JPWO2005024852A1 - Conductive polymer thin film composite - Google Patents

Conductive polymer thin film composite Download PDF

Info

Publication number
JPWO2005024852A1
JPWO2005024852A1 JP2005513639A JP2005513639A JPWO2005024852A1 JP WO2005024852 A1 JPWO2005024852 A1 JP WO2005024852A1 JP 2005513639 A JP2005513639 A JP 2005513639A JP 2005513639 A JP2005513639 A JP 2005513639A JP WO2005024852 A1 JPWO2005024852 A1 JP WO2005024852A1
Authority
JP
Japan
Prior art keywords
conductive polymer
thin film
polymer thin
film composite
cnt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005513639A
Other languages
Japanese (ja)
Other versions
JP4639336B2 (en
Inventor
栄次 伊東
栄次 伊東
圭一 宮入
圭一 宮入
遠藤 守信
守信 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Publication of JPWO2005024852A1 publication Critical patent/JPWO2005024852A1/en
Application granted granted Critical
Publication of JP4639336B2 publication Critical patent/JP4639336B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/114Poly-phenylenevinylene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

薄膜状に形成でき、電界電子放出体、太陽電池、光センサ等に好適に用いることのできる導電性高分子薄膜複合体を提供する。 本発明に係るめっき導電性高分子薄膜複合体は、導電性高分子にカーボンナノチューブ(CNT)が配合された導電性高分子薄膜18と、導電性高分子薄膜18の一方の面に形成された透明金属酸化物半導体膜16とを具備することを特徴とする。透明金属酸化物半導体膜16に電極を取り付けて、電界電子放出体あるいは帯電防止材などに用いることができる。また、導電性高分子薄膜18の他方の面にも電極を形成して、太陽電池用セルあるいは光センサなどに用いることができる。Provided is a conductive polymer thin film composite which can be formed into a thin film and can be suitably used for a field electron emitter, a solar cell, an optical sensor and the like. The plated conductive polymer thin film composite according to the present invention was formed on one surface of a conductive polymer thin film 18 in which carbon nanotubes (CNT) were blended with a conductive polymer, and the conductive polymer thin film 18. And a transparent metal oxide semiconductor film 16. An electrode can be attached to the transparent metal oxide semiconductor film 16 and used as a field electron emitter or an antistatic material. Further, an electrode can be formed on the other surface of the conductive polymer thin film 18 to be used for a solar cell or an optical sensor.

Description

本発明は、電界電子放出体、太陽電池、光センサ等に好適に用いることのできる導電性高分子薄膜複合体に関する。  The present invention relates to a conductive polymer thin film composite that can be suitably used for field electron emitters, solar cells, optical sensors, and the like.

導電性高分子は、可視光を効率よく吸収して発光したり、また耐久性、耐熱性等にも優れることから、有機EL素子、有機太陽電池、光デバイス等への応用が検討されている。導電性高分子の多くはP型半導体的性質を有し、電子受容性分子(ドーパント)がドーピングされることで、P型半導体的性質は一層強められる。
また、近年、これら導電性高分子にフラーレンやCNT(カーボンナノチューブ)などのナノカーボンを混合して特性の向上を図ることが検討されている(例えば、1)E.Kymakis and G.A.J.Amaratunga,Applied Physics Letters,Vol.80,pp.112−114(2002)(ポリチオフェンにCNTドープして光電変換向上),2)G.Yu,J.Gao,J.C.Hummelaen,F.Wudl and A.H.Heeger,Science,Vol.270,pp.1789−1791(1995)(ポリフェニレンビニレン誘導体とフラーレン誘導体を混合して初めて2%を超える高い光電変換効率を達成),3)F.Padinger,R.S.Rittiberger,and N.S.Sariciftci,Advanced Functional Material,Vol.13,pp.85−88(2003)(ポリチオフェンとフラーレンの誘導体の混合膜を成膜後処理して3.6%の効率達成))。
E.Kymakis andG.A.J.Amaratunga,Applied Physics Letters,Vol.80,pp.112−114(2002)(ポリチオフェンにCNTドープして光電変換向上)
Conductive polymers absorb visible light efficiently and emit light, and are also excellent in durability, heat resistance, etc., so application to organic EL elements, organic solar cells, optical devices, etc. is being studied. . Many of the conductive polymers have P-type semiconducting properties, and the P-type semiconducting properties are further enhanced by doping with electron accepting molecules (dopants).
In recent years, it has been studied to improve characteristics by mixing nanocarbons such as fullerenes and CNTs (carbon nanotubes) with these conductive polymers (for example, 1). Kymakis and G.K. A. J. et al. Amaruntunga, Applied Physics Letters, Vol. 80, pp. 112-114 (2002) (Polythiophene doped with CNT to improve photoelectric conversion), 2) G. Yu, J .; Gao, J .; C. Hummelaen, F.M. Wudl and A.W. H. Heeger, Science, Vol. 270, pp. 1789-1791 (1995) (achieving high photoelectric conversion efficiency exceeding 2% only after mixing polyphenylene vinylene derivative and fullerene derivative), 3) F. Paddinger, R.M. S. Rittiberger, and N.R. S. Sarifitci, Advanced Functional Material, Vol. 13, pp. 85-88 (2003) (A mixed film of polythiophene and fullerene derivatives is treated after film formation to achieve an efficiency of 3.6%)).
E. Kymakis and G. A. J. et al. Amaruntunga, Applied Physics Letters, Vol. 80, pp. 112-114 (2002) (Polythiophene doped with CNT to improve photoelectric conversion)

ところで、発明者が検討したところ、導電性高分子にフラーレンを混入させた複合体の場合には、光センサなどに用いた場合のセンサ感度が却って低下してしまうなどの課題が生じた。
また、CNTは、アスペクト比が大きく、長さが数μmのものが存在することから、導電性高分子に混入して薄膜状にした場合には、薄膜からCNTが突き出てしまうので、薄膜の形成が困難になるという課題が生じた。
そこで、本発明は上記課題を解決すべくなされたものであり、その目的とするところは、薄膜状に形成でき、電界電子放出体、太陽電池、光センサ等に好適に用いることのできる導電性高分子薄膜複合体を提供するにある。
本発明に係る導電性高分子薄膜複合体は、導電性高分子にカーボンナノチューブ(CNT)が配合された導電性高分子薄膜と、該導電性高分子薄膜の一方の面に形成された金属酸化物半導体膜とを具備することを特徴とする。
前記金属酸化物半導体膜にTiO2膜などのN型半導体を用いると好的である。
また、前記導電性高分子薄膜および前記金属酸化物半導体膜の厚さは10nm〜10μmにすると好適である。
前記導電性高分子に対するCNTの配合割合は10wt%以下が好適である。
また、前記CNTは直径が100nm以下のMWCNTやSWCNTを用いるのが好ましい。
また、前記導電性高分子が、P型半導体の性質を有する高分子であることを特徴とする。
上記p型半導体の性質を有する導電性高分子には、ポリフェニレンビニレンまたはポリチオフェンの誘導体が好適である。
前記金属酸化物半導体膜に電極を取り付けて、電界電子放出体あるいは帯電防止材などに用いることができる。
また、前記導電性高分子薄膜の他方の面にも電極を形成して、太陽電池用セルあるいは光センサなどに用いることができる。
By the way, when the inventor examined, in the case of a complex in which fullerene was mixed in a conductive polymer, there was a problem that the sensitivity of the sensor when used for an optical sensor or the like was decreased.
In addition, since CNT has a large aspect ratio and a length of several μm, when mixed into a conductive polymer to form a thin film, the CNT protrudes from the thin film. The problem that formation became difficult occurred.
Therefore, the present invention has been made to solve the above-described problems, and the object of the present invention is to provide a conductive material that can be formed into a thin film and can be suitably used for a field electron emitter, a solar cell, a photosensor, and the like. It is in providing a polymer thin film composite.
The conductive polymer thin film composite according to the present invention includes a conductive polymer thin film in which carbon nanotubes (CNT) are blended with a conductive polymer, and a metal oxide formed on one surface of the conductive polymer thin film. And a physical semiconductor film.
It is preferable to use an N-type semiconductor such as a TiO 2 film for the metal oxide semiconductor film.
The conductive polymer thin film and the metal oxide semiconductor film preferably have a thickness of 10 nm to 10 μm.
The blending ratio of CNT to the conductive polymer is preferably 10 wt% or less.
The CNT is preferably MWCNT or SWCNT having a diameter of 100 nm or less.
Further, the conductive polymer is a polymer having properties of a P-type semiconductor.
Polyphenylene vinylene or polythiophene derivatives are suitable for the conductive polymer having the p-type semiconductor properties.
An electrode can be attached to the metal oxide semiconductor film and used as a field electron emitter or an antistatic material.
In addition, an electrode can be formed on the other surface of the conductive polymer thin film and used for a solar cell or an optical sensor.

[発明の効果]
以上のように、本発明によれば、薄膜状に形成でき、電界電子放出体、太陽電池、光センサ等に好適に用いることのできる導電性高分子薄膜複合体を提供できる。
[The invention's effect]
As described above, according to the present invention, it is possible to provide a conductive polymer thin film composite that can be formed into a thin film and can be suitably used for a field electron emitter, a solar cell, a photosensor, and the like.

導電性高分子膜の光吸収特性を示すグラフである。It is a graph which shows the light absorption characteristic of a conductive polymer film. 光素子の構造の一例を示す説明図である。It is explanatory drawing which shows an example of the structure of an optical element. 導電性高分子にCNTを添加した光素子の電圧−電流特性を示すグラフである。It is a graph which shows the voltage-current characteristic of the optical element which added CNT to the conductive polymer. 導電性高分子にCNTを添加した光素子に白色光を照射した場合の電圧−電流特性を示すグラフである。It is a graph which shows the voltage-current characteristic at the time of irradiating white light to the optical element which added CNT to the conductive polymer. 導電性高分子にSWCNTを添加した光素子に白色光を照射した場合の電圧−電流特性を示すグラフである。It is a graph which shows the voltage-current characteristic at the time of irradiating white light to the optical element which added SWCNT to the conductive polymer. 導電性高分子にフラーレンを添加した光素子に白色光を照射した場合の電圧−電流特性を示すグラフである。It is a graph which shows the voltage-current characteristic at the time of irradiating white light to the optical element which added fullerene to the conductive polymer.

以下、本発明の好適な実施の形態を添付図面に基づいて詳細に説明する。
図1は、導電性高分子膜の光吸収特性を示すグラフである。
導電性高分子に、電子受容体がドーピングされたポリフェニレンビニレン(MEH−PPV)を用い、この導電性高分子そのものの光吸収特性と、この導電性高分子にカーボンナノチューブ(CNT)を0.5wt%混合した複合体の光吸収特性を示す。
図から明らかなように、この導電性高分子は、波長500nm付近の青から緑色に対する顕著な吸収特性を有している。一方、この導電性高分子にCNTを添加した場合には、より長波長の近赤外に至るまでの光の吸収特性も示され(図の破線)、導電性高分子にCNTを添加した場合に、光センサ等に使用可能であることが示唆される。
図2は、光センサや太陽電池用セルとして形成した光素子10の構造を示す説明図である。
12は透明なガラス基板である。
このガラス基板12上に、ITO(インジウム−錫−オキサイド)等から成る第1の電極14が形成されている。第1の電極14はITOには限定されない。
第1の電極14を覆って、(可視光、もしくは近赤外光に対して)透明または半透明の金属酸化物半導体膜16が形成されている。金属酸化物半導体膜16は、TiO2が好適であるが、これに限定されず、例えば酸化ニオブや酸化亜鉛なども用いることができる。
TiO2はn型半導体的性質を有している。
この金属酸化物半導体膜16を覆って、導電性高分子薄膜18が形成されている。
さらにこの導電性高分子薄膜18に金(Au)等からなる第2の電極20が取り付けられている。
上記導電性高分子薄膜18は厚さが10nm〜10μmに形成され、また上記金属酸化物半導体膜16もその厚さが10nm〜10μmに形成されることで、光素子10全体の厚さは極めて薄いものに構成される。
導電性高分子薄膜18は、電子受容体がドーピングされた高分子、特にポリフェニレンビニレン誘導体(MEH−PPV等)またはポリチオフェン誘導体(P3OT等)を好適に用いることができる。電子受容体がドーピングされた導電性高分子はp型半導体的性質を有し、これにより導電性を有する。
導電性高分子薄膜18には、カーボンナノチューブ(CNT)が配合される。
この導電性高分子に対するCNTの配合割合は10wt%以下、好適には1wt%前後が望ましい。10wt%以上であると、導電性高分子に対する均一な混合が困難となるからである。
また用いるCNTは直径が100nm以下のMWCNT(マルチウォールCNT)でもよいが、薄膜の導電性高分子中に混合しやすくするために、極めて小径(数nm)なSWCNT(シングルウォールCNT)や小径のMWCNTを用いるのが好適である。SWCNTは尖鋭な先端を有して良好な電子放出性を有することからも好適である。
CNTはアスペクト比が約10000にも及ぶ、長さが数μmもの長いものが存在する。このように大きな長さを有するCNTを、導電性高分子に混入させると、CNTが薄い導電性高分子層から外部に突き出してしまう。このことが、CNTを混入させた場合に導電性高分子層を薄くできない要因となっていた。
しかるに、前記金属酸化物半導体膜16は、固体膜であることから、第1の電極14を覆ってこの個体膜である金属酸化物半導体膜16をスパッタリング等によって形成した後、この金属酸化物半導体膜16上に、CNTを分散させた導電性高分子を薄く塗布するようにして導電性高分子薄膜18を形成するようにすれば、導電性高分子薄膜18中のCNTは、金属酸化物半導体膜16に遮られ、第1の電極14方向へは突出しないことになる。
すなわち、CNTの一方の端部は、第1の電極14方向に向くが、第1の電極14とは、金属酸化物半導体膜16の僅かな厚さ分(数nm〜10μm)だけ隔てて(ギャップ)第1の電極と対峙することとなり、これにより電子放出特性が向上する。
CNTの他方の端部は導電性高分子薄膜18表面から突出するが、こちら側には第2の電極20が形成され、突出したCNTと第2の電極20とが接触することとなり、電気電導性の点から却って好ましい。
図3は、導電性高分子薄膜18に、CNTを混入させた場合(導電性高分子に対して0.5wt%、1wt%)と混入させない場合における電圧−電流特性を示すグラフである。なお、光は照射していない。
図3から明らかなように、負電圧側において、例えば−1V付近の印加電圧では、CNTを混入させない場合に比して、0.5wt%混入したものでは約1000倍、1wt%混入したものでは約1万倍もの高い電流値が検出される。
図4は、図3のものにおいて、白色光を照射した場合(光の強度:100mW/cm2)の電圧−電流特性を示すグラフである。
印加電圧0Vにおける電流値(絶対値)が、光センサや太陽電池の場合の感度といえる。電流値が大きいほど感度が良好となる。図4から明らかなように、CNTの添加量が0.5wt%の場合には、CNTを添加しないものとほとんど差異がないが、CNTを1wt%添加したものにあっては、感度が大幅に向上することがわかる。このことは、光の量が少なくとも、感度が良好となることを示唆している。
また、図4において、電流値がゼロとなる印加電圧を太陽電池における起電力とみることができるが、起電力の大きさはCNTを添加してもしなくともそれ程大きな変動は見られなかった。
図5は、導電性高分子膜18に混入させるSWCNTをさらに増加していったサンプル(0.5wt%、1wt%、2wt%)の、かつ光を照射した場合(光の強度:100mW/cm2)の電圧−電流特性を示すグラフである。図5中に挿入したグラフは、−1Vの電圧を印加した場合における、各サンプルの電流値であり、SWCNTを増加していった場合に、電流値は電圧値にほぼ比例して増加することがわかる。すなわち、流れる電流はCNTの量に依存しており、このことはSWCNTを介して電子の放出が行われることを示唆している。
なお、図6は、導電性高分子薄膜18にフラーレンを、0.5wt%、1wt%、1.5wt%混入して形成した光素子の、白色光を照射した場合(光の強度:100mW/cm2)の電圧−電流特性を示すグラフである。図6から明らかなように、フラーレンを混入した場合には、混入しないものに比し、却って感度が低下してしまった。
上記のように、図2に示した光素子10は、感度の良好な光センサあるいは太陽電池として用いることができる。太陽電池に用いる場合には、図2に示す構造の光素子を多数併設するようにするとよい。
上記のように感度が良好となるのは、導電性高分子薄膜18中に分散されたCNTが、金属酸化物半導体膜16をギャップとして第1の電極14と対峙すること、また、導電性高分子薄膜18と金属酸化物半導体膜16とがpn接合構造となるからと考えられる。
上記実施の形態では、導電性高分子薄膜18の側に第2の電極20を形成したが、電界電子放出体(エミッタ)として用いる場合には、第2の電極20を形成しない。また、酸化物半導体を金属に置き換えても良い。
この場合、CNTの一端が薄い金属酸化物半導体膜16を介して(ギャップ)第1の電極14に対峙し、CNTの他端が導電性高分子薄膜18表面から突出するので、第1の電極14に電圧を印加することにより、CNTの先端から高い電流密度の電界電子が放出される。
この場合には、金属酸化物半導体膜16は必ずしも透明もしくは半透明でなくともよい。この電界電子放出体は各種ディスプレイの冷陰極として用いることができる。また、電界電子放出特性に優れることから、帯電防止材として有効に利用することができる。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a graph showing the light absorption characteristics of a conductive polymer film.
Using polyphenylene vinylene (MEH-PPV) doped with an electron acceptor as the conductive polymer, the light absorption characteristics of the conductive polymer itself, and 0.5 wt% of carbon nanotubes (CNT) in the conductive polymer. % Shows the light absorption characteristics of the mixed composite.
As is apparent from the figure, this conductive polymer has a remarkable absorption characteristic from blue to green around a wavelength of 500 nm. On the other hand, when CNT is added to this conductive polymer, light absorption characteristics up to the near-infrared of a longer wavelength are also shown (dashed line in the figure), and when CNT is added to the conductive polymer Therefore, it is suggested that it can be used for an optical sensor or the like.
FIG. 2 is an explanatory diagram showing the structure of the optical element 10 formed as an optical sensor or a solar cell.
Reference numeral 12 denotes a transparent glass substrate.
A first electrode 14 made of ITO (indium-tin-oxide) or the like is formed on the glass substrate 12. The first electrode 14 is not limited to ITO.
A transparent or translucent metal oxide semiconductor film 16 is formed so as to cover the first electrode 14 (for visible light or near infrared light). The metal oxide semiconductor film 16 is preferably TiO 2, but is not limited to this. For example, niobium oxide, zinc oxide, or the like can be used.
TiO2 has n-type semiconductor properties.
A conductive polymer thin film 18 is formed so as to cover the metal oxide semiconductor film 16.
Further, a second electrode 20 made of gold (Au) or the like is attached to the conductive polymer thin film 18.
The conductive polymer thin film 18 is formed to have a thickness of 10 nm to 10 μm, and the metal oxide semiconductor film 16 is also formed to have a thickness of 10 nm to 10 μm. Configured to be thin.
As the conductive polymer thin film 18, a polymer doped with an electron acceptor, particularly a polyphenylene vinylene derivative (such as MEH-PPV) or a polythiophene derivative (such as P3OT) can be preferably used. A conductive polymer doped with an electron acceptor has p-type semiconducting properties, and thus has conductivity.
The conductive polymer thin film 18 is mixed with carbon nanotubes (CNT).
The blending ratio of CNT to the conductive polymer is 10 wt% or less, preferably about 1 wt%. This is because if it is 10 wt% or more, uniform mixing with the conductive polymer becomes difficult.
The CNT to be used may be MWCNT (multiwall CNT) having a diameter of 100 nm or less. However, in order to facilitate mixing into a thin film conductive polymer, SWCNT (single wall CNT) having a very small diameter (several nm) or small diameter is used. It is preferred to use MWCNT. SWCNT is also preferable because it has a sharp tip and good electron emission properties.
CNTs have an aspect ratio of about 10,000 and a length as long as several μm. When CNTs having such a large length are mixed in the conductive polymer, the CNTs protrude from the thin conductive polymer layer to the outside. This is a factor that prevents the conductive polymer layer from being thinned when CNT is mixed.
However, since the metal oxide semiconductor film 16 is a solid film, the metal oxide semiconductor film 16 which is the solid film is formed by sputtering or the like so as to cover the first electrode 14, and then the metal oxide semiconductor film 16 is formed. If the conductive polymer thin film 18 is formed on the film 16 by thinly applying a conductive polymer in which CNTs are dispersed, the CNT in the conductive polymer thin film 18 is a metal oxide semiconductor. It is blocked by the film 16 and does not protrude in the direction of the first electrode 14.
That is, one end of the CNT faces the first electrode 14, but is separated from the first electrode 14 by a slight thickness (several nm to 10 μm) of the metal oxide semiconductor film 16 ( The gap) is opposed to the first electrode, which improves the electron emission characteristics.
The other end of the CNT protrudes from the surface of the conductive polymer thin film 18, but the second electrode 20 is formed on this side, and the protruding CNT and the second electrode 20 come into contact with each other. It is preferable from the viewpoint of sex.
FIG. 3 is a graph showing voltage-current characteristics when CNT is mixed in the conductive polymer thin film 18 (0.5 wt%, 1 wt% with respect to the conductive polymer) and when CNT is not mixed. Light is not irradiated.
As is apparent from FIG. 3, on the negative voltage side, for example, at an applied voltage of around -1 V, when mixed with 0.5 wt%, about 1000 times as much as 1 wt% is mixed with CNT not mixed. A current value as high as about 10,000 times is detected.
FIG. 4 is a graph showing voltage-current characteristics in the case of FIG. 3 when white light is irradiated (light intensity: 100 mW / cm 2).
The current value (absolute value) at an applied voltage of 0 V can be said to be the sensitivity in the case of an optical sensor or a solar cell. The greater the current value, the better the sensitivity. As is clear from FIG. 4, when the amount of CNT added is 0.5 wt%, there is almost no difference from the case where CNT is not added, but the sensitivity is greatly improved in the case where CNT is added at 1 wt%. It turns out that it improves. This suggests that the amount of light is at least good in sensitivity.
In FIG. 4, the applied voltage at which the current value becomes zero can be regarded as an electromotive force in the solar cell, but the magnitude of the electromotive force did not change so much even if CNT was added.
FIG. 5 shows a sample (0.5 wt%, 1 wt%, 2 wt%) in which SWCNT mixed into the conductive polymer film 18 is further increased, and when irradiated with light (light intensity: 100 mW / cm 2). Is a graph showing the voltage-current characteristics. The graph inserted in FIG. 5 is the current value of each sample when a voltage of −1 V is applied, and when SWCNT is increased, the current value increases almost in proportion to the voltage value. I understand. That is, the flowing current depends on the amount of CNT, which suggests that electrons are emitted through SWCNT.
6 shows a case where an optical element formed by mixing fullerene in the conductive polymer thin film 18 with 0.5 wt%, 1 wt%, and 1.5 wt% is irradiated with white light (light intensity: 100 mW / It is a graph which shows the voltage-current characteristic of cm2). As is clear from FIG. 6, when fullerene was mixed, the sensitivity was lowered compared to the case where fullerene was mixed.
As described above, the optical element 10 shown in FIG. 2 can be used as an optical sensor or a solar cell with good sensitivity. When used in a solar cell, a large number of optical elements having the structure shown in FIG.
As described above, the sensitivity is improved because the CNT dispersed in the conductive polymer thin film 18 faces the first electrode 14 with the metal oxide semiconductor film 16 as a gap, and the conductivity high This is probably because the molecular thin film 18 and the metal oxide semiconductor film 16 have a pn junction structure.
In the above embodiment, the second electrode 20 is formed on the conductive polymer thin film 18 side. However, when the second electrode 20 is used as a field electron emitter (emitter), the second electrode 20 is not formed. Further, the oxide semiconductor may be replaced with a metal.
In this case, one end of the CNT faces the first electrode 14 (gap) through the thin metal oxide semiconductor film 16, and the other end of the CNT protrudes from the surface of the conductive polymer thin film 18, so that the first electrode By applying a voltage to 14, field electrons with a high current density are emitted from the tip of the CNT.
In this case, the metal oxide semiconductor film 16 is not necessarily transparent or translucent. This field electron emitter can be used as a cold cathode for various displays. Further, since it has excellent field electron emission characteristics, it can be effectively used as an antistatic material.

Claims (13)

導電性高分子にカーボンナノチューブ(CNT)が配合された導電性高分子薄膜と、
該導電性高分子薄膜の一方の面に形成された透明金属酸化物半導体膜とを具備することを特徴とする導電性高分子薄膜複合体。
A conductive polymer thin film in which carbon nanotubes (CNT) are blended with a conductive polymer;
A conductive polymer thin film composite comprising a transparent metal oxide semiconductor film formed on one surface of the conductive polymer thin film.
前記金属酸化物半導体膜がTiO2膜であることを特徴とする請求項1記載の導電性高分子薄膜複合体。The conductive polymer thin film composite according to claim 1, wherein the metal oxide semiconductor film is a TiO 2 film. 前記導電性高分子薄膜の厚さが10nm〜10μm、前記金属酸化物半導体膜の厚さが10nm〜10μmであることを特徴とする請求項1または2項記載の導電性高分子薄膜複合体。The conductive polymer thin film composite according to claim 1 or 2, wherein the conductive polymer thin film has a thickness of 10 nm to 10 µm, and the metal oxide semiconductor film has a thickness of 10 nm to 10 µm. 前記導電性高分子に対するCNTの配合割合が10wt%以下であることを特徴とする請求項1〜3いずれか1項記載の導電性高分子薄膜複合体。The conductive polymer thin film composite according to any one of claims 1 to 3, wherein a blending ratio of CNT to the conductive polymer is 10 wt% or less. 前記CNTが直径100nm以下のMWCNTもしくはSWCNTであることを特徴とする請求項1〜4いずれか1項記載の導電性高分子薄膜複合体。The conductive polymer thin film composite according to any one of claims 1 to 4, wherein the CNT is MWCNT or SWCNT having a diameter of 100 nm or less. 前記導電性高分子が、P型半導体の性質を有する高分子であることを特徴とする請求項1〜5いずれか1項記載の導電性高分子薄膜複合体。The conductive polymer thin film composite according to claim 1, wherein the conductive polymer is a polymer having a P-type semiconductor property. 前記導電性高分子が、ポリフェニレンビニレンまたはポリチオフェンの誘導体から構成された可視光域に強い光吸収性を有する材料であることを特徴とする請求項6記載の導電性高分子薄膜複合体。The conductive polymer thin film composite according to claim 6, wherein the conductive polymer is a material having a strong light absorption property in a visible light region, which is composed of a derivative of polyphenylene vinylene or polythiophene. 前記金属酸化物半導体膜に電極が取り付けられていることを特徴とする請求項1〜7いずれか1項記載の導電性高分子薄膜複合体。The conductive polymer thin film composite according to claim 1, wherein an electrode is attached to the metal oxide semiconductor film. 電界電子放出体に用いられることを特徴とする請求項8記載の導電性高分子薄膜複合体。9. The conductive polymer thin film composite according to claim 8, which is used for a field electron emitter. 帯電防止材に用いられることを特徴とする請求項8記載の導電性高分子薄膜複合体。9. The conductive polymer thin film composite according to claim 8, which is used as an antistatic material. 前記導電性高分子薄膜の他方の面に電極が形成されたことを特徴とする請求項8記載の導電性高分子薄膜複合体。9. The conductive polymer thin film composite according to claim 8, wherein an electrode is formed on the other surface of the conductive polymer thin film. 太陽電池用セルに用いられることを特徴とする請求項11記載の導電性高分子薄膜複合体。It is used for the cell for solar cells, The conductive polymer thin film composite of Claim 11 characterized by the above-mentioned. 光センサに用いられることを特徴とする請求項11記載の導電性高分子薄膜複合体。The conductive polymer thin film composite according to claim 11, which is used for an optical sensor.
JP2005513639A 2003-09-02 2004-08-31 Conductive polymer thin film composite Active JP4639336B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003310187 2003-09-02
JP2003310187 2003-09-02
PCT/JP2004/012566 WO2005024852A1 (en) 2003-09-02 2004-08-31 Conductive polymer thin film complex

Publications (2)

Publication Number Publication Date
JPWO2005024852A1 true JPWO2005024852A1 (en) 2007-11-08
JP4639336B2 JP4639336B2 (en) 2011-02-23

Family

ID=34269642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005513639A Active JP4639336B2 (en) 2003-09-02 2004-08-31 Conductive polymer thin film composite

Country Status (2)

Country Link
JP (1) JP4639336B2 (en)
WO (1) WO2005024852A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190729A (en) * 2005-01-04 2006-07-20 Shinshu Univ Optical sensor and its manufacturing method
JP2007035893A (en) * 2005-07-26 2007-02-08 Matsushita Electric Works Ltd Organic power generation element
CN100405617C (en) * 2006-12-29 2008-07-23 清华大学 Carbon nano tube film-based solar energy battery and its preparing method
JP2009202379A (en) * 2008-02-27 2009-09-10 Kiyoshi Chiba Laminated body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002335004A (en) * 2001-02-08 2002-11-22 Osaka Gas Co Ltd Photoelectric conversion material and photoelectric cell
JP2003060181A (en) * 2001-08-16 2003-02-28 Konica Corp X-ray image detector
JP2003115255A (en) * 2001-10-04 2003-04-18 Kazuyuki Taji Field electron emitting electrode and its manufacturing method
JP2003177682A (en) * 2001-09-05 2003-06-27 Konica Corp Display panel and its manufacturing method
JP2003218361A (en) * 2002-01-28 2003-07-31 Konica Corp Organic transistor element, active driving element and display medium comprising it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002335004A (en) * 2001-02-08 2002-11-22 Osaka Gas Co Ltd Photoelectric conversion material and photoelectric cell
JP2003060181A (en) * 2001-08-16 2003-02-28 Konica Corp X-ray image detector
JP2003177682A (en) * 2001-09-05 2003-06-27 Konica Corp Display panel and its manufacturing method
JP2003115255A (en) * 2001-10-04 2003-04-18 Kazuyuki Taji Field electron emitting electrode and its manufacturing method
JP2003218361A (en) * 2002-01-28 2003-07-31 Konica Corp Organic transistor element, active driving element and display medium comprising it

Also Published As

Publication number Publication date
JP4639336B2 (en) 2011-02-23
WO2005024852A1 (en) 2005-03-17

Similar Documents

Publication Publication Date Title
Angadi et al. Organic light emitting diodes using poly (phenylenevinylene) doped with perylenediimide electron acceptors
Singh et al. Characterization of doped PEDOT: PSS and its influence on the performance and degradation of organic solar cells
US20070158642A1 (en) Active electronic devices with nanowire composite components
Singh et al. Optical and electrical characterization of conducting polymer-single walled carbon nanotube composite films
US20050194038A1 (en) Electrodes for optoelectronic components and the use thereof
Kymakis et al. Carbon nanotube/PEDOT: PSS electrodes for organic photovoltaics
Qiao et al. Characteristics of water-soluble polythiophene: TiO2 composite and its application in photovoltaics
Gao et al. Modification of carbon nanotube transparent conducting films for electrodes in organic light-emitting diodes
Yuan et al. A photodiode with high rectification ratio based on well-aligned ZnO nanowire arrays and regioregular poly (3-hexylthiophene-2, 5-diyl) hybrid heterojunction
Yumusak et al. Organic electrochemical light emitting field effect transistors
Dasari et al. Calligraphic solar cells: acknowledging paper and pencil
Schmidt et al. Spray coated indium-tin-oxide-free organic photodiodes with PEDOT: PSS anodes
Yadav et al. Effect of graphene concentration on performance of MEH: PPV/graphene nanocomposite based devices
Wu et al. Comparison of performance and optoelectronic processes in ZnO and TiO2 nanorod array-based hybrid solar cells
Zhou et al. Ultra-low-cost all-air processed carbon-based perovskite solar cells from bottom electrode to counter electrode
Zheng et al. Aqueous solution-processed molybdenum oxide as an efficient hole injection layer for flexible quantum dot light emitting diodes
Itoh et al. Field emission from carbon-nanotube-dispersed conducting polymer thin film and its application to photovoltaic devices
Meng et al. Nonvolatile memory devices based on carbon nano-dot doped poly (vinyl alcohol) composites with low operation voltage and high ON/OFF ratio
Sharma et al. P3HT-rGO composites for high-performance optoelectronic devices
JP4639336B2 (en) Conductive polymer thin film composite
WO2006073049A1 (en) Optical sensor and process for producing the same
JP2008243567A (en) Functional thin film element, display, light control body, photoelectromotive force module, ionization potential control method of conductive layer, and manufacturing method of functional thin film element
JP2005530350A (en) Electrode for optoelectronic device and use thereof
Pei et al. ZnO-based inverted hybrid solar cells using P3HT and spiro-OMeTAD with hole transporting property: layered or blended
Singh et al. Electronic properties and photoresponse of polycarbazole-multiwalled carbon nanotube nanocomposite/aluminum Schottky diode

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150