JPWO2005006470A1 - ELECTRODE FOR FUEL CELL, FUEL CELL USING THE ELECTRODE, AND METHOD FOR PRODUCING THE ELECTRODE - Google Patents

ELECTRODE FOR FUEL CELL, FUEL CELL USING THE ELECTRODE, AND METHOD FOR PRODUCING THE ELECTRODE Download PDF

Info

Publication number
JPWO2005006470A1
JPWO2005006470A1 JP2005511560A JP2005511560A JPWO2005006470A1 JP WO2005006470 A1 JPWO2005006470 A1 JP WO2005006470A1 JP 2005511560 A JP2005511560 A JP 2005511560A JP 2005511560 A JP2005511560 A JP 2005511560A JP WO2005006470 A1 JPWO2005006470 A1 JP WO2005006470A1
Authority
JP
Japan
Prior art keywords
electrode
electrolyte
conductor
catalyst
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005511560A
Other languages
Japanese (ja)
Inventor
敏宏 春日
敏宏 春日
文夫 橋本
文夫 橋本
朝木 知美
知美 朝木
洋一 亀ヶ谷
洋一 亀ヶ谷
祐二 佐伯
祐二 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Publication of JPWO2005006470A1 publication Critical patent/JPWO2005006470A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8875Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

Caイオン、Mgイオン及びZnイオンの少なくとも一つを含むリン酸塩分子鎖からなる分散相と水からなる分散媒とを有するプロトン伝導ゲルと、触媒fを担持したカーボン粒子eとの混合物を作製し、該混合物を用いて電極形成した。かかるプロトン伝導ゲルは固体高分子電解質に比べ分子量が小さく、カーボン粒子eとの親和性も高いため、かかる電極aでは、プロトン伝導ゲルからなる電解質cがカーボン粒子eの凝集体b内の間隙gにまで浸入し、多くの三相界面を形成する。これにより触媒の利用効率の高い電極を提供する。A mixture of a proton conductive gel having a dispersed phase composed of a phosphate molecular chain containing at least one of Ca ion, Mg ion and Zn ion and a dispersion medium composed of water and carbon particles e carrying catalyst f is prepared. Then, an electrode was formed using the mixture. Since the proton conducting gel has a smaller molecular weight than that of the solid polymer electrolyte and has a high affinity with the carbon particles e, in the electrode a, the electrolyte c made of the proton conducting gel has a gap g in the aggregate b of the carbon particles e. Infiltrate up to and form many three-phase interfaces. This provides an electrode with high catalyst utilization efficiency.

Description

本発明は、燃料電池に用いる電極、該電極を備えた燃料電池、及び該電極の製造方法に関する。  The present invention relates to an electrode used for a fuel cell, a fuel cell provided with the electrode, and a method for manufacturing the electrode.

燃料電池は、電解質膜の種類によりいくつかに分類されるが、この中でも電解質膜に固体高分子を用いた固体高分子型燃料電池は、他のいずれの方式に比べても小型かつ高出力で、低温で作動するものであり、小規模オンサイト型、移動体(車載)用、携帯用の燃料電池として、次世代の主力とされている。固体高分子型燃料電池は実用開発段階に入り、試作、あるいはテスト段階で用いられている。この燃料電池の電解質膜には、化学的に安定で、室温でも高いプロトン伝導性を示すパーフルオロアルキレンを主骨格とし、一部にパーフルオロビニルエーテル側鎖の末端にスルホン酸基、カルボン酸基等のイオン交換基を有するフッ素系高分子が用いられている。代表的なフッ素系高分子電解質として、ナフィオン(Nafion,登録商標)が知られている。  Fuel cells are classified into several types depending on the type of electrolyte membrane. Among these, solid polymer fuel cells using a solid polymer as the electrolyte membrane are smaller and have higher output than any other method. It operates at a low temperature, and is regarded as the next generation mainstay as a small-scale on-site type, mobile (on-vehicle) and portable fuel cell. Solid polymer fuel cells have entered the practical development stage and are used in trial production or testing. The electrolyte membrane of this fuel cell has perfluoroalkylene as the main skeleton, which is chemically stable and has high proton conductivity even at room temperature, and a sulfonic acid group, a carboxylic acid group, etc. at the end of the perfluorovinyl ether side chain A fluorine-based polymer having an ion exchange group is used. Nafion (registered trademark) is known as a typical fluorine-based polymer electrolyte.

一般的な固体高分子型燃料電池の主要部は、図4に示すように、電解質膜yと、その両面に接合される電極aと、該電極aの外側に接合されるカーボンペーパー等の集電体zとを一体化してなる膜電極接合体xにより構成される。  As shown in FIG. 4, the main part of a general polymer electrolyte fuel cell is a collection of an electrolyte membrane y, an electrode a bonded to both surfaces thereof, and a carbon paper bonded to the outside of the electrode a. It is constituted by a membrane electrode assembly x formed by integrating the electric body z.

燃料電池に用いる電極は、イオンが移動する経路としての電解質、電子が移動する経路としての導電体、及び電気化学反応を生じさせる触媒とからなり、その内部には、ガス(水素または酸素)の供給経路としての細孔が形成される。燃料極に水素、酸素極に酸素を供給した場合に、各電極で起こる電気化学反応(電極反応)を下記に示す。
燃料極:H→2H+2e
酸素極:1/2O+2H+2e→H
全反応:H+1/2O→H
An electrode used for a fuel cell includes an electrolyte as a path for ions to move, a conductor as a path for electrons to move, and a catalyst for causing an electrochemical reaction. Inside the electrode, gas (hydrogen or oxygen) is contained. A pore is formed as a supply path. The following shows the electrochemical reaction (electrode reaction) that occurs at each electrode when hydrogen is supplied to the fuel electrode and oxygen is supplied to the oxygen electrode.
Fuel electrode: H 2 → 2H + + 2e
Oxygen electrode: 1 / 2O 2 + 2H + + 2e → H 2 O
Total reaction: H 2 + 1 / 2O 2 → H 2 O

かかる反応は、ガス(水素または酸素)、プロトン(H)および電子(e)の授受を同時に行うことのできる三相界面(電解質と、触媒を担持した導電体と、細孔とが接する部分)でのみ進行可能である。また、この反応には触媒が不可欠であり、該三相界面の近傍に触媒が存在して初めて電極反応が起こる。In this reaction, a three-phase interface (electrolyte, conductor carrying a catalyst, and pores are in contact with each other, which can simultaneously exchange gas (hydrogen or oxygen), proton (H + ), and electron (e ). It can only progress in (part). In addition, a catalyst is indispensable for this reaction, and the electrode reaction occurs only when the catalyst is present in the vicinity of the three-phase interface.

具体的に説明すると、一般的な固体高分子型燃料電池の電極は、電解質として固体高分子が使用され、導電体としてはカーボン粒子が使われる。触媒は白金または白金を主成分とした合金からなりカーボン粒子に担持される。そして、触媒を担持した導電体と固体高分子電解質の溶液とを混合した後、層状に成形したり、該導電体の積層に固体高分子電解質溶液を含浸させたりして電極は製造される。かかる電極では、固体高分子電解質が、導電体の表面に付着し、カーボン粒子に担持された触媒を被覆することにより触媒近傍に三相界面構造を形成する。  More specifically, in a solid polymer fuel cell electrode, a solid polymer is used as an electrolyte, and carbon particles are used as a conductor. The catalyst is made of platinum or an alloy containing platinum as a main component and is supported on carbon particles. Then, after mixing the conductor carrying the catalyst and the solid polymer electrolyte solution, the electrode is manufactured by forming into a layer or impregnating the laminate of the conductor with the solid polymer electrolyte solution. In such an electrode, the solid polymer electrolyte adheres to the surface of the conductor and coats the catalyst supported on the carbon particles, thereby forming a three-phase interface structure in the vicinity of the catalyst.

ところで、この固体高分子型燃料電池の電極では、触媒に白金(または白金合金)を用いているが、白金は希少元素で高価であり、触媒の材料費が電極の製造費の大きな割合を占めている。このため、少ない触媒量で、充分な電極反応を生じ得る、触媒の利用効率の高い電極の開発が盛んとなっている(例えば特許文献1)。
特開平7−134996号公報
By the way, in this polymer electrolyte fuel cell electrode, platinum (or platinum alloy) is used as a catalyst, but platinum is a rare element and expensive, and the material cost of the catalyst accounts for a large proportion of the production cost of the electrode. ing. For this reason, development of an electrode with high catalyst utilization efficiency that can cause a sufficient electrode reaction with a small amount of catalyst has become active (for example, Patent Document 1).
JP-A-7-134996

上記の電極にあって、触媒の利用効率の改善を妨げる要因の一つに電極を構成する固体高分子電解質の問題がある。これを図1,2を用いて説明する。図1は固体高分子を電解質に用いた電極aの断面を示す概略模式図である。上述したように、電極aは、触媒を担持したカーボン粒子(導電体)eの凝集体bと、電解質cとからなり、内部にガスが通渦する細孔dが形成される。ここで、図示する凝集体bは、カーボン粒子e単体ではなく、カーボン粒子eが複数集合したものである。図2は、この凝集体bの内部を拡大して示す概略模式図である。このように、凝集体bは複数のカーボン粒子eにより構成されており、該凝集体bの外面に存する触媒fが直接電解質cと接触して三相界面を生成することとなる。一方、この凝集体b内部のカーボン粒子eにも触媒fが多数担持される。しかし、固体高分子電解質は分子量が大きいため、電解質cはカーボン粒子e間に形成される間隙g内に殆ど浸透することがない。したがって、従来の電極aでは、該凝集体bの内部の間隙gには僅かな三相界面しか存在せず、該間隙g内の触媒fの多くは電極反応に寄与することなく、無駄なものとなっていた。  In the above electrode, one of the factors hindering the improvement of the utilization efficiency of the catalyst is a problem of the solid polymer electrolyte constituting the electrode. This will be described with reference to FIGS. FIG. 1 is a schematic diagram showing a cross section of an electrode a using a solid polymer as an electrolyte. As described above, the electrode a is composed of the aggregate b of the carbon particles (conductor) e carrying the catalyst and the electrolyte c, and the pores d through which the gas passes are formed. Here, the illustrated aggregate b is not a single carbon particle e but a collection of a plurality of carbon particles e. FIG. 2 is a schematic schematic view showing the inside of the aggregate b in an enlarged manner. Thus, the aggregate b is composed of a plurality of carbon particles e, and the catalyst f existing on the outer surface of the aggregate b comes into direct contact with the electrolyte c to form a three-phase interface. On the other hand, a large number of catalysts f are also carried on the carbon particles e inside the aggregate b. However, since the solid polymer electrolyte has a large molecular weight, the electrolyte c hardly penetrates into the gap g formed between the carbon particles e. Therefore, in the conventional electrode a, there are only a few three-phase interfaces in the gap g inside the aggregate b, and most of the catalyst f in the gap g does not contribute to the electrode reaction and is wasted. It was.

本発明は、かかる問題の解決を試みたものであり、触媒の利用効率の高い電極、及び該電極の製造方法、そして、該電極を用いた低廉で出力の高い燃料電池の提供を目的とするものである。  An object of the present invention is to provide an electrode with high catalyst utilization efficiency, a method for producing the electrode, and a low-cost and high-power fuel cell using the electrode. Is.

本発明は、燃料電池に用いられる電極であって、Caイオン、Mgイオン及びZnイオンの少なくとも一つを含むリン酸塩分子鎖からなる電解質と、触媒を担持した導電体とを有することを特徴とする電極である。  The present invention is an electrode used in a fuel cell, and has an electrolyte composed of a phosphate molecular chain containing at least one of Ca ion, Mg ion and Zn ion, and a conductor carrying a catalyst. Electrode.

かかるリン酸塩分子鎖からなる電解質は、本発明者らが以前、Chemisty Letters,820−821(2001)で報告したプロトン伝導性の「プロトン伝導ゲル」を原料とする。このプロトン伝導ゲルは、リン酸塩ガラスの粉末を常温で急速に水と反応させて得られる粘稠なゲル状のプロトン伝導体であって、溶融法によって得られたリン酸塩ガラスが水と反応することによりリン原子にOH基が結合してなる直鎖状構造又は/及び環状構造のリン酸塩分子鎖からなる分散相と、該リン酸塩分子鎖の各OH基の周囲に存在する水からなる分散媒とを有することを特徴とする。本発明者らは、このプロトン伝導ゲルの電極材料としての可能性に着目し、鋭意検討を行った結果、本発明に至った。  The electrolyte composed of such phosphate molecular chains is made from a proton-conductive “proton conductive gel” previously reported by the present inventors in Chemistry Letters, 820-821 (2001). This proton conducting gel is a viscous gel-like proton conductor obtained by rapidly reacting phosphate glass powder with water at room temperature, and the phosphate glass obtained by the melting method is mixed with water. It exists in the periphery of each OH group of the phosphate molecular chain, and a dispersed phase consisting of a phosphate molecular chain having a linear structure or / and a cyclic structure in which an OH group is bonded to a phosphorus atom by reaction. It has the dispersion medium which consists of water, It is characterized by the above-mentioned. The inventors of the present invention have focused on the possibility of this proton conducting gel as an electrode material, and as a result of intensive studies, have reached the present invention.

プロトン伝導ゲルについて詳述すると、プロトン伝導ゲルは、Caイオン、Mgイオン及びZnイオンの少なくとも一つを含有したリン酸塩ガラスを粉末化し、これを水と反応させることにより得られる。このリン酸塩ガラスは、溶融法により、すなわちリン酸塩を溶融後、ガラス転移温度以下まで急冷することにより得られる。プロトン伝導ゲルを高収率で得るためには、プロトン伝導ゲルを構成するリン酸塩分子鎖が、リン酸をP換算で30〜75mol%の範囲で含有していることが望ましく、さらにはリン酸をP換算で40〜60mol%の範囲で含有しているとがより望ましい。一方、このリン酸塩分子鎖に含有するCaイオン、Mgイオン及びZnイオンのイオン合計量は、酸化物換算で25〜70mol%の範囲であることが望ましく、酸化物換算で40〜60mol%の範囲であることがより望ましい。The proton conductive gel will be described in detail. The proton conductive gel is obtained by pulverizing phosphate glass containing at least one of Ca ions, Mg ions, and Zn ions and reacting it with water. The phosphate glass can be obtained by a melting method, that is, by rapidly cooling the phosphate to a glass transition temperature or lower after melting the phosphate. In order to obtain a proton conducting gel in high yield, it is desirable that the phosphate molecular chain constituting the proton conducting gel contains phosphoric acid in a range of 30 to 75 mol% in terms of P 2 O 5 , Furthermore the contains in the range of 40 to 60 mol% phosphoric acid in terms of P 2 O 5 is more preferable. On the other hand, the total amount of Ca ions, Mg ions and Zn ions contained in the phosphate molecular chain is preferably in the range of 25 to 70 mol% in terms of oxide, and 40 to 60 mol% in terms of oxide. A range is more desirable.

そして、本発明の電極は、このプロトン伝導ゲルを電極の電解質材料として用いたものである。ここで、本発明の電極を構成する電解質は、プロトン伝導ゲルそのものであっても構わないし、プロトン伝導ゲルが熱処理等により乾燥して、分散媒であるリン酸塩分子鎖のみとなったものでも構わない。また、本発明の電極の電解質は、該リン酸塩分子鎖だけでなく、他の固体高分子電解質等との混合物であっても構わない。  And the electrode of this invention uses this proton conductive gel as an electrolyte material of an electrode. Here, the electrolyte constituting the electrode of the present invention may be a proton conductive gel itself, or may be one in which the proton conductive gel is dried by heat treatment or the like and becomes only a phosphate molecular chain as a dispersion medium. I do not care. Further, the electrolyte of the electrode of the present invention may be a mixture with not only the phosphate molecular chain but also other solid polymer electrolytes.

このプロトン伝導ゲルは、カーボン粒子との親和性が高く、また、プロトン伝導ゲル内のリン酸塩分子鎖は、種々の長さの直鎖状又は環状のリン酸塩分子鎖からなるが、その殆どは固体高分子電解質より低分子であるため、カーボン粒子の凝集体内に形成される間隙に浸透し易い。このため、本発明の電極では、従来の固体高分子電解質を用いた電極よりも多くの三相界面を形成することができる。すなわち、本発明の電極では、図3の概略模式図に示すように、凝集体bの内部の間隙g内に、多くの電解質cが浸入し、カーボン粒子eの表面に付着することとなり、凝集体b内部に存する触媒fの近傍に多くの三相界面が形成される。従って、本発明では、従来の電極で利用されることのなかった凝集体内の触媒が電極反応に用いられるため、触媒の利用効率が上昇することとなる。  This proton conducting gel has a high affinity for carbon particles, and the phosphate molecular chains in the proton conducting gel are composed of linear or cyclic phosphate molecular chains of various lengths. Most of them are lower in molecular weight than solid polymer electrolytes, and therefore easily penetrate into the gaps formed in the aggregates of carbon particles. For this reason, in the electrode of this invention, many three-phase interfaces can be formed rather than the electrode using the conventional solid polymer electrolyte. That is, in the electrode of the present invention, as shown in the schematic diagram of FIG. 3, a large amount of electrolyte c enters the gap g inside the aggregate b and adheres to the surface of the carbon particles e. Many three-phase interfaces are formed in the vicinity of the catalyst f existing inside the aggregate b. Therefore, in the present invention, since the catalyst in the aggregate that has not been used in the conventional electrode is used in the electrode reaction, the utilization efficiency of the catalyst is increased.

また、本発明の電極を構成する、リン酸塩分子鎖からなるプロトン伝導性の電解質はフッ素を含有しないため、合成時、廃棄時の環境への負荷が少ない。特に、従来のフッ素系固体高分子を電解質に用いた電極にあっては、特開昭61−138541に記載されるように、燃料電池の廃棄時に触媒に含まれる白金を回収する際に、該フッ素系固体高分子のために、電極を直接王水に浸漬して白金を溶かし出すことが困難であり、通常よりも複雑な回収方法を要していたが、本発明の電極はフッ素を含有させずに製造することが可能であり、電極を直接王水処理することにより白金を容易に回収し得る。  In addition, since the proton-conducting electrolyte comprising the phosphate molecular chain that constitutes the electrode of the present invention does not contain fluorine, the load on the environment during synthesis and disposal is small. In particular, in an electrode using a conventional fluorine-based solid polymer as an electrolyte, as described in JP-A-61-138541, when recovering platinum contained in a catalyst when the fuel cell is discarded, Because of the fluorine-based solid polymer, it is difficult to dissolve platinum by directly immersing the electrode in aqua regia, and a complicated recovery method was required, but the electrode of the present invention contains fluorine. The platinum can be easily recovered by directly treating the electrode with aqua regia.

本発明の電極内に形成される三相界面の量は、プロトン伝導ゲルの溶媒の量、溶媒の種類、電解質と導電体の比率、プロトン伝導ゲルの成分組成等によって調整される。例えば前記電解質と、導電体との構成割合は、電解質の割合が多すぎると、電極内の細孔部分が少なくなり、ガスの供給路を充分な確保するのが困難となる。一方で、電解質の構成割合が少なすぎると、電極内のプロトン伝導経路が減り、三相界面を作り難い。このため、電極内に充分な三相界面を形成するには、電解質と導電体との平均構成割合は、質量比で20:80〜80:20の範囲内であることが望ましい。さらに言えば、電解質と導電体との平均構成割合は、質量比で30:70〜70:30の範囲内であることがより望ましい。なお、かかる電解質の質量には水分は含めず、導電体の質量には担持した触媒の質量も含めるものである。  The amount of the three-phase interface formed in the electrode of the present invention is adjusted by the amount of the proton conducting gel solvent, the type of solvent, the ratio of the electrolyte to the conductor, the component composition of the proton conducting gel, and the like. For example, when the proportion of the electrolyte and the conductor is too large, the pore portion in the electrode is reduced and it is difficult to ensure a sufficient gas supply path. On the other hand, when the composition ratio of the electrolyte is too small, the proton conduction path in the electrode is reduced and it is difficult to form a three-phase interface. For this reason, in order to form a sufficient three-phase interface in the electrode, the average composition ratio between the electrolyte and the conductor is preferably in the range of 20:80 to 80:20 by mass ratio. Furthermore, it is more desirable that the average composition ratio of the electrolyte and the conductor is in the range of 30:70 to 70:30 by mass ratio. The mass of the electrolyte does not include moisture, and the mass of the conductor includes the mass of the supported catalyst.

本発明の電極の製造方法は、Caイオン、Mgイオン及びZnイオンの少なくとも一つを含むリン酸塩分子鎖からなる分散相と水からなる分散媒とを有するプロトン伝導ゲルと、触媒を担持した導電体との混合物を作製し、該混合物を用いて電極形成することを特徴とする。  The electrode manufacturing method of the present invention carries a proton conductive gel having a dispersed phase composed of a phosphate molecular chain containing at least one of Ca ions, Mg ions and Zn ions and a dispersion medium composed of water, and a catalyst. A mixture with a conductor is prepared, and an electrode is formed using the mixture.

前記混合物は、上記プロトン伝導ゲルに、触媒を担持した導電体を十分に混練することにより得られる。この混合物内で、導電体とプロトン伝導ゲルが混じりあい、プロトン伝導ゲルのリン酸塩分子鎖が、カーボン粒子の凝集体の内部まで浸透することとなる。なお、プロトン伝導ゲルは、必要に応じて水や有機溶剤を加え希釈しておくとよい。また、かかる工程では、前記混合物に、他の電解質や撥水剤等を加えることも可能である。  The mixture can be obtained by sufficiently kneading a conductor carrying a catalyst in the proton conducting gel. In this mixture, the conductor and the proton conducting gel are mixed, and the phosphate molecular chain of the proton conducting gel penetrates into the carbon particle aggregate. The proton conductive gel may be diluted by adding water or an organic solvent as necessary. In this step, it is also possible to add other electrolytes, water repellents and the like to the mixture.

そして、電極形成は、カーボンペーパーや織物からなる集電体上、又は固体高分子等からなる電解質膜上に行う。すなわち、集電体若しくは電解質膜上に、該混合物を印刷または塗布するなどして、混合物を膜状に成形し、その後にこの膜状成形物を乾燥させて、混合物に含まれる水分や有機溶剤の一部または全てを除去することにより、電解質膜上又は集電体上に、内部に細孔を有する本発明の電極を形成する。なお、成形物を乾燥させる工程では、成形物を熱処理すれば強固な電極を短時間で得ることができる。この熱処理は130〜400℃の範囲内で実行すれば、電解質のリン酸塩分子鎖を大きく変質させることなく好適な電極を得ることができる。さらに言えば熱処理は150〜300℃の条件下で行うことがより望ましい。  The electrode is formed on a current collector made of carbon paper or a woven fabric, or on an electrolyte membrane made of a solid polymer or the like. That is, the mixture is formed into a film by printing or applying the mixture on a current collector or an electrolyte film, and then the film-shaped formed product is dried to obtain moisture or an organic solvent contained in the mixture. By removing a part or all of the electrode, the electrode of the present invention having pores inside is formed on the electrolyte membrane or the current collector. In the step of drying the molded product, a strong electrode can be obtained in a short time by heat-treating the molded product. If this heat treatment is carried out in the range of 130 to 400 ° C., a suitable electrode can be obtained without greatly altering the phosphate molecular chain of the electrolyte. Furthermore, it is more desirable to perform the heat treatment under conditions of 150 to 300 ° C.

なお、本発明にかかる電極には、上記の電極形成のペーストにPTFE(ポリテトラフルオロエチレン)粒子を混合したり、上記の集電体へPTFEを塗布したりして撥水構造を形成するとよい。  The electrode according to the present invention may be formed with a water-repellent structure by mixing PTFE (polytetrafluoroethylene) particles with the electrode-forming paste or by applying PTFE to the current collector. .

こうして製造した電極は、電解質膜上に形成したものは集電体と、集電体上に形成したものは電解質膜と加熱圧接し、電解質膜と集電体と一体化した電解質膜−電極接合体を形成する。この電解質膜−電極接合体は、従来の電解質膜−電極接合体と同様に、ガス流路溝が形成されたセパレータで挟持することにより燃料電池セルを構成し、燃料電池に組み込むことができる。なお、本発明の電極は、電解質膜の両面に接合する二枚の電極両方に用いることが望ましいが、一面だけに用いた構成でも構わない。そして、本発明の電極を電解質膜の少なくとも一面に接合した燃料電池では、触媒の利用効率が高いため、従来構成の電極のみを用いた燃料電池よりも、等量の触媒量でより高い出力を示し、また、少ない触媒量でも燃料電池として充分な出力が得ることが可能となる。  The electrode manufactured in this way is the current collector formed on the electrolyte membrane, and the one formed on the current collector is heat-pressed with the electrolyte membrane, and the electrolyte membrane-electrode junction integrated with the electrolyte membrane and the current collector. Form the body. Like the conventional electrolyte membrane-electrode assembly, this electrolyte membrane-electrode assembly can be incorporated into a fuel cell by constituting a fuel cell by being sandwiched between separators in which gas flow channel grooves are formed. The electrode of the present invention is preferably used for both of the two electrodes bonded to both surfaces of the electrolyte membrane, but may be configured to be used on only one surface. And, in the fuel cell in which the electrode of the present invention is joined to at least one surface of the electrolyte membrane, the utilization efficiency of the catalyst is high. In addition, a sufficient output as a fuel cell can be obtained even with a small amount of catalyst.

なお、本発明の電極は、従来の固体高分子型燃料電池に限らず、低温で作動する燃料電池一般に利用可能である。例えば、本発明者らは、上述のプロトン伝導ゲルを電解質膜に用いた燃料電池も開発しているが、この燃料電池に本発明の電極を用いても高い出力が得られることを確認している。  The electrode of the present invention is not limited to conventional polymer electrolyte fuel cells, and can be used for fuel cells that operate at low temperatures. For example, the present inventors have also developed a fuel cell using the above-described proton conducting gel as an electrolyte membrane, and confirmed that a high output can be obtained even if the electrode of the present invention is used for this fuel cell. Yes.

上述のリン酸塩分子鎖からなるプロトン伝導性の電解質を用いた本発明の電極では、電解質が、カーボン粒子の凝集体の内部に浸透して三相界面を形成しているため、従来の電極では無駄となっていた凝集体内部の触媒を電極反応に活用することができる。そして、かかる電極を用いた燃料電池では、電極の触媒量を減らすことにより、出力を維持したまま製造コストを低減することができ、一方、従来と等量の触媒量を用いた場合には、同じ触媒量でより高出力の燃料電池を実現できる。また、本発明の電極の電解質を構成するリン酸塩分子鎖は、フッ素を含有していないため、製造、廃棄時の環境負荷が少なく、触媒に含まれる白金も容易に回収し得る。  In the electrode of the present invention using the above-described proton conductive electrolyte composed of phosphate molecular chains, the electrolyte permeates into the aggregate of carbon particles to form a three-phase interface. Then, the catalyst inside the agglomerated waste can be utilized for the electrode reaction. And in a fuel cell using such an electrode, the production cost can be reduced while maintaining the output by reducing the catalyst amount of the electrode. A higher output fuel cell can be realized with the same catalyst amount. Further, since the phosphate molecular chain constituting the electrolyte of the electrode of the present invention does not contain fluorine, there is little environmental load during production and disposal, and platinum contained in the catalyst can be easily recovered.

かかる電極にあって、電解質と導電体との平均構成割合を、質量比で20:80〜80:20の範囲内とすれば、電解質と導電体とが適度な割合で混合することとなり、電極内に充分な三相界面が形成することができる。さらに、電解質と導電体との平均構成割合を、質量比で30:70〜70:30の範囲内とすれば、電極内により多量の三相界面が形成され、電極の触媒利用率を確実に向上させることができる。  In such an electrode, if the average composition ratio of the electrolyte and the conductor is within a range of 20:80 to 80:20 in terms of mass ratio, the electrolyte and the conductor are mixed at an appropriate ratio. A sufficient three-phase interface can be formed inside. Furthermore, if the average composition ratio of the electrolyte and the conductor is within the range of 30:70 to 70:30 by mass ratio, a large amount of three-phase interface is formed in the electrode, and the catalyst utilization rate of the electrode is ensured. Can be improved.

そして、上記プロトン伝導ゲルと、触媒を担持した導電体との混合物を作製し、該混合物を用いて電極形成する前記電極の製造方法にあっては、プロトン伝導ゲルを原料とする電解質と、触媒を担持した導電体とを混合し、導電体の凝集体内部まで電解質を好適に浸透させることができ、該凝集体内部に多くの三相界面を形成することができる。  And in the manufacturing method of the said electrode which produces the mixture of the said proton conductive gel and the conductor which carry | supported the catalyst, and forms an electrode using this mixture, the electrolyte which uses a proton conductive gel as a raw material, and a catalyst Is mixed with the conductor carrying the electrolyte, and the electrolyte can be suitably infiltrated into the aggregate of the conductor, so that many three-phase interfaces can be formed inside the aggregate.

ここで、該混合物を膜状に成形した後に、130〜400℃で熱処理して電極形成する場合には、短時間で強固な電極を成形可能となる。  Here, when the electrode is formed by heat treatment at 130 to 400 ° C. after forming the mixture into a film shape, a strong electrode can be formed in a short time.

従来構成の電極断面を拡大して示す概略模式図である。It is a schematic diagram which expands and shows the electrode cross section of a conventional structure. 従来構成の凝集体bの内部構成を拡大して示す概略模式図である。It is a schematic diagram which expands and shows the internal structure of the aggregate b of the conventional structure. 本発明の凝集体bの内部構成を拡大して示す概略模式図である。It is a schematic diagram which expands and shows the internal structure of the aggregate b of this invention. 固体高分子型燃料電池の膜電極接合体xを示す断面図である。It is sectional drawing which shows the membrane electrode assembly x of a polymer electrolyte fuel cell.

符号の説明Explanation of symbols

a 電極
b 凝集体
c 電解質
d 細孔
e カーボン粒子
f 触媒
g 間隙
x 膜電極接合体
y 電解質膜
z 集電体
a electrode b aggregate c electrolyte d pore e carbon particle f catalyst g gap x membrane electrode assembly y electrolyte membrane z current collector

本発明の実施形態を以下の実施例1〜3に従って説明する。  Embodiments of the present invention will be described according to Examples 1 to 3 below.

まず、本発明の電極である実施例電極1,2、及び比較用の電極である比較例電極1,2について説明する。  First, Example electrodes 1 and 2 that are electrodes of the present invention and Comparative Example electrodes 1 and 2 that are comparative electrodes will be described.

正リン酸がP換算で48mol%の組成となるように、炭酸カルシウムと正リン酸の乾燥混合粉末を調製する。そして該乾燥混合粉末を電気炉中で、1300℃で0.5時間の熱処理を行い、溶融させる。その後、溶融物をカーボン板上に流し出し、室温まで急冷することによりリン酸カルシウムガラスを得た(溶融法)。このリン酸カルシウムガラスを乳鉢により粒子の直径が10μm以下になるまで粉砕する。そして、得られたガラス粉末をプラスチックシャーレに入れ、等重量の蒸留水を加えて攪拌した後、施蓋して乾燥を防いだ状態で約3日間室温放置することにより、リン酸塩分子鎖がリン酸をP換算で48mol%、カルシウムイオン量がCaO換算で52mol%からなる電解質50質量%と、分散媒の水50質量%からなるプロトン伝導ゲルAを得た。A dry mixed powder of calcium carbonate and orthophosphoric acid is prepared so that orthophosphoric acid has a composition of 48 mol% in terms of P 2 O 5 . Then, the dry mixed powder is heat-treated at 1300 ° C. for 0.5 hours in an electric furnace and melted. Thereafter, the melt was poured onto a carbon plate and quenched to room temperature to obtain calcium phosphate glass (melting method). The calcium phosphate glass is pulverized with a mortar until the particle diameter becomes 10 μm or less. And after putting the obtained glass powder in a plastic petri dish, adding an equal weight of distilled water and stirring, leaving it at room temperature for about 3 days with the lid covered to prevent drying, the phosphate molecular chains are formed. Proton conducting gel A was obtained, comprising phosphoric acid in an amount of 48 mol% in terms of P 2 O 5 , an electrolyte amount of 52 mol% in terms of calcium ion in terms of CaO, and 50 mass% of water as a dispersion medium.

つづいて、プロトン伝導ゲルA17.3質量%に対しさらに分散媒のエチレングリコール82.7質量%加え、混練して、本発明の電極形成に使用するプロトン伝導ゲル希釈物Bを得た。  Subsequently, 82.7% by mass of ethylene glycol as a dispersion medium was further added to 17.3% by mass of proton conductive gel A, and kneaded to obtain a proton conductive gel dilution B used for electrode formation of the present invention.

カーボン粒子(Cabot社製 バルカンXC−72R)に、該カーボン粒子の重量に対して2/3倍量の白金(Pt)を触媒として担持させて、本発明の電極形成に使用する導電体Aとした。  Conductor A used for forming the electrode of the present invention was prepared by supporting carbon particles (Valcan XC-72R manufactured by Cabot) with platinum (Pt) as a catalyst in an amount of 2/3 times the weight of the carbon particles. did.

カーボンシート(東レ社製 TGP−H−060F T0.2mm×W110mm×L110mm、空隙率83%)に撥水処理を施し、本実施例に使用する集電体とした。  A carbon sheet (TGP-H-060F T0.2 mm × W110 mm × L110 mm manufactured by Toray Industries, Inc., 83% porosity) was subjected to water repellent treatment to obtain a current collector for use in this example.

プロトン伝導ゲル希釈物Bを2.2gと導電体Aを0.45gとを混練して、本発明の電極形成に使用するプロトン伝導ゲル希釈物Bと導電体Aとのペースト状の混合物を作製し、前記集電体面に該混合物をスクリーン印刷した後、大気中150℃で1時間熱処理し、混合物中のエチレングリコールの全て及び水の一部を除去し、集電体面にCaイオンを含むリン酸塩分子鎖からなるプロトン伝導性の電解質30質量%と、導電体A70質量%からなる本発明の実施例電極1を作製した。  A paste-like mixture of proton conductive gel dilution B and conductor A used for electrode formation of the present invention is prepared by kneading 2.2 g of proton conductive gel dilution B and 0.45 g of conductor A. And screen-printing the mixture on the current collector surface, followed by heat treatment in the atmosphere at 150 ° C. for 1 hour to remove all of the ethylene glycol and a part of water in the mixture, and the phosphor surface containing Ca ions on the current collector surface Example electrode 1 of the present invention comprising 30% by mass of proton-conductive electrolyte composed of acid salt molecular chain and 70% by mass of conductor A was produced.

また、プロトン伝導ゲル希釈物B6.2gと導電体A0.23gとを混練し、本発明の電極形成に使用するプロトン伝導ゲル希釈物Bと導電体Aとのペースト状の混合物を作製し、実施例電極1と同様にして、前記集電体にCaイオンを含むリン酸塩分子鎖からなるプロトン伝導性の電解質70質量%と、導電体A30質量%からなる本発明の実施例電極2を作製した。  Also, 6.2 g of proton conductive gel dilution B and 0.23 g of conductor A were kneaded to prepare a paste-like mixture of proton conductive gel dilution B and conductor A used for electrode formation of the present invention. In the same manner as in the example electrode 1, the example electrode 2 of the present invention is produced in which the current collector is composed of 70% by mass of a proton-conductive electrolyte composed of phosphate molecular chains containing Ca ions and 30% by mass of the conductor A. did.

25%の固体高分子電解質(ナフィオン)を含む溶液1.2g、と前記導電体A0.45gとを混合、混練し、固体高分子電解質と導電体Aとを含有するペースト状の混合物を作製した。この混合物を実施例電極1,2で用いた集電体に印刷した後、乾燥させて電極形成し、集電体面に固体高分子電解質40質量%と導電体A60質量%からなる比較例電極1を作製した。  1.2 g of a solution containing 25% solid polymer electrolyte (Nafion) and 0.45 g of the conductor A were mixed and kneaded to prepare a paste-like mixture containing the solid polymer electrolyte and the conductor A. . This mixture was printed on the current collector used in Example electrodes 1 and 2 and then dried to form an electrode. Comparative electrode 1 comprising 40% by mass of solid polymer electrolyte and 60% by mass of conductor A on the current collector surface Was made.

また、前記固体高分子電解質を含む溶液と導電体Aとの混合比率を変更し、以下は比較例電極1と同様の製造方法で、前記集電体に固体高分子電解質70質量%と、触媒を担持した導電体30質量%からなる比較例電極2を作製した。  Further, the mixing ratio of the solution containing the solid polymer electrolyte and the conductor A was changed, and the following is the same production method as in Comparative Example Electrode 1, and the current collector had 70% by mass of the solid polymer electrolyte, the catalyst A comparative example electrode 2 comprising 30% by mass of a conductor carrying bismuth was prepared.

上記実施例電極1,2及び比較例電極1,2をそれぞれ25mm×25mmの大きさとして評価試験用試料とした。また、各電極のPt含有量を計測した結果を表1に示す。  The Example electrodes 1 and 2 and the comparative electrodes 1 and 2 were each 25 mm × 25 mm in size and used as samples for evaluation tests. Table 1 shows the results of measuring the Pt content of each electrode.

Figure 2005006470
Figure 2005006470

以下に上記実施例電極1,2及び比較例電極1,2の評価試験用試料を用いて作製した、本発明の燃料電池である実施例電池A〜D,及び比較例電池A,Bについて説明する。  Hereinafter, Example batteries A to D and Comparative batteries A and B, which are fuel cells of the present invention, produced using the samples for evaluation tests of the above-described Example electrodes 1 and 2 and Comparative example electrodes 1 and 2 will be described. To do.

プロトン伝導ゲルAをPTFE(ポリテトラフルオロエチレン)製の内寸25mm×25mm、厚み0.8mmの容器に充填した後、乾燥させて、プロトン伝導ゲルAからなる電解質膜を作製した。  The proton conductive gel A was filled in a container made of PTFE (polytetrafluoroethylene) having an inner size of 25 mm × 25 mm and a thickness of 0.8 mm, and then dried to prepare an electrolyte membrane made of the proton conductive gel A.

前記電解質膜の両面に、実施例電極1の電極面を圧接して、電解質膜−電極接合体を作製した。この電解質膜−電極接合体を、ガス流路を有するセパレータで挟持して燃料電池セルを構成し、燃料極及び酸素極が実施例電極1からなる本発明の燃料電池である実施例電池Aを作製した。  The electrode surface of Example electrode 1 was pressed against both surfaces of the electrolyte membrane to produce an electrolyte membrane-electrode assembly. The electrolyte membrane-electrode assembly is sandwiched by a separator having a gas flow path to constitute a fuel cell, and an example battery A which is a fuel cell of the present invention in which the fuel electrode and the oxygen electrode are composed of the example electrode 1 Produced.

また、実施例電極1を実施例電極2に代える他は、実施例電池Aと同様にして、燃料極及び酸素極が実施例電極2からなる本発明の燃料電池である実施例電池Bを作製した。  In addition, Example Battery B, which is the fuel cell of the present invention in which the fuel electrode and the oxygen electrode are composed of Example Electrode 2, is produced in the same manner as Example Battery A except that Example Electrode 1 is replaced with Example Electrode 2. did.

さらに、固体高分子膜(ナフィオン112)の両面に5%ナフィオン溶液を0.1mg/cm塗付し、70℃で30分間乾燥した後、その両面と実施例電極1の電極面とを160℃1分間の条件でホットプレスして接合した電解質膜−電極接合体を作製した。そして、実施例電池1と同様にして、この電解質膜−電極接合体により、燃料極及び酸素極が実施例電極1からなる本発明の燃料電池である実施例電池Cを作製した。Furthermore, 0.1 mg / cm 2 of 5% Nafion solution was applied to both surfaces of the solid polymer membrane (Nafion 112), dried at 70 ° C. for 30 minutes, and then both surfaces and the electrode surface of Example electrode 1 were 160. An electrolyte membrane-electrode assembly bonded by hot pressing under the condition of 1 ° C. for 1 minute was produced. Then, in the same manner as in the example battery 1, an example battery C which is a fuel cell of the present invention in which the fuel electrode and the oxygen electrode are composed of the example electrode 1 was produced from this electrolyte membrane-electrode assembly.

また、実施例電極1を実施例電極2に代える他は、実施例電池Cと同様にして、燃料極及び酸素極が実施例電極2からなる本発明の燃料電池である実施例電池Dを作製した。  In addition, Example Battery D, which is the fuel cell of the present invention in which the fuel electrode and the oxygen electrode are composed of Example Electrode 2, is produced in the same manner as Example Battery C except that Example Electrode 1 is replaced with Example Electrode 2. did.

比較例として、固体高分子膜(ナフィオン112)の両面と比較例電極1の電極面とを合わせ、160℃、1分間の条件で、ホットプレスし、電解質膜−電極複合体を作製した。そして、実施例電池Aと同様にして、燃料極及び酸素極が比較例電極1からなる比較用の燃料電池である比較例電池Aを作製した。  As a comparative example, both surfaces of the solid polymer membrane (Nafion 112) and the electrode surface of the comparative example electrode 1 were combined and hot-pressed at 160 ° C. for 1 minute to prepare an electrolyte membrane-electrode composite. Then, Comparative Example Battery A, which is a comparative fuel cell in which the fuel electrode and the oxygen electrode are composed of Comparative Example Electrode 1, was produced in the same manner as Example Battery A.

また、比較例電極1を比較例電極2に代える他は、比較例電池Aと同様にして、燃料電池及び酸素極が比較例電極2からなる比較用の燃料電池である比較例電池Bを作製した。  Further, a comparative example battery B which is a comparative fuel cell in which the fuel cell and the oxygen electrode are composed of the comparative example electrode 2 is manufactured in the same manner as the comparative example battery A except that the comparative example electrode 1 is replaced with the comparative example electrode 2. did.

上記、実施例電池A〜D,比較例電池A,Bについて、電流−電圧特性を測定した。電流密度0.15A/cmにて得られた出力電圧を表2に示す。The current-voltage characteristics of the example batteries A to D and the comparative batteries A and B were measured. Table 2 shows the output voltage obtained at a current density of 0.15 A / cm 2 .

なお、測定条件は以下の通りである。
水素:0.1MPa(常圧)
酸素:0.1MPa(常圧)
流量:0.201/min
ガス加湿温度:35℃
電池作動温度:40℃
Measurement conditions are as follows.
Hydrogen: 0.1 MPa (normal pressure)
Oxygen: 0.1 MPa (normal pressure)
Flow rate: 0.201 / min
Gas humidification temperature: 35 ° C
Battery operating temperature: 40 ° C

Figure 2005006470
Figure 2005006470

この表2から明らかなように、本発明の電極を用いた実施例電池A〜Dにあっては、比較例電池A,Bよりも高い出力電圧を示した。特に、出力電圧の差はPt含有量(触媒量)の低い実施例電極2を用いた場合に顕著である。このように、本発明の電極を用いた燃料電池では、従来の電極を用いた燃料電池よりも高い出力を示し、また、触媒量を抑えたものでも出力の減少が少なく、充分に高い出力を得られることが分かる。  As is apparent from Table 2, the example batteries A to D using the electrode of the present invention showed higher output voltages than the comparative batteries A and B. In particular, the difference in output voltage is significant when the example electrode 2 having a low Pt content (catalyst amount) is used. As described above, the fuel cell using the electrode of the present invention shows a higher output than the fuel cell using the conventional electrode, and even if the amount of the catalyst is suppressed, the decrease in the output is small and the output is sufficiently high. You can see that

実施例1と同様のカーボン粒子にPtRu(Pt:Ru=64質量%:34質量%)を触媒として担持させて導電体B(PtRu触媒:カーボン粒子=61質量%:31質量%)を作製した。  Conductor B (PtRu catalyst: carbon particles = 61% by mass: 31% by mass) was prepared by supporting PtRu (Pt: Ru = 64% by mass: 34% by mass) on the same carbon particles as in Example 1 as a catalyst. .

実施例1に記載したプロトン伝導ゲル希釈物B5.2gと、導電体B0.45gとを混練し、プロトン伝導ゲル希釈物Bと導電体Bとのペースト状の混合物を作製した。そして実施例電極1,2と同様にしてプロトン伝導性の電解質50質量%と、導電体B50質量%からなる実施例電極3を作製した。  5.2 g of the proton conducting gel dilution B described in Example 1 and 0.45 g of the conductor B were kneaded to prepare a paste-like mixture of the proton conducting gel dilution B and the conductor B. In the same manner as Example electrodes 1 and 2, Example electrode 3 comprising 50% by mass of proton-conductive electrolyte and 50% by mass of conductor B was produced.

一方、25%の固体高分子電解質(ナフィオン)を含む溶液1.8gと前記導電体B0.45gとを混練し、固体高分子電解質と導電体Bとを含有するペースト状の混合物を作製した。この混合物を比較例電極1,2と同様にして、固体高分子電解質50質量%と、導電体B50質量%からなる比較例電極3を作製した。  On the other hand, 1.8 g of a solution containing 25% solid polymer electrolyte (Nafion) and 0.45 g of the conductor B were kneaded to prepare a paste-like mixture containing the solid polymer electrolyte and the conductor B. A comparative example electrode 3 comprising 50% by mass of a solid polymer electrolyte and 50% by mass of a conductor B was produced in the same manner as this comparative example electrodes 1 and 2.

上記実施例電極3及び比較例電極3は、実施例1と同様に、それぞれ25mm×25mmの大きさとして評価試験用試料とした。また、各電極のPt含有量を計測した結果を表3に示す。  The Example electrode 3 and the comparative example electrode 3 were used as evaluation test samples each having a size of 25 mm × 25 mm, as in Example 1. Table 3 shows the results of measuring the Pt content of each electrode.

Figure 2005006470
Figure 2005006470

次いで、固体高分子電解質膜(ナフィオン117)の両面に5質量%ナフィオン溶液を0.1mg/cm塗布し、70℃で30分間乾燥した後、その一方の面と実施例電極1とを、その反対面と電極3とをそれぞれ160℃、1分間の条件で、ホットプレスして接合した電解質膜−電極接合体を作製し、実施例1と同様にして、燃料極及び酸素極が、それぞれ実施例電極3と実施例電極1からなる本発明の燃料電池である実施例電池Eを作製した。Next, 0.1 mg / cm 2 of a 5% by mass Nafion solution was applied to both surfaces of the solid polymer electrolyte membrane (Nafion 117) and dried at 70 ° C. for 30 minutes. An electrolyte membrane-electrode assembly in which the opposite surface and the electrode 3 were joined by hot pressing at 160 ° C. for 1 minute each was prepared, and in the same manner as in Example 1, the fuel electrode and the oxygen electrode were respectively Example battery E, which is a fuel cell of the present invention comprising Example electrode 3 and Example electrode 1, was produced.

また、固体高分子電解質(ナフィオン)膜の一方の面と比較例電極3とを、その反対面と比較例電極1とをそれぞれ160℃、1分間の条件で、ホットプレスして接合した電解質膜−電極接合体を作製し、実施例1と同様にして、燃料極及び酸素極が、それぞれ比較例電極3と比較例電極1からなる比較用の燃料電池である比較例電池Cを作製した。  Also, an electrolyte membrane in which one side of the solid polymer electrolyte (Nafion) membrane and the comparative example electrode 3 are joined by hot pressing the opposite side and the comparative example electrode 1 at 160 ° C. for 1 minute, respectively. -An electrode assembly was prepared, and in the same manner as in Example 1, a comparative battery C, which was a comparative fuel cell in which the fuel electrode and the oxygen electrode were composed of the comparative electrode 3 and the comparative electrode 1, respectively, was manufactured.

上記、実施例電池E、及び比較例電池Cについて、燃料極側にメタノール(CHOH)、酸素極側にOを供給し、それぞれの電流−電圧特性を測定した。出力電圧0.55Vにて得られた各電流値を表4に示す。For Example Battery E and Comparative Example Battery C, methanol (CH 3 OH) was supplied to the fuel electrode side and O 2 was supplied to the oxygen electrode side, and current-voltage characteristics were measured. Table 4 shows current values obtained at an output voltage of 0.55V.

測定条件は以下の通りである。
燃料極:50質量%CHOH+50質量%H
:0.10l/min
酸素極:O
:0.2MPa
:0.35l/min
ガス加湿温度:無加湿
電池作動温度:30℃
The measurement conditions are as follows.
Fuel electrode: 50% by mass CH 3 OH + 50% by mass H 2 O
: 0.10 l / min
Oxygen electrode: O 2
: 0.2 MPa
: 0.35 l / min
Gas humidification temperature: Non-humidified battery operating temperature: 30 ° C

Figure 2005006470
Figure 2005006470

この表4から明らかなように、本発明の電極を用いた実施例電池Eは、従来構成の電極を用いた比較例電池Dよりも高い出力を示している。かかる実施例電池Eと比較例電池Dに用いられる触媒量は略同じであるから、実施例電池Eは、比較例電池Dよりも、触媒の利用効率が高いことが分かる。このように本発明の電極は、燃料としてメタノールを燃料極側に供給した場合においても有効である。  As is apparent from Table 4, the example battery E using the electrode of the present invention shows higher output than the comparative example battery D using the electrode of the conventional configuration. Since the amount of catalyst used in the example battery E and the comparative example battery D is substantially the same, it can be seen that the example battery E has a higher catalyst utilization efficiency than the comparative example battery D. Thus, the electrode of the present invention is effective even when methanol is supplied as fuel to the fuel electrode side.

実施例1で作製した実施例電池A、実施例電池C及び比較例電池Aを分解し、それぞれの電解質膜−電極接合体を取り出し、濃塩酸3容量と濃硝酸1容量の濃酸(王水)に入れ、60〜70℃の温度で2時間加熱した後、王水からPtの回収を行った。  Example battery A, Example battery C and Comparative example battery A produced in Example 1 were disassembled, and each electrolyte membrane-electrode assembly was taken out, and concentrated acid (aqua regia) with 3 volumes of concentrated hydrochloric acid and 1 volume of concentrated nitric acid. ) And heated at 60 to 70 ° C. for 2 hours, and then Pt was recovered from aqua regia.

実施例電池A及び実施例電池Cについては、電解質膜−電極接合体が分解した。回収したPtの測定した結果、回収率{(回収したPt量)/(電極に使用したPt量)×100}はそれぞれ89%と72%であった。  For Example Battery A and Example Battery C, the electrolyte membrane-electrode assembly was decomposed. As a result of measuring the recovered Pt, the recovery rate {(recovered Pt amount) / (Pt amount used for the electrode) × 100} was 89% and 72%, respectively.

一方、比較例電池Aは、上述の王水処理でも電解質膜−電極接合体は分解せず、王水からのPtの回収率も1%未満であった。  On the other hand, in Comparative Example Battery A, the electrolyte membrane-electrode assembly was not decomposed even in the above-described aqua regia treatment, and the recovery rate of Pt from aqua regia was less than 1%.

以上の結果により、燃料電池に用いた本発明の電極からは、電解質膜−電極接合体の焼却等を行うことなく、容易にPtを回収できることが分かる。  From the above results, it can be seen that Pt can be easily recovered from the electrode of the present invention used in the fuel cell without burning the electrolyte membrane-electrode assembly.

Claims (6)

燃料電池に用いられる電極であって、
Caイオン、Mgイオン及びZnイオンの少なくとも一つを含み、溶融法によって得られたリン酸塩ガラスが水と反応することによりリン原子にOH基が結合してなる直鎖状構造又は/及び環状構造のリン酸塩分子鎖からなる分散相と、該リン酸塩分子鎖の各OH基の周囲に存在する水からなる分散媒とを有するプロトン伝導ゲルからなるプロトン伝導性の電解質と、触媒を担持した導電体とを有することを特徴とする電極。
An electrode used in a fuel cell,
A linear structure comprising at least one of Ca ion, Mg ion and Zn ion, and a phosphate glass obtained by a melting method reacts with water to form an OH group bonded to a phosphorus atom or / and cyclic A proton conducting electrolyte comprising a proton conducting gel having a dispersed phase comprising a phosphate molecular chain having a structure and a dispersion medium comprising water present around each OH group of the phosphate molecular chain; and a catalyst. An electrode having a supported conductor.
前記電解質と前記導電体との平均構成割合が、質量比で20:80〜80:20の範囲内であることを特徴とする請求項1記載の電極。The electrode according to claim 1, wherein an average composition ratio of the electrolyte and the conductor is in a range of 20:80 to 80:20 by mass ratio. 前記電解質と前記導電体との平均構成割合が、質量比で30:70〜70:30の範囲内であることを特徴とする請求項1記載の電極。The electrode according to claim 1, wherein an average composition ratio of the electrolyte and the conductor is in a range of 30:70 to 70:30 by mass ratio. 請求項1乃至請求項3のいずれかに記載の電極を、電解質膜の少なくとも一面に接合したことを特徴とする燃料電池。A fuel cell comprising the electrode according to any one of claims 1 to 3 joined to at least one surface of an electrolyte membrane. Caイオン、Mgイオン及びZnイオンの少なくとも一つを含み、溶融法によって得られたリン酸塩ガラスが水と反応することによりリン原子にOH基が結合してなる直鎖状構造又は/及び環状構造のリン酸塩分子鎖からなる分散相と、該リン酸塩分子鎖の各OH基の周囲に存在する水からなる分散媒とを有するプロトン伝導ゲルと、触媒を担持した導電体との混合物を作製し、該混合物を用いて電極形成することを特徴とする請求項1乃至請求項3のいずれかに記載の電極の製造方法。A linear structure comprising at least one of Ca ion, Mg ion and Zn ion, and a phosphate glass obtained by a melting method reacts with water to form an OH group bonded to a phosphorus atom or / and cyclic A mixture of a proton conducting gel having a dispersed phase composed of a phosphate molecular chain having a structure, a dispersion medium composed of water present around each OH group of the phosphate molecular chain, and a conductor carrying a catalyst The electrode manufacturing method according to any one of claims 1 to 3, wherein the electrode is formed using the mixture. Caイオン、Mgイオン及びZnイオンの少なくとも一つを含むリン酸塩分子鎖からなる分散相と水からなる分散媒とを有するプロトン伝導ゲルと、触媒を担持した導電体との混合物を作製し、該混合物を膜状に成形した後に、130〜400℃で熱処理することにより電極形成することを特徴とする請求項1乃至請求項3のいずれかに記載の電極の製造方法。Producing a mixture of a proton conducting gel having a dispersed phase composed of a phosphate molecular chain containing at least one of Ca ions, Mg ions and Zn ions and a dispersion medium composed of water, and a conductor carrying a catalyst, The electrode manufacturing method according to claim 1, wherein the electrode is formed by heat-treating the mixture at a temperature of 130 to 400 ° C. after forming the mixture into a film.
JP2005511560A 2003-07-15 2004-07-12 ELECTRODE FOR FUEL CELL, FUEL CELL USING THE ELECTRODE, AND METHOD FOR PRODUCING THE ELECTRODE Pending JPWO2005006470A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003274516 2003-07-15
JP2003274516 2003-07-15
PCT/JP2004/009925 WO2005006470A1 (en) 2003-07-15 2004-07-12 Electrode for fuel cell, fuel cell including the electrode and process for producing the electrode

Publications (1)

Publication Number Publication Date
JPWO2005006470A1 true JPWO2005006470A1 (en) 2006-10-26

Family

ID=34056077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005511560A Pending JPWO2005006470A1 (en) 2003-07-15 2004-07-12 ELECTRODE FOR FUEL CELL, FUEL CELL USING THE ELECTRODE, AND METHOD FOR PRODUCING THE ELECTRODE

Country Status (2)

Country Link
JP (1) JPWO2005006470A1 (en)
WO (1) WO2005006470A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4764031B2 (en) * 2005-03-04 2011-08-31 東邦瓦斯株式会社 Fuel cell electrode and fuel cell using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002285933A (en) * 2001-03-27 2002-10-03 Denso Corp Fuel injection pump

Also Published As

Publication number Publication date
WO2005006470A1 (en) 2005-01-20

Similar Documents

Publication Publication Date Title
JP3706855B2 (en) FUEL CELL UNIT, ITS MANUFACTURING METHOD, AND FUEL CELL USING THE SAME
CN101557001B (en) Fuel cell film electrode and preparation method thereof
KR100708732B1 (en) Anode for fuel cell, manufacturing method thereof, and fuel cell employing the same
JPH0536418A (en) Solid polymer electrolytic fuel cell and manufacture of the same
KR20060117474A (en) Electrode substrate for fuel cell, method for preparating the same, and membrane-electrode assembly
JP2002289230A (en) Polymer electrolyte fuel cell
JP2016136526A (en) High temperature membrane electrode assembly with high power density and corresponding manufacturing method
JP2004172098A (en) Fuel cell
KR100548118B1 (en) Electrode for fuel cell and fuel cell
JPWO2006016536A1 (en) Fuel cell
CN107615545B (en) Polymer electrolyte membrane, membrane electrode assembly including the same, and fuel cell including the membrane electrode assembly
Yoshimi et al. Temperature and humidity dependence of the electrode polarization in intermediate-temperature fuel cells employing CsH2PO4/SiP2O7-based composite electrolytes
CN104332637A (en) Preparation method of catalyst of porous graphene loading precious metal nano particles
CN101978536B (en) Membrane electrode assembly and fuel cell
JP4429022B2 (en) Membrane electrode assembly and method for producing the same, fuel cell using the same, and method for producing the same
KR101101497B1 (en) Producing method for electrodes of fuel cell with high temperature type and membrane electrode assembly produced thereby
JP2003115299A (en) Solid polymer fuel cell
KR101117630B1 (en) Membrane-electrode assembly for fuel cell and method for preparating the same
JP4996823B2 (en) Fuel cell electrode and fuel cell using the same
JP7359077B2 (en) Laminate for fuel cells
EP1576683B1 (en) Fuel cell and membrane-electrode assembly thereof
JP2008123941A (en) Polyelectrolyte membrane, catalytic electrode, membrane electrode assembly, their manufacturing methods and binder
JP4658793B2 (en) Proton conductor, polymer electrolyte containing proton conductor, method for producing the same, and fuel cell using proton conductor
KR100459886B1 (en) Proton exchange membrane(PEM) fuel cell and method for producing the same
JPWO2005006470A1 (en) ELECTRODE FOR FUEL CELL, FUEL CELL USING THE ELECTRODE, AND METHOD FOR PRODUCING THE ELECTRODE