界をなす導光体稜線において二次的な光源として機能することによる影響として、上記以外に、光入射端面近傍にて面光源装置の発光面からその法線方向に対し傾いた斜め方向に特異的に強い光出射が行われて、液晶表示装置のバックライトとして使用した場合に、表示画像の品位を低下させることがある。  However, the problems associated with thinning the light guide in a surface light source device having a small frame width exist in addition to the above. In other words, the light incident from the primary light source functions as a secondary light source at the ridge line of the light guide that forms the boundary between the light incident end face of the light guide and the light exit surface. In the vicinity of the end face, a specific strong light is emitted from the light emitting surface of the surface light source device in an oblique direction inclined with respect to the normal direction, and when used as a backlight of a liquid crystal display device, the display image quality is improved. May decrease.

上記特許文献1及び特許文献2の手法では、このような事象を十分に抑制することができない。  Such a phenomenon cannot be sufficiently suppressed by the methods of Patent Document 1 and Patent Document 2 described above.

本発明は、導光体薄型化に伴う導光体光入射端面近傍領域での輝度むらが視認されにくく、光入射端面近傍での斜め方向の特異的光出射が少ない面光源装置及びそれに用いる導光体を提供することを目的とする。  The present invention provides a surface light source device in which luminance unevenness in the region near the light incident end surface of the light guide associated with the thinning of the light guide is less visible, and less specific light emission in the oblique direction near the light incident end surface, and a light source used therefor An object is to provide a light body.

本発明によれば、上記の課題を解決するものとして、
一次光源と組み合わせて面光源装置を構成するのに使用され、前記一次光源から発せられる光を導光する面光源装置用導光体であって、
前記一次光源から発せられる光が入射する光入射端面及び導光される光が出射する光出射面及び該光出射面の反対側の裏面を有しており、
前記光出射面及び裏面の少なくとも一方は粗面からなっており、粗面からなる前記光出射面及び/または裏面において、前記光入射端面近傍に、表面の平均傾斜角が前記光入射端面に向かって0.5°以上次第に減少している傾斜角逓減領域が存在することを特徴とする面光源装置用導光体、
が提供される。
According to the present invention, as a solution to the above problems,
A light guide for a surface light source device that is used to configure a surface light source device in combination with a primary light source and guides light emitted from the primary light source,
A light incident end surface on which light emitted from the primary light source is incident, a light emitting surface from which guided light is emitted, and a back surface opposite to the light emitting surface;
At least one of the light exit surface and the back surface is a rough surface. In the light exit surface and / or the back surface, which is a rough surface, an average inclination angle of the surface is close to the light entrance end surface toward the light entrance end surface. A light guide for a surface light source device, characterized in that there is an inclined angle decreasing region gradually decreasing by 0.5 ° or more,
Is provided.

本発明の一態様においては、前記導光体の前記光入射端面側の端縁での厚さをdとして、前記傾斜角逓減領域の少なくとも一部は、前記光入射端面からの距離が0.2dから2dまでの領域内に存在する。本発明の一態様においては、前記傾斜角逓減領域の少なくとも一部は、前記光入射端面からの距離が0.2mmから4mmまでの領域内に存在する。  In one aspect of the present invention, the thickness of the light guide at the edge on the light incident end face side is d, and at least part of the inclined angle decreasing region has a distance from the light incident end face of 0.1 mm. It exists in the region from 2d to 2d. In one aspect of the present invention, at least part of the inclined angle decreasing region is present in a region having a distance from the light incident end surface of 0.2 mm to 4 mm.

また、本発明によれば、上記の課題を解決するものとして、
一次光源と組み合わせて面光源装置を構成するのに使用され、前記一次光源から発せられる光を導光する面光源装置用導光体であって、
前記一次光源から発せられる光が入射する光入射端面及び導光される光が出射する光出射面及び該光出射面の反対側の裏面を有しており、
前記光出射面及び裏面の少なくとも一方は粗面からなっており、粗面からなる前記光出射面及び/または裏面において、前記光入射端面近傍の特定領域では、表面の平均傾斜角が、前記特定領域以外の一般領域との境界及び前記光入射端面との境界の間において前記一般領域の平均傾斜角の平均値より大きな極大値をとり、前記光入射端面との境界の近傍では前記一般領域の平均傾斜角の平均値より小さくなっていることを特徴とする面光源装置用導光体、
が提供される。
Further, according to the present invention, as a solution to the above problems,
A light guide for a surface light source device that is used to configure a surface light source device in combination with a primary light source and guides light emitted from the primary light source,
A light incident end surface on which light emitted from the primary light source is incident, a light emitting surface from which guided light is emitted, and a back surface opposite to the light emitting surface;
At least one of the light exit surface and the back surface is a rough surface. In the light exit surface and / or the back surface, which is a rough surface, in a specific region near the light incident end surface, an average inclination angle of the surface is the specific surface. A maximum value larger than the average value of the average inclination angle of the general region between the boundary with the general region other than the region and the boundary with the light incident end surface, and in the vicinity of the boundary with the light incident end surface, A light guide for a surface light source device, characterized by being smaller than an average value of an average inclination angle;
Is provided.

本発明の一態様においては、前記導光体の前記光入射端面側の端縁での厚さをdとして、前記平均傾斜角の極大値をとる位置は前記特定領域の前記光入射端面との境界までの距離がd〜3dの範囲の領域内に存在する。本発明の一態様においては、前記特定領域における平均傾斜角の極大値は2.2°以上4.0°以下の範囲内にある。本発明の一態様においては、前記一般領域における平均傾斜角の平均値は1.4°以上2.4°未満の範囲内にある。本発明の一態様においては、前記特定領域は、前記一般領域との境界から前記光入射端面との境界までの距離が前記導光体の前記光入射端面側の端縁での厚さの10倍〜30倍の範囲内にある。本発明の一態様においては、前記特定領域は、前記一般領域との境界から前記光入射端面との境界までの距離が10mm〜70mmの範囲内にある。  In one aspect of the present invention, the thickness at the light incident end face side edge of the light guide is d, and the position where the average inclination angle has a maximum value is the distance from the light incident end face of the specific region. The distance to the boundary exists in a region in the range of d to 3d. In one aspect of the present invention, the maximum value of the average inclination angle in the specific region is in the range of 2.2 ° to 4.0 °. In one aspect of the present invention, the average value of the average inclination angle in the general region is in the range of not less than 1.4 ° and less than 2.4 °. In one aspect of the present invention, the specific region has a distance from a boundary with the general region to a boundary with the light incident end surface that is 10 mm of a thickness at an edge of the light guide on the light incident end surface side. It is in the range of times to 30 times. In one aspect of the present invention, the specific region has a distance from the boundary with the general region to the boundary with the light incident end surface within a range of 10 mm to 70 mm.

更に、本発明によれば、上記の課題を解決するものとして、以上のような面光源装置用導光体の光入射端面に対向して前記一次光源が配置されていることを特徴とする前記面光源装置、が提供される。  Furthermore, according to the present invention, the primary light source is disposed so as to face the light incident end surface of the light guide for a surface light source device as described above, in order to solve the above-described problem. A surface light source device is provided.

本発明の一態様においては、前記面光源装置は、更に、前記導光体の光出射面上に配置され、且つ前記導光体の光出射面から出射する光が入光する入光面及びその反対側の出光面を有する光偏向素子を備えている。本発明の一態様においては、前記光偏向素子は前記入光面に前記導光体の光入射端面に沿って延び且つ互いに平行に配列された複数のプリズム列を備えており、該プリズム列のそれぞれは前記導光体の光出射面からの光が入射する第1のプリズム面と入射した光が内面反射される第2のプリズム面とを有する。本発明の一態様においては、前記一次光源は線状光源である。  In one aspect of the present invention, the surface light source device is further disposed on a light emitting surface of the light guide, and a light incident surface on which light emitted from the light emitting surface of the light guide enters and An optical deflection element having a light exit surface on the opposite side is provided. In one aspect of the present invention, the light deflection element includes a plurality of prism rows that extend along the light incident end surface of the light guide and are arranged in parallel to each other on the light incident surface. Each has a first prism surface on which light from the light exit surface of the light guide is incident and a second prism surface on which the incident light is internally reflected. In one aspect of the present invention, the primary light source is a linear light source.

更に、本発明によれば、上記の課題を解決するものとして、
以上のような面光源装置用導光体を製造する方法であって、前記光出射面を転写形成する第1の転写面を有する第1の型部材及び前記裏面を転写形成する第2の転写面を有する第2の型部材を用いて透光性合成樹脂を成形し、ここで前記光出射面及び裏面のうちの粗面からなるものの転写形成のための前記第1の転写面及び/または第2の転写面を形成するに際して、転写面領域のうちで前記導光体の光入射端面と光出射面との境界に対応する縁辺の近傍に対する遮蔽効果を付与した状態で第1の粗面化を行うことを特徴とする、面光源装置用導光体の製造方法、
が提供される。
Furthermore, according to the present invention, as a solution to the above problems,
A method for manufacturing a light guide for a surface light source device as described above, wherein a first mold member having a first transfer surface for transferring and forming the light emitting surface and a second transfer for transferring and forming the back surface are provided. Forming a translucent synthetic resin using a second mold member having a surface, wherein the first transfer surface and / or the transfer surface of the rough surface of the light exit surface and the back surface; When forming the second transfer surface, the first rough surface is provided with a shielding effect on the vicinity of the edge corresponding to the boundary between the light incident end surface and the light exit surface of the light guide in the transfer surface region. A method of manufacturing a light guide for a surface light source device, characterized in that
Is provided.

本発明の一態様においては、前記光出射面及び裏面のうちの粗面からなるものの転写形成のための前記第1の転写面及び/または第2の転写面を形成するに際して、更に、前記一般領域に対応する転写面領域に対する遮蔽効果を付与した状態で第2の粗面化を行う。本発明の一態様においては、前記第2の粗面化に際して前記特定領域に対応する転写面領域のうちで前記縁辺の近傍に対する遮蔽効果をも付与する。本発明の一態様においては、前記第1の粗面化及び/または第2の粗面化をエッチング処理により行う。本発明の一態様においては、前記第1の粗面化及び/または第2の粗面化をブラスト処理により行う。本発明の一態様においては、前記遮蔽効果の付与を遮蔽部材の配置により行い、該遮蔽部材を前記第1の転写面または第2の転写面から離して配置する。  In one aspect of the present invention, in forming the first transfer surface and / or the second transfer surface for transfer formation of a rough surface of the light exit surface and the back surface, the general transfer The second roughening is performed with the shielding effect applied to the transfer surface area corresponding to the area. In one aspect of the present invention, the second roughening also provides a shielding effect on the vicinity of the edge in the transfer surface area corresponding to the specific area. In one embodiment of the present invention, the first roughening and / or the second roughening is performed by an etching process. In one embodiment of the present invention, the first roughening and / or the second roughening is performed by blasting. In one aspect of the present invention, the shielding effect is imparted by arranging a shielding member, and the shielding member is arranged away from the first transfer surface or the second transfer surface.

以上のような本発明によれば、面光源装置用導光体の光出射面及び裏面の少なくとも一方を粗面からなるものとし、該粗面は、光入射端面近傍に、表面の平均傾斜角が光入射端面に向かって0.5°以上次第に減少している傾斜角逓減領域が存在するようにしているため、或いは、光入射端面近傍の特定領域での平均傾斜角が、特定領域以外の一般領域との境界及び光入射端面との境界の間において一般領域の平均傾斜角の平均値より大きな極大値をとり、更に光入射端面との境界の近傍では一般領域の平均傾斜角の平均値より小さくなるようにしているため、導光体薄型化に伴う光出射面における光入射端面近傍領域での輝度むらが視認されにくく、光入射端面近傍での斜め方向の特異的光出射が少ない面光源装置が提供される。  According to the present invention as described above, at least one of the light exit surface and the back surface of the light guide for the surface light source device is formed of a rough surface, and the rough surface is in the vicinity of the light incident end surface and has an average inclination angle of the surface. Since there is a slope angle decreasing region that gradually decreases by 0.5 ° or more toward the light incident end surface, or the average inclination angle in the specific region near the light incident end surface is other than the specific region Takes a maximum value larger than the average value of the average inclination angle of the general area between the boundary with the general area and the boundary with the light incident end face, and further averages the average inclination angle of the general area in the vicinity of the boundary with the light incident end face. Because it is made smaller, the luminance unevenness in the region near the light incident end face on the light exit surface due to the light guide thinning is less visible, and the surface with less specific light emission in the oblique direction near the light incident end face A light source device is provided.

以下、図面を参照しながら、本発明の実施の形態を説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明による面光源装置の一つの実施形態を示す模式的斜視図であり、図2はその部分断面図である。図示されているように、本実施形態の面光源装置は、少なくとも一つの側端面を光入射端面31とし、これと略直交する一つの表面を光出射面33とする導光体3と、この導光体3の光入射端面31に対向して配置され光源リフレクタ2で覆われた線状の一次光源1と、導光体3の光出射面上に配置された光偏向素子4と、導光体3の光出射面33とは反対側の裏面34に対向して配置された光反射素子5とを含んで構成されている。  FIG. 1 is a schematic perspective view showing one embodiment of a surface light source device according to the present invention, and FIG. 2 is a partial sectional view thereof. As shown in the drawing, the surface light source device of the present embodiment includes a light guide 3 having at least one side end surface as a light incident end surface 31 and a light exit surface 33 as one surface substantially orthogonal thereto. A linear primary light source 1 disposed facing the light incident end surface 31 of the light guide 3 and covered with the light source reflector 2, a light deflection element 4 disposed on the light exit surface of the light guide 3, and a light guide The light reflecting element 5 is disposed so as to face the back surface 34 opposite to the light emitting surface 33 of the light body 3.

導光体3は、XY面と平行に配置されており、全体として矩形板状をなしている。導光体3は4つの側端面を有しており、そのうちYZ面と平行な1対の側端面のうちの少なくとも一つの側端面を光入射端面31とする。光入射端面31は一次光源1と対向して配置されており、一次光源1から発せられた光は光入射端面31から導光体3内へと入射する。本発明においては、例えば、光入射端面31とは反対側の側端面32等の他の側端面にも光源を対向配置してもよい。  The light guide 3 is arranged in parallel with the XY plane and has a rectangular plate shape as a whole. The light guide 3 has four side end surfaces, and at least one of the pair of side end surfaces parallel to the YZ plane is a light incident end surface 31. The light incident end face 31 is disposed to face the primary light source 1, and the light emitted from the primary light source 1 enters the light guide 3 from the light incident end face 31. In the present invention, for example, the light source may be disposed opposite to another side end face such as the side end face 32 opposite to the light incident end face 31.

導光体3の光入射端面31に略直交した2つの主面は、それぞれXY面と略平行に位置しており、いずれか一方の面(図では上面)が光出射面33となる。この光出射面33またはその裏面34のうちの少なくとも一方の面に粗面からなる指向性光出射機構を付与することによって、光入射端面31から入射した光を導光体3中を導光させながら光出射面33から光入射端面31および光出射面33に直交する面(XZ面)内において指向性のある光を出射させる。このXZ面内分布における出射光光度分布のピークの方向(ピーク光)が光出射面33となす角度をαとする。角度αは例えば10〜40度であり、出射光光度分布の半値全幅は例えば10〜40度である。導光体3の光出射面33または裏面34に形成する粗面の詳細については、後述する。  Two main surfaces that are substantially orthogonal to the light incident end surface 31 of the light guide 3 are respectively positioned substantially parallel to the XY plane, and one of the surfaces (the upper surface in the drawing) serves as the light emitting surface 33. By providing a rough directional light emitting mechanism on at least one of the light emitting surface 33 or the back surface 34 thereof, the light incident from the light incident end surface 31 is guided through the light guide 3. However, light having directivity is emitted from the light emitting surface 33 within the light incident end surface 31 and a surface (XZ surface) orthogonal to the light emitting surface 33. The angle between the peak direction (peak light) of the emitted light luminous intensity distribution in the XZ in-plane distribution and the light emitting surface 33 is defined as α. The angle α is, for example, 10 to 40 degrees, and the full width at half maximum of the emitted light luminous intensity distribution is, for example, 10 to 40 degrees. Details of the rough surface formed on the light emitting surface 33 or the back surface 34 of the light guide 3 will be described later.

また、指向性光出射機構が付与されていない他の主面には、導光体3からの出射光の一次光源1と平行な面(YZ面)での指向性を制御するために、光入射端面31に対して略垂直の方向(X方向)に延びる多数のレンズ列を配列したレンズ面を形成することが好ましい。図1に示した実施形態においては、光出射面33に粗面を形成し、裏面34に光入射端面31に対して略垂直方向(X方向)に延びる多数のレンズ列の配列からなるレンズ列形成面を形成している。本発明においては、図1に示した形態とは逆に、光出射面33にレンズ列形成面を形成し、裏面34を粗面とするものであってもよい。  In addition, the other main surface to which the directional light emitting mechanism is not provided is light in order to control the directivity on a surface (YZ surface) parallel to the primary light source 1 of the light emitted from the light guide 3. It is preferable to form a lens surface in which a large number of lens rows extending in a direction substantially perpendicular to the incident end surface 31 (X direction) are arranged. In the embodiment shown in FIG. 1, a lens array comprising a plurality of lens arrays in which a rough surface is formed on the light emitting surface 33 and the back surface 34 extends in a direction substantially perpendicular to the light incident end surface 31 (X direction). A forming surface is formed. In the present invention, contrary to the embodiment shown in FIG. 1, a lens array forming surface may be formed on the light emitting surface 33, and the back surface 34 may be a rough surface.

図1に示したように、導光体3の裏面34あるいは光出射面33にレンズ列形成面を形成する場合、そのレンズ列としては略X方向に延びたプリズム列、レンチキュラーレンズ列、V字状溝等が挙げられるが、YZ断面の形状が略三角形状のプリズム列とすることが好ましい。  As shown in FIG. 1, when a lens array forming surface is formed on the back surface 34 or the light emitting surface 33 of the light guide 3, the lens array includes a prism array, a lenticular lens array, a V-shape extending substantially in the X direction. However, it is preferable that the YZ cross-sectional shape is a substantially triangular prism array.

本発明において、導光体3の裏面34にレンズ列形成面としてプリズム列形成面を形成する場合には、その頂角を85〜110度の範囲とすることが好ましい。これは、頂角をこの範囲とすることによって導光体3からの出射光を適度に集光させることができ、面光源装置としての輝度の向上を図ることができるためであり、より好ましくは90〜100度の範囲である。  In the present invention, when a prism row forming surface is formed on the back surface 34 of the light guide 3 as a lens row forming surface, the apex angle is preferably in the range of 85 to 110 degrees. This is because the light emitted from the light guide 3 can be appropriately condensed by setting the apex angle within this range, and the luminance as the surface light source device can be improved, and more preferably It is in the range of 90 to 100 degrees.

本発明の導光体においては、所望のプリズム列形状を精確に作製し、安定した光学性能を得るとともに、組立作業時や光源装置としての使用時におけるプリズム頂部摩耗や変形を抑止する目的で、プリズム列の頂部に平坦部あるいは曲面部を形成してもよい。  In the light guide of the present invention, the desired prism array shape is accurately produced, and stable optical performance is obtained, and for the purpose of suppressing prism top wear and deformation during assembly work and use as a light source device, A flat portion or a curved surface portion may be formed at the top of the prism row.

なお、本発明では、上記のような光出射面33またはその裏面34に形成される光出射機構と併用して、導光体内部に光拡散性微粒子を混入分散することによる指向性光出射機構を付加してもよい。  In the present invention, a directional light emitting mechanism by mixing and dispersing light diffusing fine particles inside the light guide in combination with the light emitting mechanism formed on the light emitting surface 33 or the back surface 34 as described above. May be added.

光入射端面31は、XY面内及び/又はXZ面内での光の広がりを調節するために、粗面化することが好ましい。粗面の形成方法としては、フライス工具等で切削する方法、砥石、サンドペーパー、バフ等で研磨する方法、ブラスト加工、放電加工、電解研磨、化学研磨等による方法が挙げられる。ブラスト加工に使用されるブラスト粒子としては、ガラスビーズのような球形のもの、アルミナビーズのような多角形状のものが挙げられるが、多角形状のものを使用する方が光を広げる効果の大きな粗面を形成できることから好ましい。切削加工や研磨加工の加工方向を調整することにより、異方性の粗面を形成することもできる。XY面内での光の広がりの調節のためにはZ方向の加工方向を採用してZ方向の筋状凹凸形状を形成することができ、XZ面内での光の広がりの調節のためにはY方向の加工方向を採用してY方向の筋状凹凸形状を形成することができる。この粗面加工は、導光体の光入射端面に直接施すこともできるが、金型の光入射端面に相当する部分を加工して、これを成形時に転写することもできる。  The light incident end face 31 is preferably roughened in order to adjust the spread of light in the XY plane and / or the XZ plane. Examples of the rough surface forming method include a method of cutting with a milling tool or the like, a method of polishing with a grindstone, sandpaper, buff or the like, a method of blasting, electric discharge machining, electrolytic polishing, chemical polishing or the like. Blasting particles used for blasting include spherical particles such as glass beads and polygonal particles such as alumina beads, but the use of polygonal particles has a greater effect of spreading light. It is preferable because the surface can be formed. An anisotropic rough surface can also be formed by adjusting the processing direction of cutting or polishing. In order to adjust the spread of light in the XY plane, a Z-direction machining direction can be adopted to form a streak-like uneven shape in the Z direction, and to adjust the spread of light in the XZ plane. Can adopt a processing direction in the Y direction to form a streak-like uneven shape in the Y direction. This rough surface processing can be performed directly on the light incident end face of the light guide, but a portion corresponding to the light incident end face of the mold can be processed and transferred at the time of molding.

光入射端面31の粗面化の程度は、導光体厚さ方向で、平均傾斜角θaが1〜5度、中心線平均粗さRaが0.05〜0.5μm、十点平均粗さRzが0.5〜3μmであることが好ましい。これは、光入射端面31の粗面化の度合いをこの範囲とすることによって、光出射面にて、明帯あるいは暗帯の発生を抑止できるとともに、輝線・暗線をぼかし見え難くすることができるためである。平均傾斜角θaは、更に好ましくは2〜4.5度、特に好ましくは2.5〜3度の範囲である。中心線平均粗さRaは、更に好ましくは0.07〜0.3μm、特に好ましくは0.1〜0.25μmの範囲である。十点平均粗さRzは、更に好ましくは0.7〜2.5μm、特に好ましくは1〜2μmの範囲である。また、光入射端面31の粗面化の程度は、長手方向で、上記と同様の理由から、平均傾斜角θaが1〜3度、中心線平均粗さRaが0.02〜0.1μm、十点平均粗さRzが0.3〜2μmであることが好ましい。平均傾斜角θaは、更に好ましくは1.3〜2.7度、特に好ましくは1.5〜2.5度の範囲である。中心線平均粗さRaは、更に好ましくは0.03〜0.08μm、特に好ましくは0.05〜0.07μmの範囲である。十点平均粗さRzは、更に好ましくは0.4〜1.7μm、特に好ましくは0.5〜1.5μmの範囲である。  The degree of roughening of the light incident end face 31 is, in the light guide thickness direction, an average inclination angle θa of 1 to 5 degrees, a centerline average roughness Ra of 0.05 to 0.5 μm, and a ten-point average roughness. Rz is preferably 0.5 to 3 μm. This is because, by setting the degree of roughening of the light incident end face 31 within this range, it is possible to suppress the occurrence of bright bands or dark bands on the light exit surface and to make the bright lines and dark lines difficult to see. Because. The average inclination angle θa is more preferably in the range of 2 to 4.5 degrees, particularly preferably 2.5 to 3 degrees. The center line average roughness Ra is more preferably in the range of 0.07 to 0.3 μm, particularly preferably in the range of 0.1 to 0.25 μm. The ten-point average roughness Rz is more preferably in the range of 0.7 to 2.5 μm, particularly preferably 1 to 2 μm. The degree of roughening of the light incident end face 31 is, in the longitudinal direction, for the same reason as described above, the average inclination angle θa is 1 to 3 degrees, the centerline average roughness Ra is 0.02 to 0.1 μm, The ten-point average roughness Rz is preferably 0.3 to 2 μm. The average inclination angle θa is more preferably in the range of 1.3 to 2.7 degrees, particularly preferably 1.5 to 2.5 degrees. The centerline average roughness Ra is more preferably in the range of 0.03 to 0.08 μm, particularly preferably 0.05 to 0.07 μm. The ten-point average roughness Rz is more preferably in the range of 0.4 to 1.7 μm, particularly preferably 0.5 to 1.5 μm.

導光体3としては、図1に示したような形状に限定されるものではなく、光入射端面の方が厚いくさび状等の種々の形状のものが使用できる。  The light guide 3 is not limited to the shape shown in FIG. 1, and various shapes such as a rust shape with a thicker light incident end face can be used.

光偏向素子4は、導光体3の光出射面33上に配置されている。光偏向素子4の2つの主面41,42は全体として互いに平行に配列されており、それぞれ全体としてXY面と平行に位置する。主面41,42のうちの一方(導光体3の光出射面33側に位置する主面)は入光面41とされており、他方が出光面42とされている。出光面42は、導光体3の光出射面33と平行な平坦面とされている。入光面41は、多数のY方向に延びるプリズム列が互いに平行に配列されたプリズム列形成面とされている。プリズム列形成面は、隣接するプリズム列の間に比較的幅の狭い底部平坦部(例えば、プリズム列のX方向寸法と同程度あるいはそれより小さい幅の平坦部)を設けてもよいが、光の利用効率を高める点からは底部平坦部を設けることなくプリズム列をX方向に連続して配列することが好ましい。  The light deflection element 4 is disposed on the light emitting surface 33 of the light guide 3. The two main surfaces 41 and 42 of the light deflection element 4 are arranged in parallel with each other as a whole, and are located in parallel with the XY plane as a whole. One of the main surfaces 41 and 42 (the main surface located on the light emitting surface 33 side of the light guide 3) is a light incident surface 41, and the other is a light emitting surface 42. The light exit surface 42 is a flat surface parallel to the light exit surface 33 of the light guide 3. The light incident surface 41 is a prism row forming surface in which a large number of prism rows extending in the Y direction are arranged in parallel to each other. The prism row forming surface may be provided with a bottom flat portion having a relatively narrow width between adjacent prism rows (for example, a flat portion having a width equal to or smaller than the dimension in the X direction of the prism row). It is preferable to arrange the prism rows continuously in the X direction without providing a flat bottom portion in order to improve the utilization efficiency of the prism.

図3に、光偏向素子4による光偏向の様子を模式的に示す。この図は、XZ面内での導光体3からのピーク光(出射光分布のピークに対応する光)の進行方向の一例を示すものである。導光体3の光出射面33から角度αで斜めに出射されるピーク光は、プリズム列の第1のプリズム面へ入射し第2のプリズム面により内面全反射されてほぼ出光面42の法線の方向に出射する。また、YZ面内では、上記のような導光体裏面34のプリズム列の作用により広範囲の領域において出光面42の法線の方向の輝度の十分な向上を図ることができる。  FIG. 3 schematically shows the state of light deflection by the light deflection element 4. This figure shows an example of the traveling direction of the peak light (light corresponding to the peak of the outgoing light distribution) from the light guide 3 in the XZ plane. The peak light emitted obliquely at an angle α from the light emitting surface 33 of the light guide 3 is incident on the first prism surface of the prism row and is totally reflected by the second prism surface so as to be substantially equal to the light emitting surface 42 method. Emits in the direction of the line. Further, in the YZ plane, the luminance in the direction of the normal line of the light exit surface 42 can be sufficiently improved in a wide area by the action of the prism row on the light guide back surface 34 as described above.

光偏向素子4のプリズム列のプリズム面の形状は、単一平面に限られず、例えば断面凸多角形状または凸曲面形状とすることができ、これにより、高輝度化、狭視野化を図ることができる。  The shape of the prism surface of the prism row of the light deflection element 4 is not limited to a single plane, and can be, for example, a convex polygonal shape or a convex curved surface shape, thereby achieving high brightness and narrow field of view. it can.

光偏向素子4においては、所望のプリズム形状を精確に作製し、安定した光学性能を得るとともに、組立作業時や光源装置としての使用時におけるプリズム頂部の摩耗や変形を抑止する目的で、プリズム列の頂部に頂部平坦部あるいは頂部曲面部を形成してもよい。この場合、頂部平坦部あるいは頂部曲面部の幅は、3μm以下とすることが、面光源装置としての輝度の低下やスティキング現象による輝度の不均一パターンの発生を抑止する観点から好ましく、より好ましくは頂部平坦部あるいは頂部曲面部の幅は2μm以下であり、さらに好ましくは1μm以下である。  In the light deflection element 4, a prism array is formed for the purpose of accurately producing a desired prism shape, obtaining stable optical performance, and suppressing wear and deformation of the prism top during assembly work and use as a light source device. A top flat portion or a top curved surface portion may be formed on the top of the top. In this case, the width of the top flat part or the top curved surface part is preferably 3 μm or less from the viewpoint of suppressing the occurrence of a non-uniform luminance pattern due to a decrease in luminance or a sticking phenomenon as the surface light source device. The width of the top flat part or the top curved part is 2 μm or less, more preferably 1 μm or less.

一次光源1はY方向に延在する線状の光源であり、該一次光源1としては例えば蛍光ランプや冷陰極管を用いることができる。この場合、一次光源1は、図1に示したように、導光体3の一方の側端面に対向して設置する場合だけでなく、必要に応じて反対側の側端面にもさらに設置することもできる。  The primary light source 1 is a linear light source extending in the Y direction. As the primary light source 1, for example, a fluorescent lamp or a cold cathode tube can be used. In this case, as shown in FIG. 1, the primary light source 1 is not only installed to face one side end face of the light guide 3, but is further placed on the opposite side end face as necessary. You can also.

光源リフレクタ2は一次光源1の光をロスを少なく導光体3へ導くものである。その材質としては、例えば表面に金属蒸着反射層を有するプラスチックフィルムを用いることができる。図示されているように、光源リフレクタ2は、光偏向素子4を避けて、光反射素子5の端縁部外面から一次光源1の外面を経て導光体3の光出射面端縁部へと巻きつけられている。他方、光源リフレクタ2は、光反射素子5の端縁部外面から一次光源1の外面を経て光偏向素子4の出光面端縁部へと巻きつけることも可能である。このような光源リフレクタ2と同様な反射部材を、導光体3の光入射端面31以外の側端面に付することも可能である。  The light source reflector 2 guides the light from the primary light source 1 to the light guide 3 with little loss. As the material, for example, a plastic film having a metal-deposited reflective layer on the surface can be used. As shown in the figure, the light source reflector 2 avoids the light deflecting element 4 and passes from the outer surface of the light reflecting element 5 to the light emitting surface edge of the light guide 3 through the outer surface of the primary light source 1. It is wrapped around. On the other hand, the light source reflector 2 can be wound from the outer surface of the light reflecting element 5 to the light emitting surface edge of the light deflecting element 4 through the outer surface of the primary light source 1. A reflection member similar to the light source reflector 2 can be attached to the side end face other than the light incident end face 31 of the light guide 3.

光反射素子5としては、例えば表面に金属蒸着反射層を有するプラスチックシートを用いることができる。本発明においては、光反射素子5として反射シートに代えて、導光体3の裏面34に金属蒸着等により形成された光反射層等を用いることも可能である。  As the light reflecting element 5, for example, a plastic sheet having a metal vapor deposition reflecting layer on the surface can be used. In the present invention, it is also possible to use a light reflecting layer or the like formed by metal vapor deposition or the like on the back surface 34 of the light guide 3 instead of the reflecting sheet as the light reflecting element 5.

本発明の導光体3及び光偏向素子4は、光透過率の高い合成樹脂から構成することができる。このような合成樹脂としては、メタクリル樹脂、アクリル樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂が例示できる。特に、メタクリル樹脂が、光透過率の高さ、耐熱性、力学的特性、成形加工性に優れており、最適である。このようなメタクリル樹脂としては、メタクリル酸メチルを主成分とする樹脂であり、メタクリル酸メチルが80重量%以上であるものが好ましい。導光体3及び光偏向素子4の粗面等の表面構造やプリズム列又はレンチキュラーレンズ列等の表面構造を形成するに際しては、透明合成樹脂板を所望の表面構造を有する型部材を用いて熱プレスすることで形成してもよいし、スクリーン印刷、押出成形や射出成形等によって成形と同時に形状付与してもよい。また、熱あるいは光硬化性樹脂等を用いて構造面を形成することもできる。更に、ポリエステル系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、塩化ビニル系樹脂、ポリメタクリルイミド系樹脂等からなる透明フィルムあるいはシート等の透明基材の表面に、活性エネルギー線硬化型樹脂からなる粗面構造またレンズ列配列構造を形成してもよいし、このようなシートを接着、融着等の方法によって別個の透明基材上に接合一体化させてもよい。活性エネルギー線硬化型樹脂としては、多官能(メタ)アクリル化合物、ビニル化合物、(メタ)アクリル酸エステル類、アリル化合物、(メタ)アクリル酸の金属塩等を使用することができる。  The light guide 3 and the light deflection element 4 of the present invention can be made of a synthetic resin having a high light transmittance. Examples of such synthetic resins include methacrylic resins, acrylic resins, polycarbonate resins, polyester resins, and vinyl chloride resins. In particular, methacrylic resins are optimal because of their high light transmittance, heat resistance, mechanical properties, and molding processability. Such a methacrylic resin is a resin mainly composed of methyl methacrylate, and preferably has a methyl methacrylate content of 80% by weight or more. When forming a surface structure such as a rough surface of the light guide 3 and the light deflecting element 4 or a surface structure such as a prism array or a lenticular lens array, the transparent synthetic resin plate is heated using a mold member having a desired surface structure. You may form by pressing, and you may give a shape simultaneously with shaping | molding by screen printing, extrusion molding, injection molding, etc. The structural surface can also be formed using heat or a photocurable resin. Furthermore, the surface of a transparent substrate such as a polyester resin, acrylic resin, polycarbonate resin, vinyl chloride resin, polymethacrylamide resin, or the like, or a rough surface made of an active energy ray curable resin is used. A structure or a lens array arrangement structure may be formed, or such a sheet may be bonded and integrated on a separate transparent substrate by a method such as adhesion or fusion. As the active energy ray-curable resin, polyfunctional (meth) acrylic compounds, vinyl compounds, (meth) acrylic acid esters, allyl compounds, (meth) acrylic acid metal salts, and the like can be used.

以上のような一次光源1、光源リフレクタ2、導光体3、光偏向素子4及び光反射素子5を含んでなる面光源装置の発光面(光偏向素子5の出光面42)上に、図3に示すように透過型の液晶表示素子8を配置することにより、本発明の面光源装置をバックライトとした液晶表示装置が構成される。液晶表示装置は、図3における上方から観察者により観察される。  On the light emitting surface (the light exit surface 42 of the light deflection element 5) of the surface light source device including the primary light source 1, the light source reflector 2, the light guide 3, the light deflection element 4, and the light reflection element 5 as described above, As shown in FIG. 3, a liquid crystal display device using the surface light source device of the present invention as a backlight is configured by arranging the transmissive liquid crystal display element 8. The liquid crystal display device is observed by an observer from above in FIG.

次に、導光体3の光出射機構を構成する粗面につき説明する。図4は、一次光源1と導光体光出射面33との関係及び該光出射面33の平均傾斜角θaの分布を示す模式図である。光出射面33に形成される粗面は、全体として均一に形成されるものではなく、平均傾斜角θaの分布形態により区分される2つの領域即ち特定領域A及び一般領域Bから構成される。特定領域Aは光入射端面31の近傍の幅(X方向寸法)x1の領域であり、一般領域Bはそれ以外の領域である。一般領域Bは光出射面33の中心部を含む大部分の領域であり、特定領域Aは、その幅x1が、例えば導光体3の光入射端面側の端縁での厚さをd(図2参照)として10d〜30dの範囲内にあり、具体的には例えば10mm〜70mmの範囲内にあり、上記一般領域Bに対して比較的狭い領域である。尚、導光体3の光入射端面側の端縁での厚さdは、例えば0.5mm〜3mmの範囲内である。  Next, the rough surface constituting the light emitting mechanism of the light guide 3 will be described. FIG. 4 is a schematic diagram showing the relationship between the primary light source 1 and the light guide light exit surface 33 and the distribution of the average inclination angle θa of the light exit surface 33. The rough surface formed on the light emitting surface 33 is not uniformly formed as a whole, but is composed of two regions, that is, a specific region A and a general region B, which are divided by the distribution form of the average inclination angle θa. The specific area A is an area having a width (dimension in the X direction) x1 in the vicinity of the light incident end face 31, and the general area B is the other area. The general area B is a large area including the central portion of the light emitting surface 33, and the specific area A has a width x1, for example, a thickness at an edge on the light incident end face side of the light guide 3 d ( 2), it is within a range of 10d to 30d, specifically, for example, within a range of 10 mm to 70 mm, and is a relatively narrow region with respect to the general region B. In addition, the thickness d at the edge on the light incident end face side of the light guide 3 is in the range of 0.5 mm to 3 mm, for example.

平均傾斜角θaは、ISO4287/1−1984に従って、表面粗さ・輪郭形状測定機(例えば、株式会社東京精密社製のサーフコム[商品名])を用いて得ることができる。即ち、測定方向の座標をxとして、得られた傾斜関数f(x)から次の(1)式及び(2)式を用いて求めることができる。ここで、Lは測定長さであり、Δaは平均傾斜角θaの正接である。  The average inclination angle θa can be obtained according to ISO 4287 / 1-1984 using a surface roughness / contour shape measuring instrument (for example, Surfcom [trade name] manufactured by Tokyo Seimitsu Co., Ltd.). In other words, the coordinate in the measurement direction is x, and can be obtained from the obtained gradient function f (x) using the following equations (1) and (2). Here, L is the measurement length, and Δa is the tangent of the average inclination angle θa.

Figure 2005073625
実際の測定に際しては、導光体3の表面をY方向に測定し、その測定をX方向に一定ピッチ(例えば1mmピッチ)ごとにずらしてθaを求め、特定領域A及び一般領域BにおけるX方向の平均傾斜角θaの分布形態を得ることができる。
Figure 2005073625
In actual measurement, the surface of the light guide 3 is measured in the Y direction, the measurement is shifted in the X direction at a constant pitch (for example, 1 mm pitch) to obtain θa, and the X direction in the specific area A and the general area B The distribution form of the average inclination angle θa can be obtained.

図4に示されるように、一般領域Bにおいては、平均傾斜角θaの分布形態は比較的なだらかであり、平均傾斜角θaのX方向に関する全範囲の平均値がθa0である。一方、特定領域Aにおいては、平均傾斜角θaの分布形態は比較的変化に富んでおり、光入射端面31との境界から距離x2の位置において平均傾斜角θaは極大値θa1をとる。この極大値θa1は上記θa0より大きい。即ち、特定領域Aにおいて、平均傾斜角θaは一般領域Bとの境界から光入射端面31との境界の方へと、先ずθa0から大略的には次第に高くなり、極大値θa1をとり、その後は大略的には次第に低くなる。そして、特定領域の平均傾斜角θaは、光入射端面31との境界の近傍ではθa0より小さくなっており、光入射端面31との境界ではθa2(<θa0)である。このように、特定領域Aにおいて、その平均傾斜角θaが一般領域Bより大きくなる領域を設けることで、導光体薄型化に伴う光入射端面31の近傍の領域での面光源装置発光面の輝度むらを視認しにくくする効果が得られる。また、光入射端面31との境界の近傍で、平均傾斜角θaをθa0より小さくすることで、導光体薄型化に伴う光入射端面31の近傍での面光源装置発光面からの斜め方向の特異的光出射を抑制する効果が得られる。  As shown in FIG. 4, in the general region B, the distribution pattern of the average inclination angle θa is relatively gentle, and the average value of the entire range in the X direction of the average inclination angle θa is θa0. On the other hand, in the specific region A, the distribution pattern of the average inclination angle θa is relatively varied, and the average inclination angle θa takes the maximum value θa1 at the position of the distance x2 from the boundary with the light incident end face 31. This maximum value θa1 is larger than the above θa0. That is, in the specific region A, the average inclination angle θa first increases gradually from θa0 toward the boundary with the light incident end face 31 from the boundary with the general region B, and takes a local maximum value θa1. In general, it gradually decreases. The average inclination angle θa of the specific region is smaller than θa0 in the vicinity of the boundary with the light incident end face 31, and θa2 (<θa0) at the boundary with the light incident end face 31. As described above, in the specific region A, by providing a region in which the average inclination angle θa is larger than that of the general region B, the surface light source device emission surface in the region near the light incident end surface 31 due to the light guide thinning. The effect of making it difficult to visually recognize uneven brightness is obtained. Further, by making the average inclination angle θa smaller than θa0 in the vicinity of the boundary with the light incident end face 31, the oblique direction from the light emitting surface of the surface light source device in the vicinity of the light incident end face 31 due to the light guide thinning. An effect of suppressing specific light emission is obtained.

θa0は、例えば1.4°以上2.4°未満の範囲内にある。また、θa1は、例えば2.2°以上4.0°以下の範囲内にある。θa2は、例えば0.8°以上2.0°以下の範囲内にある。平均傾斜角θaが極大値θa1をとる位置は、光入射端面31との境界までの距離x2がd〜3dの範囲の領域内に存在するのが好ましい。これは、極大値θa1をとる位置がこの範囲内にあることで、輝線をぼかすことができるからである。  θa0 is in the range of not less than 1.4 ° and less than 2.4 °, for example. Further, θa1 is in the range of 2.2 ° to 4.0 °, for example. θa2 is in the range of not less than 0.8 ° and not more than 2.0 °, for example. The position at which the average inclination angle θa takes the maximum value θa1 is preferably present in a region where the distance x2 to the boundary with the light incident end face 31 is in the range of d to 3d. This is because the bright line can be blurred by the position where the maximum value θa1 is in this range.

特定領域Aでは、光入射端面31の近傍に、光入射端面31から距離x2までの範囲内において、平均傾斜角θaが光入射端面31に向かって0.5°以上次第に減少している傾斜角逓減領域が存在している。この傾斜角逓減領域は、その少なくとも一部が、光入射端面31からの距離が0.2dから2dまでの帯状の領域内に存在するのが好ましい。例えば、傾斜角逓減領域は、その少なくとも一部が、光入射端面31からの距離が0.2mmから4mmまでの帯状の領域内に存在している。このような平均傾斜角逓減量0.5°以上の傾斜角逓減領域が光入射端面31の近傍に存在することで、導光体薄型化に伴う光入射端面31の近傍での面光源装置発光面からの斜め方向の特異的光出射を抑制する効果が得られる。  In the specific region A, an inclination angle in which the average inclination angle θa gradually decreases toward the light incident end face 31 by 0.5 ° or more in the vicinity of the light incident end face 31 within the range from the light incident end face 31 to the distance x2. A decreasing area exists. It is preferable that at least a part of the inclined angle decreasing region exists in a band-shaped region whose distance from the light incident end face 31 is 0.2d to 2d. For example, at least a part of the decreasing tilt angle region exists in a band-shaped region whose distance from the light incident end face 31 is 0.2 mm to 4 mm. Since such an inclination angle decreasing region having an average inclination angle decreasing amount of 0.5 ° or more exists in the vicinity of the light incident end face 31, light emission from the surface light source device in the vicinity of the light incident end face 31 due to the light guide thinning. An effect of suppressing specific light emission in an oblique direction from the surface is obtained.

以上のような光出射面33を持つ導光体3の製造方法の一例を、図5を参照して説明する。  An example of a manufacturing method of the light guide 3 having the light emitting surface 33 as described above will be described with reference to FIG.

ここでは、図5(a)に示されているように、導光体3は、光出射面33の転写形成のための第1の転写面33’を有する第1の型部材330及び裏面34の転写形成のための第2の転写面34’を有する第2の型部材340を用いて、透光性合成樹脂を成形することで作製される。成形法としては、熱プレスや射出成形等を使用することができる。図5(a)では、成形用型装置として第1及び第2の型部材330,340のみ図示されているが、これらの型部材の周囲に配置され導光体の光入射端面その他の側端面に対応する端面を転写形成するための転写側壁面を有する胴型部材も使用される。  Here, as shown in FIG. 5A, the light guide 3 includes a first mold member 330 having a first transfer surface 33 ′ for transferring and forming the light emitting surface 33, and a back surface 34. It is produced by molding a translucent synthetic resin using a second mold member 340 having a second transfer surface 34 ′ for transfer formation. As the molding method, hot pressing, injection molding, or the like can be used. In FIG. 5 (a), only the first and second mold members 330 and 340 are shown as the mold apparatus, but the light incident end face and other side end faces of the light guide disposed around these mold members. A cylinder-shaped member having a transfer side wall surface for transferring and forming an end surface corresponding to is also used.

第2の型部材340は、ステンレススチール板や銅合金板などの金属平板の表面に対する機械的切削加工により作製することができる。また、第1の型部材330は、ステンレススチール板や銅合金板などの金属平板の表面に対するブラスト処理またはエッチング処理により作製することができる。  The second mold member 340 can be produced by mechanical cutting on the surface of a metal flat plate such as a stainless steel plate or a copper alloy plate. Moreover, the 1st type | mold member 330 can be produced by the blast process or the etching process with respect to the surface of metal flat plates, such as a stainless steel board and a copper alloy board.

第1の型部材330の作製をブラスト処理により行う場合につき、以下、説明する。先ず、図5(b)に模式的断面図を示すように、導光体光出射面の特定領域Aに対応する転写面領域A’の光入射端面との境界に対応する縁辺Eの近傍に対して遮蔽部材M1により遮蔽効果を付与した状態で、第1の条件下でブラスト粒子を金属平板の表面に向けて噴射することで、第1の粗面化を行う。これにより、縁辺Eの近傍の上記距離x2の半分程度の領域以外の第1の転写面33’の粗面化が実行される。上記第1の条件は、この粗面化により平均傾斜角θa0の表面を転写形成し得る転写面が得られるように、ブラスト粒子の材質、粒度、噴射速度、噴射距離及び遮蔽部材M1の配置などを適宜設定したものである。次に、図5(c)に模式的断面図を示すように、導光体光出射面の一般領域Bに対応する転写面領域B’に対して遮蔽部材M2により遮蔽効果を付与した状態で、第2の条件下で第2の粗面化を行う。これにより、転写面領域A’に対する粗面化が実行される。上記第2の条件は、この粗面化により上記平均傾斜角分布の特定領域Aを転写形成し得る転写面が得られるように、ブラスト粒子の材質、粒度、噴射速度、噴射距離及び遮蔽部材の配置などを適宜設定したものである。尚、この第2の粗面化に際して、転写面領域A’のうちで縁辺Eの近傍(縁辺Eの近傍の上記距離x2の半分程度の領域)に対して遮蔽部材M3により遮蔽効果を付与することもできる。これによれば、光入射端面31との境界の近傍での平均傾斜角θaがθa0より小さくなる平均傾斜角分布の特定領域Aを転写形成し得る転写面の形成が容易になる。尚、ブラスト処理は、噴射ノズルからブラスト粒子を噴射させながら該噴射ノズルを型部材の表面に対して平行移動させ走査することで行うことができる。  The case where the first mold member 330 is manufactured by blasting will be described below. First, as shown in a schematic cross-sectional view in FIG. 5B, in the vicinity of the edge E corresponding to the boundary with the light incident end surface of the transfer surface area A ′ corresponding to the specific area A of the light guide light exit surface. On the other hand, the first roughening is performed by spraying the blast particles toward the surface of the metal flat plate under the first condition in a state where the shielding effect is imparted by the shielding member M1. As a result, the roughening of the first transfer surface 33 'other than the region of about half the distance x2 in the vicinity of the edge E is performed. The first condition is that the material of the blast particles, the particle size, the spraying speed, the spraying distance, the arrangement of the shielding member M1, etc., so that a transfer surface capable of transferring and forming the surface of the average inclination angle θa0 is obtained by this roughening. Is appropriately set. Next, as shown in a schematic cross-sectional view in FIG. 5C, in a state where the shielding effect is imparted to the transfer surface area B ′ corresponding to the general area B of the light guide light exit surface by the shielding member M2. The second roughening is performed under the second condition. As a result, roughening is performed on the transfer surface area A ′. The second condition is that the material of the blast particle, the particle size, the injection speed, the injection distance, and the shielding member are set so that a transfer surface capable of transferring and forming the specific region A of the average inclination angle distribution is obtained by this roughening. The arrangement and the like are appropriately set. In the second roughening, the shielding member M3 provides a shielding effect to the vicinity of the edge E in the transfer surface area A ′ (an area about half the distance x2 in the vicinity of the edge E). You can also. This facilitates formation of a transfer surface that can transfer and form the specific region A having an average inclination angle distribution in which the average inclination angle θa in the vicinity of the boundary with the light incident end face 31 is smaller than θa0. The blasting process can be performed by moving the jet nozzle parallel to the surface of the mold member and scanning while jetting blast particles from the jet nozzle.

図5(b)及び図5(c)に示すように、以上のようなブラスト処理の際に遮蔽部材M1〜M3を型部材転写面33’から離隔して配置することで平均傾斜角分布においてなだらかな変化を実現することができる。一方、ブラスト処理の際に遮蔽部材M1〜M3を型部材転写面33’に近接して配置することで平均傾斜角分布において急峻な変化を実現することができる。所望の平均傾斜角分布に応じて、遮蔽部材と型部材転写面との距離を適宜設定すればよい。  As shown in FIGS. 5 (b) and 5 (c), the shielding members M1 to M3 are arranged apart from the mold member transfer surface 33 ′ in the blasting process as described above, thereby obtaining an average inclination angle distribution. A gentle change can be realized. On the other hand, by arranging the shielding members M1 to M3 close to the mold member transfer surface 33 'during the blasting process, a steep change in the average inclination angle distribution can be realized. What is necessary is just to set the distance of a shielding member and a mold member transfer surface suitably according to desired average inclination-angle distribution.

以上のようにして得られた第1及び第2の型部材330,340を用いて図5(a)に関し説明したようにして射出成形等の成形法を用いて第1及び第2の転写面33’,34’の表面形状を透光性合成樹脂材料の表面に転写することで、所要の表面形態の光出射面33及び裏面34を持つ導光体3が得られる。  Using the first and second mold members 330 and 340 obtained as described above, the first and second transfer surfaces using the molding method such as injection molding as described with reference to FIG. By transferring the surface shapes of 33 ′ and 34 ′ onto the surface of the translucent synthetic resin material, the light guide 3 having the light emitting surface 33 and the back surface 34 of the required surface form is obtained.

以上の転写面33’の形成を、ブラスト処理に代えて、エッチング処理により行うことも可能である。このエッチング処理に際しては、エッチング液の濃度、処理時間及び型部材転写面に接触する遮蔽部材の配置等を適宜設定することで、所望の平均傾斜角分布の導光体光出射面33を転写形成し得る転写面33’を形成することができる。  The transfer surface 33 'can be formed by etching instead of blasting. In this etching process, the light guide light emitting surface 33 having a desired average inclination distribution is transferred and formed by appropriately setting the concentration of the etching solution, the processing time, the arrangement of the shielding member in contact with the mold member transfer surface, and the like. A transfer surface 33 'that can be formed can be formed.

以下、実施例及び比較例により本発明を説明する。  Hereinafter, the present invention will be described with reference to examples and comparative examples.

[実施例1]
本実施例では図1〜4の実施形態で説明した導光体及びそれを用いた面光源装置を製造した。
[Example 1]
In this example, the light guide described in the embodiment of FIGS. 1 to 4 and the surface light source device using the same were manufactured.

第1の型部材330を作製するために、鏡面仕上げをした有効面積309mm×234mm、厚さ3mmのステンレス板の表面を、粒径75μm以下のガラスビーズ(ポッターズ・バロディーニ株式会社製J−220[商品名])を用いて、ステンレス板から吹付けノズルまでの距離を320mmとして、吹付け圧力0.1MPaでほぼ全面にブラスト処理して第1の粗面化を行った。その際、図5(b)に示すように、遮蔽部材M1をステンレス板から浮かせて設置することで、縁辺(1つの長辺)Eの近傍の領域のみが粗面化されないようにした。この縁辺Eの近傍の領域とその他の領域との境界においてブラスト処理の程度は連続的に変化し、その変化は急峻であった。  In order to produce the first mold member 330, the surface of a stainless steel plate having a mirror-finished effective area of 309 mm × 234 mm and a thickness of 3 mm is made of glass beads having a particle diameter of 75 μm or less (J-220 manufactured by Potters Barrodini Co., Ltd.). [Product Name]), the distance from the stainless steel plate to the spray nozzle was 320 mm, and the first roughening was performed by blasting almost the entire surface at a spray pressure of 0.1 MPa. At that time, as shown in FIG. 5 (b), the shielding member M1 is placed so as to float from the stainless steel plate, so that only the region in the vicinity of the edge (one long side) E is not roughened. The degree of blasting continuously changed at the boundary between the region near the edge E and other regions, and the change was steep.

次いで、縁辺Eの近傍の領域が粗面化されないように、遮蔽部材M1をステンレス板から浮かせて設置した状態で、該遮蔽部材のエッジに沿って吹付けノズルを移動させブラスト処理した。具体的には、縁辺Eの近傍領域に隣接する帯状の領域に対して、吹付け圧力0.30MPaで同じ線上にて6回吹付けノズルを移動させブラスト処理した。  Next, the spray nozzle was moved along the edge of the shielding member and blasted in a state in which the shielding member M1 was floated from the stainless steel plate so that the region near the edge E was not roughened. Specifically, the blasting process was performed by moving the spray nozzle six times on the same line at a spray pressure of 0.30 MPa on the band-shaped region adjacent to the region near the edge E.

さらに、図5(c)に示すように、遮蔽部材M2,M3を、幅3mmのスリットを形成するように隙間をあけて配置し、そのスリットの中心が特定領域の平均傾斜角の極大値となる位置即ち縁辺Eより4.5mmの位置となるようにし、ステンレス板から浮かせて配置した状態で、スリットの真上の線上を吹付け圧力0.15MPaで3回吹付けノズルを移動させブラスト処理した。  Further, as shown in FIG. 5C, the shielding members M2 and M3 are arranged with a gap so as to form a slit having a width of 3 mm, and the center of the slit is the maximum value of the average inclination angle of the specific region. Blasting by moving the spray nozzle three times at a spray pressure of 0.15 MPa on the line directly above the slit in a state where the position is 4.5 mm from the edge E and placed above the stainless steel plate. did.

一方、第2の型部材340を作製するために、鏡面仕上げをした有効面積309mm×234mm、厚さ3mmのステンレス板の表面に、頂角100°、頂部先端曲率半径15μm、ピッチ50μmのプリズム列を連設したプリズムパターンを転写形成するための転写面を切削加工により形成した。  On the other hand, in order to fabricate the second mold member 340, a prism array having an effective area of 309 mm × 234 mm and a thickness of 3 mm with a mirror finish on the surface of a stainless steel plate having an apex angle of 100 °, an apex tip radius of curvature of 15 μm, and a pitch of 50 μm. A transfer surface for transferring and forming the prism pattern provided continuously was formed by cutting.

以上のようにして得られた第1及び第2の型部材330,340を用いて透明アクリル樹脂の射出成形を行い、307mm×230mmの長方形で、厚さが光入射端面31側から反対側の端面の方へと2.2mmから0.7mmまで連続的に変化するくさび形状で、光出射面33が粗面化され、裏面34にプリズムパターンが形成された導光体3を得た。  Transparent acrylic resin is injection-molded using the first and second mold members 330 and 340 obtained as described above, and is a 307 mm × 230 mm rectangle having a thickness opposite to the light incident end face 31 side. A light guide 3 having a wedge shape continuously changing from 2.2 mm to 0.7 mm toward the end surface, the light emitting surface 33 being roughened, and a prism pattern formed on the back surface 34 was obtained.

得られた導光体3の光出射面33の特定領域A(光入射端面から40mmまでの領域)及び一般領域Bの平均傾斜角分布を図6に示し、その特定領域Aでの平均傾斜角分布を拡大して図7に示す。尚、光入射端面からの距離が0.5mmの位置での平均傾斜角は1.55°であり、光入射端面からの距離が1.5mmの位置での平均傾斜角は2.00°であり、光入射端面からの距離が2.5mmの位置での平均傾斜角は2.46°であり、光入射端面からの距離が3.5mmの位置での平均傾斜角は2.67°であった。  The average inclination angle distribution of the specific area A (area from the light incident end face to 40 mm) and the general area B of the light emitting surface 33 of the obtained light guide 3 is shown in FIG. The distribution is enlarged and shown in FIG. The average inclination angle at a position where the distance from the light incident end face is 0.5 mm is 1.55 °, and the average inclination angle at a position where the distance from the light incident end face is 1.5 mm is 2.00 °. The average inclination angle at the position where the distance from the light incident end face is 2.5 mm is 2.46 °, and the average inclination angle at the position where the distance from the light incident end face is 3.5 mm is 2.67 °. there were.

導光体3の光入射端面31に対向するようにして、導光体3の長手方向に沿って冷陰極管からなる一次光源1を配置し、光源リフレクタ2で覆った。導光体3のプリズムパターンの付与された裏面34に対向するように光散乱反射シートからなる光反射素子5を配置し、粗面からなる光出射面33に対向するように多数のプリズム列の並列配置が形成されたプリズムシートからなる光偏向素子4を、そのプリズム列形成面が導光体光出射面側となるようにして配置し、図2に示したような面光源装置を作製した。光偏向素子4のプリズムシートは、片方のプリズム面が曲率半径1000μmの凸曲面形状で且つ他方のプリズム面が平面形状で、ピッチ50μmで並列に連設してなるものを用いた。  The primary light source 1 made of a cold cathode tube was disposed along the longitudinal direction of the light guide 3 so as to face the light incident end face 31 of the light guide 3 and covered with the light source reflector 2. The light reflecting element 5 made of a light scattering reflection sheet is arranged so as to face the back surface 34 of the light guide 3 to which the prism pattern is applied, and a large number of prism rows are made to face the light emitting surface 33 made of a rough surface. The surface light source device as shown in FIG. 2 was manufactured by arranging the light deflection elements 4 made of prism sheets formed in parallel arrangement so that the prism array formation surface is on the light guide light emission surface side. . As the prism sheet of the light deflection element 4, a prism sheet having one convex surface having a convex curved surface shape with a radius of curvature of 1000 μm and the other prism surface having a planar shape and arranged in parallel at a pitch of 50 μm was used.

得られた面光源装置の一次光源1を点灯して、発光面の光入射端面31の近傍を観察したところ、輝度むらとなる明暗ラインや明暗帯は視認できなかった。また、発光面の光入射端面31の近傍を斜め方向から(即ち、光入射端面31の方をのぞき込むように)観察したところ、斜め方向の特異的光出射は視認されなかった。  When the primary light source 1 of the obtained surface light source device was turned on and the vicinity of the light incident end face 31 on the light emitting surface was observed, the bright and dark lines and the bright and dark bands that caused uneven brightness were not visible. Further, when the vicinity of the light incident end face 31 of the light emitting surface was observed from an oblique direction (that is, as if looking into the light incident end face 31), specific light emission in the oblique direction was not visually recognized.

面光源装置の発光面における輝度分布を測定したところ、図8に示すように中央から導光体光入射端面側にかけて緩やかに減少しており、上記観察結果と一致していた。  When the luminance distribution on the light emitting surface of the surface light source device was measured, as shown in FIG. 8, it gradually decreased from the center to the light guide light incident end surface side, which was consistent with the above observation result.

比較例1:
遮蔽部材M1を使用しないこと及び遮蔽部材M2,M3を用いるブラスト処理を行わないこと以外は実施例1と同様の工程を実行し、導光体を得た。得られた導光体の光出射面の平均傾斜角分布を図6及び図7に示す。尚、光入射端面からの距離が0.5mmの位置での平均傾斜角は2.76°であり、光入射端面からの距離が1.5mmの位置での平均傾斜角は2.81°であり、光入射端面からの距離が2.5mmの位置での平均傾斜角は2.68°であり、光入射端面からの距離が3.5mmの位置での平均傾斜角は2.57°であった。
Comparative Example 1:
Except not using shielding member M1 and not performing blasting using shielding members M2 and M3, the same steps as in Example 1 were performed to obtain a light guide. The average inclination angle distribution of the light exit surface of the obtained light guide is shown in FIGS. The average inclination angle at a position where the distance from the light incident end face is 0.5 mm is 2.76 °, and the average inclination angle at a position where the distance from the light incident end face is 1.5 mm is 2.81 °. Yes, the average inclination angle at the position where the distance from the light incident end face is 2.5 mm is 2.68 °, and the average inclination angle at the position where the distance from the light incident end face is 3.5 mm is 2.57 °. there were.

得られた導光体を用いて、実施例1と同様にして面光源装置を作製した。面光源装置の一次光源を点灯して、発光面の光入射端面の近傍を観察したところ、輝度むらとなる明暗ライン及び明暗帯が若干視認された。また、発光面の光入射端面の近傍を斜め方向から(即ち、光入射端面の方をのぞき込むような方向から)観察したところ、斜め方向の特異的光出射が視認された。  Using the obtained light guide, a surface light source device was produced in the same manner as in Example 1. When the primary light source of the surface light source device was turned on and the vicinity of the light incident end face of the light emitting surface was observed, a light / dark line and a light / dark band causing uneven brightness were slightly recognized. Further, when the vicinity of the light incident end face of the light emitting surface was observed from an oblique direction (that is, from a direction looking into the light incident end face), specific light emission in the oblique direction was visually recognized.

面光源装置の発光面における輝度分布を測定したところ、図8に示すように特に導光体光入射端面の近傍において輝度変化が実施例1より大きく、上記観察結果と一致していた。  When the luminance distribution on the light emitting surface of the surface light source device was measured, the luminance change was larger than that in Example 1 particularly in the vicinity of the light guide light incident end surface as shown in FIG.

[実施例2]
第1の型部材330を作製するために、鏡面仕上げをした有効面積336mm×214mm、厚さ3mmのステンレス板の表面を、粒径75μm以下のガラスビーズ(ポッターズ・バロディーニ株式会社J−220[商品名])を用いて、ステンレス板から吹付けノズルまでの距離を320mmとして、吹付け圧力0.1MPaでほぼ全面にブラスト処理して第1の粗面化を行った。その際、図5(b)に示すように、遮蔽部材M1をステンレス板から浮かせて設置することで、縁辺(1つの長辺)Eの近傍の領域のみが粗面化されないようにした。ステンレス板に対する遮蔽部材M1の配置、すなわちステンレス板と平行な面内でのステンレス板に対する遮蔽部材M1の重なり幅を、実施例1より小さくした。これにより、縁辺Eの近傍の領域とその他の領域との境界におけるブラスト処理の程度の変化は実施例1より緩やかであった。
[Example 2]
In order to produce the first mold member 330, the surface of a stainless steel plate having an effective area of 336 mm × 214 mm and a thickness of 3 mm, which is mirror-finished, is made of glass beads having a particle size of 75 μm or less (Potters Barodini Co., Ltd. J-220 [ Product name]), the distance from the stainless steel plate to the spray nozzle was set to 320 mm, and the first roughening was performed by blasting almost the entire surface at a spray pressure of 0.1 MPa. At that time, as shown in FIG. 5 (b), the shielding member M1 is placed so as to float from the stainless steel plate, so that only the region in the vicinity of the edge (one long side) E is not roughened. The arrangement of the shielding member M1 with respect to the stainless steel plate, that is, the overlapping width of the shielding member M1 with respect to the stainless steel plate in a plane parallel to the stainless steel plate was made smaller than that in Example 1. As a result, the change in the degree of the blasting process at the boundary between the area near the edge E and the other area was more gradual than in the first embodiment.

次いで、縁辺Eの近傍の領域が粗面化されないように、遮蔽部材M1をステンレス板から浮かせて設置した状態で、該遮蔽部材のエッジに沿って吹付けノズルを移動させブラスト処理した。具体的には、縁辺Eの近傍領域に隣接する帯状の領域に対して、吹付け圧力0.30MPaで同じ線上にて6回吹付けノズルを移動させブラスト処理した。  Next, the spray nozzle was moved along the edge of the shielding member and blasted in a state in which the shielding member M1 was floated from the stainless steel plate so that the region near the edge E was not roughened. Specifically, the blasting process was performed by moving the spray nozzle six times on the same line at a spray pressure of 0.30 MPa on the band-shaped region adjacent to the region near the edge E.

一方、第2の型部材340を作製するために、鏡面仕上げをした有効面積336mm×214mm、厚さ3mmのステンレス板の表面に、頂角100°、頂部先端曲率半径15μm、ピッチ50μmのプリズム列を連設したプリズムパターンを転写形成するための転写面を切削加工により形成した。  On the other hand, in order to fabricate the second mold member 340, a prism array with an apex angle of 100 °, apex tip radius of curvature of 15 μm, and a pitch of 50 μm is provided on the surface of a stainless steel plate having an effective area of 336 mm × 214 mm and a thickness of 3 mm that is mirror-finished. A transfer surface for transferring and forming the prism pattern provided continuously was formed by cutting.

以上のようにして得られた第1及び第2の型部材330,340を用いて透明アクリル樹脂の射出成形を行い、336mm×213mmの長方形で、厚さが光入射端面31側から反対側の端面の方へと2.6mmから0.7mmまで連続的に変化するくさび形状で、光出射面33が粗面化され、裏面34にプリズムパターンが形成された導光体3を得た。  Using the first and second mold members 330 and 340 obtained as described above, injection molding of transparent acrylic resin is performed, and the rectangular shape is 336 mm × 213 mm, and the thickness is opposite from the light incident end face 31 side. A light guide 3 having a wedge shape continuously changing from 2.6 mm to 0.7 mm toward the end surface, the light emitting surface 33 being roughened, and a prism pattern formed on the back surface 34 was obtained.

得られた導光体3の光出射面33の特定領域Aでの平均傾斜角分布を図9に示す。尚、光入射端面からの距離が0.2mmの位置での平均傾斜角は1.92°であり、光入射端面からの距離が1mmの位置での平均傾斜角は2.32°であり、光入射端面からの距離が2mmの位置での平均傾斜角は2.53°であった。  The average inclination angle distribution in the specific area A of the light emitting surface 33 of the obtained light guide 3 is shown in FIG. The average inclination angle at the position where the distance from the light incident end face is 0.2 mm is 1.92 °, and the average inclination angle at the position where the distance from the light incident end face is 1 mm is 2.32 °, The average inclination angle at a position where the distance from the light incident end face was 2 mm was 2.53 °.

導光体3の光入射端面31に対向するようにして、導光体3の長手方向に沿って冷陰極管からなる一次光源1を配置し、光源リフレクタ2で覆った。導光体3のプリズムパターンの付与された裏面34に対向するように光散乱反射シートからなる光反射素子5を配置し、粗面からなる光出射面33に対向するように多数のプリズム列の並列配置が形成されたプリズムシートからなる光偏向素子4を、そのプリズム列形成面が導光体光出射面側となるようにして配置し、図2に示したような面光源装置を作製した。光偏向素子4のプリズムシートは、片方のプリズム面が曲率半径1000μmの凸曲面形状で且つ他方のプリズム面が平面形状で、ピッチ50μmで並列に連設してなるものを用いた。  The primary light source 1 made of a cold cathode tube was disposed along the longitudinal direction of the light guide 3 so as to face the light incident end face 31 of the light guide 3 and covered with the light source reflector 2. The light reflecting element 5 made of a light scattering reflection sheet is arranged so as to face the back surface 34 of the light guide 3 to which the prism pattern is applied, and a large number of prism rows are made to face the light emitting surface 33 made of a rough surface. The surface light source device as shown in FIG. 2 was manufactured by arranging the light deflection elements 4 made of prism sheets formed in parallel arrangement so that the prism array formation surface is on the light guide light emission surface side. . As the prism sheet of the light deflection element 4, a prism sheet having one convex surface having a convex curved surface shape with a radius of curvature of 1000 μm and the other prism surface having a planar shape and arranged in parallel at a pitch of 50 μm was used.

得られた面光源装置の一次光源1を点灯して、発光面の光入射端面31の近傍を観察したところ、輝度むらとなる明暗ラインや明暗帯の発現の程度は小さいものであった。また、発光面の光入射端面31の近傍を斜め方向から(即ち、光入射端面31の方をのぞき込むように)観察したところ、斜め方向の特異的光出射の程度も小さいものであった。  When the primary light source 1 of the obtained surface light source device was turned on and the vicinity of the light incident end face 31 on the light emitting surface was observed, the degree of expression of bright and dark lines and bright and dark bands that caused uneven brightness was small. Further, when the vicinity of the light incident end face 31 of the light emitting surface was observed from an oblique direction (that is, so as to look into the light incident end face 31), the degree of specific light emission in the oblique direction was small.

面光源装置の発光面における輝度分布を測定したところ、図10に示すように中央から導光体光入射端面側にかけて緩やかに減少しており、上記観察結果と一致していた。  When the luminance distribution on the light emitting surface of the surface light source device was measured, as shown in FIG. 10, it gradually decreased from the center toward the light guide light incident end surface side, which was consistent with the above observation result.

比較例2:
遮蔽部材M1を使用しないこと以外は実施例2と同様の工程を実行し、導光体を得た。得られた導光体の光出射面の平均傾斜角分布の一部を図9に示す。尚、光入射端面からの距離が1mmの位置での平均傾斜角は3.11°であり、光入射端面からの距離が2mmの位置での平均傾斜角は2.84°であった。
Comparative Example 2:
Except not using shielding member M1, the same process as Example 2 was performed and the light guide was obtained. FIG. 9 shows a part of the average inclination angle distribution of the light exit surface of the obtained light guide. The average inclination angle at a position where the distance from the light incident end face was 1 mm was 3.11 °, and the average inclination angle at a position where the distance from the light incident end face was 2 mm was 2.84 °.

得られた導光体を用いて、実施例2と同様にして面光源装置を作製した。面光源装置の一次光源を点灯して、発光面の光入射端面の近傍を観察したところ、輝度むらとなる明暗ライン及び明暗帯が若干視認された。また、発光面の光入射端面の近傍を斜め方向から(即ち、光入射端面の方をのぞき込むような方向から)観察したところ、斜め方向の特異的光出射が視認された。  Using the obtained light guide, a surface light source device was produced in the same manner as in Example 2. When the primary light source of the surface light source device was turned on and the vicinity of the light incident end face of the light emitting surface was observed, a light / dark line and a light / dark band causing uneven brightness were slightly recognized. Further, when the vicinity of the light incident end face of the light emitting surface was observed from an oblique direction (that is, from a direction looking into the light incident end face), specific light emission in the oblique direction was visually recognized.

面光源装置の発光面における輝度分布を測定したところ、図10に示すように特に導光体光入射端面の近傍において輝度変化が実施例2より大きく、上記観察結果と一致していた。  When the luminance distribution on the light emitting surface of the surface light source device was measured, as shown in FIG. 10, the luminance change was larger than that in Example 2 particularly in the vicinity of the light guide light incident end surface, which was consistent with the above observation result.

[図1]本発明による面光源装置の一つの実施形態を示す模式的斜視図である。
[図2]図1の面光源装置の部分断面図である。
[図3]光偏向素子による光偏向の様子を示す模式図である。
[図4]一次光源と導光体光出射面との関係及び光出射面の平均傾斜角分布を示す模式図である。
[図5]導光体の製造方法の一例を説明する図である。
[図6]実施例1及び比較例1で得られた導光体光出射面の平均傾斜角分布を示す図である。
[図7]図6の平均傾斜角分布の一部を拡大して示す図である。
[図8]実施例1及び比較例1で得られた面光源装置の発光面における輝度分布を示す図である。
[図9]実施例2及び比較例2で得られた導光体光出射面の平均傾斜角分布の一部を拡大して示す図である。
[図10]実施例2及び比較例2で得られた面光源装置の発光面における輝度分布を示す図である。
FIG. 1 is a schematic perspective view showing one embodiment of a surface light source device according to the present invention.
FIG. 2 is a partial cross-sectional view of the surface light source device of FIG.
FIG. 3 is a schematic diagram showing a state of light deflection by the light deflection element.
FIG. 4 is a schematic diagram showing the relationship between the primary light source and the light guide light exit surface and the average inclination angle distribution of the light exit surface.
FIG. 5 illustrates an example of a method for manufacturing a light guide.
FIG. 6 is a diagram showing an average inclination angle distribution of light guide light exit surfaces obtained in Example 1 and Comparative Example 1.
FIG. 7 is an enlarged view showing a part of the average inclination angle distribution of FIG.
FIG. 8 is a diagram showing the luminance distribution on the light emitting surface of the surface light source devices obtained in Example 1 and Comparative Example 1.
FIG. 9 is an enlarged view showing a part of the average inclination angle distribution of the light guide light exit surfaces obtained in Example 2 and Comparative Example 2.
FIG. 10 is a diagram showing the luminance distribution on the light emitting surface of the surface light source devices obtained in Example 2 and Comparative Example 2.

符号の説明Explanation of symbols

1 一次光源
2 光源リフレクタ
3 導光体
31 光入射端面
32 側端面
33 光出射面
34 裏面
4 光偏向素子
41 入光面
42 出光面
5 光反射素子
8 液晶表示素子
A 特定領域
B 一般領域
330 第1の型部材
33’ 第1の転写面
340 第2の型部材
34’ 第2の転写面
A’ 転写面領域
B’ 転写面領域
E 型部材縁辺
M1,M2,M3 遮蔽部材
DESCRIPTION OF SYMBOLS 1 Primary light source 2 Light source reflector 3 Light guide 31 Light incident end surface 32 Side end surface 33 Light emission surface 34 Back surface 4 Light deflection element 41 Light incident surface 42 Light emission surface 5 Light reflection element 8 Liquid crystal display element A Specific area B General area 330 1st 1 mold member 33 ′ first transfer surface 340 second mold member 34 ′ second transfer surface A ′ transfer surface region B ′ transfer surface region E mold member edge M1, M2, M3 shielding member

Claims (19)

一次光源と組み合わせて面光源装置を構成するのに使用され、前記一次光源から発せられる光を導光する面光源装置用導光体であって、
前記一次光源から発せられる光が入射する光入射端面及び導光される光が出射する光出射面及び該光出射面の反対側の裏面を有しており、
前記光出射面及び裏面の少なくとも一方は粗面からなっており、粗面からなる前記光出射面及び/または裏面において、前記光入射端面近傍に、表面の平均傾斜角が前記光入射端面に向かって0.5°以上次第に減少している傾斜角逓減領域が存在することを特徴とする面光源装置用導光体。
A light guide for a surface light source device that is used to configure a surface light source device in combination with a primary light source and guides light emitted from the primary light source,
A light incident end surface on which light emitted from the primary light source is incident, a light emitting surface from which guided light is emitted, and a back surface opposite to the light emitting surface;
At least one of the light exit surface and the back surface is a rough surface. In the light exit surface and / or the back surface, which is a rough surface, an average inclination angle of the surface is close to the light entrance end surface toward the light entrance end surface. And a light source for a surface light source device, characterized in that there is a gradually decreasing inclination angle region that gradually decreases by 0.5 ° or more.
前記導光体の前記光入射端面側の端縁での厚さをdとして、前記傾斜角逓減領域の少なくとも一部は、前記光入射端面からの距離が0.2dから2dまでの領域内に存在することを特徴とする、請求項1に記載の面光源装置用導光体。The thickness of the light guide at the edge on the light incident end face side is d, and at least a part of the inclined angle decreasing region is within a region whose distance from the light incident end surface is 0.2d to 2d. The light guide for a surface light source device according to claim 1, wherein the light guide is present. 前記傾斜角逓減領域の少なくとも一部は、前記光入射端面からの距離が0.2mmから4mmまでの領域内に存在することを特徴とする、請求項1に記載の面光源装置用導光体。2. The light guide for a surface light source device according to claim 1, wherein at least a part of the inclined angle decreasing region exists in a region having a distance from the light incident end face of 0.2 mm to 4 mm. . 一次光源と組み合わせて面光源装置を構成するのに使用され、前記一次光源から発せられる光を導光する面光源装置用導光体であって、
前記一次光源から発せられる光が入射する光入射端面及び導光される光が出射する光出射面及び該光出射面の反対側の裏面を有しており、
前記光出射面及び裏面の少なくとも一方は粗面からなっており、粗面からなる前記光出射面及び/または裏面において、前記光入射端面近傍の特定領域では、表面の平均傾斜角が、前記特定領域以外の一般領域との境界及び前記光入射端面との境界の間において前記一般領域の平均傾斜角の平均値より大きな極大値をとり、前記光入射端面との境界の近傍では前記一般領域の平均傾斜角の平均値より小さくなっていることを特徴とする面光源装置用導光体。
A light guide for a surface light source device that is used to configure a surface light source device in combination with a primary light source and guides light emitted from the primary light source,
A light incident end surface on which light emitted from the primary light source is incident, a light emitting surface from which guided light is emitted, and a back surface opposite to the light emitting surface;
At least one of the light exit surface and the back surface is a rough surface. In the light exit surface and / or the back surface, which is a rough surface, in a specific region near the light incident end surface, an average inclination angle of the surface is the specific surface. A maximum value larger than the average value of the average inclination angle of the general region between the boundary with the general region other than the region and the boundary with the light incident end surface, and in the vicinity of the boundary with the light incident end surface, A light guide for a surface light source device, wherein the light guide is smaller than an average value of an average inclination angle.
前記導光体の前記光入射端面側の端縁での厚さをdとして、前記平均傾斜角の極大値をとる位置は前記特定領域の前記光入射端面との境界までの距離がd〜3dの範囲の領域内に存在することを特徴とする、請求項4に記載の面光源装置用導光体。Assuming that the thickness of the light guide at the edge on the light incident end face side is d, the position where the maximum value of the average tilt angle is at a distance from the boundary of the specific region to the light incident end face is d to 3d. It exists in the area | region of the range of this, The light guide for surface light source devices of Claim 4 characterized by the above-mentioned. 前記特定領域における平均傾斜角の極大値は2.2°以上4.0°以下の範囲内にあることを特徴とする、請求項4に記載の面光源装置用導光体。The light guide for a surface light source device according to claim 4, wherein the maximum value of the average inclination angle in the specific region is in a range of 2.2 ° to 4.0 °. 前記一般領域における平均傾斜角の平均値は1.4°以上2.4°未満の範囲内にあることを特徴とする、請求項4に記載の面光源装置用導光体。The light guide for a surface light source device according to claim 4, wherein an average value of an average inclination angle in the general region is in a range of 1.4 ° or more and less than 2.4 °. 前記特定領域は、前記一般領域との境界から前記光入射端面との境界までの距離が前記導光体の前記光入射端面側の端縁での厚さの10倍〜30倍の範囲内にあることを特徴とする、請求項4に記載の面光源装置用導光体。In the specific region, the distance from the boundary with the general region to the boundary with the light incident end surface is within a range of 10 to 30 times the thickness at the edge on the light incident end surface side of the light guide. The light guide for a surface light source device according to claim 4, wherein the light guide is provided. 前記特定領域は、前記一般領域との境界から前記光入射端面との境界までの距離が10mm〜70mmの範囲内にあることを特徴とする、請求項4に記載の面光源装置用導光体。5. The light guide for a surface light source device according to claim 4, wherein the specific region has a distance from a boundary with the general region to a boundary with the light incident end surface within a range of 10 mm to 70 mm. . 請求項1〜9のいずれかに記載の面光源装置用導光体の光入射端面に対向して前記一次光源が配置されていることを特徴とする前記面光源装置。The said surface light source device by which the said primary light source is arrange | positioned facing the light-incidence end surface of the light guide for surface light source devices in any one of Claims 1-9. 更に、前記導光体の光出射面上に配置され、且つ前記導光体の光出射面から出射する光が入光する入光面及びその反対側の出光面を有する光偏向素子を備えていることを特徴とする、請求項10に記載の面光源装置。And a light deflection element disposed on the light exit surface of the light guide and having a light entrance surface on which light emitted from the light exit surface of the light guide enters and a light exit surface on the opposite side. The surface light source device according to claim 10, wherein: 前記光偏向素子は前記入光面に前記導光体の光入射端面に沿って延び且つ互いに平行に配列された複数のプリズム列を備えており、該プリズム列のそれぞれは前記導光体の光出射面からの光が入射する第1のプリズム面と入射した光が内面反射される第2のプリズム面とを有することを特徴とする、請求項11に記載の面光源装置。The light deflection element includes a plurality of prism rows that extend along the light incident end surface of the light guide and are arranged in parallel to each other on the light incident surface, and each of the prism rows is light of the light guide. The surface light source device according to claim 11, further comprising: a first prism surface on which light from the emission surface is incident; and a second prism surface on which incident light is internally reflected. 前記一次光源は線状光源であることを特徴とする、請求項10に記載の面光源装置。The surface light source device according to claim 10, wherein the primary light source is a linear light source. 請求項1〜9のいずれかに記載の面光源装置用導光体を製造する方法であって、前記光出射面を転写形成する第1の転写面を有する第1の型部材及び前記裏面を転写形成する第2の転写面を有する第2の型部材を用いて透光性合成樹脂を成形し、ここで前記光出射面及び裏面のうちの粗面からなるものの転写形成のための前記第1の転写面及び/または第2の転写面を形成するに際して、転写面領域のうちで前記導光体の光入射端面と光出射面との境界に対応する縁辺の近傍に対する遮蔽効果を付与した状態で第1の粗面化を行うことを特徴とする、面光源装置用導光体の製造方法。It is a method of manufacturing the light guide for a surface light source device according to any one of claims 1 to 9, wherein the first mold member having a first transfer surface for transferring and forming the light emitting surface and the back surface are provided. A translucent synthetic resin is molded using a second mold member having a second transfer surface to be transferred, and the first member for transfer formation of a rough surface of the light emitting surface and the back surface is formed here. When forming the first transfer surface and / or the second transfer surface, a shielding effect is provided for the vicinity of the edge corresponding to the boundary between the light incident end surface and the light emitting surface of the light guide in the transfer surface region. A method of manufacturing a light guide for a surface light source device, wherein the first roughening is performed in a state. 前記光出射面及び裏面のうちの粗面からなるものの転写形成のための前記第1の転写面及び/または第2の転写面を形成するに際して、更に、前記一般領域に対応する転写面領域に対する遮蔽効果を付与した状態で第2の粗面化を行うことを特徴とする、請求項14に記載の面光源装置用導光体の製造方法。When forming the first transfer surface and / or the second transfer surface for transfer formation of a rough surface of the light emitting surface and the back surface, a transfer surface region corresponding to the general region is further formed. The method for producing a light guide for a surface light source device according to claim 14, wherein the second roughening is performed in a state where a shielding effect is imparted. 前記第2の粗面化に際して前記特定領域に対応する転写面領域のうちで前記縁辺の近傍に対する遮蔽効果をも付与することを特徴とする、請求項15に記載の面光源装置用導光体の製造方法。The light guide for a surface light source device according to claim 15, wherein a shielding effect for the vicinity of the edge of the transfer surface region corresponding to the specific region is also provided during the second roughening. Manufacturing method. 前記第1の粗面化及び/または第2の粗面化をエッチング処理により行うことを特徴とする、請求項14に記載の面光源装置用導光体の製造方法。15. The method of manufacturing a light guide for a surface light source device according to claim 14, wherein the first roughening and / or the second roughening is performed by an etching process. 前記第1の粗面化及び/または第2の粗面化をブラスト処理により行うことを特徴とする、請求項14に記載の面光源装置用導光体の製造方法。15. The method of manufacturing a light guide for a surface light source device according to claim 14, wherein the first roughening and / or the second roughening is performed by blasting. 前記遮蔽効果の付与を遮蔽部材の配置により行い、該遮蔽部材を前記第1の転写面または第2の転写面から離して配置することを特徴とする、請求項18に記載の面光源装置用導光体の製造方法。19. The surface light source device according to claim 18, wherein the shielding effect is imparted by arranging a shielding member, and the shielding member is arranged away from the first transfer surface or the second transfer surface. Manufacturing method of light guide.
JP2005517479A 2004-01-29 2005-01-27 Light guide for surface light source device, method for manufacturing the same, and surface light source device Expired - Fee Related JP4716876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005517479A JP4716876B2 (en) 2004-01-29 2005-01-27 Light guide for surface light source device, method for manufacturing the same, and surface light source device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004021605 2004-01-29
JP2004021605 2004-01-29
JP2005517479A JP4716876B2 (en) 2004-01-29 2005-01-27 Light guide for surface light source device, method for manufacturing the same, and surface light source device
PCT/JP2005/001082 WO2005073625A1 (en) 2004-01-29 2005-01-27 Light guide for area light source, its production method, and area light source

Publications (2)

Publication Number Publication Date
JPWO2005073625A1 true JPWO2005073625A1 (en) 2007-09-13
JP4716876B2 JP4716876B2 (en) 2011-07-06

Family

ID=34823800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005517479A Expired - Fee Related JP4716876B2 (en) 2004-01-29 2005-01-27 Light guide for surface light source device, method for manufacturing the same, and surface light source device

Country Status (5)

Country Link
JP (1) JP4716876B2 (en)
KR (1) KR100737021B1 (en)
CN (1) CN1914461B (en)
TW (1) TW200525791A (en)
WO (1) WO2005073625A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5439051B2 (en) * 2009-06-23 2014-03-12 三菱レイヨン株式会社 Surface light source device and light guide used therefor
ES2809184T3 (en) 2010-03-17 2021-03-03 Mitsubishi Chem Corp Surface light source device, light guide element used for surface light source device, and light guide element production procedure
CN112180640A (en) * 2020-10-16 2021-01-05 业成科技(成都)有限公司 Backlight module and manufacturing method of light guide film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11202135A (en) * 1998-01-14 1999-07-30 Ohtsu Tire & Rubber Co Ltd :The Back light unit, manufacture of back light unit and light guide plate
JP2000141379A (en) * 1998-11-06 2000-05-23 Stanley Electric Co Ltd Manufacture of mold for light guide plate
JP2002216530A (en) * 2001-01-24 2002-08-02 Mitsubishi Rayon Co Ltd Surface light source device, light guide for surface light source device and method for manufacturing the same
JP2003029045A (en) * 2001-07-19 2003-01-29 Mitsubishi Rayon Co Ltd Surface light source unit and light transmitting plate used therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313732A (en) * 1995-05-15 1996-11-29 Ohtsu Tire & Rubber Co Ltd :The Light guide
US6099135A (en) * 1996-02-01 2000-08-08 Mitsubishi Rayon Co., Ltd. Surface light source element and liquid crystal display device, sign device and traffic control sign device using same
JP4424641B2 (en) * 2001-02-27 2010-03-03 三菱レイヨン株式会社 Surface light source device and light guide for surface light source device
JP4119633B2 (en) * 2001-10-04 2008-07-16 三菱レイヨン株式会社 Surface light source device and light guide used therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11202135A (en) * 1998-01-14 1999-07-30 Ohtsu Tire & Rubber Co Ltd :The Back light unit, manufacture of back light unit and light guide plate
JP2000141379A (en) * 1998-11-06 2000-05-23 Stanley Electric Co Ltd Manufacture of mold for light guide plate
JP2002216530A (en) * 2001-01-24 2002-08-02 Mitsubishi Rayon Co Ltd Surface light source device, light guide for surface light source device and method for manufacturing the same
JP2003029045A (en) * 2001-07-19 2003-01-29 Mitsubishi Rayon Co Ltd Surface light source unit and light transmitting plate used therefor

Also Published As

Publication number Publication date
KR20060126796A (en) 2006-12-08
CN1914461B (en) 2010-08-18
JP4716876B2 (en) 2011-07-06
CN1914461A (en) 2007-02-14
KR100737021B1 (en) 2007-07-09
TW200525791A (en) 2005-08-01
WO2005073625A1 (en) 2005-08-11

Similar Documents

Publication Publication Date Title
WO2006035743A1 (en) Light guide for surface light source and surface light guide
WO2011043466A1 (en) Image display device
WO2003089839A1 (en) Surface light source device and light guide used therefor
JP2006294256A (en) Surface light source device and light guide body therefor
WO2010058845A1 (en) Planar light source device and light guide used for the same
JP2008218418A (en) Surface light source and light guide used for same
JPWO2004016985A1 (en) Surface light source device and light guide used therefor
JP4761472B2 (en) Light guide for surface light source device, method for manufacturing the same, and surface light source device
JP4716876B2 (en) Light guide for surface light source device, method for manufacturing the same, and surface light source device
KR100927513B1 (en) Surface light source unit-use light guide and production method therefor and surface light source unit
JP4446460B2 (en) Surface light source device, light guide for surface light source device, and manufacturing method thereof
JP2006108032A (en) Light guide body for surface light source, its manufacturing method as well as surface light source device
JP4424641B2 (en) Surface light source device and light guide for surface light source device
JP4693190B2 (en) Surface light source device, light guide for surface light source device, and method for manufacturing the same
JP2010251246A (en) Light guide body, surface light source device using light guide body, and display device using surface light source device
JP2010040429A (en) Surface light source device, and light guide body used for it
JP4807814B2 (en) Surface light source device and light guide used therefor
JP5439051B2 (en) Surface light source device and light guide used therefor
JP4372665B2 (en) Surface light source device and light guide used therefor
JP2010027564A (en) Planar light source device and light guide using the same
JP5348960B2 (en) Surface light source device and light guide used therefor
KR100776863B1 (en) Surface light source unit and light guide using it
JP2009266643A (en) Light guide body, and surface light source device using the same
JP4212030B2 (en) Surface light source device, light guide used therefor, and display device using them
JP5438989B2 (en) Light guide for surface light source device and surface light source device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110329

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees