JPWO2005040081A1 - Alkyl-substituted diphenyl ether compounds and compositions containing the same - Google Patents

Alkyl-substituted diphenyl ether compounds and compositions containing the same Download PDF

Info

Publication number
JPWO2005040081A1
JPWO2005040081A1 JP2005515026A JP2005515026A JPWO2005040081A1 JP WO2005040081 A1 JPWO2005040081 A1 JP WO2005040081A1 JP 2005515026 A JP2005515026 A JP 2005515026A JP 2005515026 A JP2005515026 A JP 2005515026A JP WO2005040081 A1 JPWO2005040081 A1 JP WO2005040081A1
Authority
JP
Japan
Prior art keywords
alkyl
diphenyl ether
compound
substituted diphenyl
addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005515026A
Other languages
Japanese (ja)
Other versions
JP4698422B2 (en
Inventor
永芳 小林
永芳 小林
雅次 河野
雅次 河野
明伸 若林
明伸 若林
民生 赤田
民生 赤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsumura Oil Research Corp
Original Assignee
Matsumura Oil Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsumura Oil Research Corp filed Critical Matsumura Oil Research Corp
Priority to JP2005515026A priority Critical patent/JP4698422B2/en
Publication of JPWO2005040081A1 publication Critical patent/JPWO2005040081A1/en
Application granted granted Critical
Publication of JP4698422B2 publication Critical patent/JP4698422B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/257Ethers having an ether-oxygen atom bound to carbon atoms both belonging to six-membered aromatic rings
    • C07C43/275Ethers having an ether-oxygen atom bound to carbon atoms both belonging to six-membered aromatic rings having all ether-oxygen atoms bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/18Ethers, e.g. epoxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/02Mixtures of base-materials and thickeners
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/0406Ethers; Acetals; Ortho-esters; Ortho-carbonates used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/32Wires, ropes or cables lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/34Lubricating-sealants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明の、炭素数10〜20のアルキル基を少なくとも2以上置換基として有し、かつアルキル置換基の1位付加率が5%以上であるアルキル置換ジフェニルエーテルは、優れた高温特性と優れた低温特性とを併せ有し、これを含有する組成物は潤滑剤組成物、グリース組成物等として極めて優れている。The alkyl-substituted diphenyl ether of the present invention having at least two or more alkyl groups having 10 to 20 carbon atoms as substituents and having a 1-position addition rate of alkyl substituents of 5% or more has excellent high temperature characteristics and excellent low temperature. In addition to the characteristics, compositions containing these are extremely excellent as lubricant compositions, grease compositions, and the like.

Description

本発明は、新規なアルキル置換ジフェニルエーテル化合物およびそれを含む潤滑剤組成物に関する。さらに詳しくは、工業用グリースのベース油、真空ポンプ油、チェーン用潤滑油、コンプレッサー用潤滑油、その他高温下において長寿命を有し、かつ優れた低温特性が必要とされる用途で使用される潤滑剤組成物に関し、特に本発明のアルキル置換ジフェニルエーテル化合物を含むグリース組成物に関する。  The present invention relates to a novel alkyl-substituted diphenyl ether compound and a lubricant composition containing the same. More specifically, it is used in industrial grease base oils, vacuum pump oils, chain lubricants, compressor lubricants, and other applications that have a long life at high temperatures and require excellent low-temperature characteristics. More particularly, the present invention relates to a grease composition containing the alkyl-substituted diphenyl ether compound of the present invention.

近年産業用機器は利用環境の広がりを見せており、寒冷地での使用や、高温多湿の条件下での使用など、様々な環境に対応した性能が要求されている。これら産業用機器で使用されている潤滑油に対しても、要求される性能が多岐にわたり高度なものとなっている。
このような状況下で、従来から使用されている鉱物油に代わり、合成潤滑油が使用されてきている。例えば、高温下において熱劣化・酸化劣化を生じず、長寿命が要求される用途に対しては、フェニルエーテル系合成油が使用されている。また、低温下で使用される産業用機器については、駆動時の低トルク化を実現するために、低温状態でも流動性を維持するポリαオレフィン油やエステル油が使用されている。
とくに、フェニルエーテル系合成油については、工業用グリースの基油、真空ポンプ油、チェーン用潤滑油、コンプレッサー用潤滑油、焼結含油軸受用潤滑油、耐放射線用潤滑油、その他熱安定性が要求される用途にて広く使用されている(例えば特許文献1、非特許文献1参照)。
従来、フェニルエーテル系合成油としては、アルキル置換ジフェニルエーテルが知られている(例えば特許文献1、特許文献2参照)。これらのアルキル置換ジフェニルエーテルは塩化アルミニウムを触媒として、ジフェニルエーテルとαオレフィンとのフリーデルクラフツ反応によって合成されている(例えば特許文献3参照)。しかしかかる合成法からは、アルキル基の2位以上の位置でジフェニルエーテルと結合した化合物のみが得られ、アルキル基の1位の位置でジフェニルエーテルと結合した化合物は得られないことが判明した(後述する比較例1、比較例2を参照)。ここでアルキル基の2位以上の位置でジフェニルエーテルと結合した化合物とは例えばsec−アルキル基が置換したジフェニルエーテルのことであり、アルキル基の1位の位置でジフェニルエーテルと結合した化合物とはn−アルキル基が置換したジフェニルエーテルを意味する。
かかる従来のアルキル置換ジフェニルエーテルは、高温下で使用される潤滑油としての良好な性能を有しているが、さらに優れた高温特性が要望されている。また低温特性においても、さらなる改良の要求があり、例えば低温下の性能向上のために、ポリαオレフィン油との併用が提案されている(例えば特許文献4参照)。しかし、ポリαオレフィン油との併用は、耐熱性に対しては、好ましくない結果を与えかねない。
特公昭58−22515号公報 特許第2572814号公報 特表平6−504289号公報 特許第2544560号公報 河野雅次、「フェニルエーテル系合成潤滑剤の実用例と効果」、潤滑経済、2000年12月5日、第417巻(2000年12月号)、p.18−23 本発明の課題は、優れた高温特性と優れた低温特性とを併せ持つ化合物を提供すること、および該化合物を含有した潤滑剤組成物、中でもグリース組成物を提供することにある。
本発明者らは、上記の課題を解決するため種々の化合物を合成しその特性を検討した。その結果、一定の割合以上でアルキル基の1位の位置においてジフェニルエーテルと結合したアルキル置換ジフェニルエーテルが上記課題を解決することを見出し本発明を完成するに至った。
In recent years, industrial equipment has been expanding its usage environment, and performance corresponding to various environments such as use in cold regions and use under conditions of high temperature and high humidity is required. The required performance of the lubricating oil used in these industrial equipment is diverse and sophisticated.
Under such circumstances, synthetic lubricating oil has been used in place of the conventionally used mineral oil. For example, phenyl ether synthetic oils are used for applications that do not cause thermal degradation or oxidation degradation at high temperatures and require a long life. In addition, for industrial equipment used at low temperatures, poly α-olefin oils and ester oils that maintain fluidity even at low temperatures are used in order to achieve low torque during driving.
In particular, phenyl ether synthetic oils have industrial grease base oil, vacuum pump oil, chain lubricating oil, compressor lubricating oil, sintered oil-impregnated bearing lubricating oil, radiation resistant lubricating oil, and other thermal stability. Widely used in required applications (for example, see Patent Document 1 and Non-Patent Document 1).
Conventionally, alkyl-substituted diphenyl ethers are known as phenyl ether synthetic oils (see, for example, Patent Document 1 and Patent Document 2). These alkyl-substituted diphenyl ethers are synthesized by Friedel-Crafts reaction between diphenyl ether and α-olefin using aluminum chloride as a catalyst (see, for example, Patent Document 3). However, it was found that such a synthesis method yielded only a compound bonded to diphenyl ether at the position 2 or higher of the alkyl group, and no compound bonded to diphenyl ether at the position 1 of the alkyl group (described later). (See Comparative Example 1 and Comparative Example 2). Here, the compound bonded to diphenyl ether at the position 2 or more of the alkyl group is, for example, diphenyl ether substituted with a sec-alkyl group, and the compound bonded to diphenyl ether at the position 1 of the alkyl group is n-alkyl. It means diphenyl ether substituted with a group.
Such conventional alkyl-substituted diphenyl ethers have good performance as lubricating oils used at high temperatures, but more excellent high temperature characteristics are desired. Further, there is a demand for further improvement in the low-temperature characteristics. For example, in order to improve the performance at low temperatures, the combined use with poly-α-olefin oil has been proposed (see, for example, Patent Document 4). However, the combined use with poly-alpha olefin oil may give an unfavorable result with respect to heat resistance.
Japanese Examined Patent Publication No. 58-22515 Japanese Patent No. 2572814 JP-T 6-504289 Japanese Patent No. 2544560 Masanobu Kawano, “Practical Examples and Effects of Phenyl Ether Synthetic Lubricants”, Lubrication Economy, December 5, 2000, Vol. 417 (December 2000 issue), p. 18-23 An object of the present invention is to provide a compound having both excellent high-temperature characteristics and excellent low-temperature characteristics, and to provide a lubricant composition containing the compound, particularly a grease composition.
In order to solve the above problems, the present inventors have synthesized various compounds and studied their characteristics. As a result, it has been found that an alkyl-substituted diphenyl ether bonded to diphenyl ether at the 1-position of the alkyl group at a certain ratio or more can solve the above problems, and has completed the present invention.

本発明は、炭素数10〜20のアルキル基を少なくとも2以上置換基として有し、かつアルキル置換基の1位付加率が5%以上であるアルキル置換ジフェニルエーテルに係る。
ここで、1位付加率とは、下記式(1)で表されるアルキル置換ジフェニルエーテルにおいて、ジフェニルエーテル環に置換するアルキル基が、末端炭素原子(1位)の位置でジフェニルエーテル環に付加する割合であって、2位以上の位置で付加するものを含む全体に占める割合を意味し、具体的には下述するH−NMR分析により求めた値を意味する。

Figure 2005040081
(Rは炭素数10〜20のアルキル基であり、m、nは0〜5の実数をあらわし、かつ2≦m+n≦10である。この場合、夫々のRは同一でも異なっていても良い。)
本発明の化合物においては上記1位付加率は、5%以上、好ましくは10%以上、さらに好ましくは20%以上である。上記1位付加率の上限においては特に限定はないが50%以下が好ましい。従って、1位付加率の好ましい範囲は、5〜50%、更に好ましくは10〜50%、最も好ましくは20〜50%である。
炭素数10〜20のアルキル基としては例えばデシル、ウンデシル、ドデシル、テトラデシル、ヘキサデシル、ヘプタデシル、オクタデシル、エイコシルなどを挙げることができ、中でも炭素数10〜18のアルキル基が好ましく、炭素数12〜16が特に好ましい。
アルキル置換基の数としては、上記一般式(1)においてm+n=2〜10であり、好ましくは、m+n=2〜4である。
目的のアルキル置換ジフェニルエーテルの構造は、H−NMRを用いて確認することができる。溶媒には、重クロロホルムを使用し、基準物質にはテトラメチルシランを使用する。
1位付加と、2位以上の付加の比率は、H−NMRの測定結果より、下記式(2)及び式(3)で算出することができる。
式(2):
1位付加率=(4N−2×H/H)/(2N+1)×100
式(3):
2位以上の付加率=100−1位付加率
ここで、Nは、アルキル基の総炭素原子数を表す。H、H及びHは、下記に帰属される水素原子の積分値を示す。なおHの数値は式(2)には不要であるが参考のために実施例において示す。
:δ=0.74〜1.58ppm〔アルキル基が有する水素原子のうち、ジフェニルエーテル骨格に隣接する炭素原子上の水素原子を除いた、全ての水素原子〕
:δ=2.30〜3.06ppm〔アルキル基が有する水素原子のうち、ジフェニルエーテル骨格に隣接する炭素原子上の水素原子〕
:δ=6.79〜7.26ppm〔ジフェニルエーテル骨格が有する水素原子〕
ただし、式(2)で、1位付加率が0以下であり、式(3)で2位以上の付加率が100以上である結果が得られる場合がある。この結果は、アルキル基の付加位置が2位以上であり、かつ付加位置となる炭素原子が四級炭素である化合物が存在することを意味する。したがって、1位付加が0以下と算出された場合には、1位付加率を0%とし、2位以上の付加率を100%とした。
本発明のアルキル置換ジフェニルエーテルの合成方法としては、アルキル基の付加原料として従来のαオレフィンに代えて1−ハロゲン化アルカン(好ましくは1−塩化アルカン)または一級アルコールを用い、ジフェニルエーテルにアルキル基をフリーデルクラフツ反応によって付加することにより合成することができる。この合成法によれば、アルキル基の付加位置が1位であるアルキル置換ジフェニルエーテルを一定以上含ませることができる。
また本発明は、上記アルキル置換ジフェニルエーテルを含有する潤滑剤組成物に係わる。
本発明の潤滑剤組成物は、上記のアルキル置換ジフェニルエーテルを100%含有するものの他、鉱物油、又は他の合成油、例えば、ポリαオレフィン油、エステル油、シリコーン油、ポリブテン油、ポリエーテル油、又はフッ素化ポリエーテル油を含むものであっても良く、またそれ自身公知の種々の添加剤を含むものであっても良い。使用可能な添加剤としては、スルホネート系、フェノール系、アミン系、イオウ系、リン系、モリブデン系、脂肪酸系、ポリメタクリレート系の各種添加剤等が挙げられる。また本発明の潤滑剤組成物には、特に限定されないが、これを基油として種々の添加剤、例えば増ちょう剤、極圧添加剤等を含むグリースや、酸化防止剤等を含む真空ポンプ油、チェーン用潤滑油、焼結含油軸受用潤滑油、耐放射線用潤滑油およびコンプレッサー用潤滑油が含まれる。
特に、上記潤滑剤組成物の中でも、本発明のアルキル置換ジフェニルエーテルを基油または基油の一部として含むグリース組成物が好ましい。また、本発明のグリース組成物は各種軸受用に用いられたときに、機械の作動時の異音の低減、軸受寿命の延長に優れた効果を発揮する。本発明のグリース組成物は、上記のアルキル置換ジフェニルエーテルを基油または基油の一部とし、増ちょう剤、極圧添加剤等の各種添加剤を含む。増ちょう剤としては特に限定はないが、金属石鹸、複合金属石鹸等の石鹸系増ちょう剤、ベントン、シリカゲル、ウレア化合物、ウレタン化合物、ウレア・ウレタン化合物等の非石鹸系増ちょう剤が使用可能である。中でも使用可能温度範囲が広く、一般工業用から自動車部品用途、家電製品に至るまで万能的に使用できる、また自動車電装部品の軸受、鉄鋼メーカーの連続鋳造設備・圧延機等の用途に必要な耐熱性・耐水性の点からリチウム石鹸、複合リチウム石鹸、ウレア化合物等の増ちょう剤が好ましい。石鹸系増ちょう剤としては具体的にはナトリウム石鹸、カルシウム石鹸、アルミニウム石鹸、リチウム石鹸等が挙げられる。ウレア化合物、ウレタン化合物、ウレア・ウレタン化合物の具体例としては、例えばp−トルイジンとトリレンジイソシアネートの反応物、シクロヘキシルアミンと4,4’−ジフェニルメタントリイソシアネートの反応物であるジウレア化合物、p−ドデシルアニリンと4,4’−ジフェニルメタントリイソシアネートの反応物であるトリウレア化合物、その他、テトラウレア化合物、ジウレタン化合物、ウレア・ウレタン化合物またはこれらの混合物が挙げられる。極圧添加剤としては硫化まっこう油、ジアルキルジチオカルバミン酸等のイオウ系、ジアルキルジチオりん酸塩、りん酸エステル類等のりん系、有機モリブデン化合物等のモリブデン系、グラファイト、二硫化モリブデン、窒化ほう素、ほう酸カリウム、PTFE等の固体潤滑剤が挙げられる。他の添加剤としては、油性剤、酸化防止剤、さび止め剤等が使用できる。
本発明のグリース組成物は軸受用グリース組成物として特に低温、高温、高速、高荷重等、より厳しい条件下で好適に用いられる。
本発明のアルキル置換ジフェニルエーテルの高温特性と低温特性を評価した結果、前記従来の2位以上の付加率の大きいアルキル置換ジフェニルエーテルに比較して、高温安定性に優れ、また低温特性においてもポリαオレフィンに匹敵し、優れた高温特性と優れた低温特性とを併せ持つ化合物を提供することができた。また、潤滑特性を評価した結果、本発明のアルキル置換ジフェニルエーテルを含む潤滑剤組成物は従来のアルキル置換ジフェニルエーテルに比べ同等以上の特性を示し、グリース、真空ポンプ油、チェーン用潤滑油、コンプレッサー用潤滑油、焼結含油軸受用潤滑油および耐放射線用潤滑油として利用できる。中でも軸受用グリース組成物として、広温度範囲での機械の作動時の異音の低減、軸受寿命の延長に優れた特性を持つ潤滑剤組成物を提供できる。The present invention relates to an alkyl-substituted diphenyl ether having at least two or more alkyl groups having 10 to 20 carbon atoms as substituents and having a 1-position addition rate of 5% or more of alkyl substituents.
Here, the 1-position addition rate is a ratio in which an alkyl group substituted on the diphenyl ether ring is added to the diphenyl ether ring at the terminal carbon atom (position 1) in the alkyl-substituted diphenyl ether represented by the following formula (1). It means the proportion of the whole including those added at the 2nd and higher positions, specifically the value determined by 1 H-NMR analysis described below.
Figure 2005040081
(R is an alkyl group having 10 to 20 carbon atoms, m and n represent real numbers of 0 to 5, and 2 ≦ m + n ≦ 10. In this case, each R may be the same or different. )
In the compound of the present invention, the 1-position addition rate is 5% or more, preferably 10% or more, more preferably 20% or more. Although there is no limitation in particular in the upper limit of the said 1st-position addition rate, 50% or less is preferable. Therefore, the preferred range of the 1-position addition rate is 5 to 50%, more preferably 10 to 50%, and most preferably 20 to 50%.
Examples of the alkyl group having 10 to 20 carbon atoms include decyl, undecyl, dodecyl, tetradecyl, hexadecyl, heptadecyl, octadecyl, and eicosyl. Among them, an alkyl group having 10 to 18 carbon atoms is preferable, and 12 to 16 carbon atoms. Is particularly preferred.
The number of alkyl substituents is m + n = 2 to 10 in the general formula (1), and preferably m + n = 2 to 4.
The structure of the target alkyl-substituted diphenyl ether can be confirmed using 1 H-NMR. Deuterated chloroform is used as the solvent, and tetramethylsilane is used as the reference material.
The ratio of 1st-position addition and 2nd-position addition or more can be calculated by the following formula (2) and formula (3) from the measurement result of 1 H-NMR.
Formula (2):
1st place addition rate = (4N−2 × H 1 / H 2 ) / (2N + 1) × 100
Formula (3):
Addition rate at 2nd position or higher = 100-1 position addition rate Here, N represents the total number of carbon atoms of the alkyl group. H 1 , H 2, and H 3 represent the integral values of the hydrogen atoms belonging to the following. The numerical value of H 3 is not necessary for the formula (2), but is shown in the examples for reference.
H 1 : δ = 0.74 to 1.58 ppm [all hydrogen atoms excluding hydrogen atoms on carbon atoms adjacent to the diphenyl ether skeleton among hydrogen atoms of the alkyl group]
H 2 : δ = 2.30 to 3.06 ppm [Hydrogen atom of alkyl group, hydrogen atom on carbon atom adjacent to diphenyl ether skeleton]
H 3 : δ = 6.79 to 7.26 ppm [hydrogen atom of diphenyl ether skeleton]
However, in the formula (2), the first-order addition rate may be 0 or less, and the second-order or higher addition rate in the formula (3) may be 100 or more. This result means that there is a compound in which the addition position of the alkyl group is 2 or more and the carbon atom serving as the addition position is a quaternary carbon. Therefore, when the 1st place addition was calculated to be 0 or less, the 1st place addition rate was set to 0%, and the 2nd or higher place addition rate was set to 100%.
As a method for synthesizing the alkyl-substituted diphenyl ether of the present invention, a 1-halogenated alkane (preferably 1-alkane alkane) or a primary alcohol is used in place of the conventional α-olefin as an addition material for the alkyl group, and the alkyl group is free in the diphenyl ether It can be synthesized by addition by the Del Crafts reaction. According to this synthesis method, the alkyl-substituted diphenyl ether in which the addition position of the alkyl group is at the 1-position can be included more than a certain amount.
The present invention also relates to a lubricant composition containing the above alkyl-substituted diphenyl ether.
The lubricant composition of the present invention contains 100% of the above alkyl-substituted diphenyl ether, mineral oil, or other synthetic oils such as polyalphaolefin oil, ester oil, silicone oil, polybutene oil, polyether oil. Or a fluorinated polyether oil, or various additives known per se. Examples of usable additives include sulfonate, phenol, amine, sulfur, phosphorus, molybdenum, fatty acid, and polymethacrylate additives. In addition, the lubricant composition of the present invention is not particularly limited, but using this as a base oil, various additives such as grease containing a thickener, extreme pressure additive, etc., and vacuum pump oil containing an antioxidant, etc. , Chain lubricants, sintered oil-impregnated bearing lubricants, radiation resistant lubricants and compressor lubricants.
In particular, among the above lubricant compositions, a grease composition containing the alkyl-substituted diphenyl ether of the present invention as a base oil or a part of the base oil is preferable. Further, when the grease composition of the present invention is used for various bearings, it exhibits excellent effects in reducing noise during operation of the machine and extending the bearing life. The grease composition of the present invention comprises the above alkyl-substituted diphenyl ether as a base oil or a part of the base oil, and contains various additives such as a thickener and an extreme pressure additive. The thickener is not particularly limited, but soap-type thickeners such as metal soaps and composite metal soaps, and non-soap-type thickeners such as benton, silica gel, urea compounds, urethane compounds and urea / urethane compounds can be used. It is. The usable temperature range is wide, and it can be used universally from general industrial use to automotive parts applications and home appliances. Also, heat resistance necessary for applications such as bearings for automobile electrical parts, continuous casting equipment and rolling mills of steel manufacturers, etc. From the viewpoint of water resistance and water resistance, thickeners such as lithium soap, composite lithium soap and urea compound are preferred. Specific examples of the soap thickener include sodium soap, calcium soap, aluminum soap, lithium soap and the like. Specific examples of urea compounds, urethane compounds, and urea / urethane compounds include, for example, a reaction product of p-toluidine and tolylene diisocyanate, a diurea compound that is a reaction product of cyclohexylamine and 4,4′-diphenylmethane triisocyanate, and p-dodecyl. A triurea compound which is a reaction product of aniline and 4,4′-diphenylmethane triisocyanate, a tetraurea compound, a diurethane compound, a urea-urethane compound or a mixture thereof may be mentioned. Extreme pressure additives include sulfurized gypsum oil, sulfur such as dialkyldithiocarbamic acid, phosphorus such as dialkyldithiophosphate and phosphate esters, molybdenum such as organic molybdenum compounds, graphite, molybdenum disulfide, boron nitride Solid lubricants such as elemental, potassium borate, PTFE and the like can be mentioned. As other additives, oily agents, antioxidants, rust inhibitors and the like can be used.
The grease composition of the present invention is suitably used as a grease composition for bearings under particularly severe conditions such as low temperature, high temperature, high speed and high load.
As a result of evaluating the high temperature characteristics and low temperature characteristics of the alkyl-substituted diphenyl ether of the present invention, it is superior to the conventional alkyl-substituted diphenyl ether having a higher addition ratio at the 2-position or higher, and is excellent in high-temperature stability, and also has low-temperature characteristics. It was possible to provide a compound having both excellent high temperature characteristics and excellent low temperature characteristics. In addition, as a result of evaluating the lubrication characteristics, the lubricant composition containing the alkyl-substituted diphenyl ether of the present invention exhibits the same or better characteristics than the conventional alkyl-substituted diphenyl ether, and grease, vacuum pump oil, chain lubrication oil, compressor lubrication Oils, sintered oil-impregnated bearing lubricants and radiation-resistant lubricants. Among them, as a grease composition for bearings, it is possible to provide a lubricant composition having excellent characteristics in reducing abnormal noise during machine operation in a wide temperature range and extending the bearing life.

以下、実施例、比較例、試験例により本発明を更に具体的に説明するが、本発明はこれらの実施例等に限定されるものではない。  EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, comparative examples, and test examples, but the present invention is not limited to these examples.

<ジ体以上を主成分とするドデシル置換ジフェニルエーテル(化合物1)の合成>
ジフェニルエーテル(510.0g)と触媒である塩化アルミニウム(8.2g)を120℃で加熱攪拌した。この溶液に対して、1−塩化ドデシル(1171.8g)をゆっくりと添加し、2時間加熱攪拌を継続した。その後、混合物をろ過して触媒を取り除き、次いで300℃で13.3〜200Paにて減圧蒸留を行い、未反応原料とモノドデシル置換ジフェニルエーテルを取り除き、目的とする化合物1(698.9g)を得た。
化合物1の構造は、400MHzのH−NMR(日本電子製JNM−GX400)を用いて確認した。溶媒には、重クロロホルムを使用し、基準物質にはテトラメチルシランを使用した。(以下の実施例、比較例において同じ。)
:δ=0.74〜1.58ppm〔21.42H,アルキル基が有する水素原子のうち、ジフェニルエーテル骨格に隣接する炭素原子上の水素原子を除いた、全ての水素原子〕
:δ=2.30〜3.06ppm〔1.00H,アルキル基が有する水素原子のうち、ジフェニルエーテル骨格に隣接する炭素原子上の水素原子〕
:δ=6.79〜7.26ppm〔6.87H,ジフェニルエーテル骨格が有する水素原子〕
1位付加と2位以上の付加の比率は、式(2)及び式(3)より、1位付加:2位以上の付加=21:79であると算出された。従って化合物1の1位付加率は21%である。
<Synthesis of Dodecyl Substituted Diphenyl Ether (Compound 1) Mainly Containing Diisomer or More>
Diphenyl ether (510.0 g) and aluminum chloride (8.2 g) as a catalyst were heated and stirred at 120 ° C. To this solution, 1-dodecyl chloride (1171.8 g) was added slowly and stirring was continued for 2 hours. Thereafter, the mixture is filtered to remove the catalyst, and then vacuum distillation is performed at 300 ° C. from 13.3 to 200 Pa to remove unreacted raw materials and monododecyl-substituted diphenyl ether, thereby obtaining the target compound 1 (698.9 g). It was.
The structure of Compound 1 was confirmed using 400 MHz 1 H-NMR (JNM-GX400 manufactured by JEOL Ltd.). Deuterated chloroform was used as the solvent, and tetramethylsilane was used as the reference material. (The same applies to the following examples and comparative examples.)
H 1 : δ = 0.74 to 1.58 ppm [21.42H, all hydrogen atoms excluding hydrogen atoms on carbon atoms adjacent to the diphenyl ether skeleton out of hydrogen atoms of the alkyl group]
H 2 : δ = 2.30-3.06 ppm [1.00H, hydrogen atom on carbon atom adjacent to diphenyl ether skeleton among hydrogen atoms of alkyl group]
H 3 : δ = 6.79 to 7.26 ppm [6.87H, hydrogen atom of diphenyl ether skeleton]
The ratio of addition at the 1st position and addition at the 2nd position or higher was calculated from Formulas (2) and (3) as 1st position addition: 2nd or higher position addition = 21: 79. Therefore, the 1-position addition rate of Compound 1 is 21%.

<アルキル置換基がドデシル基、テトラデシル基及びヘキサデシル基からなり、かつジ置換体以上を主成分とするアルキル置換ジフェニルエーテル(化合物2)の合成>
ジフェニルエーテル(510.0g)と触媒である塩化アルミニウム(8.7g)を120℃で加熱攪拌する。この溶液に対して、C12:65%,C14:22%、C16:13%よりなる混合塩化アルキル(1246.7g)をゆっくりと添加し、2時間加熱攪拌を継続した。その後、混合物をろ過して触媒を取り除き、次いで300℃で13.3〜200Paにて減圧蒸留を行い、未反応原料とモノアルキル置換ジフェニルエーテルを取り除き、目的とする化合物2(911.0g)を得た。
化合物2の構造は、実施例1と同様に、H−NMRを用いて確認した。
:δ=0.74〜1.58ppm〔21.16H,アルキル基が有する水素原子のうち、ジフェニルエーテル骨格に隣接する炭素原子上の水素原子を除いた、全ての水素原子〕
:δ=2.30〜3.06ppm〔1.00H,アルキル基が有する水素原子のうち、ジフェニルエーテル骨格に隣接する炭素原子上の水素原子〕
:δ=6.79〜7.26ppm〔2.37H,ジフェニルエーテル骨格が有する水素原子〕
1位付加と2位以上の付加の比率は、式(2)及び式(3)より、1位付加:2位以上の付加=36:64であると算出された。即ち、化合物2の1位付加率は36%である。比較例1:<αオレフィンを合成原料とし、ジ体以上を主成分とするドデシル置換ジフェニルエーテル(化合物3)の合成>
ジフェニルエーテル(510.0g)と触媒である塩化アルミニウム(6.6g)を90℃で加熱攪拌する。この溶液に対して、1−ドデカン(947.1g)をゆっくりと添加し、30分間加熱攪拌を継続した。その後、混合物をろ過して触媒を取り除き、次いで280℃で13.3〜200Paにて減圧蒸留を行い、未反応原料とモノアルキル置換ジフェニルエーテルを取り除き、目的とする化合物3(1150.6g)を得た。
化合物3の構造は、実施例1と同様に、H−NMRを用いて確認した。
:δ=0.73〜1.58ppm〔27.01H,アルキル基が有する水素原子のうち、ジフェニルエーテル骨格に隣接する炭素原子上の水素原子を除いた、全ての水素原子〕
:δ=2.30〜3.06ppm〔1.00H,アルキル基が有する水素原子のうち、ジフェニルエーテル骨格に隣接する炭素原子上の水素原子〕
:δ=6.79〜7.26ppm〔3.08H,ジフェニルエーテル骨格が有する水素原子〕
1位付加と2位以上の付加の比率は、式(2)及び式(3)より、1位付加:2位以上の付加=0:100であると算出された。従って、化合物3の1位付加率は0%であり、従来のドデシル置換ジフェニルエーテルは1位付加体を含まないことが解る。
比較例2:<αオレフィンを合成原料とし、アルキル置換基がドデシル基及びテトラデシル基からなり、かつジ置換体以上を主成分とするアルキル置換ジフェニルエーテル(化合物4)の合成>
ジフェニルエーテル(510.0g)と触媒である塩化アルミニウム(7.2g)を90℃で加熱攪拌した。この溶液に対して、C12:56%,C14:44%よりなる混合α−オレフィン(1026.0g)をゆっくりと添加し、30分間加熱攪拌を継続した。その後、混合物をろ過して触媒を取り除き、次いで280℃で13.3〜200Paにて減圧蒸留を行い、未反応原料とモノアルキル置換ジフェニルエーテルを取り除き、目的とする化合物4(1195.0g)を得た。
化合物4の構造は、実施例1と同様に、H−NMRを用いて確認した。
:δ=0.73〜1.58ppm〔30.19H,アルキル基が有する水素原子のうち、ジフェニルエーテル骨格に隣接する炭素原子上の水素原子を除いた、全ての水素原子〕
:δ=2.30〜3.06ppm〔1.00H,アルキル基が有する水素原子のうち、ジフェニルエーテル骨格に隣接する炭素原子上の水素原子〕
:δ=6.79〜7.26ppm〔3.08H,ジフェニルエーテル骨格が有する水素原子〕
1位付加と2位以上の付加の比率は、式(2)及び式(3)より、1位付加:2位以上の付加=0:100であると算出された。即ち、化合物4の1位付加率は0%である。化合物3について述べたと同様に従来のアルキル置換ジフェニルエーテルは、1位付加体を含まないことが解る。
実施例1、2及び比較例1、2で合成した化合物(化合物1〜4)の一般性状を表1に示す。また、アルキル置換ジフェニルエーテル系以外の合成潤滑油として一般に用いられているポリαオレフィンについても、新日鐵化学株式会社製のPAO−801(化合物5)を併記し、これを比較例3とした。

Figure 2005040081
表1に示すように、本発明の1位付加体を有するアルキル置換ジフェニルエーテルである化合物1及び化合物2は、潤滑剤組成物の基油として十分適用可能な一般性状を有することが確認された。
試験例1:熱安定性試験
実施例1、2及び比較例1、2で合成した化合物(化合物1〜4)をそれぞれ150g、200mlのガラスビーカーに秤量した。これを、200℃の高温槽に静置し、5日後及び10日後に、重量、動粘度及び全酸価の測定を行った。熱安定性試験前のそれぞれの測定値を基準として、熱安定性試験による性状の変化を評価した。また比較のため、ポリαオレフィン油についても熱安定性試験を行った。なお、ポリαオレフィン油としては、化合物5を使用した。結果を表2にしめす。
表2中の各項目の試験方法を以下に示す。
試験方法1−1:蒸発損失率の測定
化合物1〜5について、5日後及び10日後の重量を測定し、試験前の値を基準として蒸発損失率を算出した。
試験方法1−2:動粘度変化率の測定
化合物1〜5について、5日後及び10日後の40℃動粘度を測定し、試験前の値を基準として動粘度の変化率を算出した。
試験方法1−3:全酸価変化の測定
化合物1〜5について、試験前、5日後及び10日後の全酸価を測定した。
Figure 2005040081
表2に示すように、本発明の1位付加体を有するアルキル置換ジフェニルエーテルである化合物1及び化合物2は、従来のアルキル置換ジフェニルエーテルである化合物3及び化合物4並びにポリαオレフィンである化合物5に比較して、蒸発損失率、動粘度変化率が低く、また全酸価の増加も少ないことから、高温特性が極めて優れていることが確認された。
試験例2:低温流動性試験
JIS−K2269に従い、実施例1、2及び比較例1、2で合成した化合物(化合物1〜4)について流動点を測定した。また比較のため、ポリαオレフィン油についても流動点の評価を行った。なお、ポリαオレフィン油としては、化合物5を使用した。結果を表3に示す。これらの結果から、本発明の1位付加体を有するアルキル置換ジフェニルエーテルである化合物1及び化合物2は、従来のアルキル置換ジフェニルエーテルである化合物3及び化合物4に比べて、低い流動点を示すことが確認された。又、化合物1及び化合物2は、一般に低温流動性に優れると認められているポリαオレフィン油(化合物5)と比較しても遜色ない低温流動性を示すことが確認された。
Figure 2005040081
試験例3:潤滑性試験
JIS−K2519に従い、実施例1、2及び比較例1、2で合成した化合物(化合物1〜4)について、曾田式四球試験を行った。回転数750rpm、室温下で30分運転後の鋼球の磨耗痕径を測定した。結果を表4に示す。これらの結果から、本発明の1位付加体を有するアルキル置換ジフェニルエーテルである化合物1及び化合物2は、1位付加体を含有しないアルキル置換ジフェニルエーテルである化合物3及び化合物4と、同程度の磨耗痕径を示すことが確認された。これより、本発明の化合物1及び化合物2は、従来より工業用潤滑油として広く使用されているアルキル置換ジフェニルエーテル(化合物3および化合物4)と遜色ない潤滑性を示すと考えられる。
Figure 2005040081
<Synthesis of alkyl-substituted diphenyl ether (compound 2) in which the alkyl substituent is a dodecyl group, a tetradecyl group, and a hexadecyl group, and the main component is a di-substituted product or more>
Diphenyl ether (510.0 g) and aluminum chloride (8.7 g) as a catalyst are heated and stirred at 120 ° C. To this solution, mixed alkyl chloride (1246.7 g) composed of C12: 65%, C14: 22%, C16: 13% was slowly added, and the heating and stirring were continued for 2 hours. Thereafter, the mixture is filtered to remove the catalyst, and then vacuum distillation is performed at 300 ° C. from 13.3 to 200 Pa to remove unreacted raw materials and monoalkyl-substituted diphenyl ether, thereby obtaining the target compound 2 (911.0 g). It was.
The structure of Compound 2 was confirmed using 1 H-NMR, as in Example 1.
H 1 : δ = 0.74 to 1.58 ppm [21.16H, all hydrogen atoms excluding hydrogen atoms on carbon atoms adjacent to the diphenyl ether skeleton among hydrogen atoms of the alkyl group]
H 2 : δ = 2.30-3.06 ppm [1.00H, hydrogen atom on carbon atom adjacent to diphenyl ether skeleton among hydrogen atoms of alkyl group]
H 3 : δ = 6.79-7.26 ppm [2.37H, hydrogen atom of diphenyl ether skeleton]
The ratio of addition at the 1st position and addition at the 2nd position or higher was calculated from the expressions (2) and (3) as 1st position addition: 2nd or higher position addition = 36: 64. That is, the 1-position addition rate of Compound 2 is 36%. Comparative Example 1: <Synthesis of dodecyl-substituted diphenyl ether (compound 3) containing α-olefin as a synthetic raw material and having a di-form or more as a main component>
Diphenyl ether (510.0 g) and aluminum chloride (6.6 g) as a catalyst are heated and stirred at 90 ° C. To this solution, 1-dodecane (947.1 g) was slowly added, and heating and stirring were continued for 30 minutes. Thereafter, the mixture is filtered to remove the catalyst, and then distilled under reduced pressure at 280 ° C. from 13.3 to 200 Pa to remove unreacted raw materials and monoalkyl-substituted diphenyl ether, thereby obtaining the target compound 3 (1150.6 g). It was.
The structure of Compound 3 was confirmed using 1 H-NMR as in Example 1.
H 1 : δ = 0.73 to 1.58 ppm [27.01H, all hydrogen atoms excluding hydrogen atoms on carbon atoms adjacent to the diphenyl ether skeleton out of hydrogen atoms of the alkyl group]
H 2 : δ = 2.30-3.06 ppm [1.00H, hydrogen atom on carbon atom adjacent to diphenyl ether skeleton among hydrogen atoms of alkyl group]
H 3 : δ = 6.79 to 7.26 ppm [3.08H, hydrogen atom of diphenyl ether skeleton]
The ratio of addition at the 1st position and addition at the 2nd position or higher was calculated from the expressions (2) and (3) as 1st addition: 2nd or higher addition = 0: 100. Therefore, it can be seen that the 1-position addition rate of Compound 3 is 0%, and the conventional dodecyl-substituted diphenyl ether does not contain the 1-position adduct.
Comparative Example 2: <Synthesis of Alkyl Substituted Diphenyl Ether (Compound 4) Using α-Olefin as Synthetic Raw Material, Alkyl Substituents of Dodecyl Group and Tetradecyl Group, and Mainly Containing Di-Substituted Product
Diphenyl ether (510.0 g) and aluminum chloride (7.2 g) as a catalyst were heated and stirred at 90 ° C. To this solution, a mixed α-olefin (1026.0 g) consisting of C12: 56% and C14: 44% was slowly added, and heating and stirring were continued for 30 minutes. Thereafter, the mixture was filtered to remove the catalyst, and then distilled under reduced pressure at 280 ° C. from 13.3 to 200 Pa to remove unreacted raw materials and monoalkyl-substituted diphenyl ether, thereby obtaining the target compound 4 (1195.0 g). It was.
The structure of Compound 4 was confirmed using 1 H-NMR as in Example 1.
H 1 : δ = 0.73 to 1.58 ppm [30.19H, all hydrogen atoms excluding hydrogen atoms on carbon atoms adjacent to the diphenyl ether skeleton among hydrogen atoms of the alkyl group]
H 2 : δ = 2.30-3.06 ppm [1.00H, hydrogen atom on carbon atom adjacent to diphenyl ether skeleton among hydrogen atoms of alkyl group]
H 3 : δ = 6.79 to 7.26 ppm [3.08H, hydrogen atom of diphenyl ether skeleton]
The ratio of addition at the 1st position and addition at the 2nd position or higher was calculated from the expressions (2) and (3) as 1st addition: 2nd or higher addition = 0: 100. That is, the 1-position addition rate of Compound 4 is 0%. As with Compound 3, it can be seen that conventional alkyl-substituted diphenyl ethers do not contain a 1-position adduct.
Table 1 shows general properties of the compounds synthesized in Examples 1 and 2 and Comparative Examples 1 and 2 (Compounds 1 to 4). In addition, PAO-801 (compound 5) manufactured by Nippon Steel Chemical Co., Ltd. was also written as polyalphaolefin generally used as a synthetic lubricating oil other than alkyl-substituted diphenyl ether, and this was designated as Comparative Example 3.
Figure 2005040081
As shown in Table 1, it was confirmed that Compound 1 and Compound 2, which are alkyl-substituted diphenyl ethers having a 1-position adduct of the present invention, have general properties that can be sufficiently applied as a base oil of a lubricant composition.
Test Example 1: Thermal Stability Test The compounds synthesized in Examples 1 and 2 and Comparative Examples 1 and 2 (Compounds 1 to 4) were weighed into 150 g and 200 ml glass beakers, respectively. This was left still in a 200 degreeC high temperature tank, and the weight, kinematic viscosity, and the total acid value were measured after 5 days and 10 days. Based on the respective measured values before the thermal stability test, changes in properties due to the thermal stability test were evaluated. For comparison, a thermal stability test was also conducted on the poly α-olefin oil. In addition, the compound 5 was used as poly alpha olefin oil. The results are shown in Table 2.
The test method of each item in Table 2 is shown below.
Test Method 1-1: Measurement of Evaporation Loss Rate The compounds 1 to 5 were weighed after 5 days and 10 days, and the evaporation loss rate was calculated based on the values before the test.
Test Method 1-2: Measurement of Kinematic Viscosity Change Rate For Compounds 1 to 5, the 40 ° C. kinematic viscosity after 5 days and 10 days was measured, and the change rate of kinematic viscosity was calculated based on the value before the test.
Test Method 1-3: Measurement of Change in Total Acid Value For Compounds 1 to 5, the total acid value before, 5 days and 10 days after the test was measured.
Figure 2005040081
As shown in Table 2, Compound 1 and Compound 2, which are alkyl-substituted diphenyl ethers having a 1-position adduct of the present invention, are compared with Compound 3 and Compound 4 which are conventional alkyl-substituted diphenyl ethers and Compound 5 which is a poly α-olefin. Thus, it was confirmed that the high temperature characteristics were extremely excellent because the evaporation loss rate and the kinematic viscosity change rate were low and the increase in the total acid value was small.
Test Example 2: Low-temperature fluidity test Pour points were measured for the compounds synthesized in Examples 1 and 2 and Comparative Examples 1 and 2 (Compounds 1 to 4) according to JIS-K2269. For comparison, the pour point was also evaluated for the polyalphaolefin oil. In addition, the compound 5 was used as poly alpha olefin oil. The results are shown in Table 3. From these results, it is confirmed that the compound 1 and compound 2 which are alkyl-substituted diphenyl ethers having the 1-position adduct of the present invention show a lower pour point compared to the conventional compound 3 and compound 4 which are alkyl-substituted diphenyl ethers. It was done. Moreover, it was confirmed that the compound 1 and the compound 2 show the low temperature fluidity which is comparable with the poly alpha olefin oil (compound 5) generally recognized as having excellent low temperature fluidity.
Figure 2005040081
Test Example 3: Lubricity Test According to JIS-K2519, the compound (compounds 1 to 4) synthesized in Examples 1 and 2 and Comparative Examples 1 and 2 was subjected to an Iwata-style four-ball test. The wear scar diameter of the steel ball after 30 minutes of operation at 750 rpm and room temperature was measured. The results are shown in Table 4. From these results, compound 1 and compound 2 which are alkyl-substituted diphenyl ethers having a 1-position adduct of the present invention are comparable in wear scars to compounds 3 and 4 which are alkyl-substituted diphenyl ethers not containing a 1-position adduct. It was confirmed to show a diameter. From this, it is considered that Compound 1 and Compound 2 of the present invention exhibit lubricity comparable to alkyl-substituted diphenyl ethers (Compound 3 and Compound 4) that have been widely used as industrial lubricating oils.
Figure 2005040081

グリース組成物の製造
本発明のアルキル置換ジフェニルエーテルを基油としたグリース組成物を製造した。
即ち、実施例1の化合物1(1570g)に、12−ヒドロキシステアリン酸リチウム260gを加えて、攪拌しながら加熱した後、ステンレス製容器に注入し、冷却後3本ロールにより1回ミーリングを行った。これに上記の化合物1を170g追加し、3本ロールにより2回ミーリングを行って、リチウム石鹸グリース組成物を得た。これをグリース組成物1とした。
Production of Grease Composition A grease composition was produced using the alkyl-substituted diphenyl ether of the present invention as a base oil.
That is, 260 g of 12-hydroxylithium stearate was added to Compound 1 (1570 g) of Example 1 and heated with stirring, then poured into a stainless steel container, and after cooling, milled once with three rolls. . 170 g of the above compound 1 was added to this, and milled twice with three rolls to obtain a lithium soap grease composition. This was designated as grease composition 1.

化合物1に代えて、実施例2の化合物2を用いた他は実施例3と同様の操作を行って、リチウム石鹸グリース組成物を得た。これをグリース組成物2とした。  A lithium soap grease composition was obtained in the same manner as in Example 3 except that Compound 2 of Example 2 was used instead of Compound 1. This was designated as grease composition 2.

ガラス製容器に化合物1(680g)とパラ−トルイジン210gを入れ、70〜80℃で加熱、攪拌して溶液Aを得た。別のガラス製容器に化合物1(680g)とトリレンジイソシアネート170gを入れ、70〜80℃で加熱・攪拌して溶液Bを得た。セパラブルフラスコに溶液Aを注入し、これに溶液Bを約30分かけて徐々に加えながら攪拌混合後、170℃になるまで約40分、加熱しながら攪拌を続けた。放冷後、アミン系酸化防止剤とモリブデン系極圧剤を添加、混合し、ウレアグリース組成物を得た。これをグリース組成物3とした。  Compound 1 (680 g) and 210 g of para-toluidine were placed in a glass container, and heated and stirred at 70 to 80 ° C. to obtain a solution A. Compound 1 (680 g) and 170 g of tolylene diisocyanate were placed in another glass container, and the solution B was obtained by heating and stirring at 70 to 80 ° C. The solution A was poured into the separable flask, and the solution B was gradually added to the separable flask over about 30 minutes. After stirring and mixing, stirring was continued for about 40 minutes until the temperature reached 170 ° C. After cooling, an amine antioxidant and a molybdenum extreme pressure agent were added and mixed to obtain a urea grease composition. This was designated as grease composition 3.

化合物1に代えて、化合物2を用いた他は実施例5と同様の操作を行って、ウレアグリース組成物を得た。これをグリース組成物4とした。
比較例4:本発明のアルキル置換ジフェニルエーテル(化合物1)に代えて、従来のアルキル置換ジフェニルエーテル(比較例1の化合物3)を用いた他は実施例3と同様の組成でリチウム石鹸グリース組成物を得た。これをグリース組成物5とした。
比較例5:本発明のアルキル置換ジフェニルエーテル(化合物1)に代えて、従来のアルキル置換ジフェニルエーテル(比較例2の化合物4)を用いた他は実施例5と同様の組成でウレアグリース組成物を得た。これをグリース組成物6とした。
比較例6:本発明のアルキル置換ジフェニルエーテル(化合物1)に代えて、表1に示した比較例3の化合物5を用いた他は実施例5と同様の組成でウレアグリース組成物を得た。これをグリース組成物7とした。
実施例3〜6および比較例4〜6で調製した各グリースの混和ちょう度、離油度を測定した結果を表5〜6に示した。さらに下記の方法で潤滑性試験を行い、これらの結果も表5〜6に併記した。
(潤滑性試験)
高速四球試験機を用いて、回転数12,000rpm、負荷荷重40kgfで、各種温度下で1時間運転し、試験中の異常音発生の有無と試験後の摩耗痕径を観察した。

Figure 2005040081
Figure 2005040081
また、実施例5、6および比較例5、6で調製した各グリースを小型軸受に封入し、下記の運転条件で軸受特性試験を行い、回転トルク、音響特性(音響寿命)、揮発量について測定した。
(運転条件)
回転数;3,000rpm
負荷荷重;2kgf
雰囲気温度;−10℃、常温及び100℃
回転トルクは、トルクテスターにより常温で測定した。音響特性は、アンデロンメーターによるアンデロン値を−10℃及び100℃で測定した。揮発量は、雰囲気温度100℃で1,000時間軸受回転試験を行った後、試験前後の軸受重量を測定し、その差により求めた。各々の評価結果につきモーター用軸受グリースに要求される性能に従った判定結果を表7に示した。トルク値は低いものほど、アンデロン値は小さいものほど、揮発量は少ないものほど優れている。評価は次の四段階で評価した。Aは、特に優れている。Bは、優れている。Cは、普通。Dは、劣っている。
Figure 2005040081
表5〜6から明らかなように、潤滑性試験において、摩耗痕径は、汎用的にグリース基油として使用されているアルキル置換ジフェニルエーテルを基油とした比較例4、5のグリースと高温下での試験でも遜色ないものであるだけでなく、比較例4、5は、試験中、特に低温下で潤滑性不良による異常音が発生したのに対し、実施例3〜6のグリースでは異常音の発生はないことが確認できた。さらに、表7から明らかなように、軸受特性試験において、本発明のグリース組成物3及び4は、従来のアルキル置換ジフェニルエーテルを用いたグリース組成物6または低温状態でも流動性を維持するポリαオレフィンを基油(化合物5)としたグリース組成物7よりも、低トルク性、低騒音性、低揮発性を発揮するものであることを確認できた。
以上の事実から、本発明のグリース組成物は、従来のアルキル置換ジフェニルエーテルを用いたグリース組成物に比較して広い温度範囲で、軸受寿命を延長できることが確認された。A urea grease composition was obtained in the same manner as in Example 5 except that Compound 2 was used instead of Compound 1. This was designated as grease composition 4.
Comparative Example 4: A lithium soap grease composition having the same composition as in Example 3 except that a conventional alkyl-substituted diphenyl ether (Compound 3 of Comparative Example 1) was used instead of the alkyl-substituted diphenyl ether of the present invention (Compound 1). Obtained. This was designated as grease composition 5.
Comparative Example 5: A urea grease composition was obtained with the same composition as in Example 5 except that a conventional alkyl-substituted diphenyl ether (Compound 4 of Comparative Example 2) was used instead of the alkyl-substituted diphenyl ether of the present invention (Compound 1). It was. This was designated as grease composition 6.
Comparative Example 6: A urea grease composition having the same composition as in Example 5 was obtained except that the compound 5 of Comparative Example 3 shown in Table 1 was used instead of the alkyl-substituted diphenyl ether of the present invention (Compound 1). This was designated as grease composition 7.
Tables 5 to 6 show the results of measuring the penetration and oil separation of the greases prepared in Examples 3 to 6 and Comparative Examples 4 to 6. Further, a lubricity test was conducted by the following method, and these results are also shown in Tables 5-6.
(Lubricity test)
Using a high-speed four-ball tester, the system was operated for 1 hour under various temperatures at a rotational speed of 12,000 rpm and a load of 40 kgf, and the presence or absence of abnormal noise during the test and the wear scar diameter after the test were observed.
Figure 2005040081
Figure 2005040081
In addition, each grease prepared in Examples 5 and 6 and Comparative Examples 5 and 6 was sealed in a small bearing, a bearing characteristic test was performed under the following operating conditions, and rotational torque, acoustic characteristics (acoustic life), and volatilization amount were measured. did.
(Operating conditions)
Rotation speed: 3,000rpm
Load load: 2kgf
Atmospheric temperature: -10 ° C, normal temperature and 100 ° C
The rotational torque was measured at room temperature with a torque tester. For the acoustic characteristics, the Anderon value measured by an Anderon meter was measured at -10 ° C and 100 ° C. The volatilization amount was obtained by measuring the bearing weight before and after the test after 1,000 hours of bearing rotation test at an ambient temperature of 100 ° C., and obtaining the difference. Table 7 shows the determination results according to the performance required for the motor bearing grease for each evaluation result. The lower the torque value, the smaller the Anderon value, and the smaller the volatilization amount, the better. Evaluation was performed in the following four stages. A is particularly excellent. B is excellent. C is normal. D is inferior.
Figure 2005040081
As is apparent from Tables 5 to 6, in the lubricity test, the wear scar diameter is the same as that of Comparative Examples 4 and 5 using alkyl-substituted diphenyl ether as a base oil, which is generally used as a grease base oil. In Comparative Examples 4 and 5, abnormal noise was generated due to poor lubricity during the test, particularly at low temperatures, whereas the greases of Examples 3 to 6 showed abnormal noise. It was confirmed that there was no occurrence. Further, as is apparent from Table 7, in the bearing characteristic test, the grease compositions 3 and 4 of the present invention are the grease composition 6 using the conventional alkyl-substituted diphenyl ether or the polyα-olefin that maintains fluidity even at low temperatures. It was confirmed that the grease composition 7 having a base oil (Compound 5) exhibits lower torque, lower noise, and lower volatility than the grease composition 7.
From the above facts, it was confirmed that the grease composition of the present invention can extend the bearing life in a wider temperature range than the grease composition using the conventional alkyl-substituted diphenyl ether.

本発明のアルキル置換ジフェニルエーテルの用途としては、工業用グリースのベース油、真空ポンプ油、チェーン用潤滑油、コンプレッサー用潤滑油、焼結含油軸受用潤滑油、その他熱安定性が要求され、併せて優れた低温特性が必要とされる用途が挙げられる。
また、本発明のアルキル置換ジフェニルエーテルを含む潤滑油が優れた高温特性と優れた低温特性を併せ持つことにより、該潤滑油を使用する産業用機器は、広い温度範囲での使用が可能となる。特にグリース組成物としては、自動車電装部品・自動車エンジンの冷却ファン・ホイール、家電製品、コンピューター等の情報機器のモーター、鉄鋼メーカーの連続鋳造設備・圧延機等の軸受用に用いることができる。さらには、自動車用等速ジョイント、各種歯車のギヤボックス、ワイヤーロープ等の摺動部用に用いることができる。グリース組成物としては以上の他、潤滑性を特に必要としない用途、例えば真空ポンプのシール用、防錆さび止め用、家電製品や自動車電装部品の電器接点用に使用することもできる。
Applications of the alkyl-substituted diphenyl ether of the present invention require industrial grease base oil, vacuum pump oil, chain lubricating oil, compressor lubricating oil, sintered oil-impregnated bearing lubricating oil, and other thermal stability. Applications that require excellent low-temperature properties are listed.
Further, since the lubricating oil containing the alkyl-substituted diphenyl ether of the present invention has both excellent high temperature characteristics and excellent low temperature characteristics, industrial equipment using the lubricating oil can be used in a wide temperature range. In particular, the grease composition can be used for automobile electrical components, cooling fans and wheels for automobile engines, motors for home appliances, information equipment such as computers, and bearings for continuous casting equipment and rolling mills of steel manufacturers. Furthermore, it can be used for sliding parts such as constant velocity joints for automobiles, gear boxes for various gears, wire ropes and the like. In addition to the above, the grease composition can also be used for applications that do not particularly require lubricity, such as sealing for vacuum pumps, anticorrosive rust prevention, and electrical contacts for home appliances and automotive electrical components.

Claims (6)

炭素数10〜20のアルキル基の少なくとも2以上をベンゼン環上に置換基として有し、かつアルキル置換基の1位付加率が5%以上であるアルキル置換ジフェニルエーテル。An alkyl-substituted diphenyl ether having at least two or more alkyl groups having 10 to 20 carbon atoms as substituents on the benzene ring, and having a 1-position addition rate of the alkyl substituent of 5% or more. 1位付加率が10〜50%である請求の範囲第1項に記載のアルキル置換ジフェニルエーテル。The alkyl-substituted diphenyl ether according to claim 1, wherein the 1-position addition rate is 10 to 50%. アルキル置換ジフェニルエーテルが式(1)で表される化合物である請求の範囲第1〜2項のいずれかに記載のアルキル置換ジフェニルエーテル。
Figure 2005040081
(Rは炭素数10〜20のアルキル基であり、m、nは0〜5の実数をあらわし、かつ2≦m+n≦10である。この場合、夫々のRは同一でも異なっていても良い。)
The alkyl-substituted diphenyl ether according to any one of claims 1 and 2, wherein the alkyl-substituted diphenyl ether is a compound represented by the formula (1).
Figure 2005040081
(R is an alkyl group having 10 to 20 carbon atoms, m and n represent real numbers of 0 to 5, and 2 ≦ m + n ≦ 10. In this case, each R may be the same or different. )
請求の範囲第1項に記載のアルキル置換ジフェニルエーテルを含有する潤滑剤組成物。A lubricant composition comprising the alkyl-substituted diphenyl ether according to claim 1. 請求の範囲第1項に記載のアルキル置換ジフェニルエーテルを含有するグリース組成物。A grease composition comprising the alkyl-substituted diphenyl ether according to claim 1. 軸受用に用いられるグリース組成物である請求の範囲第5項に記載のグリース組成物。The grease composition according to claim 5, which is a grease composition used for bearings.
JP2005515026A 2003-10-23 2004-10-20 Alkyl substituted diphenyl ether compounds and compositions containing the same Expired - Fee Related JP4698422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005515026A JP4698422B2 (en) 2003-10-23 2004-10-20 Alkyl substituted diphenyl ether compounds and compositions containing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003400646 2003-10-23
JP2003400646 2003-10-23
PCT/JP2004/015951 WO2005040081A1 (en) 2003-10-23 2004-10-20 Alkyl-substituted diphenyl ether compound and composition containing the same
JP2005515026A JP4698422B2 (en) 2003-10-23 2004-10-20 Alkyl substituted diphenyl ether compounds and compositions containing the same

Publications (2)

Publication Number Publication Date
JPWO2005040081A1 true JPWO2005040081A1 (en) 2007-03-08
JP4698422B2 JP4698422B2 (en) 2011-06-08

Family

ID=34510440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005515026A Expired - Fee Related JP4698422B2 (en) 2003-10-23 2004-10-20 Alkyl substituted diphenyl ether compounds and compositions containing the same

Country Status (2)

Country Link
JP (1) JP4698422B2 (en)
WO (1) WO2005040081A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208174A (en) * 2007-02-23 2008-09-11 Nsk Ltd Grease composition and rolling apparatus
JP5462995B2 (en) * 2007-03-27 2014-04-02 Jx日鉱日石エネルギー株式会社 Refrigerator oil and working fluid composition for refrigerator
JP5044535B2 (en) * 2008-12-09 2012-10-10 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition and molded body thereof
JP6071061B2 (en) * 2013-06-05 2017-02-01 協同油脂株式会社 Grease composition
JP6726487B2 (en) 2016-03-08 2020-07-22 協同油脂株式会社 Grease composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5073065A (en) * 1973-11-05 1975-06-17
JPS5822515B2 (en) * 1978-11-27 1983-05-09 株式会社松村石油研究所 Lubricating oil for chains used at high temperatures
JPS63122636A (en) * 1986-11-11 1988-05-26 Mitsui Petrochem Ind Ltd Production of alkyl group-substituted aromatic hydrocarbon
JPH05323648A (en) * 1992-05-18 1993-12-07 Kao Corp Additive for developer and developer composition
JPH06173169A (en) * 1992-12-03 1994-06-21 Teijin Ltd Treating agent for synthetic fiber
JP2000345178A (en) * 1999-06-09 2000-12-12 Matsumura Sekiyu Kenkyusho:Kk Heat-resistant lubricant composition and grease
JP2002020326A (en) * 2000-06-30 2002-01-23 Lion Corp Method for producing monoalkylnaphthalene and alkylnaphthalene

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5073065A (en) * 1973-11-05 1975-06-17
JPS5822515B2 (en) * 1978-11-27 1983-05-09 株式会社松村石油研究所 Lubricating oil for chains used at high temperatures
JPS63122636A (en) * 1986-11-11 1988-05-26 Mitsui Petrochem Ind Ltd Production of alkyl group-substituted aromatic hydrocarbon
JPH05323648A (en) * 1992-05-18 1993-12-07 Kao Corp Additive for developer and developer composition
JPH06173169A (en) * 1992-12-03 1994-06-21 Teijin Ltd Treating agent for synthetic fiber
JP2000345178A (en) * 1999-06-09 2000-12-12 Matsumura Sekiyu Kenkyusho:Kk Heat-resistant lubricant composition and grease
JP2002020326A (en) * 2000-06-30 2002-01-23 Lion Corp Method for producing monoalkylnaphthalene and alkylnaphthalene

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6010054795, Tetrahedron, 1985, 41(18), P3717−24 *
JPN6010054796, マクマリー有機化学(中), 19981001, 第4版第2刷, P583−593 *
JPN6010074477, 潤滑経済, 2000, 417, P18−23 *

Also Published As

Publication number Publication date
JP4698422B2 (en) 2011-06-08
WO2005040081A1 (en) 2005-05-06

Similar Documents

Publication Publication Date Title
KR101265168B1 (en) Grease composition and bearing
JP3337593B2 (en) Grease composition for rolling bearings
JP4968825B2 (en) Grease composition for pivot assembly bearings and pivot assembly bearings containing the grease composition
EP1930400B1 (en) Lubricant composition
EP2687584B1 (en) Grease composition
EP2264132B1 (en) Grease composition and bearings
US8153569B2 (en) Lubricant base oil
EP2913385B1 (en) Grease composition
JP2022107707A (en) Ionic liquid and lubricant composition
JP5994074B2 (en) Alkylated diphenyl ether compound and lubricating oil containing the compound
US20150159110A1 (en) Bearing grease
JP2004346298A (en) Lubricating grease for low and high temperature and rolling bearing
JP5659422B2 (en) Alkylated diphenyl ether and lubricating oil containing the compound
JP5994082B2 (en) Alkylated diphenyl ether compound and lubricating oil containing the compound
JP4698422B2 (en) Alkyl substituted diphenyl ether compounds and compositions containing the same
JP7397629B2 (en) grease composition
EP2873719B1 (en) Grease composition
JP2728736B2 (en) Urea grease composition
JP2013253257A (en) Grease composition and bearing
JP2000345178A (en) Heat-resistant lubricant composition and grease
JP6940454B2 (en) Grease composition for rolling bearings
KR20240038052A (en) Use of hemimellitic acid esters as base oils in lubricant compositions
WO2015166704A1 (en) Alkylated aromatic compound, and lubricant oil agent containing said compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110301

R150 Certificate of patent or registration of utility model

Ref document number: 4698422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees