JPWO2004103946A1 - Carboxylic acid compound and pharmaceutical containing the same - Google Patents

Carboxylic acid compound and pharmaceutical containing the same Download PDF

Info

Publication number
JPWO2004103946A1
JPWO2004103946A1 JP2005506421A JP2005506421A JPWO2004103946A1 JP WO2004103946 A1 JPWO2004103946 A1 JP WO2004103946A1 JP 2005506421 A JP2005506421 A JP 2005506421A JP 2005506421 A JP2005506421 A JP 2005506421A JP WO2004103946 A1 JPWO2004103946 A1 JP WO2004103946A1
Authority
JP
Japan
Prior art keywords
compound
chlorophenyl
mmol
dichloro
stirred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005506421A
Other languages
Japanese (ja)
Inventor
敬介 井上
敬介 井上
勉 當間
勉 當間
崇博 北村
崇博 北村
行由 山嵜
行由 山嵜
石川 哲也
哲也 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kowa Co Ltd
Original Assignee
Kowa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kowa Co Ltd filed Critical Kowa Co Ltd
Priority claimed from PCT/JP2004/007316 external-priority patent/WO2004103946A1/en
Publication of JPWO2004103946A1 publication Critical patent/JPWO2004103946A1/en
Withdrawn legal-status Critical Current

Links

Abstract

血糖降下作用、血漿インスリン低下作用、及びトリグリセライド低下作用を有し、糖尿病、糖尿病合併症、又は高脂血などの予防及び/又は治療に有用である、次の一般式(1):[式中、mは0から4の整数を示し、nは5から9の整数を示し、Wは−CH(OR)−(Rは水素原子又は水酸基の保護基を示す)又は−C(=O)−を示す]で表される化合物、その塩、又はそのエステル。The following general formula (1), which has a hypoglycemic action, a plasma insulin lowering action, and a triglyceride lowering action, is useful for the prevention and / or treatment of diabetes, diabetic complications, hyperlipidemia and the like: , M represents an integer of 0 to 4, n represents an integer of 5 to 9, and W represents —CH (OR) — (R represents a hydrogen atom or a protecting group for a hydroxyl group) or —C (═O) —. Or a salt thereof, or an ester thereof.

Description

本発明は、強力な血糖降下作用、血漿インスリン低下作用およびトリグリセライド低下作用を示し、体重増加や肥満を伴わずに、糖尿病、糖尿病合併症、高脂血症、動脈硬化症等の疾患の予防及び/又は治療を可能にするカルボン酸化合物、及びこれを含有する医薬に関する。  The present invention exhibits a powerful hypoglycemic action, plasma insulin lowering action and triglyceride lowering action, and prevention of diseases such as diabetes, diabetic complications, hyperlipidemia, arteriosclerosis and the like without accompanying weight gain and obesity. The present invention relates to a carboxylic acid compound capable of treatment and a medicine containing the same.

糖尿病は、複数の原因により生じる代謝性疾患であり、インスリン分泌不全による1型あるいは末梢組織におけるインスリン感受性低下に伴う2型に大別される。2型糖尿病は肥満や過食などの環境因子を背景として近年急増しており、世界の糖尿病有病率は5%とされる。
糖尿病の薬物治療にはインスリンやスルホニルウレア剤が多用されるが、副作用として低血糖や、スルホニルウレア剤では膵臓の疲弊による二次無効を引き起こす。ビグアナイド剤はインスリン感受性を改善し高血糖をわずかに是正するが、乳酸アシドーシスを誘発する場合がある。近年開発されたチアゾリジンジオン系糖尿病治療薬は末梢でのインスリン抵抗性改善効果を有し(Expert Opinion on Investigational Drugs,9,pp1347−1361,2000)、低血糖を起こさずに良好な血糖コントロールが可能とされるが、副作用として重篤な肝臓障害等が報告されている。このため、非チアゾリジンジオン系のインスリン抵抗性改善薬が望まれる。
一方、非チアゾリジンジオン系の化合物としては、2,2−ジクロロアルカンカルボン酸化合物が、糖尿病モデル動物において血糖値を降下させ、同時に血漿インスリン低下作用および血漿トリグリセライド低下作用を示すことが知られている(European Journal of Medicinal Chemistry,33,pp775−787,1998)。高インスリン血症はインスリン抵抗性を示唆するものであり、また高脂血症は糖尿病に併発する脂質代謝異常として動脈硬化のリスクファクターとされる。したがって、これらを是正することは糖尿病および糖尿病合併症の予防および/または治療に重要である。
例えば、下記の化合物Aは各種動物モデルにおいて抗糖尿病作用を示し(Eur.J.Med.Chem.,33,pp.775−787,1998に記載の化合物3e;Metabolism,48,pp34−40,1999)、その効力はチアゾリジンジオン系化合物を上回るとされる。また、チアゾリジンジオン系化合物の作用機序であるPPARγ活性化作用を示さないことから(Archives of Toxicology,73,pp440−450,1999)、明らかにチアゾリジンジオン系化合物と異なる作用を示し、副作用の軽減につながるものと期待されている。

Figure 2004103946
Diabetes is a metabolic disease caused by a plurality of causes, and is roughly classified into type 1 due to insulin secretion deficiency and type 2 associated with decreased insulin sensitivity in peripheral tissues. Type 2 diabetes has increased rapidly in recent years against the background of environmental factors such as obesity and overeating, and the worldwide prevalence of diabetes is 5%.
Insulin and sulfonylurea are frequently used for drug treatment of diabetes, but as side effects, hypoglycemia and sulfonylurea cause secondary ineffectiveness due to pancreatic exhaustion. Biguanides improve insulin sensitivity and slightly correct hyperglycemia, but may induce lactic acidosis. A recently developed thiazolidinedione diabetes therapeutic agent has an effect of improving insulin resistance in the periphery (Expert Opinion on Investigative Drugs, 9, pp 1347-1361, 2000), and enables good blood glucose control without causing hypoglycemia However, serious liver damage has been reported as a side effect. For this reason, non-thiazolidinedione insulin resistance improvers are desired.
On the other hand, as non-thiazolidinedione compounds, 2,2-dichloroalkanecarboxylic acid compounds are known to lower blood glucose levels in diabetes model animals and simultaneously exhibit plasma insulin lowering action and plasma triglyceride lowering action. (European Journal of Medicinal Chemistry, 33, pp 775-787, 1998). Hyperinsulinemia suggests insulin resistance, and hyperlipidemia is considered to be a risk factor for arteriosclerosis as an abnormal lipid metabolism associated with diabetes. Therefore, correcting them is important for the prevention and / or treatment of diabetes and diabetic complications.
For example, the following compound A exhibits antidiabetic activity in various animal models (compound 3e described in Eur. J. Med. Chem., 33, pp. 775-787, 1998; Metabolism, 48, pp 34-40, 1999). ), Its efficacy exceeds that of thiazolidinedione compounds. In addition, since it does not show PPARγ activation which is the mechanism of action of thiazolidinedione compounds (Archives of Toxicology, 73, pp440-450, 1999), it clearly shows an action different from thiazolidinedione compounds and reduces side effects. It is expected to lead to
Figure 2004103946

糖尿病および糖尿病合併症の有効な治療のためには、副作用の軽減・回避等の目的のほか、血糖値を容易にコントロールし、他剤との併用における薬物相互作用を避けるための目的で、さらに高活性な化合物あるいは低用量で同等以上の活性を持つ化合物が望まれている。
この観点から、化合物Aよりもさらに高活性な化合物あるいは化合物Aよりも低用量で同等以上の活性を持つ化合物は、糖尿病および糖尿病合併症、さらには高脂血症や動脈硬化症の予防および/または治療に有用であることが期待される。
そこで、本発明者はさらに高活性化合物を見出すべく検討した結果、後記一般式(1)で表わされるカルボン酸化合物が、強力な血糖降下作用を有しており、体重増加や肥満を伴わずに糖尿病、糖尿病合併症、高脂血症、動脈硬化症等を予防及び/又は治療するための医薬として有用であることを見出した。本発明は上記の知見を基にして完成された。
すなわち、本発明は、次の一般式(1):

Figure 2004103946
[式中、mは0から4の整数を示し、nは5から9の整数を示し、Wは−CH(OR)−(Rは水素原子又は水酸基の保護基を示す)又は−C(=O)−を示す]で表される化合物、その塩、又はそのエステルを提供するものである。
また、本発明は、上記一般式(1)[式中、mは0から4の整数を示し、nは5から9の整数を示し、Wは−CH(OR)−(Rは水素原子又は水酸基の保護基を示す)又は−C(=O)−を示す]で表わされる化合物、生理学的に許容されるその塩、及び生理学的に許容されるそのエステルからなる群から選ばれる物質を有効成分として含む医薬を提供するものである。
上記の医薬は、高脂血症、動脈硬化症、糖尿病、糖尿病合併症、炎症、及び心疾患からなる群から選ばれる疾患の予防及び/又は治療のための医薬として用いることができる。この医薬は、好ましくは、有効成分である上記の物質と薬学的に許容される担体とを含有する医薬組成物として提供される。
別の観点からは、上記の医薬の製造のための上記一般式(1)[式中、mは0から4の整数を示し、nは5から9の整数を示し、Wは−CH(OR)−(Rは水素原子又は水酸基の保護基を示す)又は−C(=O)−を示す]で表わされる化合物、生理学的に許容されるその塩、及び生理学的に許容されるそのエステルからなる群から選ばれる物質の使用、並びに高脂血症、動脈硬化症、糖尿病、糖尿病合併症、炎症、及び心疾患からなる群から選ばれる疾患の予防及び/又は治療方法であって、上記一般式(1)[式中、mは0から4の整数を示し、nは5から9の整数を示し、Wは−CH(OR)−(Rは水素原子又は水酸基の保護基を示す)又は−C(=O)−を示す]で表わされる化合物、生理学的に許容されるその塩、及び生理学的に許容されるそのエステルからなる群から選ばれる物質の予防及び/又は治療有効量をヒトを含む哺乳類動物に投与する工程を含む方法が本発明により提供される。For the effective treatment of diabetes and diabetic complications, in addition to the purpose of reducing and avoiding side effects, in addition to the purpose of easily controlling blood glucose levels and avoiding drug interactions in combination with other drugs, A highly active compound or a compound having equivalent or higher activity at a low dose is desired.
From this point of view, compounds that are more active than compound A or compounds that have equivalent or higher activity at lower doses than compound A are useful for the prevention and / or prevention of diabetes and diabetic complications, as well as hyperlipidemia and arteriosclerosis. Or it is expected to be useful for treatment.
Therefore, the present inventor has further studied to find a highly active compound, and as a result, the carboxylic acid compound represented by the following general formula (1) has a strong hypoglycemic action, and does not involve weight gain or obesity. It was found useful as a medicament for preventing and / or treating diabetes, diabetic complications, hyperlipidemia, arteriosclerosis and the like. The present invention has been completed based on the above findings.
That is, the present invention provides the following general formula (1):
Figure 2004103946
[Wherein, m represents an integer of 0 to 4, n represents an integer of 5 to 9, W represents —CH (OR) — (R represents a hydrogen atom or a hydroxyl-protecting group) or —C (= O)-]], a salt thereof, or an ester thereof.
In the general formula (1), m represents an integer of 0 to 4, n represents an integer of 5 to 9, and W represents —CH (OR) — (R represents a hydrogen atom or A compound selected from the group consisting of a compound represented by the following: a hydroxyl protecting group) or -C (= O)-], a physiologically acceptable salt thereof, and a physiologically acceptable ester thereof. The present invention provides a medicine containing as an ingredient.
The above medicament can be used as a medicament for preventing and / or treating a disease selected from the group consisting of hyperlipidemia, arteriosclerosis, diabetes, diabetic complications, inflammation, and heart disease. This medicament is preferably provided as a pharmaceutical composition containing the above-mentioned substance as an active ingredient and a pharmaceutically acceptable carrier.
From another point of view, the above general formula (1) for the manufacture of the above-mentioned pharmaceutical, wherein m represents an integer of 0 to 4, n represents an integer of 5 to 9, and W represents —CH (OR )-(R represents a hydrogen atom or hydroxyl protecting group) or -C (= O)-], a physiologically acceptable salt thereof, and a physiologically acceptable ester thereof And a method for the prevention and / or treatment of a disease selected from the group consisting of hyperlipidemia, arteriosclerosis, diabetes, diabetic complications, inflammation, and heart disease Formula (1) [wherein m represents an integer of 0 to 4, n represents an integer of 5 to 9, W represents —CH (OR) — (R represents a hydrogen atom or a hydroxyl-protecting group) or -C (= O)-], physiologically acceptable salts thereof, and physiology Acceptable method of prevention and / or treatment effective amount of a substance selected from the group consisting of an ester comprising the step of administering to a mammal including human is provided by the present invention.

一般式(1)で表わされる化合物の塩としては、ナトリウム塩、カリウム塩等のアルカリ金属塩;カルシウム塩、マグネシウム塩等のアルカリ土類金属塩;アンモニウム塩、トリアルキルアミン塩等の有機塩基塩;塩酸塩、硫酸塩等の鉱酸塩;酢酸塩等の有機酸塩等が挙げられる。これらのうち、生理学的に許容される塩が好ましい。
一般式(1)で表される化合物の生理学的に許容されるエステルは一般式(1)で表される化合物のカルボキシル基により形成されるエステルであり、経口投与における腸管からの吸収率を高め、かつ生体内に吸収された後に容易に加水分解されるエステルが好ましい。例えば、アルキルエステル(該アルキル基は直鎖状、分枝鎖状、環状、又はそれらの組み合わせのいずれであってもよく、例えば炭素数1〜20個程度であり、アルキル鎖中には酸素原子又は窒素原子などのヘテロ原子及び/又は不飽和結合を1個以上含んでいてもよく、該鎖上には1又は2個以上の任意の置換基を有していてもよい)やアリールエステルなどを挙げることができる。より具体的には、エチルエステル、フェニルエステル、カルボキシメチルエステル、ジメチルアミノメチルエステル、ピバロイルオキシメチルエステル、エトキシカルボニルオキシエチルエステル、フタリジルエステル、(5−メチル−2−オキソ−1,3−ジオキソレン−4−イル)メチルエステル、シクロヘキシルオキシカルボニルエチルエステル等が挙げられるが、これらに限定されることはない。また、一般式(1)で表される化合物の生理学的に許容されるアミドを用いることもでき、例えばメチルアミドを挙げることができる。
一般式(1)において、Wは−CH(OR)−(Rは水素原子又は水酸基の保護基を示す)又は−C(=O)−を示す。Rが示す水酸基の保護基としては、合成的に有用な保護基のほか(このような保護基は、例えば、プロテクティブ・グループス・イン・オーガニック・シンセシス、P.G.M.ブッツ、T.グリーン編、第3版、1999年、ジョン ウィリー アンド サンズ刊などを参照することができる)、保護された化合物の腸管からの吸収率を高め、かつ生体内で容易に脱保護されてRが水素原子の化合物を与える保護基を用いることができる。後者の保護基を有する化合物は、種々の目的に応じてプロドラッグとして利用する場合に有用である。例えば、保護基としてアセチル基、パルミトイル基、プロパノイル基、ピバロイル基、サクシニル基、フマリル基、アラニル基、又はジメチルアミノメチルカルボニル基などを挙げることができるが、これらに限定されることはない。
一般式(1)において、mは0から4の整数を示し、nは5から9の整数を示すが、m+nが8〜10の範囲の整数であることが好ましく、9であることが特に好ましい。mは1から3の整数であることが好ましく、特に好ましくは1又は2である。nは6から9の整数であることが好ましく、特に好ましくは7又は8である。
一般式(1)で表される化合物、その塩、又はそのエステルは、水和物に代表される溶媒和物として存在する場合もあるが、任意の溶媒和物も本発明の範囲に包含される。また、一般式(1)で表される化合物はRが水素原子の場合に不斉炭素を1個有しており、Rの種類により、あるいはエステルの種類により、本発明の化合物(以下、「本発明の化合物」と呼ぶ場合には一般式(1)で表される化合物及びそのエステルを包含する)はさらに1個以上の不斉炭素を有する場合がある。1個以上の不斉炭素に基づく純粋な形態の光学異性体又はジアステレオ異性体などの立体異性体、あるいはラセミ体などの立体異性体の任意の混合物も本発明の範囲に包含される。
本発明の化合物のうち、好ましい化合物としては、2,2−ジクロロ−12−(4−クロロフェニル)−10−ヒドロキシドデカン酸及び2,2−ジクロロ−12−(4−クロロフェニル)−11−ヒドロキシドデカン酸、並びに生理学的に許容されるこれらの塩及び生理学的に許容されるこれらのエステルを挙げることができる。
本発明の化合物は、例えば以下の合成ルート1又は合成ルート4に記載の方法により製造することができる。また、本発明の化合物においてmが0の化合物については、合成ルート2に記載の方法によっても製造することができる。さらに、本発明の化合物においてmが1の化合物については、合成ルート3に記載の方法によっても製造することができる。
(以下のスキーム中、m及びnは前記と同義であり、Rは水酸基の保護基を示し、Rはアルキル基、アリール基、又はアリル基を示し、X及びYはハロゲン原子を示す。)
<合成ルート1>

Figure 2004103946
第一工程:
アルデヒド体(II)をテトラヒドロフラン(THF)、ジオキサン、エーテル、又はジメトキシエタン等の不活性溶媒に溶解後、不活性ガスの雰囲気下に対応するハライドより調製したグリニャール試薬(I)の不活性溶媒溶液を添加し、冷却下ないし室温にて30分ないし数時間攪拌することで化合物(III)を製造することができる。
第二工程:
化合物(III)の水酸基をアセチル基、メトキシメチル基等の適当な保護基で保護する工程である。保護基の種類及び導入条件は、例えば、プロテクティブ・グループス・イン・オーガニック・シンセシス、P.G.M.ブッツ、T.グリーン編、第3版、1999年、ジョン ウィリー アンド サンズ刊などを参照することができる。
第三工程:
本工程は、化合物(IV)とジクロロ酢酸のエステルとをTHF、ジオキサン、1,2−ジメトキシエタン、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)等の溶媒に溶かし、不活性ガスの雰囲気下にアルコキシナトリウム、水素化ナトリウム、リチウムジイソプロピルアミド(LDA)等の塩基を加え、室温ないし加熱下に1時間ないし24時間攪拌することで達成できる。
第四工程:
化合物(V)の保護された水酸基を脱保護する工程である。水酸基の脱保護の条件は、例えば、プロテクティブ・グループス・イン・オーガニック・シンセシス、P.G.M.ブッツ、T.グリーン編、第3版、1999年、ジョン ウィリー アンド サンズ刊などを参照することができる。なお、次の第五工程で脱保護を同時に行うことができる場合があり、そのような場合にはこの第四工程を省略可能である。
第五工程:
化合物(VI)をメタノール、エタノール、THF、ジオキサン、1,2−ジメトキシエタン等の溶媒に溶解し、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等の塩基を添加して、冷却下ないし加熱下に1時間ないし24時間攪拌し、塩酸等の酸を加えて酸性にすることで目的物を製造することができる。
<合成ルート2>
Figure 2004103946
第一工程:
化合物(VIII)を常法に従ってエステル化して化合物(IX)を製造することができる。エステル化法は特に限定されないが、一般的に用いられる活性エステル化法、混合酸無水物法、又は縮合法など適宜の方法により行うことができる。
第二工程:
化合物(IX)を四塩化炭素、シクロヘキサン、ベンゼン等の溶媒に溶解し、N−ブロモこはく酸イミド等のハロゲン化剤を添加し、室温ないし加熱下に1時間ないし24時間攪拌することで化合物(X)を得ることができる。反応を促進するために、過酸化ジベンゾイルやアゾビスイソブチロニトリル等のラジカル開始剤を添加してもよい。
第三工程:
化合物(X)を水、またはアセトン、THF、DMF等の有機溶媒と水との混合溶媒に溶解し、硝酸銀、過塩素酸銀等の銀塩、あるいは炭酸水素ナトリウムなどの塩基を添加し、冷却下ないし加熱下に1時間ないし24時間攪拌することで化合物(XI)を得ることができる。
第四工程:
本工程は、合成ルート1の第五工程と同様の方法で達成できる。
<合成ルート3>
Figure 2004103946
第一工程:
化合物(XIII)を無溶媒で、またはトルエン、アセトン、又はDMSOなどの溶媒に溶解し、硫酸、リン酸、シュウ酸、p−トルエンスルホン酸等の酸を添加し、室温ないし加熱下に1時間ないし24時間攪拌することにより化合物(XIV)を得ることができる。
第二工程:
化合物(XIV)をクロロホルム、塩化メチレン、ジエチルエーテル等の溶媒に溶解し、この溶液あるいは上記の溶液と炭酸水素ナトリウム水溶液等との混合溶液中に過安息香酸、3−クロロ過安息香酸、トリフルオロ過酢酸等の過酸を添加し、冷却下ないし加熱下に1時間ないし24時間攪拌することにより化合物(XV)を得ることができる。
第三工程:
化合物(XV)をTHF、酢酸エチル、アルコール類、酢酸等の溶媒に溶解し、パラジウム炭素、ラネーニッケル等の触媒を添加し、常圧又は加圧水素雰囲気下、冷却下ないし加熱下に1時間ないし24時間攪拌することにより化合物(XVI)を得ることができる。
第四工程:
本工程は、合成ルート1の第五工程と同様の方法で達成できる。
<合成ルート4>
Figure 2004103946
第一工程:
本工程は、化合物(VI)をジクロロメタン、アセトン、ジエチルエーテル等の溶媒に溶解し、クロロクロム酸ピリジニウム(PCC)、2クロム酸ピリジニウム(PDC)等を加え冷却下乃至加熱下に1時間乃至24時間攪拌することで達成できる。
第二工程:
本工程は、合成ルート1の第五工程と同様の方法で達成できる。
上記の合成ルート1ないし4の各工程の反応後には、常法に従って後処理を行うことができ、目的物を必要に応じて常法により精製した後に次工程の原料として用いることができる。
本発明の化合物のうち光学異性体は、例えばラセミ体の本発明の化合物あるいはその中間体を光学分割する方法により、または本発明の化合物あるいはその中間体の不斉合成などにより得る事ができる。光学分割の方法としては、例えば光学活性な充填剤を用いたクロマトグラフィーによる分割、ジアステレオマー化合物に誘導した後のクロマトグラフィーによる分割、ジアステレオマー塩に誘導した後での再結晶による分割などが挙げられる。不斉合成の方法としては、例えば光学活性な試薬や触媒を用いた不斉酸化反応、不斉還元反応、不斉炭素結合反応、酵素や酵母などの生体触媒を用いた還元、加水分解、エステル化などが挙げられる。
上記の合成ルートにより得られた本発明の化合物は、必要に応じて再結晶法、カラムクロマトグラフィーなどの通常の精製手段を用いて精製することができる。また必要に応じて、常法によって前記した所望の塩又は溶媒和物にすることもできる。なお、本明細書の実施例には、本発明の化合物の製造方法がさらに具体的かつ詳細に記載されているので、当業者は、上記の一般的な製造方法の説明及び実施例の具体的な説明を参照することにより、適宜の反応試薬、出発原料、及び反応条件を適宜選択し、必要に応じてこれらの方法に適宜の改変ないし修飾を加えることによって、本発明の化合物を容易に製造することができる。
本発明の化合物又はその塩は、後記試験例に示すように、in vivo評価系において強力な血漿グルコース降下作用を示すことから、糖尿病、糖尿病合併症、高脂血症、動脈硬化症等の予防及び/又は治療のための医薬の有効成分として有用である。この医薬はヒトを含む哺乳類動物に投与可能であり、体重増加や肥満を伴わないという極めて優れた特徴を有している。
本発明の医薬は、上記一般式(1)[式中、mは0から4の整数を示し、nは5から9の整数を示し、Wは−CH(OR)−(Rは水素原子又は水酸基の保護基を示す)又は−C(=O)−を示す]で表わされる化合物、生理学的に許容されるその塩、及び生理学的に許容されるそのエステルからなる群から選ばれる物質を有効成分として含む。本発明の医薬としては、上記の物質をそのまま用いてもよいが、一般的には、上記の物質と1又は2以上の製剤用添加物とを含む医薬組成物を調製して投与することが好ましい。本発明の医薬としては、上記の物質を2種以上組み合わせて用いることもできる。
本発明の医薬の投与経路は特に限定されず、経口投与又は非経口投与のいずれの投与経路により投与してもよい。経口投与に適する医薬組成物としては、固形又は液体の医薬組成物のいずれであってもよく、非経口投与に適する医薬組成物としては、例えば、注射剤、点滴剤、坐剤、外用剤、点眼剤、点鼻剤、点耳剤、貼付剤などの製剤形態を例示することができる。
経口用の固形医薬組成物は、例えば、有効成分である上記の物質に賦形剤を加え、さらに必要に応じて結合剤、崩壊剤、滑沢剤、着色剤、又は矯味剤などの製剤用添加物を加えた後、常法により錠剤、顆粒剤、散剤、カプセル剤として調製することができる。製剤用添加物としては、当該分野で一般的に使用されているものを用いることができる。例えば、乳糖、塩化ナトリウム、ブドウ糖、デンプン、微結晶セルロース、珪酸等の賦形剤;水、エタノール、プロパノール、単シロップ、ゼラチン、ヒドロキシプロピルセルロース、メチルセルロース、エチルセルロース、シェラック、ポリビニルピロリドン等の結合剤;カンテン末、ラウリル硫酸ナトリウム、ステアリン酸モノグリセリド等の崩壊剤;精製タルク、ステアリン酸塩、ホウ砂、ポリエチレングリコール等の滑沢剤;β−カロチン、黄色三二酸化鉄、カラメル等の着色剤;及び白糖、橙皮等の矯味剤を例示できる。
経口用の液体医薬組成物は、有効成分である上記の物質に矯味剤、安定化剤、又は保存剤など製剤用添加物の1種又は2種以上を加え、常法により内服液剤、シロップ剤、エリキシル剤等として調製することができる。製剤用添加物としては、当該分野で一般的に使用されているものを用いることができる。例えば白糖等の矯味剤;トラガント等の安定化剤;パラオキシ安息香酸エステル等の保存剤が挙げられる。
注射剤は、有効成分である上記の物質に安定化剤又は等張化剤等などの製剤用添加物の1種又は2種以上を添加し、常法により皮下、筋肉、又は静脈内投与用の注射剤として製造することができる。製剤用添加物としては、当該分野で一般的に使用されているものを用いることができる。例えば、ピロ亜硫酸ナトリウム等の安定化剤;塩化ナトリウム等の等張化剤を例示できる。
坐薬は、有効成分である上記の物質に担体及び界面活性剤などの製剤用添加物を加えて常法により製造することができる。製剤用添加物としては、当該分野で一般的に使用されているものを用いることができる。例えば、ポリエチレングリコール、ハードファット等の担体;ポリソルベート80等の界面活性剤を例示できる。
外用剤は、有効成分である上記の物質に基剤、水溶性高分子、溶媒、界面活性剤、又は保存剤等などの製剤用添加物の1種又は2種以上を加えて、常法により液剤、クリーム剤、ゲル剤、軟膏剤等として製造することができる。製剤用添加物としては、当該分野で一般的に使用されているものを用いることができる。例えば、流動パラフィン、白色ワセリン、精製ラノリン等の基剤;カルボキシビニルポリマー等の水溶性高分子;グリセリン、水等の溶媒;ポリオキシエチレン脂肪酸エステル等の界面活性剤;パラオキシ安息香酸エステル等の保存剤が挙げられる。
点眼剤は、有効成分である上記の物質に安定化剤、等張化剤、又は保存剤等の製剤用添加物の1種又は2種以上を加えて常法により製造することができる。製剤用添加物としては、当該分野で一般的に使用されているものを用いることができる。例えば、ピロ亜硫酸ナトリウム、EDTA等の安定化剤;塩化ナトリウム等の等張化剤;クロロブタノール等の保存剤を例示できる。
点鼻剤は、有効成分である上記の物質に安定化剤、等張化剤、又は保存剤等の製剤用添加物の1種又は2種以上を加えて常法により製造することができる。製剤用添加物としては、当該分野で一般的に使用されているものを用いることができる。例えば、ピロ亜硫酸ナトリウム、EDTA等の安定化剤;塩化ナトリウム等の等張化剤;塩化ベンザルコニウム等の保存剤を例示できる。
点耳剤は、有効成分である上記の物質に安定化剤、等張化剤、又は保存剤等の製剤用添加物の1種又は2種以上を加えて常法により製造することができる。製剤用添加物としては、当該分野で一般的に使用されているものを用いることができる。例えば、ピロ亜硫酸ナトリウム、EDTA等の安定化剤;塩化ナトリウム等の等張化剤;塩化ベンザルコニウム等の保存剤を例示できる。
貼付剤は、有効成分である上記の物質に粘着剤、溶媒、架橋剤、又は界面活性剤等の製剤用添加物の1種又は2種以上を加えて常法により含水型貼付剤、プラスター貼付剤等として製造することができる。製剤用添加物としては、当該分野で一般的に使用されているものを用いることができる。例えば、ポリアクリル酸部分中和物、ポリアクリル酸ナトリウム、ポリアクリル酸2−エチルヘキシル、スチレン−イソプレン−スチレンブロック共重合体等の粘着剤;グリセリン、水等の溶媒;ジヒドロキシアルミニウムアミノアセテート、乾燥水酸化アルミニウムゲル等の架橋剤;ポリオキシエチレン脂肪酸エステル等の界面活性剤を例示できる。
本発明の医薬の投与量は特に限定されず、患者の年齢、体重、及び症状、投与形態、投与経路、及び投与回数などによって適宜選択可能である。通常は、有効成分である上記の物質の質量として成人1日あたり0.1〜100mgを投与することができる。本発明の医薬は1日1回又は数回に分けて経口投与又は非経口投与することができる。Examples of the salt of the compound represented by the general formula (1) include alkali metal salts such as sodium salts and potassium salts; alkaline earth metal salts such as calcium salts and magnesium salts; organic base salts such as ammonium salts and trialkylamine salts. Mineral salts such as hydrochloride and sulfate; organic acid salts such as acetate and the like. Of these, physiologically acceptable salts are preferred.
The physiologically acceptable ester of the compound represented by the general formula (1) is an ester formed by the carboxyl group of the compound represented by the general formula (1), and increases the absorption rate from the intestinal tract in oral administration. An ester that is easily hydrolyzed after being absorbed in vivo is preferred. For example, an alkyl ester (the alkyl group may be linear, branched, cyclic, or a combination thereof, for example, having about 1 to 20 carbon atoms, and an oxygen atom in the alkyl chain. Or may contain one or more heteroatoms such as nitrogen atoms and / or unsaturated bonds, and may have one or more arbitrary substituents on the chain), aryl esters, etc. Can be mentioned. More specifically, ethyl ester, phenyl ester, carboxymethyl ester, dimethylaminomethyl ester, pivaloyloxymethyl ester, ethoxycarbonyloxyethyl ester, phthalidyl ester, (5-methyl-2-oxo-1,3 -Dioxolen-4-yl) methyl ester, cyclohexyloxycarbonylethyl ester, and the like, but are not limited thereto. Further, a physiologically acceptable amide of the compound represented by the general formula (1) can also be used, and examples thereof include methylamide.
In the general formula (1), W represents —CH (OR) — (R represents a hydrogen atom or a hydroxyl-protecting group) or —C (═O) —. Examples of the protecting group for the hydroxyl group represented by R include synthetically useful protecting groups (such protecting groups include, for example, Protective Groups in Organic Synthesis, PGM Boots, T.M. Green Edition, 3rd edition, 1999, published by John Willie and Sons, etc.), increases the absorption rate of protected compounds from the intestinal tract and is easily deprotected in vivo, so that R is hydrogen Protecting groups that provide atomic compounds can be used. The latter compound having a protecting group is useful when used as a prodrug according to various purposes. Examples of the protecting group include, but are not limited to, an acetyl group, a palmitoyl group, a propanoyl group, a pivaloyl group, a succinyl group, a fumaryl group, an alanyl group, and a dimethylaminomethylcarbonyl group.
In the general formula (1), m represents an integer of 0 to 4, and n represents an integer of 5 to 9, but m + n is preferably an integer in the range of 8 to 10, and 9 is particularly preferable. . m is preferably an integer of 1 to 3, particularly preferably 1 or 2. n is preferably an integer of 6 to 9, particularly preferably 7 or 8.
The compound represented by the general formula (1), a salt thereof, or an ester thereof may exist as a solvate represented by a hydrate, but any solvate is also encompassed in the scope of the present invention. The The compound represented by the general formula (1) has one asymmetric carbon when R is a hydrogen atom, and the compound of the present invention (hereinafter referred to as “ When referred to as “the compound of the present invention”, the compound represented by the general formula (1) and its ester) may further have one or more asymmetric carbons. Also included within the scope of the invention are stereoisomers such as pure forms of optical isomers or diastereoisomers based on one or more asymmetric carbons, or any mixture of stereoisomers such as racemates.
Among the compounds of the present invention, preferred compounds include 2,2-dichloro-12- (4-chlorophenyl) -10-hydroxydodecanoic acid and 2,2-dichloro-12- (4-chlorophenyl) -11-hydroxydodecane. Mention may be made of the acids, and physiologically acceptable salts and physiologically acceptable esters thereof.
The compound of the present invention can be produced, for example, by the method described in the following synthetic route 1 or synthetic route 4. Further, in the compounds of the present invention, a compound in which m is 0 can also be produced by the method described in Synthesis Route 2. Furthermore, in the compound of the present invention, a compound in which m is 1 can also be produced by the method described in Synthesis Route 3.
(In the following scheme, m and n are as defined above, R 1 represents a hydroxyl-protecting group, R 2 represents an alkyl group, an aryl group, or an allyl group, and X and Y represent a halogen atom. )
<Synthesis route 1>
Figure 2004103946
First step:
An inert solvent solution of Grignard reagent (I) prepared from the corresponding halide in an inert gas atmosphere after the aldehyde (II) is dissolved in an inert solvent such as tetrahydrofuran (THF), dioxane, ether, or dimethoxyethane Is added, and the mixture is stirred for 30 minutes to several hours under cooling to room temperature to produce compound (III).
Second step:
In this step, the hydroxyl group of compound (III) is protected with an appropriate protecting group such as an acetyl group or a methoxymethyl group. Types of protecting groups and introduction conditions are described in, for example, Protective Groups in Organic Synthesis, P.I. G. M.M. Butz, T. You can refer to Green Edition, 3rd edition, 1999, published by John Willie and Sons.
Third step:
In this step, compound (IV) and an ester of dichloroacetic acid are dissolved in a solvent such as THF, dioxane, 1,2-dimethoxyethane, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and the mixture is placed in an inert gas atmosphere. This can be achieved by adding a base such as sodium alkoxy, sodium hydride, lithium diisopropylamide (LDA), and stirring for 1 to 24 hours at room temperature or under heating.
Fourth step:
In this step, the protected hydroxyl group of compound (V) is deprotected. The conditions for the deprotection of the hydroxyl group are, for example, Protective Groups in Organic Synthesis, P.I. G. M.M. Butz, T. You can refer to Green Edition, 3rd edition, 1999, published by John Willie and Sons. In some cases, deprotection can be performed simultaneously in the next fifth step, and in such a case, this fourth step can be omitted.
Fifth process:
Compound (VI) is dissolved in a solvent such as methanol, ethanol, THF, dioxane, 1,2-dimethoxyethane, and a base such as lithium hydroxide, sodium hydroxide, potassium hydroxide is added, and the mixture is cooled or heated. The mixture is stirred for 1 to 24 hours and acidified by adding an acid such as hydrochloric acid to produce the desired product.
<Synthetic route 2>
Figure 2004103946
First step:
Compound (IX) can be produced by esterifying compound (VIII) according to a conventional method. The esterification method is not particularly limited, but can be performed by an appropriate method such as an active esterification method, a mixed acid anhydride method, or a condensation method that are generally used.
Second step:
Compound (IX) is dissolved in a solvent such as carbon tetrachloride, cyclohexane or benzene, a halogenating agent such as N-bromosuccinimide is added, and the mixture is stirred for 1 to 24 hours at room temperature or under heating. X) can be obtained. In order to accelerate the reaction, a radical initiator such as dibenzoyl peroxide or azobisisobutyronitrile may be added.
Third step:
Compound (X) is dissolved in water or a mixed solvent of water and an organic solvent such as acetone, THF, DMF, etc., and a silver salt such as silver nitrate or silver perchlorate, or a base such as sodium hydrogen carbonate is added and cooled. Compound (XI) can be obtained by stirring for 1 to 24 hours under or under heating.
Fourth step:
This step can be achieved by the same method as the fifth step of the synthesis route 1.
<Synthetic route 3>
Figure 2004103946
First step:
Compound (XIII) is dissolved without solvent or in a solvent such as toluene, acetone, or DMSO, and an acid such as sulfuric acid, phosphoric acid, oxalic acid, or p-toluenesulfonic acid is added, and it is room temperature to 1 hour under heating. The compound (XIV) can be obtained by stirring for 24 hours.
Second step:
Compound (XIV) is dissolved in a solvent such as chloroform, methylene chloride or diethyl ether, and perbenzoic acid, 3-chloroperbenzoic acid, trifluoro or the like in this solution or a mixed solution of the above solution and an aqueous sodium hydrogen carbonate solution. Compound (XV) can be obtained by adding a peracid such as peracetic acid and stirring for 1 to 24 hours under cooling or heating.
Third step:
Compound (XV) is dissolved in a solvent such as THF, ethyl acetate, alcohols, acetic acid, a catalyst such as palladium carbon, Raney nickel is added, and the mixture is cooled or heated under normal pressure or pressurized hydrogen atmosphere for 1 hour to 24 hours. Compound (XVI) can be obtained by stirring for a period of time.
Fourth step:
This step can be achieved by the same method as the fifth step of the synthesis route 1.
<Synthesis route 4>
Figure 2004103946
First step:
In this step, compound (VI) is dissolved in a solvent such as dichloromethane, acetone, diethyl ether, etc., pyridinium chlorochromate (PCC), pyridinium chromate (PDC), etc. are added, and the mixture is cooled or heated for 1 hour to 24 hours. This can be achieved by stirring for a period of time.
Second step:
This step can be achieved by the same method as the fifth step of the synthesis route 1.
After the reaction in each step of the above synthesis routes 1 to 4, post-treatment can be performed according to a conventional method, and the target product can be used as a raw material for the next step after being purified by a conventional method as necessary.
Among the compounds of the present invention, optical isomers can be obtained, for example, by a method of optical resolution of a racemic compound of the present invention or an intermediate thereof, or by asymmetric synthesis of the compound of the present invention or an intermediate thereof. Examples of the optical resolution include resolution by chromatography using an optically active filler, resolution by chromatography after derivatization to a diastereomeric compound, resolution by recrystallization after derivatization to a diastereomeric salt, etc. Is mentioned. Asymmetric synthesis methods include, for example, an asymmetric oxidation reaction using an optically active reagent or catalyst, an asymmetric reduction reaction, an asymmetric carbon bond reaction, a reduction using a biocatalyst such as an enzyme or yeast, hydrolysis, ester For example.
The compound of the present invention obtained by the above synthesis route can be purified using a conventional purification means such as a recrystallization method or column chromatography, if necessary. If necessary, the desired salt or solvate can be obtained by a conventional method. In addition, since the production method of the compound of the present invention is described more specifically and in detail in the examples of the present specification, those skilled in the art will be able to explain the above general production methods and the specific examples of the examples. The compound of the present invention can be easily produced by appropriately selecting appropriate reaction reagents, starting materials, and reaction conditions by referring to the explanation, and adding appropriate modifications or modifications to these methods as necessary. can do.
Since the compound of the present invention or a salt thereof exhibits a strong plasma glucose lowering action in an in vivo evaluation system as shown in the following test examples, it can prevent diabetes, diabetic complications, hyperlipidemia, arteriosclerosis and the like. And / or useful as an active ingredient of a medicament for treatment. This medicine can be administered to mammals including humans and has an extremely excellent feature that it does not cause weight gain or obesity.
The medicament of the present invention has the above general formula (1) [wherein m represents an integer of 0 to 4, n represents an integer of 5 to 9, and W represents —CH (OR) — (R represents a hydrogen atom or A compound selected from the group consisting of a compound represented by the following: a hydroxyl protecting group) or -C (= O)-], a physiologically acceptable salt thereof, and a physiologically acceptable ester thereof. Contains as an ingredient. As the medicament of the present invention, the above substances may be used as they are. However, in general, it is possible to prepare and administer a pharmaceutical composition containing the above substances and one or more pharmaceutical additives. preferable. As the medicament of the present invention, two or more of the above substances can be used in combination.
The administration route of the medicament of the present invention is not particularly limited, and the administration route may be either oral administration or parenteral administration. The pharmaceutical composition suitable for oral administration may be either a solid or liquid pharmaceutical composition. Examples of the pharmaceutical composition suitable for parenteral administration include injections, drops, suppositories, external preparations, Examples of the dosage form include eye drops, nasal drops, ear drops, and patches.
The solid pharmaceutical composition for oral use is, for example, for the formulation of a binder, a disintegrant, a lubricant, a colorant, a corrigent, etc. After adding an additive, it can prepare as a tablet, a granule, a powder, a capsule by a conventional method. As a pharmaceutical additive, those commonly used in the art can be used. For example, excipients such as lactose, sodium chloride, glucose, starch, microcrystalline cellulose, silicic acid; binders such as water, ethanol, propanol, simple syrup, gelatin, hydroxypropylcellulose, methylcellulose, ethylcellulose, shellac, polyvinylpyrrolidone; Disintegrating agents such as agar powder, sodium lauryl sulfate, monoglyceride stearic acid; lubricants such as purified talc, stearate, borax, polyethylene glycol; coloring agents such as β-carotene, yellow ferric oxide, caramel; and white sugar Examples of flavoring agents such as orange peel.
Oral liquid pharmaceutical compositions are prepared by adding one or more additives for pharmaceutical preparations such as a corrigent, stabilizer, or preservative to the above-mentioned substances that are active ingredients, and using oral liquids and syrups by conventional methods. It can be prepared as an elixir. As a pharmaceutical additive, those commonly used in the art can be used. Examples include flavoring agents such as sucrose; stabilizers such as tragacanth; and preservatives such as paraoxybenzoic acid esters.
For injections, one or more of pharmaceutical additives such as stabilizers, tonicity agents, etc. are added to the above substances that are active ingredients, and are used for subcutaneous, intramuscular, or intravenous administration by conventional methods. It can be manufactured as an injection. As a pharmaceutical additive, those commonly used in the art can be used. For example, stabilizers such as sodium pyrosulfite; and isotonic agents such as sodium chloride can be exemplified.
Suppositories can be produced by a conventional method by adding additives for pharmaceutical preparation such as a carrier and a surfactant to the above-mentioned substances which are active ingredients. As a pharmaceutical additive, those commonly used in the art can be used. Examples thereof include carriers such as polyethylene glycol and hard fat; and surfactants such as polysorbate 80.
External preparations are prepared by adding one or more additives for pharmaceutical preparations such as a base, a water-soluble polymer, a solvent, a surfactant, or a preservative to the above-mentioned substances that are active ingredients. It can be produced as a liquid, cream, gel, ointment and the like. As a pharmaceutical additive, those commonly used in the art can be used. For example, bases such as liquid paraffin, white petrolatum, purified lanolin; water-soluble polymers such as carboxyvinyl polymer; solvents such as glycerin and water; surfactants such as polyoxyethylene fatty acid esters; storage of paraoxybenzoic acid esters and the like Agents.
The eye drops can be produced by a conventional method by adding one or more of pharmaceutical additives such as stabilizers, isotonic agents, or preservatives to the above-mentioned substances that are active ingredients. As a pharmaceutical additive, those commonly used in the art can be used. Examples include stabilizers such as sodium pyrosulfite and EDTA; isotonic agents such as sodium chloride; and preservatives such as chlorobutanol.
Nasal drops can be produced by a conventional method by adding one or more of pharmaceutical additives such as stabilizers, tonicity agents, or preservatives to the above-mentioned substances that are active ingredients. As a pharmaceutical additive, those commonly used in the art can be used. Examples include stabilizers such as sodium pyrosulfite and EDTA; isotonic agents such as sodium chloride; and preservatives such as benzalkonium chloride.
Ear drops can be produced by a conventional method by adding one or more additives for pharmaceutical preparations such as a stabilizer, an isotonic agent, or a preservative to the above-mentioned substance which is an active ingredient. As a pharmaceutical additive, those commonly used in the art can be used. Examples include stabilizers such as sodium pyrosulfite and EDTA; isotonic agents such as sodium chloride; and preservatives such as benzalkonium chloride.
The patch is a hydrous patch or plaster patch by a conventional method by adding one or more additives for preparations such as an adhesive, a solvent, a cross-linking agent, or a surfactant to the above-mentioned substance which is an active ingredient. It can be manufactured as an agent or the like. As a pharmaceutical additive, those commonly used in the art can be used. For example, adhesives such as partially neutralized polyacrylic acid, sodium polyacrylate, 2-ethylhexyl polyacrylate, styrene-isoprene-styrene block copolymer; solvents such as glycerin and water; dihydroxyaluminum aminoacetate, dry water Examples thereof include a crosslinking agent such as aluminum oxide gel; and a surfactant such as polyoxyethylene fatty acid ester.
The dosage of the medicament of the present invention is not particularly limited, and can be appropriately selected depending on the age, weight, and symptoms of the patient, the dosage form, the administration route, the number of administrations, and the like. Usually, 0.1 to 100 mg per day can be administered as the mass of the above-mentioned substance, which is an active ingredient. The medicament of the present invention can be orally or parenterally administered once or several times a day.

以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
例1
(1)10−ブロモ−1−(4−クロロフェニル)−5−デカノールの合成
マグネシウム(591mg,24.31mmol)に無水THF5mLを加えてアルゴン雰囲気下、室温で攪拌し、よう素(10mg)を加え茶褐色がほぼ消失するまで2時間攪拌した。反応液に4−(4−ブロモブチル)クロルベンゼン(6.02g,24.32mmol)の無水THF10mL溶液を10分間かけて滴下した。滴下終了後室温で3時間攪拌を続けグリニャール試薬を調製した。
6−ブロモヘキサナール(4.79g,49.58mmol)を無水THF10mLに溶解し氷冷下攪拌した。この溶液に調製したグリニャール試薬を10分かけて滴下した。反応液を室温に戻し、18時間攪拌を続けた。
反応終了後、反応液を水冷冷却下、精製水20mLと飽和食塩水20mLをゆっくり加えて20分間攪拌した。この混合物をジエチルエーテル(50mL,100mL,20mL×2)で抽出し、次いで抽出液を精製水20mLで1回、飽和食塩水30mLで1回洗浄し硫酸ナトリウムで乾燥後減圧濃縮し、粗生成物として淡緑色油状物16.54gを得た。この油状物をシリカゲルカラムクロマトグラフィー(溶出液n−ヘキサン/酢酸エチル=10/1)で精製し、目的化合物(3.14g,収率37.1%)を無色油状物として得た。
H−NMR(CDCl)δ:1.23−1.67(12H,m),1.87(2H,tt,J=7,7Hz),2.59(2H,t,J=8Hz),3.41(2H,t,J=7Hz),3.58(1H,m),7.10(2H,d,J=8Hz),7.24(2H,d,J=8Hz).
(2)5−アセトキシ−10−ブロモ−1−(4−クロロフェニル)デカンの合成
10−ブロモ−1−(4−クロロフェニル)−5−デカノール(3.14g,9.03mmol)、4−ジメチルアミノピリジン(111mg,0.903mmol)及びピリジン(3.97g,18.1mmol)をジクロルメタン50mLに溶解した。この溶液を氷冷冷却し、10分間攪拌後、アセチルクロリド(851mg,10.8mmol)のジクロルメタン溶液50mLを10分かけて滴下し、滴下終了後室温でさらに3時間攪拌した。
反応終了後、反応液を水冷冷却下、2mol/L塩酸20mLと飽和食塩水20mLをゆっくり加えて5分間攪拌した。有機層を分離後、水層からさらにクロロホルム100mLで2回抽出した。抽出液を合わせて精製水30mLで1回、飽和食塩水30mLで1回洗浄し硫酸ナトリウムで乾燥後減圧濃縮し、粗生成物として淡黄色油状物4.33gを得た。得られた粗生成物をシリカゲルフラッシュカラムクロマトグラフィー(溶出液n−ヘキサン/酢酸エチル=20/1)で精製し、目的化合物(3.50g,収率99.4%)を無色油状物として得た。
H−NMR(CDCl)δ:1.22−1.65(12H,m),1.84(2H,tt,J=7,7Hz),2.02(3H,s),2.56(2H,t,J=8Hz),3.39(2H,t,J=7Hz),4.85(1H,m),7.08(2H,d,J=8Hz),7.24(2H,d,J=8Hz).
(3)8−アセトキシ−2,2−ジクロロ−12−(4−クロロフェニル)ドデカン酸メチルの合成
5−アセトキシ−10−ブロモ−1−(4−クロロフェニル)デカン(3.50g,8.97mmol)をDMF50mLに溶解しアルゴンガス雰囲気下、室温にて攪拌した。これにジクロロ酢酸メチル(5.14g,35.9mmol)を加え氷冷冷却した。この溶液に水素化ナトリウム(1.50g,35.9mmol)を一度に加え1時間攪拌し、さらに室温にて36時間攪拌を続けた。
反応液を水冷冷却下、飽和食塩水20mLをゆっくり加えて5分間攪拌した。さらに水80mLを加えた後、ジエチルエーテル50mLで3回抽出し、次いで抽出液を精製水50mLで1回、飽和食塩水50mLで1回洗浄し硫酸ナトリウムで乾燥後減圧濃縮し、粗生成物として淡黄色油状物6.24gを得た。これをシリカゲルフラッシュカラムクロマトグラフィー(溶出液n−ヘキサン/酢酸エチル=20/1)で精製し、目的化合物(1.43g,収率35.5%)を無色油状物として得た。
H−NMR(CDCl)δ:1.22−1.42(6H,m),1.46−1.66(8H,m),2.03(3H,s),2.40(2H,m),2.57(2H,t,J=8Hz),3.89(3H,s),4.85(1H,m),7.09(2H,d,J=9Hz),7.23(2H,d,J=9Hz).
(4)2,2−ジクロロ−12−(4−クロロフェニル)−8−ヒドロキシドデカン酸の合成
8−アセトキシ−2,2−ジクロロ−12−(4−クロロフェニル)ドデカン酸メチル(1.43g,3.17mmol)をメタノール40mLに溶解し氷冷下攪拌した。この溶液に2mol/L水酸化リチウム水溶液(15.9mL,31.7mmol)を加え15分間攪拌し、室温下でさらに20時間攪拌した。
反応終了後、反応液を水冷冷却下、飽和食塩水20mLと2mol/L塩酸20mLを滴下して酸性にし、クロロホルム100mLで3回抽出し、次いで抽出液を精製水50mLで1回、飽和食塩水50mLで1回洗浄し硫酸ナトリウムで乾燥後減圧濃縮し、粗生成物として淡黄色油状物1.68gを得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶出液クロロホルム/メタノール=20/1〜2/1)で精製し、目的化合物(749mg,収率59.7%)を淡黄色油状物として得た。
H−NMR(CDCl)δ:1.24−1.77(14H,m),2.43(2H,m),2.58(2H,t,J=8Hz),3.67(1H,br),7.09(2H,d,J=8Hz),7.23(2H,d,J=8Hz).
例2
(1)10−ブロモ−1−(4−クロロフェニル)−3−デカノールの合成
マグネシウム(1.07g,44.0mmol)に無水THF20mLを加えてアルゴン雰囲気下、室温で攪拌し、ヨウ素(10mg)を加え茶褐色がほぼ消失するまで2時間攪拌した。この反応液に4−(2−ブロモエチル)クロルベンゼン(9.62g,43.8mmol)の無水THF20mL溶液をゆっくり加え3時間攪拌を続けグリニャール試薬を調製した。
8−ブロモ−1−オクタナール(10.27g,49.6mmol)をアルゴン雰囲気下無水THF30mLに溶解し氷冷下攪拌した。この溶液に調製したグリニャール試薬を15分かけて滴下した。反応液を室温に戻し、16時間攪拌を続けた。
反応終了後、反応液を水冷冷却下、精製水20mLと飽和食塩水20mLをゆっくり加えて20分間攪拌した。この混合物をジエチルエーテル100mLで2回抽出し、次いで抽出液を精製水30mLで1回、飽和食塩水30mLで1回洗浄し硫酸ナトリウムで乾燥後減圧濃縮し、粗生成物として淡緑色油状物16.54gを得た。この油状物をシリカゲルカラムクロマトグラフィー(溶出液n−ヘキサン/酢酸エチル=8/1〜4/1)で精製し、目的化合物(5.85g,収率38.3%)を無色油状物として得た。
H−NMR(CDCl)δ:1.23−1.76(12H,m),1.80−1.88(2H,m),2.56−2.69(1H,m),2.70−2.81(1H,m),3.40(2H,t,J=7Hz),3.51−3.66(1H,m),7.12(2H,d,J=9Hz),7.24(2H,d,J=9Hz).
(2)3−アセトキシ−10−ブロモ−1−(4−クロロフェニル)デカンの合成
10−ブロモ−1−(4−クロロフェニル)−3−デカノール(5.85g,16.8mmol)をジクロルメタン50mLに溶解した。この溶液を氷冷冷却し、4−ジメチルアミノピリジン(205mg,1.68mmol)及びピリジン(7.38g,33.62mmol)を加え10分間攪拌した。この溶液にアセチルクロリド(1.58g,20.13mmol)のジクロルメタン溶液50mLを5分かけて滴下し、そのまま20分間攪拌し、室温でさらに30分間攪拌した。
反応終了後、反応液を水冷冷却下、2mol/L塩酸20mLと飽和食塩水20mLをゆっくり加えて5分間攪拌した。これを酢酸エチル200mLで2回抽出し、次いで抽出液を精製水30mLで1回、飽和食塩水30mLで1回洗浄し硫酸ナトリウムで乾燥後減圧濃縮し、粗生成物として淡黄色油状物7.02gを得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶出液n−ヘキサン/酢酸エチル=20/1)で精製し、目的化合物(5.17g,収率78.8%)を無色油状物として得た。
H−NMR(CDCl)δ:1.24−1.60(10H,m),1.76−1.89(4H,m),2.04(3H,s),2.51−2.68(2H,m),3.40(2H,t,J=7Hz),4.86−4.94(1H,m),7.10(2H,d,J=8Hz),7.24(2H,d,J=8Hz).
(3)10−アセトキシ−2,2−ジクロロ−12−(4−クロロフェニル)ドデカン酸メチルの合成
3−アセトキシ−10−ブロモ−1−(4−クロロフェニル)デカン(5.17g,13.26mmol)をDMF50mLに溶解しアルゴン雰囲気下、室温にて攪拌した。この溶液にジクロロ酢酸メチル(5.69g,39.80mmol)を加えて10分間攪拌し、−10℃にてさらに10分間攪拌した。反応液に水素化ナトリウム(1.74g,39.79mmol)をすばやく加えて1時間攪拌し、さらに室温にて15時間攪拌を続けた。
反応終了後、反応液を水冷冷却下、飽和食塩水20mLをゆっくり加えて5分間攪拌した。この混合物をジエチルエーテル200mLで2回抽出し、次いで抽出液を精製水30mLで1回、飽和食塩水30mLで1回洗浄し硫酸ナトリウムで乾燥後減圧濃縮し、粗生成物として淡黄色油状物6.39gを得た。この粗生成物をシリカゲルカラムクロマトグラフィー(溶出液n−ヘキサン/アセトン=20/1)で精製し、目的化合物(1.68g,収率28.0%)を淡黄色油状物として得た。
H−NMR(CDCl)δ:1.22−1.65(12H,m),1.76−1.92(2H,m),2.04(3H,s),2.37−2.46(2H,m),2.50−2.66(2H,m),3.89(3H,s),4.86−4.96(1H,m),7.10(2H,d,J=9Hz),7.24(2H,d,J=9Hz).
(4)2,2−ジクロロ−12−(4−クロロフェニル)−10−ヒドロキシドデカン酸の合成
10−アセトキシ−2,2−ジクロロ−12−(4−クロロフェニル)ドデカン酸メチル(1.68g,3.72mmol)をメタノール40mLに溶解し氷冷下攪拌した。これに2mol/L水酸化リチウム水溶液(18.6mL,37.2mmol)を加え10分間攪拌し、室温下でさらに16時間攪拌した。
反応終了後、反応液を水冷冷却下、飽和食塩水20mLと2mol/L塩酸20mLを滴下して酸性にし、クロロホルム150mLで3回抽出し、次いで抽出液を精製水30mLで1回、飽和食塩水30mLで1回洗浄し硫酸ナトリウムで乾燥後減圧濃縮し、粗生成物として淡黄色油状物1.68gを得た。
この油状物をシリカゲルカラムクロマトグラフィー(溶出液クロロホルム/メタノール=10/1〜2/1)で精製した。目的物を含むフラクションを減圧濃縮後クロロホルム300mLに溶解し飽和食塩水30mLと2mol/L塩酸30mLの混合液で洗浄し、次いで精製水50mLで1回、飽和食塩水50mLで1回洗浄した。この溶液を硫酸ナトリウムで乾燥後減圧濃縮し、粗生成物として無色油状物1.32gを得た。この油状物にn−ヘキサンを加えて結晶化させ、白色結晶性粉末1.30gを得た。この粗結晶を酢酸エチル−n−ヘキサン混合溶媒より再結晶し目的化合物(1.00g,収率67.9%)を白色結晶性粉末として得た。
H−NMR(CDCl)δ:1.26−1.52(10H,m),1.54−1.63(2H,m),1.71−1.79(2H,m),2.41−2.47(2H,m),2.60−2.69(1H,m),2.72−2.81(1H,m),3.67(1H,br),7.12(2H,d,J=8Hz),7.25(2H,d,J=8Hz).
融点:100.0〜101.7℃(再結晶溶媒:酢酸エチル−n−ヘキサン)
例3
(1)2,2−ジクロロ−12−(4−クロロフェニル)ドデカン酸メチルの合成
2,2−ジクロロ−12−(4−クロロフェニル)ドデカン酸(47.3g,124.5mmol)をメタノール1000mLに溶解し、硫酸(6.10g,62.19mmol)を加えて24時間加熱還流攪拌した。
反応液を冷却後、減圧濃縮し、クロロホルム500mL、水500mLを加え、有機層を分離した。水層よりさらにクロロホルムで抽出(100mL×3)後、有機層を合わせて、水洗(200mL)、無水硫酸ナトリウムにて乾燥後、減圧にて溶媒留去し、粗目的化合物(47.35g,収率96.6%)を淡黄色油状物として得た。
H−NMR(CDCl)δ:1.22−1.40(12H,m),1.51−1.62(4H,m),2.41(2H,m),2.56(2H,t,J=8Hz),3.89(3H,s),7.10(2H,d,J=8Hz),7.23(2H,d,J=8Hz).
(2)12−ブロモ−2,2−ジクロロ−12−(4−クロロフェニル)ドデカン酸メチルの合成
粗2,2−ジクロロ−12−(4−クロロフェニル)ドデカン酸メチル(47.25g,120.0mmol)を四塩化炭素500mLにて溶解し、N−ブロモこはく酸イミド22.42g(126.0mmol)、2,2’−アゾイソブチロニトリル39.4mg(0.24mmol)を加え、アルゴン雰囲気下1時間加熱還流攪拌した。反応液を冷却後、減圧濃縮し、酢酸エチル800mLに溶かし、水洗(200mL×3)、飽和食塩水洗(200mL)後、無水硫酸ナトリウムにて乾燥した。この溶液を減圧にて溶媒留去し、粗目的化合物(57.35g,定量的)を淡黄色油状物として得た。
H−NMR(CDCl)δ:1.22−1.62(14H,m),2.10(1H,m),2.24(1H,m),2.41(2H,m),3.89(3H,s),4.90(1H,t,J=7Hz),7.30(2H,d,J=9Hz),7.33(2H,d,J=9Hz).
(3)2,2−ジクロロ−12−(4−クロロフェニル)−12−ヒドロキシドデカン酸メチルの合成
粗12−ブロモ−2,2−ジクロロ−12−(4−クロロフェニル)ドデカン酸メチル(57.35g,120.0mmol)をアセトン1000mL−水200mLの混合溶媒にて溶解した。この溶液に40%過塩素酸銀水溶液68.4mL(132mmol)を室温で10分間かけて滴下し、滴下終了後室温で90分間攪拌した。反応液に飽和食塩水200mLを加え、30分間攪拌後不溶物を濾去した。濾液から減圧にてアセトンを留去した後、不溶物を酢酸エチル500mLで洗った洗液と合わせ、有機層を分離した。水層より更に酢酸エチルにて抽出(200mL×2)後、有機層を水(200mL)及び飽和食塩水(200mL)で洗浄した。得られた有機層を無水硫酸ナトリウムにて乾燥後、減圧にて溶媒留去した。残渣をシリカゲルカラムクロマトグラフィー(溶出液n−ヘキサン/アセトン=8/1〜2/1)で精製し、目的化合物(28.97g,収率58.9%)を淡黄色油状物として得た。
H−NMR(CDCl)δ:1.22−1.44(12H,m),1.51−1.83(4H,m),2.40(2H,m),3.89(3H,s),4.65(1H,br),7.27(2H,d,J=6Hz),7.32(2H,d,J=6Hz).
(4)2,2−ジクロロ−12−(4−クロロフェニル)−12−ヒドロキシドデカン酸の合成
2,2−ジクロロ−12−(4−クロロフェニル)−12−ヒドロキシドデカン酸メチル(28.88g,70.48mmol)をメタノール300mLにて溶解し、2mol/L水酸化リチウム水溶液(70.5mL,141mmol)を加え、室温で1時間攪拌した。減圧にて反応液からメタノールを留去した後、水200mLを加え、氷冷下2mol/L塩酸を滴下し酸性とした。
この混合物にクロロホルム−メタノール10:1の混液800mLを加えて有機層を分離し、水層よりさらにクロロホルム−メタノール10:1の混液で抽出(200mL×3)した。有機層を水(100mL)及び飽和食塩水(100mL)で洗浄した後、無水硫酸ナトリウムにて乾燥し、減圧にて溶媒留去して無色油状物を得た。この油状物に種晶を接種し、さらに攪拌下減圧乾燥して粗目的物27.80gを白色結晶性粉末として得た。これをジエチルエーテル−n−ヘキサンの混液より再結晶し、目的化合物(16.00g,収率57.4%)を白色結晶性粉末として得た。
H−NMR(CDCl)δ:1.22−1.45(12H,m),1.57(2H,m),1.68(1H,m),1.78(1H,m),2.45(2H,m),4.03−5.01(1H,br),4.70(1H,dd,J=8,6Hz),7.27(2H,d,J=9Hz),7.32(2H,d,J=9Hz).
融点:62.2〜63.5℃(再結晶溶媒:ジエチルエーテル−n−ヘキサン)
例4
(1)メチル 2,2−ジクロロ−12−(4−クロロフェニル)−11−ドデセノエートの合成
2,2−ジクロロ−12−(4−クロロフェニル)−12−ヒドロキシドデカン酸メチル(8.89g,21.91mmol)をトルエン300mLに溶解し、p−トルエンスルホン酸一水和物(1.67g,8.78mmol)を加え、80℃にて4時間攪拌した。反応液に水200mL、飽和重曹水10mLを加えて洗浄し、水層をさらに酢酸エチル100mLで抽出した。有機層を合わせて飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、抽出液をシリカゲルカラムクロマトグラフィー(溶出液 酢酸エチル/n−ヘキサン=1/1)で精製した。溶媒を減圧留去し、目的化合物(8.38g,収率97.6%)を黄色油状物として得た。
H−NMR(CDCl)δ:1.24−1.41(8H,m),1.42−1.51(2H,m),1.52−1.63(2H,m),2.14−2.25(2H,m),2.37−2.48(2H,m),3.89(3H,s),6.20(1H,dt,J=16,7Hz),6.32(1H,d,J=16Hz),7.22−7.30(4H,m).
(2)2,2−ジクロロ−12−(4−クロロフェニル)−11,12−エポキシドデカン酸メチルの合成
メチル 2,2−ジクロロ−12−(4−クロロフェニル)−11−ドデセノエート(8.38g,21.39mmol)をクロロホルム200mLに溶解し、3−クロロ過安息香酸(7.38g,42.77mmol)を加え、室温で2時間攪拌した。反応液を5%チオ硫酸ナトリウム溶液200mL、飽和食塩水200mLの順に洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去し、淡黄色結晶の残留物12.24gを得た。シリカゲルカラムクロマトグラフィー(溶出液n−ヘキサン/クロロホルム=1/9)で精製し、目的化合物(8.30g,収率95.2%)を無色油状物として得た。
H−NMR(CDCl)δ:1.23−1.41(8H,m),1.42−1.62(4H,m),1.62−1.72(2H,m),2.36−2.46(2H,m),2.89(1H,td,J=6,2Hz),3.58(1H,d,J=2Hz),3.89(3H,s),7.16−7.22(2H,d,J=9Hz),7.28−7.33(2H,d,J=9Hz).
(3)2,2−ジクロロ−12−(4−クロロフェニル)−11−ヒドロキシドデカン酸メチルの合成
2,2−ジクロロ−12−(4−クロロフェニル)−11,12−エポキシドデカン酸メチル(6.87g,16.85mmol)を酢酸エチル200mLに溶解し、−12℃にて10%パラジウム炭素触媒(1.37g)を加え、水素ガス雰囲気下同温度で1時間攪拌した。パラジウム炭素を濾別し、濾過物を酢酸エチル60mLで洗浄した。濾液を減圧留去し、無色油状物の残留物6.89gを得た。シリカゲルカラムクロマトグラフィー(溶出液n−ヘキサン/酢酸エチル=8/1〜4/1)で精製し、目的化合物(6.27g,収率90.8%)を無色油状物として得た。
H−NMR(CDCl)δ:1.23−1.64(14H,m),2.36−2.46(2H,m),2.63(1H,dd,J=14,8Hz),2.79(1H,dd,J=14,4Hz),3.79(1H,m),3.89(3H,s),7.15(2H,d,J=8Hz),7.28(2H,d,J=8Hz).
(4)2,2−ジクロロ−12−(4−クロロフェニル)−11−ヒドロキシドデカン酸の合成
2,2−ジクロロ−12−(4−クロロフェニル)−11−ヒドロキシドデカン酸メチル(4.62g,11.27mmol)をメタノール25mLに溶解し、氷水冷却下2mol/L水酸化リチウム溶液(11.3mL,22.60mmol)を約5分間かけて滴下し、同温度で30分間攪拌した。反応液に飽和食塩水75mLを加え、氷水冷却下2mol/L塩酸15mLを滴下し酸性にし、クロロホルムで抽出(50mL、20mL×2)した。有機層を合わせ飽和食塩水100mLで洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した。この残留物にn−ヘキサン100mLを加え氷水冷却下攪拌して結晶化し、結晶を濾取、n−ヘキサン洗浄、風乾し、無色結晶性粉末4.41g得た。この結晶を酢酸エチル5mL−n−ヘキサン40mLの混液から再結晶し、目的化合物(4.01g,収率89.9%)を無色微小針状晶として得た。
H−NMR(CDCl)δ:1.24−1.42(10H,m),1.42−1.65(4H,m),2.38−2.48(2H,m),2.67(1H,dd,J=14,8Hz),2.81(1H,dd,J=14,4Hz),3.86(1H,m),7.15(2H,d,J=8Hz),7.27(2H,d,J=8Hz).
融点:84.1〜85.8℃(再結晶溶媒:酢酸エチル−n−ヘキサン)
例5
(1)3−ベンゾイルオキシ−10−ブロモ−1−(4−クロロフェニル)デカンの合成
例2(2)と同様の方法で10−ブロモ−1−(4−クロロフェニル)−3−デカノール(196mg,0.564mmol)とベンゾイルクロリド(95mg,0.676mmol)より、目的化合物(211mg,収率82.8%)を無色油状物として得た。
H−NMR(CDCl)δ:1.24−1.80(12H,m),1.80−2.09(2H,m),2.57−2.76(2H,m),3.34(2H,t,J=7Hz),5.11−5.22(1H,m),7.09(2H,d,J=9Hz),7.21(2H,d,J=9Hz),7.44(2H,t,J=7Hz),7.56(1H,t,J=7Hz),8.02(2H,d,J=7Hz).
(2)10−ベンゾイルオキシ−2,2−ジクロロ−12−(4−クロロフェニル)ドデカン酸メチルの合成
例2(3)と同様の方法で3−ベンゾイルオキシ−10−ブロモ−1−(4−クロロフェニル)デカン(116mg,0.257mmol)より、目的化合物(31.3mg,収率23.7%)を無色油状物として得た。
H−NMR(CDCl)δ:1.15−1.82(12H,m),1.82−2.11(2H,m),2.33−2.44(2H,m),2.58−2.76(2H,m),3.88(3H,s),5.11−5.22(1H,m),7.10(2H,d,J=9Hz),7.22(2H,d,J=9Hz),7.45(2H,t,J=7Hz),7.57(1H,t,J=7Hz),8.02(2H.d,J=7Hz).
(3)10−ベンゾイルオキシ−2,2−ジクロロ−12−(4−クロロフェニル)ドデカン酸メチルの光学分割
光学活性カラムを用いた高速液体クロマトグラフィー(カラム:ダイセル化学工業製Chiralcel OJ,移動相n−ヘキサン:2−プロパノール19:1)により、10−ベンゾイルオキシ−2,2−ジクロロ−12−(4−クロロフェニル)ドデカン酸メチルのラセミ体1.28gを光学分割した。
(a)リテンションタイムが短いピーク成分のみを含むフラクションを合わせて減圧濃縮後、再度フラッシュカラムクロマトグラフィー(溶出液n−ヘキサン/酢酸エチル=20/1〜10/1)で精製し、(+)−10−ベンゾイルオキシ−2,2−ジクロロ−12−(4−クロロフェニル)ドデカン酸メチル(光学活性カラムChiralcel OJリテンションタイムが短いピーク成分)(449mg,収率35.1%)を無色油状物として得た。
HPLC面積比による光学純度:>99%ee(Chiralcel OJ,移動相n−ヘキサン:2−プロパノール19:1)
比旋光度:[α] 27=+8.23(c 1.15,CHCl
(b)リテンションタイムが長いピーク成分のみを含むフラクションを合わせて減圧濃縮後、再度フラッシュカラムクロマトグラフィー(溶出液n−ヘキサン/酢酸エチル=20/1〜10/1)で精製し、(−)−10−ベンゾイルオキシ−2,2−ジクロロ−12−(4−クロロフェニル)ドデカン酸メチル(光学活性カラムChiralcel OJリテンションタイムが長いピーク成分)(432mg,収率33.8%)を無色油状物として得た。
HPLC面積比による光学純度:>99%ee(Chiralcel OJ,移動相n−ヘキサン:2−プロパノール19:1)
比旋光度:[α] 27=−8.06(c 1.10,CHCl
(4)(+)−2,2−ジクロロ−12−(4−クロロフェニル)−10−ヒドロキシドデカン酸の合成
例2(4)と同様の方法で(+)−10−ベンゾイルオキシ−2,2−ジクロロ−12−(4−クロロフェニル)ドデカン酸メチル(光学活性カラムChiralcel OJ前成分,>99%ee)(44.2g,86.0mmol)より目的化合物(19.58g,収率57.5%)を白色結晶性粉末として得た。
融点:103.1〜103.6℃(再結晶溶媒:酢酸エチル−n−ヘキサン)
H−NMR(CDCl)δ:1.26−1.63(12H,m),1.71−1.79(2H,m),2.38−2.47(2H,m),2.58−2.69(1H,m),2.70−2.80(1H,m),3.68(1H,br),7.12(2H,d,J=8Hz),7.24(2H,d,J=8Hz).
HPLC面積比による光学純度:>99%ee(Chiralpak AD−RH,移動相アセトニトリル:5mM HPO緩衝液70:30)
比旋光度:[α] 23=+8.06(c 5.00,CHCl
(5)(−)−2,2−ジクロロ−12−(4−クロロフェニル)−10−ヒドロキシドデカン酸の合成
上記(4)と同様の方法で(−)−10−ベンゾイルオキシ−2,2−ジクロロ−12−(4−クロロフェニル)ドデカン酸メチル(光学活性カラムChiralcel OJ後成分,>99%ee)(44.3g,86.2mmol)より目的化合物(20.59g,収率60.4%)を白色結晶性粉末として得た。
融点:103.0〜103.7℃(再結晶溶媒:酢酸エチル−n−ヘキサン)
H−NMR(CDCl)δ:1.19−1.63(12H,m),1.68−1.85(2H,m),2.38−2.47(2H,m),2.58−2.68(1H,m),2.70−2.81(1H,m),3.68(1H,br),7.12(2H,d,J=9Hz),7.24(2H,d,J=9Hz).
HPLC面積比による光学純度:>99%ee(Chiralpak AD−RH,移動相アセトニトリル:5mM HPO緩衝液70:30)
比旋光度:[α] 23=−8.02(c 5.00,CHCl
例6
(1)10−ブロモ−1−(4−クロロフェニル)−5−メトキシメトキシデカンの合成
例1(1)で得た10−ブロモ−1−(4−クロロフェニル)−5−デカノール(14.51g,41.7mmol)とジイソプロピルエチルアミン(10.78g,83.4mmol)をクロロホルム200mLに溶解し氷冷下攪拌した。これにクロロメチルメチルエーテル(5.04g,62.6mmol)を滴下した後、氷冷下1時間攪拌し、更に室温にて30時間攪拌を続けた。
反応液を氷水冷却下、2mol/L塩酸100mLをゆっくり加えて攪拌した後、有機層を分取した。水層より更にクロロホルムで抽出(50mL×2)した後、有機層を合わせ精製水50mLで一回、次いで飽和食塩水50mLで一回洗浄し、硫酸ナトリウムで乾燥、減圧濃縮した。この残留物をシリカゲルフラッシュカラムクロマトグラフィー(溶出液n−ヘキサン/酢酸エチル=20/1)で精製し、目的化合物(13.30g,収率81.4%)を無色油状物として得た。
H−NMR(CDCl)δ:1.22−1.66(12H,m),1.86(2H,quint.,J=7Hz),2.58(2H,t,J=8Hz),3.36(3H,s),3.41(2H,t,J=7Hz),3.52(1H,quint.,J=7Hz),4.63(2H,s),7.09(2H,d,J=8Hz),7.23(2H,d,J=8Hz).
(2)2,2−ジクロロ−12−(4−クロロフェニル)−8−メトキシメトキシドデカン酸メチルの合成
例1(3)と同様の方法で10−ブロモ−1−(4−クロロフェニル)−5−メトキシメトキシデカン(13.30g,33.95mmol)と、ジクロロ酢酸メチル(19.42g,135.8mmol)より目的化合物(4.02g,収率26.1%)を無色油状物として得た。
H−NMR(CDCl)δ:1.25−1.64(14H,m),2.38−2.44(2H,m),2.58(2H,t,J=8Hz),3.36(3H,s),3.51(1H,quint.,J=6Hz),3.89(3H,s),4.63(2H,s),7.09(2H,d,J=9Hz),7.23(2H,d,J=9Hz).
(3)2,2−ジクロロ−12−(4−クロロフェニル)−8−ヒドロキシドデカン酸メチルの合成
2,2−ジクロロ−12−(4−クロロフェニル)−8−メトキシメトキシドデカン酸メチル(4.02g,8.86mmol)をメタノール150mLに溶解し氷冷下攪拌した。これに塩酸0.2mLを加え氷冷下15分間攪拌し、更に室温にて20時間攪拌した。
反応液を減圧濃縮した残渣にクロロホルム100mLと精製水100mLを加えて有機層を分取した。水層より更にクロロホルムで抽出(20mL×3)した後、有機層を合わせ精製水50mLで一回、次いで飽和食塩水50mLで一回洗浄し、硫酸ナトリウムで乾燥、減圧濃縮した。この残留物をシリカゲルフラッシュカラムクロマトグラフィー(溶出液n−ヘキサン/酢酸エチル=10/1〜5/1)で精製し、目的化合物(2.93g,収率80.7%)を無色油状物として得た。
H−NMR(CDCl)δ:1.22−1.51(10H,m),1.54−1.67(4H,m),2.39−2.45(2H,m),2.59(2H,t,J=8Hz),3.58(1H,m),3.89(3H,s),7.10(2H,d,J=9Hz),7.24(2H,d,J=9Hz).
(4)2,2−ジクロロ−12−(4−クロロフェニル)−8−オキソドデカン酸メチルの合成
2,2−ジクロロ−12−(4−クロロフェニル)−8−ヒドロキシドデカン酸メチル(1.50g,3.66mmol)を塩化メチレン50mLに溶解し氷冷下攪拌した。これにクロロクロム酸ピリジニウム(PCC)(1.58g,純度98%,7.33mmol)をゆっくり加えた後、氷冷下30分間攪拌し、更に室温にて3時間攪拌を続けた。
反応液を水冷冷却下、ジエチルエーテル100mLをゆっくり加えて10分間攪拌した。この溶液をそのままシリカゲルカラムクロマトグラフィー(溶出液クロロホルム)に付し極性成分を除いた後に、減圧にて溶媒留去した。この残留物を更にシリカゲルフラッシュカラムクロマトグラフィー(溶出液n−ヘキサン/酢酸エチル=20/1〜10/1)で精製し、目的化合物(1.35g,収率90.4%)を淡黄色油状物として得た。
H−NMR(CDCl)δ:1.35(2H,quint.,J=8Hz),1.53−1.65(8H,m),2.36−2.44(6H,m),2.58(2H,t,J=7Hz),3.89(3H,s),7.09(2H,d,J=8Hz),7.23(2H,d,J=8Hz).
(5)2,2−ジクロロ−12−(4−クロロフェニル)−8−オキソドデカン酸の合成
例1(4)と同様の方法で2,2−ジクロロ−12−(4−クロロフェニル)−8−オキソドデカン酸メチル(1.35g,3.31mmol)より目的化合物(1.15g,収率88.2%)を白色結晶性粉末として得た。
融点:48.8〜49.7℃(再結晶溶媒:ジエチルエーテル−n−ヘキサン)
H−NMR(CDCl)δ:1.37(2H,quint.,J=8Hz),1.53−1.68(8H,m),2.38−2.46(6H,m),2.58(2H,t,J=7Hz),7.09(2H,d,J=9Hz),7.23(2H,d,J=9Hz).
例7
(1)10−ブロモ−1−(4−クロロフェニル)−3−メトキシメトキシデカンの合成
例6(1)と同様の方法で、例2(1)で得た10−ブロモ−1−(4−クロロフェニル)−3−デカノール(5.80g,16.7mmol)とクロロメチルメチルエーテル(4.04g,40.1mmol)より目的化合物(5.73g,収率87.7%)を無色油状物として得た。
H−NMR(CDCl)δ:1.25−1.60(10H,m),1.72−1.89(4H,m),2.61(1H,m),2.70(1H,m),3.40(3H,s),3.50−3.59(3H,m),4.65(1H,d,J=7Hz),4.68(1H,d,J=7Hz),7.12(2H,d,J=8Hz),7.24(2H,d,J=8Hz).
(2)2,2−ジクロロ−12−(4−クロロフェニル)−10−メトキシメトキシドデカン酸メチルの合成
例1(3)と同様の方法で10−ブロモ−1−(4−クロロフェニル)−3−メトキシメトキシデカン(5.70g,14.6mmol)と、ジクロロ酢酸メチル(6.23g,43.6mmol)より目的化合物(645mg,収率9.8%)を淡黄色油状物として得た。
H−NMR(CDCl)δ:1.23−1.79(14H,m),2.41(2H,m),2.61(1H,m),2.70(1H,m),3.40(3H,s),3.56(1H,m),3.89(3H,s),4.65(1H,d,J=7Hz),4.68(1H,d,J=7Hz),7.12(2H,d,J=8Hz),7.24(2H,d,J=8Hz).
(3)2,2−ジクロロ−12−(4−クロロフェニル)−10−ヒドロキシドデカン酸メチルの合成
例6(3)と同様の方法で2,2−ジクロロ−12−(4−クロロフェニル)−10−メトキシメトキシドデカン酸メチル(1.09g,2.40mmol)より目的化合物(842mg,収率85.6%)を無色油状物として得た。
H−NMR(CDCl)δ:1.23−1.63(12H,m),1.64−1.82(2H,m),2.41(2H,m),2.64(1H,m),2.77(1H,m),3.60(1H,m),3.89(3H,s),7.13(2H,d,J=8Hz),7.24(2H,d,J=8Hz).
(4)2,2−ジクロロ−12−(4−クロロフェニル)−10−オキソドデカン酸メチルの合成
例6(4)と同様の方法で2,2−ジクロロ−12−(4−クロロフェニル)−10−ヒドロキシドデカン酸メチル(840mg,2.05mmol)より目的化合物(749mg,収率89.6%)を無色油状物として得た。
H−NMR(CDCl)δ:1.19−1.42(6H,m),1.49−1.61(4H,m),2.37(2H,t,J=8Hz),2.40(2H,m),2.70(2H,t,J=8Hz),2.86(2H,t,J=8Hz),3.89(3H,s),7.12(2H,d,J=8Hz),7.23(2H,d,J=8Hz).
(5)2,2−ジクロロ−12−(4−クロロフェニル)−10−オキソドデカン酸の合成
例1(4)と同様の方法で2,2−ジクロロ−12−(4−クロロフェニル)−10−オキソドデカン酸メチル(735mg,1.80mmol)より目的化合物(567mg,収率79.9%)を淡黄色油状物として得た。
H−NMR(CDCl)δ:1.19−1.42(6H,m),1.47−1.65(4H,m),2.39(2H,m),2.43(2H,m),2.71(2H,t,J=8Hz),2.86(2H,t,J=8Hz),7.11(2H,d,J=8Hz),7.24(2H,d,J=8Hz).
例8
(1)2,2−ジクロロ−12−(4−クロロフェニル)−11−オキソドデカン酸メチルの合成
例6(4)と同様の方法で、例4(3)で得た2,2−ジクロロ−12−(4−クロロフェニル)−11−ヒドロキシドデカン酸メチル(5.06g,12.35mmol)より目的化合物(4.36g,収率86.6%)を無色油状物として得た。
H−NMR(CDCl)δ:1.17−1.38(8H,m),1.49−1.61(4H,m),2.36−2.42(2H,m),2.44(2H,t,J=7Hz),3.65(2H,s),3.89(3H,s),7.13(2H,d,J=9Hz),7.30(2H,d,J=9Hz).
(2)2,2−ジクロロ−12−(4−クロロフェニル)−11−オキソドデカン酸の合成
例1(4)と同様の方法で2,2−ジクロロ−12−(4−クロロフェニル)−11−オキソドデカン酸メチル(4.36g,10.69mmol)より目的化合物(3.90g,収率92.6%)を白色結晶性粉末として得た。
融点:56.8〜57.8℃(再結晶溶媒:ジエチルエーテル−n−ヘキサン)
H−NMR(CDCl)δ:1.18−1.40(8H,m),1.50−1.61(4H,m),2.40−2.45(2H,m),2.45(2H,t,J=8Hz),3.67(2H,s),7.13(2H,d,J=9Hz),7.30(2H,d,J=9Hz).
例9
(1)2,2−ジクロロ−12−(4−クロロフェニル)−12−オキソドデカン酸メチルの合成
例6(4)と同様の方法で、例3(3)で得た2,2−ジクロロ−12−(4−クロロフェニル)−12−ヒドロキシドデカン酸メチル(3.07g,7.49mmol)より目的化合物(2.87g,収率93.9%)を白色結晶性粉末として得た。
融点:55.2〜56.2℃(再結晶溶媒:クロロホルム−n−ヘキサン)
H−NMR(CDCl)δ:1.28−1.41(10H,m),1.57(2H,m),1.72(2H,m),2.41(2H,m),2.93(2H,t,J=8Hz),3.89(3H,s),7.43(2H,d,J=9Hz),7.90(2H,d,J=9Hz).
(2)2,2−ジクロロ−12−(4−クロロフェニル)−12−オキソドデカン酸の合成
例1(4)と同様の方法で2,2−ジクロロ−12−(4−クロロフェニル)−12−オキソドデカン酸メチル(2.75g,6.74mmol)より目的化合物(1.74g,収率65.5%)を白色結晶性粉末として得た。
融点:82.4〜83.0℃(再結晶溶媒:クロロホルム−n−ヘキサン)
H−NMR(CDCl)δ:1.27−1.42(10H,m),1.60(2H,m),1.72(2H,m),2.45(2H,m),2.94(2H,t,J=8Hz),7.44(2H,d,J=9Hz),7.91(2H,d,J=9Hz).
試験例1
本発明の化合物および比較化合物として前記の化合物Aおよび塩酸ピオグリタゾンのin vivoにおける血漿グルコース、インスリン、トリグリセライド低下作用を以下の方法で測定した(Metabolism,48,pp34−40,1999,Journal of Medicinal Chemistry,44,pp2601−2611,2001)。
(1)測定方法
試験動物として、ジャクソン・ラボラトリー(米国)で開発され、肥満、高脂血症、高インスリン血症及びインスリン抵抗性モデルとして知られているC57BL/KsJ db/dbマウス(Journal of Clinical Investigation,85,pp962−967,1990)を用いた。
7週齢のdb/dbマウスからヘパリン処理毛細管を用いて眼窩静脈叢から採血し、遠心分離後に血漿を採取して血漿グルコース濃度、インスリン濃度およびトリグリセライド濃度を測定して群分けを行った。採血翌日より化合物の投与を開始し、14日間1日1回経口投与した。投与開始14日目の化合物投与2時間後に眼窩静脈叢から採血した。血漿を採取して血漿グルコース濃度、インスリン濃度およびトリグリセライド濃度を測定した。
また、血漿グルコース濃度については、本発明の化合物と比較化合物の効力比を明らかにするため、媒体投与における平均値を100%とした時にそれぞれ25%低下させる投与量(ED25)を本発明化合物と比較化合物それぞれについて求め比較した(Arznimittel−Forschung,40,pp156−162,1990)。
(2)結果
表1に本発明化合物および比較化合物の血漿グルコース、インスリン、およびトリグリセライド低下活性を示す。表1に示された結果から、本発明化合物は化合物Aや塩酸ピオグリタゾンよりも優れた血漿グルコース、インスリン、トリグリセライド低下作用を示すことがわかる。

Figure 2004103946
本発明の化合物は低用量から作用が認められることから、血漿グルコース低下作用について、ED25値を算出して作用発現用量の比較を行った。表2に本発明の化合物と比較化合物の血漿グルコース低下作用の効力比をED25値でまとめた。本発明の化合物のうち、例2(4)の化合物では0.6mg/kg、例4(4)の化合物では1.1mg/kg、例5(4)の化合物では0.5mg/kgであるのに対し、化合物Aでは2.8mg/kgであった。すなわち、本発明の化合物は化合物Aの1/2.5〜1/5.6の用量で同等の血漿グルコース低下作用を示した。
この結果から、本発明の化合物を有効成分として含む医薬には、副作用の軽減や他剤との併用における薬物相互作用の回避が期待できることがわかった。
Figure 2004103946
  EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to these examples.
Example 1
(1) Synthesis of 10-bromo-1- (4-chlorophenyl) -5-decanol
  Magnesium (591 mg, 24.31 mmol) was added with 5 mL of anhydrous THF and stirred at room temperature under an argon atmosphere. Iodine (10 mg) was added and stirred for 2 hours until the brown color almost disappeared. To the reaction solution, a solution of 4- (4-bromobutyl) chlorobenzene (6.02 g, 24.32 mmol) in anhydrous THF (10 mL) was added dropwise over 10 minutes. After completion of the dropwise addition, stirring was continued at room temperature for 3 hours to prepare a Grignard reagent.
  6-Bromohexanal (4.79 g, 49.58 mmol) was dissolved in 10 mL of anhydrous THF and stirred under ice cooling. The prepared Grignard reagent was added dropwise to this solution over 10 minutes. The reaction solution was returned to room temperature and stirring was continued for 18 hours.
  After completion of the reaction, the reaction mixture was slowly added with 20 mL of purified water and 20 mL of saturated brine under cooling with water and stirred for 20 minutes. This mixture was extracted with diethyl ether (50 mL, 100 mL, 20 mL × 2), and then the extract was washed once with 20 mL of purified water and once with 30 mL of saturated brine, dried over sodium sulfate, and concentrated under reduced pressure to give a crude product. As a result, 16.54 g of a pale green oil was obtained. The oil was purified by silica gel column chromatography (eluent n-hexane / ethyl acetate = 10/1) to obtain the desired compound (3.14 g, yield 37.1%) as a colorless oil.
1H-NMR (CDCl3) Δ: 1.23-1.67 (12H, m), 1.87 (2H, tt, J = 7, 7 Hz), 2.59 (2H, t, J = 8 Hz), 3.41 (2H, t, J = 7 Hz), 3.58 (1H, m), 7.10 (2H, d, J = 8 Hz), 7.24 (2H, d, J = 8 Hz).
(2) Synthesis of 5-acetoxy-10-bromo-1- (4-chlorophenyl) decane
  10-Bromo-1- (4-chlorophenyl) -5-decanol (3.14 g, 9.03 mmol), 4-dimethylaminopyridine (111 mg, 0.903 mmol) and pyridine (3.97 g, 18.1 mmol) were dissolved in dichloromethane. Dissolved in 50 mL. This solution was ice-cooled and cooled for 10 minutes, and then 50 mL of a dichloromethane solution of acetyl chloride (851 mg, 10.8 mmol) was added dropwise over 10 minutes. After completion of the addition, the mixture was further stirred at room temperature for 3 hours.
  After completion of the reaction, the reaction solution was cooled with water and slowly added with 20 mL of 2 mol / L hydrochloric acid and 20 mL of saturated brine and stirred for 5 minutes. After separating the organic layer, the aqueous layer was further extracted twice with 100 mL of chloroform. The extracts were combined, washed once with 30 mL of purified water and once with 30 mL of saturated brine, dried over sodium sulfate, and concentrated under reduced pressure to obtain 4.33 g of a pale yellow oil as a crude product. The resulting crude product was purified by silica gel flash column chromatography (eluent n-hexane / ethyl acetate = 20/1) to obtain the target compound (3.50 g, yield 99.4%) as a colorless oil. It was.
1H-NMR (CDCl3) Δ: 1.22-1.65 (12H, m), 1.84 (2H, tt, J = 7, 7 Hz), 2.02 (3H, s), 2.56 (2H, t, J = 8 Hz), 3.39 (2 H, t, J = 7 Hz), 4.85 (1 H, m), 7.08 (2 H, d, J = 8 Hz), 7.24 (2 H, d, J = 8 Hz) .
(3) Synthesis of methyl 8-acetoxy-2,2-dichloro-12- (4-chlorophenyl) dodecanoate
  5-acetoxy-10-bromo-1- (4-chlorophenyl) decane (3.50 g, 8.97 mmol) was dissolved in 50 mL of DMF and stirred at room temperature in an argon gas atmosphere. To this was added methyl dichloroacetate (5.14 g, 35.9 mmol), and the mixture was cooled with ice. To this solution, sodium hydride (1.50 g, 35.9 mmol) was added at once and stirred for 1 hour, and further stirred at room temperature for 36 hours.
  Under cooling with water, the reaction solution was slowly added with 20 mL of saturated brine and stirred for 5 minutes. Further, 80 mL of water was added, followed by extraction three times with 50 mL of diethyl ether, and then the extract was washed once with 50 mL of purified water and once with 50 mL of saturated brine, dried over sodium sulfate, and concentrated under reduced pressure to give a crude product. 6.24 g of a pale yellow oil was obtained. This was purified by silica gel flash column chromatography (eluent n-hexane / ethyl acetate = 20/1) to obtain the target compound (1.43 g, yield 35.5%) as a colorless oil.
1H-NMR (CDCl3) Δ: 1.22-1.42 (6H, m), 1.46-1.66 (8H, m), 2.03 (3H, s), 2.40 (2H, m), 2.57 (2H, t, J = 8 Hz), 3.89 (3H, s), 4.85 (1H, m), 7.09 (2H, d, J = 9 Hz), 7.23 (2H, d, J = 9 Hz).
(4) Synthesis of 2,2-dichloro-12- (4-chlorophenyl) -8-hydroxydodecanoic acid
  Methyl 8-acetoxy-2,2-dichloro-12- (4-chlorophenyl) dodecanoate (1.43 g, 3.17 mmol) was dissolved in 40 mL of methanol and stirred under ice cooling. To this solution was added 2 mol / L aqueous lithium hydroxide solution (15.9 mL, 31.7 mmol), and the mixture was stirred for 15 minutes and further stirred at room temperature for 20 hours.
  After completion of the reaction, the reaction mixture was acidified by dropwise addition of 20 mL of saturated brine and 20 mL of 2 mol / L hydrochloric acid under cooling with water, extracted three times with 100 mL of chloroform, and then the extract was once with 50 mL of purified water and saturated brine. The extract was washed once with 50 mL, dried over sodium sulfate, and concentrated under reduced pressure to obtain 1.68 g of a pale yellow oil as a crude product. The resulting crude product was purified by silica gel column chromatography (eluent chloroform / methanol = 20/1 to 2/1) to obtain the target compound (749 mg, yield 59.7%) as a pale yellow oil. .
1H-NMR (CDCl3) Δ: 1.24-1.77 (14H, m), 2.43 (2H, m), 2.58 (2H, t, J = 8 Hz), 3.67 (1H, br), 7.09 (2H, d, J = 8 Hz), 7.23 (2H, d, J = 8 Hz).
Example 2
(1) Synthesis of 10-bromo-1- (4-chlorophenyl) -3-decanol
  Magnesium (1.07 g, 44.0 mmol) was added with 20 mL of anhydrous THF and stirred at room temperature under an argon atmosphere. Iodine (10 mg) was added and stirred for 2 hours until the brown color almost disappeared. To this reaction solution was slowly added 4- (2-bromoethyl) chlorobenzene (9.62 g, 43.8 mmol) in 20 mL of anhydrous THF, and the mixture was stirred for 3 hours to prepare a Grignard reagent.
  8-Bromo-1-octanal (10.27 g, 49.6 mmol) was dissolved in 30 mL of anhydrous THF under an argon atmosphere and stirred under ice cooling. The prepared Grignard reagent was added dropwise to this solution over 15 minutes. The reaction solution was returned to room temperature and stirring was continued for 16 hours.
  After completion of the reaction, the reaction mixture was slowly added with 20 mL of purified water and 20 mL of saturated brine under cooling with water and stirred for 20 minutes. This mixture was extracted twice with 100 mL of diethyl ether, and then the extract was washed once with 30 mL of purified water and once with 30 mL of saturated brine, dried over sodium sulfate, and concentrated under reduced pressure to give a pale green oil 16 as a crude product. .54 g was obtained. The oil was purified by silica gel column chromatography (eluent n-hexane / ethyl acetate = 8/1 to 4/1) to obtain the target compound (5.85 g, yield 38.3%) as a colorless oil. It was.
1H-NMR (CDCl3) Δ: 1.23-1.76 (12H, m), 1.80-1.88 (2H, m), 2.56-2.69 (1H, m), 2.70-2.81 ( 1H, m), 3.40 (2H, t, J = 7 Hz), 3.51-3.66 (1H, m), 7.12 (2H, d, J = 9 Hz), 7.24 (2H, d, J = 9 Hz).
(2) Synthesis of 3-acetoxy-10-bromo-1- (4-chlorophenyl) decane
  10-Bromo-1- (4-chlorophenyl) -3-decanol (5.85 g, 16.8 mmol) was dissolved in 50 mL of dichloromethane. This solution was cooled with ice, 4-dimethylaminopyridine (205 mg, 1.68 mmol) and pyridine (7.38 g, 33.62 mmol) were added, and the mixture was stirred for 10 minutes. To this solution, 50 mL of a dichloromethane solution of acetyl chloride (1.58 g, 20.13 mmol) was added dropwise over 5 minutes, and the mixture was stirred for 20 minutes as it was, and further stirred at room temperature for 30 minutes.
  After completion of the reaction, the reaction solution was cooled with water and slowly added with 20 mL of 2 mol / L hydrochloric acid and 20 mL of saturated brine and stirred for 5 minutes. This was extracted twice with 200 mL of ethyl acetate, and then the extract was washed once with 30 mL of purified water and once with 30 mL of saturated brine, dried over sodium sulfate and concentrated under reduced pressure to give a pale yellow oil as a crude product. 02 g was obtained. The resulting crude product was purified by silica gel column chromatography (eluent n-hexane / ethyl acetate = 20/1) to obtain the target compound (5.17 g, yield 78.8%) as a colorless oil. .
1H-NMR (CDCl3) Δ: 1.24-1.60 (10H, m), 1.76-1.89 (4H, m), 2.04 (3H, s), 2.51-2.68 (2H, m) 3.40 (2H, t, J = 7 Hz), 4.86-4.94 (1H, m), 7.10 (2H, d, J = 8 Hz), 7.24 (2H, d, J = 8 Hz).
(3) Synthesis of methyl 10-acetoxy-2,2-dichloro-12- (4-chlorophenyl) dodecanoate
  3-Acetoxy-10-bromo-1- (4-chlorophenyl) decane (5.17 g, 13.26 mmol) was dissolved in 50 mL of DMF and stirred at room temperature under an argon atmosphere. To this solution, methyl dichloroacetate (5.69 g, 39.80 mmol) was added and stirred for 10 minutes, and further stirred at −10 ° C. for 10 minutes. Sodium hydride (1.74 g, 39.79 mmol) was quickly added to the reaction solution, and the mixture was stirred for 1 hour, and further stirred at room temperature for 15 hours.
  After completion of the reaction, the reaction solution was slowly added with 20 mL of saturated brine under water cooling and stirred for 5 minutes. This mixture was extracted twice with 200 mL of diethyl ether, and the extract was washed once with 30 mL of purified water and once with 30 mL of saturated brine, dried over sodium sulfate, and concentrated under reduced pressure to give a pale yellow oily product 6 as a crude product. .39 g was obtained. The crude product was purified by silica gel column chromatography (eluent n-hexane / acetone = 20/1) to obtain the target compound (1.68 g, yield 28.0%) as a pale yellow oil.
1H-NMR (CDCl3) Δ: 1.22-1.65 (12H, m), 1.76-1.92 (2H, m), 2.04 (3H, s), 2.37-2.46 (2H, m) , 2.50-2.66 (2H, m), 3.89 (3H, s), 4.86-4.96 (1H, m), 7.10 (2H, d, J = 9 Hz), 7 .24 (2H, d, J = 9 Hz).
(4) Synthesis of 2,2-dichloro-12- (4-chlorophenyl) -10-hydroxydodecanoic acid
  Methyl 10-acetoxy-2,2-dichloro-12- (4-chlorophenyl) dodecanoate (1.68 g, 3.72 mmol) was dissolved in 40 mL of methanol and stirred under ice cooling. 2 mol / L lithium hydroxide aqueous solution (18.6 mL, 37.2 mmol) was added to this, and it stirred for 10 minutes, and also stirred at room temperature for 16 hours.
  After completion of the reaction, the reaction mixture was acidified by dropwise addition of 20 mL of saturated brine and 20 mL of 2 mol / L hydrochloric acid under cooling with water, extracted three times with 150 mL of chloroform, and then the extract was extracted once with 30 mL of purified water and saturated brine. The extract was washed once with 30 mL, dried over sodium sulfate, and concentrated under reduced pressure to obtain 1.68 g of a pale yellow oil as a crude product.
  This oily substance was purified by silica gel column chromatography (eluent chloroform / methanol = 10/1 to 2/1). The fraction containing the desired product was concentrated under reduced pressure, dissolved in 300 mL of chloroform, washed with a mixed solution of 30 mL of saturated saline and 30 mL of 2 mol / L hydrochloric acid, and then washed once with 50 mL of purified water and once with 50 mL of saturated brine. This solution was dried over sodium sulfate and concentrated under reduced pressure to obtain 1.32 g of a colorless oil as a crude product. The oil was crystallized by adding n-hexane to obtain 1.30 g of white crystalline powder. This crude crystal was recrystallized from a mixed solvent of ethyl acetate-n-hexane to obtain the target compound (1.00 g, yield 67.9%) as a white crystalline powder.
1H-NMR (CDCl3) Δ: 1.26 to 1.52 (10H, m), 1.54 to 1.63 (2H, m), 1.71-1.79 (2H, m), 2.41-2.47 ( 2H, m), 2.60-2.69 (1H, m), 2.72-2.81 (1H, m), 3.67 (1H, br), 7.12 (2H, d, J = 8 Hz), 7.25 (2H, d, J = 8 Hz).
Melting point: 100.0 to 101.7 ° C. (recrystallization solvent: ethyl acetate-n-hexane)
Example 3
(1) Synthesis of methyl 2,2-dichloro-12- (4-chlorophenyl) dodecanoate
  2,2-Dichloro-12- (4-chlorophenyl) dodecanoic acid (47.3 g, 124.5 mmol) was dissolved in 1000 mL of methanol, sulfuric acid (6.10 g, 62.19 mmol) was added, and the mixture was heated to reflux with stirring for 24 hours. .
  The reaction solution was cooled and concentrated under reduced pressure, 500 mL of chloroform and 500 mL of water were added, and the organic layer was separated. The aqueous layer was further extracted with chloroform (100 mL × 3), and the organic layers were combined, washed with water (200 mL), dried over anhydrous sodium sulfate, and evaporated under reduced pressure to give the crude target compound (47.35 g, yield). Yield 96.6%) as a pale yellow oil.
1H-NMR (CDCl3) Δ: 1.22-1.40 (12H, m), 1.51-1.62 (4H, m), 2.41 (2H, m), 2.56 (2H, t, J = 8 Hz) 3.89 (3H, s), 7.10 (2H, d, J = 8 Hz), 7.23 (2H, d, J = 8 Hz).
(2) Synthesis of methyl 12-bromo-2,2-dichloro-12- (4-chlorophenyl) dodecanoate
  Crude methyl 2,2-dichloro-12- (4-chlorophenyl) dodecanoate (47.25 g, 120.0 mmol) was dissolved in 500 mL of carbon tetrachloride, and 22.42 g (126.0 mmol) of N-bromosuccinimide was dissolved. 2,2′-azoisobutyronitrile (39.4 mg, 0.24 mmol) was added, and the mixture was heated to reflux with stirring under an argon atmosphere for 1 hour. The reaction mixture was cooled, concentrated under reduced pressure, dissolved in 800 mL of ethyl acetate, washed with water (200 mL × 3), saturated brine (200 mL), and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain a crude target compound (57.35 g, quantitative) as a pale yellow oil.
1H-NMR (CDCl3) Δ: 1.22-1.62 (14H, m), 2.10 (1H, m), 2.24 (1H, m), 2.41 (2H, m), 3.89 (3H, s) ), 4.90 (1H, t, J = 7 Hz), 7.30 (2H, d, J = 9 Hz), 7.33 (2H, d, J = 9 Hz).
(3) Synthesis of methyl 2,2-dichloro-12- (4-chlorophenyl) -12-hydroxydodecanoate
  Crude methyl 12-bromo-2,2-dichloro-12- (4-chlorophenyl) dodecanoate (57.35 g, 120.0 mmol) was dissolved in a mixed solvent of 1000 mL of acetone and 200 mL of water. To this solution, 68.4 mL (132 mmol) of 40% aqueous silver perchlorate solution was added dropwise at room temperature over 10 minutes, and after completion of the addition, the solution was stirred at room temperature for 90 minutes. 200 mL of saturated brine was added to the reaction solution, and the mixture was stirred for 30 minutes. Acetone was distilled off from the filtrate under reduced pressure, and the insoluble matter was combined with a washing solution washed with 500 mL of ethyl acetate, and the organic layer was separated. The aqueous layer was further extracted with ethyl acetate (200 mL × 2), and then the organic layer was washed with water (200 mL) and saturated brine (200 mL). The obtained organic layer was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (eluent n-hexane / acetone = 8/1 to 2/1) to obtain the target compound (28.97 g, yield 58.9%) as a pale yellow oil.
1H-NMR (CDCl3) Δ: 1.22-1.44 (12H, m), 1.51-1.83 (4H, m), 2.40 (2H, m), 3.89 (3H, s), 4.65 (1H, br), 7.27 (2H, d, J = 6 Hz), 7.32 (2H, d, J = 6 Hz).
(4) Synthesis of 2,2-dichloro-12- (4-chlorophenyl) -12-hydroxydodecanoic acid
  Methyl 2,2-dichloro-12- (4-chlorophenyl) -12-hydroxydodecanoate (28.88 g, 70.48 mmol) was dissolved in 300 mL of methanol, and 2 mol / L lithium hydroxide aqueous solution (70.5 mL, 141 mmol) was dissolved. ) And stirred at room temperature for 1 hour. Methanol was distilled off from the reaction solution under reduced pressure, 200 mL of water was added, and 2 mol / L hydrochloric acid was added dropwise under ice cooling to make the solution acidic.
  To this mixture, 800 mL of a chloroform-methanol 10: 1 mixture was added to separate the organic layer, and the aqueous layer was further extracted with a chloroform-methanol 10: 1 mixture (200 mL × 3). The organic layer was washed with water (100 mL) and saturated brine (100 mL), dried over anhydrous sodium sulfate, and evaporated under reduced pressure to give a colorless oil. The oily substance was inoculated with seed crystals and further dried under reduced pressure with stirring to obtain 27.80 g of a crude target product as a white crystalline powder. This was recrystallized from a mixed solution of diethyl ether-n-hexane to obtain the target compound (16.00 g, yield 57.4%) as a white crystalline powder.
1H-NMR (CDCl3) Δ: 1.22-1.45 (12H, m), 1.57 (2H, m), 1.68 (1H, m), 1.78 (1H, m), 2.45 (2H, m) ), 4.03-5.01 (1H, br), 4.70 (1H, dd, J = 8, 6 Hz), 7.27 (2H, d, J = 9 Hz), 7.32 (2H, d) , J = 9 Hz).
Melting point: 62.2-63.5 ° C. (recrystallization solvent: diethyl ether-n-hexane)
Example 4
(1) Synthesis of methyl 2,2-dichloro-12- (4-chlorophenyl) -11-dodecenoate
  Methyl 2,2-dichloro-12- (4-chlorophenyl) -12-hydroxydodecanoate (8.89 g, 21.91 mmol) was dissolved in 300 mL of toluene, and p-toluenesulfonic acid monohydrate (1.67 g, 8.78 mmol) was added, and the mixture was stirred at 80 ° C. for 4 hours. The reaction mixture was washed with 200 mL of water and 10 mL of saturated aqueous sodium bicarbonate, and the aqueous layer was further extracted with 100 mL of ethyl acetate. The organic layers were combined, washed with saturated brine, dried over anhydrous sodium sulfate, and the extract was purified by silica gel column chromatography (eluent: ethyl acetate / n-hexane = 1/1). The solvent was distilled off under reduced pressure to obtain the target compound (8.38 g, yield 97.6%) as a yellow oil.
1H-NMR (CDCl3) Δ: 1.24-1.41 (8H, m), 1.42-1.51 (2H, m), 1.52-1.63 (2H, m), 2.14-2.25 ( 2H, m), 2.37-2.48 (2H, m), 3.89 (3H, s), 6.20 (1H, dt, J = 16, 7 Hz), 6.32 (1H, d, J = 16 Hz), 7.22-7.30 (4H, m).
(2) Synthesis of methyl 2,2-dichloro-12- (4-chlorophenyl) -11,12-epoxide dodecanoate
  Methyl 2,2-dichloro-12- (4-chlorophenyl) -11-dodecenoate (8.38 g, 21.39 mmol) was dissolved in 200 mL of chloroform, and 3-chloroperbenzoic acid (7.38 g, 42.77 mmol) was dissolved. The mixture was further stirred at room temperature for 2 hours. The reaction solution was washed with 200 mL of 5% sodium thiosulfate solution and 200 mL of saturated saline in this order, dried over anhydrous sodium sulfate, and then the solvent was distilled off under reduced pressure to obtain 12.24 g of a pale yellow crystal residue. The product was purified by silica gel column chromatography (eluent n-hexane / chloroform = 1/9) to obtain the target compound (8.30 g, yield 95.2%) as a colorless oil.
1H-NMR (CDCl3) Δ: 1.23-1.41 (8H, m), 1.42-1.62 (4H, m), 1.62-1.72 (2H, m), 2.36-2.46 ( 2H, m), 2.89 (1H, td, J = 6, 2 Hz), 3.58 (1H, d, J = 2 Hz), 3.89 (3H, s), 7.16-7.22 ( 2H, d, J = 9 Hz), 7.28-7.33 (2H, d, J = 9 Hz).
(3) Synthesis of methyl 2,2-dichloro-12- (4-chlorophenyl) -11-hydroxydodecanoate
  Methyl 2,2-dichloro-12- (4-chlorophenyl) -11,12-epoxydodecanoate (6.87 g, 16.85 mmol) was dissolved in 200 mL of ethyl acetate, and 10% palladium carbon catalyst (-12 ° C. at −12 ° C.) 1.37 g) was added, and the mixture was stirred for 1 hour at the same temperature in a hydrogen gas atmosphere. Palladium on carbon was filtered off and the filtrate was washed with 60 mL of ethyl acetate. The filtrate was distilled off under reduced pressure to obtain 6.89 g of a colorless oily residue. Purification by silica gel column chromatography (eluent n-hexane / ethyl acetate = 8/1 to 4/1) gave the target compound (6.27 g, yield 90.8%) as a colorless oil.
1H-NMR (CDCl3) Δ: 1.23-1.64 (14H, m), 2.36-2.46 (2H, m), 2.63 (1H, dd, J = 14, 8 Hz), 2.79 (1H, dd, J = 14, 4 Hz), 3.79 (1H, m), 3.89 (3H, s), 7.15 (2H, d, J = 8 Hz), 7.28 (2H, d, J = 8 Hz).
(4) Synthesis of 2,2-dichloro-12- (4-chlorophenyl) -11-hydroxydodecanoic acid
  Methyl 2,2-dichloro-12- (4-chlorophenyl) -11-hydroxydodecanoate (4.62 g, 11.27 mmol) was dissolved in 25 mL of methanol, and 2 mol / L lithium hydroxide solution (11.3 mL) was cooled with ice water. , 22.60 mmol) was added dropwise over about 5 minutes and stirred at the same temperature for 30 minutes. To the reaction solution, 75 mL of saturated saline was added, and the mixture was acidified by adding dropwise 15 mL of 2 mol / L hydrochloric acid while cooling with ice water, and extracted with chloroform (50 mL, 20 mL × 2). The organic layers were combined, washed with 100 mL of saturated brine, dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. To this residue, 100 mL of n-hexane was added, and the mixture was stirred and crystallized while cooling with ice water. The crystals were collected by filtration, washed with n-hexane and air-dried to obtain 4.41 g of colorless crystalline powder. The crystals were recrystallized from a mixed solution of ethyl acetate 5 mL-n-hexane 40 mL to obtain the target compound (4.01 g, yield 89.9%) as colorless micro needle crystals.
1H-NMR (CDCl3) Δ: 1.24-1.42 (10H, m), 1.42-1.65 (4H, m), 2.38-2.48 (2H, m), 2.67 (1H, dd, J = 14,8 Hz), 2.81 (1H, dd, J = 14, 4 Hz), 3.86 (1H, m), 7.15 (2H, d, J = 8 Hz), 7.27 (2H, d, J = 8 Hz).
Melting point: 84.1-85.8 ° C. (recrystallization solvent: ethyl acetate-n-hexane)
Example 5
(1) Synthesis of 3-benzoyloxy-10-bromo-1- (4-chlorophenyl) decane
  In the same manner as in Example 2 (2), 10-bromo-1- (4-chlorophenyl) -3-decanol (196 mg, 0.564 mmol) and benzoyl chloride (95 mg, 0.676 mmol) were used to obtain the target compound (211 mg, 82.8%) was obtained as a colorless oil.
1H-NMR (CDCl3) Δ: 1.24-1.80 (12H, m), 1.80-2.09 (2H, m), 2.57-2.76 (2H, m), 3.34 (2H, t, J = 7 Hz), 5.11-5.22 (1H, m), 7.09 (2H, d, J = 9 Hz), 7.21 (2H, d, J = 9 Hz), 7.44 (2H, t, J = 7 Hz), 7.56 (1H, t, J = 7 Hz), 8.02 (2H, d, J = 7 Hz).
(2) Synthesis of methyl 10-benzoyloxy-2,2-dichloro-12- (4-chlorophenyl) dodecanoate
  In the same manner as in Example 2 (3), from 3-benzoyloxy-10-bromo-1- (4-chlorophenyl) decane (116 mg, 0.257 mmol), the target compound (31.3 mg, yield 23.7%) Was obtained as a colorless oil.
1H-NMR (CDCl3) Δ: 1.15-1.82 (12H, m), 1.82-2.11 (2H, m), 2.3-2.44 (2H, m), 2.58-2.76 ( 2H, m), 3.88 (3H, s), 5.11-5.22 (1H, m), 7.10 (2H, d, J = 9 Hz), 7.22 (2H, d, J = 9 Hz), 7.45 (2H, t, J = 7 Hz), 7.57 (1H, t, J = 7 Hz), 8.02 (2H.d, J = 7 Hz).
(3) Optical resolution of methyl 10-benzoyloxy-2,2-dichloro-12- (4-chlorophenyl) dodecanoate
  By high performance liquid chromatography using an optically active column (column: Chiralcel OJ, manufactured by Daicel Chemical Industries, mobile phase n-hexane: 2-propanol 19: 1), 10-benzoyloxy-2,2-dichloro-12- (4 1.28 g of racemic methyl-chlorophenyl) dodecanoate was optically resolved.
  (A) Fractions containing only peak components having a short retention time were combined and concentrated under reduced pressure, and then purified again by flash column chromatography (eluent n-hexane / ethyl acetate = 20/1 to 10/1), (+) Methyl -10-benzoyloxy-2,2-dichloro-12- (4-chlorophenyl) dodecanoate (peak component having a short optically active column Chiralcel OJ retention time) (449 mg, yield 35.1%) as a colorless oil Obtained.
  Optical purity by HPLC area ratio:> 99% ee (Chiralcel OJ, mobile phase n-hexane: 2-propanol 19: 1)
  Specific rotation: [α]D 27= +8.23 (c 1.15, CHCl3)
  (B) Fractions containing only peak components with a long retention time were combined and concentrated under reduced pressure, and then purified again by flash column chromatography (eluent n-hexane / ethyl acetate = 20/1 to 10/1), (-) Methyl -10-benzoyloxy-2,2-dichloro-12- (4-chlorophenyl) dodecanoate (peak component having a long optically active column Chiralcel OJ retention time) (432 mg, yield 33.8%) as a colorless oil Obtained.
  Optical purity by HPLC area ratio:> 99% ee (Chiralcel OJ, mobile phase n-hexane: 2-propanol 19: 1)
  Specific rotation: [α]D 27= -8.06 (c 1.10, CHCl3)
(4) Synthesis of (+)-2,2-dichloro-12- (4-chlorophenyl) -10-hydroxydodecanoic acid
  (+)-10-benzoyloxy-2,2-dichloro-12- (4-chlorophenyl) dodecanoic acid methyl ester (optically active column Chiralcel OJ former component,> 99% ee) in the same manner as in Example 2 (4) ( The target compound (19.58 g, yield 57.5%) was obtained as a white crystalline powder from 44.2 g, 86.0 mmol).
  Melting point: 103.1-103.6 ° C. (recrystallization solvent: ethyl acetate-n-hexane)
1H-NMR (CDCl3) Δ: 1.26 to 1.63 (12H, m), 1.71-1.79 (2H, m), 2.38-2.47 (2H, m), 2.58-2.69 ( 1H, m), 2.70-2.80 (1H, m), 3.68 (1H, br), 7.12 (2H, d, J = 8 Hz), 7.24 (2H, d, J = 8 Hz).
  Optical purity by HPLC area ratio:> 99% ee (Chiralpak AD-RH, mobile phase acetonitrile: 5 mM H3PO4Buffer solution 70:30)
  Specific rotation: [α]D 23= +8.06 (c 5.00, CHCl3)
(5) Synthesis of (−)-2,2-dichloro-12- (4-chlorophenyl) -10-hydroxydodecanoic acid
  (-)-10-benzoyloxy-2,2-dichloro-12- (4-chlorophenyl) dodecanoic acid methyl ester (post-component of optically active column Chiralcel OJ,> 99% ee) in the same manner as (4) above (44) The target compound (20.59 g, yield 60.4%) was obtained as a white crystalline powder from 3 g, 86.2 mmol).
  Melting point: 103.0 to 103.7 ° C. (recrystallization solvent: ethyl acetate-n-hexane)
1H-NMR (CDCl3) Δ: 1.19-1.63 (12H, m), 1.68-1.85 (2H, m), 2.38-2.47 (2H, m), 2.58-2.68 ( 1H, m), 2.70-2.81 (1H, m), 3.68 (1H, br), 7.12 (2H, d, J = 9 Hz), 7.24 (2H, d, J = 9 Hz).
  Optical purity by HPLC area ratio:> 99% ee (Chiralpak AD-RH, mobile phase acetonitrile: 5 mM H3PO4Buffer solution 70:30)
  Specific rotation: [α]D 23= -8.02 (c 5.00, CHCl3)
Example 6
(1) Synthesis of 10-bromo-1- (4-chlorophenyl) -5-methoxymethoxydecane
  10-Bromo-1- (4-chlorophenyl) -5-decanol (14.51 g, 41.7 mmol) obtained in Example 1 (1) and diisopropylethylamine (10.78 g, 83.4 mmol) were dissolved in 200 mL of chloroform. The mixture was stirred under ice cooling. Chloromethyl methyl ether (5.04 g, 62.6 mmol) was added dropwise thereto, and the mixture was stirred for 1 hour under ice cooling, and further stirred at room temperature for 30 hours.
  Under cooling with ice water, 100 mL of 2 mol / L hydrochloric acid was slowly added and stirred, and then the organic layer was separated. After further extraction with chloroform (50 mL × 2) from the aqueous layer, the organic layers were combined, washed once with 50 mL of purified water, then once with 50 mL of saturated brine, dried over sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (eluent n-hexane / ethyl acetate = 20/1) to obtain the target compound (13.30 g, yield 81.4%) as a colorless oil.
  1H-NMR (CDCl3) Δ: 1.22-1.66 (12H, m), 1.86 (2H, quint., J = 7 Hz), 2.58 (2H, t, J = 8 Hz), 3.36 (3H, s) ), 3.41 (2H, t, J = 7 Hz), 3.52 (1H, quint., J = 7 Hz), 4.63 (2H, s), 7.09 (2H, d, J = 8 Hz) , 7.23 (2H, d, J = 8 Hz).
(2) Synthesis of methyl 2,2-dichloro-12- (4-chlorophenyl) -8-methoxymethoxydodecanoate
  In the same manner as in Example 1 (3), 10-bromo-1- (4-chlorophenyl) -5-methoxymethoxydecane (13.30 g, 33.95 mmol) and methyl dichloroacetate (19.42 g, 135.8 mmol) The target compound (4.02 g, yield 26.1%) was thus obtained as a colorless oil.
  1H-NMR (CDCl3) Δ: 1.25-1.64 (14H, m), 2.38-2.44 (2H, m), 2.58 (2H, t, J = 8 Hz), 3.36 (3H, s) , 3.51 (1H, quint., J = 6 Hz), 3.89 (3H, s), 4.63 (2H, s), 7.09 (2H, d, J = 9 Hz), 7.23 ( 2H, d, J = 9 Hz).
(3) Synthesis of methyl 2,2-dichloro-12- (4-chlorophenyl) -8-hydroxydodecanoate
  Methyl 2,2-dichloro-12- (4-chlorophenyl) -8-methoxymethoxydodecanoate (4.02 g, 8.86 mmol) was dissolved in 150 mL of methanol and stirred under ice cooling. Hydrochloric acid 0.2mL was added to this, and it stirred under ice-cooling for 15 minutes, and also stirred at room temperature for 20 hours.
  Chloroform 100mL and purified water 100mL were added to the residue which concentrated the reaction liquid under reduced pressure, and the organic layer was fractionated. After further extraction with chloroform (20 mL × 3) from the aqueous layer, the organic layers were combined, washed once with 50 mL of purified water, then once with 50 mL of saturated brine, dried over sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (eluent n-hexane / ethyl acetate = 10/1 to 5/1) to give the target compound (2.93 g, yield 80.7%) as a colorless oil. Obtained.
  1H-NMR (CDCl3) Δ: 1.22-1.51 (10H, m), 1.54-1.67 (4H, m), 2.39-2.45 (2H, m), 2.59 (2H, t, J = 8 Hz), 3.58 (1 H, m), 3.89 (3 H, s), 7.10 (2 H, d, J = 9 Hz), 7.24 (2 H, d, J = 9 Hz).
(4) Synthesis of methyl 2,2-dichloro-12- (4-chlorophenyl) -8-oxododecanoate
  Methyl 2,2-dichloro-12- (4-chlorophenyl) -8-hydroxydodecanoate (1.50 g, 3.66 mmol) was dissolved in 50 mL of methylene chloride and stirred under ice cooling. To this was slowly added pyridinium chlorochromate (PCC) (1.58 g, purity 98%, 7.33 mmol), followed by stirring for 30 minutes under ice cooling, and further stirring at room temperature for 3 hours.
Under cooling with water, the reaction solution was slowly added with 100 mL of diethyl ether and stirred for 10 minutes. This solution was directly subjected to silica gel column chromatography (eluent chloroform) to remove polar components, and then the solvent was distilled off under reduced pressure. The residue was further purified by silica gel flash column chromatography (eluent n-hexane / ethyl acetate = 20/1 to 10/1) to obtain the target compound (1.35 g, yield 90.4%) as a pale yellow oil. Obtained as a thing.
  1H-NMR (CDCl3) Δ: 1.35 (2H, quint., J = 8 Hz), 1.53-1.65 (8H, m), 2.36-2.44 (6H, m), 2.58 (2H, t) , J = 7 Hz), 3.89 (3H, s), 7.09 (2H, d, J = 8 Hz), 7.23 (2H, d, J = 8 Hz).
(5) Synthesis of 2,2-dichloro-12- (4-chlorophenyl) -8-oxododecanoic acid
  In the same manner as in Example 1 (4), the desired compound (1.15 g, yield 88) was obtained from methyl 2,2-dichloro-12- (4-chlorophenyl) -8-oxododecanoate (1.35 g, 3.31 mmol). 0.2%) as a white crystalline powder.
  Melting point: 48.8-49.7 ° C. (recrystallization solvent: diethyl ether-n-hexane)
1H-NMR (CDCl3) Δ: 1.37 (2H, quint., J = 8 Hz), 1.53-1.68 (8H, m), 2.38-2.46 (6H, m), 2.58 (2H, t) , J = 7 Hz), 7.09 (2H, d, J = 9 Hz), 7.23 (2H, d, J = 9 Hz).
Example 7
(1) Synthesis of 10-bromo-1- (4-chlorophenyl) -3-methoxymethoxydecane
  In the same manner as in Example 6 (1), 10-bromo-1- (4-chlorophenyl) -3-decanol (5.80 g, 16.7 mmol) obtained in Example 2 (1) and chloromethyl methyl ether (4 (0.44 g, 40.1 mmol) to give the target compound (5.73 g, yield 87.7%) as a colorless oil.
  1H-NMR (CDCl3): 1.25-1.60 (10H, m), 1.72-1.89 (4H, m), 2.61 (1H, m), 2.70 (1H, m), 3.40 (3H, s), 3.50-3.59 (3H, m), 4.65 (1H, d, J = 7 Hz), 4.68 (1H, d, J = 7 Hz), 7.12 (2H , D, J = 8 Hz), 7.24 (2H, d, J = 8 Hz).
(2) Synthesis of methyl 2,2-dichloro-12- (4-chlorophenyl) -10-methoxymethoxydodecanoate
  10-Bromo-1- (4-chlorophenyl) -3-methoxymethoxydecane (5.70 g, 14.6 mmol) and methyl dichloroacetate (6.23 g, 43.6 mmol) in the same manner as in Example 1 (3) The target compound (645 mg, yield 9.8%) was thus obtained as a pale yellow oil.
  1H-NMR (CDCl3) Δ: 1.23-1.79 (14H, m), 2.41 (2H, m), 2.61 (1H, m), 2.70 (1H, m), 3.40 (3H, s) ), 3.56 (1H, m), 3.89 (3H, s), 4.65 (1H, d, J = 7 Hz), 4.68 (1H, d, J = 7 Hz), 7.12 ( 2H, d, J = 8 Hz), 7.24 (2H, d, J = 8 Hz).
(3) Synthesis of methyl 2,2-dichloro-12- (4-chlorophenyl) -10-hydroxydodecanoate
  In the same manner as in Example 6 (3), methyl 2,2-dichloro-12- (4-chlorophenyl) -10-methoxymethoxydodecanoate (1.09 g, 2.40 mmol) was used to obtain the target compound (842 mg, yield 85. 6%) as a colorless oil.
  1H-NMR (CDCl3) Δ: 1.23-1.63 (12H, m), 1.64-1.82 (2H, m), 2.41 (2H, m), 2.64 (1H, m), 2.77 (1H, m), 3.60 (1H, m), 3.89 (3H, s), 7.13 (2H, d, J = 8 Hz), 7.24 (2H, d, J = 8 Hz).
(4) Synthesis of methyl 2,2-dichloro-12- (4-chlorophenyl) -10-oxododecanoate
  In the same manner as in Example 6 (4), the desired compound (749 mg, yield 89.6%) was obtained from methyl 2,2-dichloro-12- (4-chlorophenyl) -10-hydroxydodecanoate (840 mg, 2.05 mmol). Was obtained as a colorless oil.
  1H-NMR (CDCl3): 1.19-1.42 (6H, m), 1.49-1.61 (4H, m), 2.37 (2H, t, J = 8 Hz), 2.40 (2H, m) , 2.70 (2H, t, J = 8 Hz), 2.86 (2H, t, J = 8 Hz), 3.89 (3H, s), 7.12 (2H, d, J = 8 Hz), 7 .23 (2H, d, J = 8 Hz).
(5) Synthesis of 2,2-dichloro-12- (4-chlorophenyl) -10-oxododecanoic acid
  In the same manner as in Example 1 (4), the desired compound (567 mg, yield 79.9%) was obtained from methyl 2,2-dichloro-12- (4-chlorophenyl) -10-oxododecanoate (735 mg, 1.80 mmol). Was obtained as a pale yellow oil.
1H-NMR (CDCl3): 1.19-1.42 (6H, m), 1.47-1.65 (4H, m), 2.39 (2H, m), 2.43 (2H, m), 2.71 (2H, t, J = 8 Hz), 2.86 (2H, t, J = 8 Hz), 7.11 (2H, d, J = 8 Hz), 7.24 (2H, d, J = 8 Hz).
Example 8
(1) Synthesis of methyl 2,2-dichloro-12- (4-chlorophenyl) -11-oxododecanoate
  In the same manner as in Example 6 (4), the objective was obtained from methyl 2,2-dichloro-12- (4-chlorophenyl) -11-hydroxydodecanoate (5.06 g, 12.35 mmol) obtained in Example 4 (3). The compound (4.36 g, yield 86.6%) was obtained as a colorless oil.
  1H-NMR (CDCl3) Δ: 1.17-1.38 (8H, m), 1.49-1.61 (4H, m), 2.36-2.42 (2H, m), 2.44 (2H, t, J = 7 Hz), 3.65 (2H, s), 3.89 (3H, s), 7.13 (2H, d, J = 9 Hz), 7.30 (2H, d, J = 9 Hz).
(2) Synthesis of 2,2-dichloro-12- (4-chlorophenyl) -11-oxododecanoic acid
  In the same manner as in Example 1 (4), the target compound (3.90 g, yield 92) was obtained from methyl 2,2-dichloro-12- (4-chlorophenyl) -11-oxododecanoate (4.36 g, 10.69 mmol). .6%) was obtained as a white crystalline powder.
  Melting point: 56.8-57.8 ° C. (recrystallization solvent: diethyl ether-n-hexane)
1H-NMR (CDCl3): 1.18-1.40 (8H, m), 1.50-1.61 (4H, m), 2.40-2.45 (2H, m), 2.45 (2H, t, J = 8 Hz), 3.67 (2H, s), 7.13 (2H, d, J = 9 Hz), 7.30 (2H, d, J = 9 Hz).
Example 9
(1) Synthesis of methyl 2,2-dichloro-12- (4-chlorophenyl) -12-oxododecanoate
  In the same manner as in Example 6 (4), the objective was obtained from methyl 2,2-dichloro-12- (4-chlorophenyl) -12-hydroxydodecanoate (3.07 g, 7.49 mmol) obtained in Example 3 (3). The compound (2.87 g, yield 93.9%) was obtained as a white crystalline powder.
Melting point: 55.2-56.2 ° C. (recrystallization solvent: chloroform-n-hexane)
  1H-NMR (CDCl3) Δ: 1.28-1.41 (10H, m), 1.57 (2H, m), 1.72 (2H, m), 2.41 (2H, m), 2.93 (2H, t) , J = 8 Hz), 3.89 (3H, s), 7.43 (2H, d, J = 9 Hz), 7.90 (2H, d, J = 9 Hz).
(2) Synthesis of 2,2-dichloro-12- (4-chlorophenyl) -12-oxododecanoic acid
  In the same manner as in Example 1 (4), the desired compound (1.74 g, yield 65) was obtained from methyl 2,2-dichloro-12- (4-chlorophenyl) -12-oxododecanoate (2.75 g, 6.74 mmol). 0.5%) as a white crystalline powder.
  Melting point: 82.4-83.0 ° C. (recrystallization solvent: chloroform-n-hexane)
1H-NMR (CDCl3) Δ: 1.27-1.42 (10H, m), 1.60 (2H, m), 1.72 (2H, m), 2.45 (2H, m), 2.94 (2H, t) , J = 8 Hz), 7.44 (2H, d, J = 9 Hz), 7.91 (2H, d, J = 9 Hz).
Test example 1
  The in vivo plasma glucose, insulin, and triglyceride lowering effects of the compound A of the present invention and the above compound A and pioglitazone hydrochloride as a comparative compound were measured by the following methods (Metabolism, 48, pp34-40, 1999, Journal of Medical Chemistry, 44, pp2601-2611, 2001).
(1) Measuring method
  C57BL / KsJ db / db mice (Journal of Clinical Investigation, 85, developed at Jackson Laboratory (USA) and known as obesity, hyperlipidemia, hyperinsulinemia and insulin resistance model as test animals pp 962-967, 1990) was used.
  Blood was collected from the orbital venous plexus using 7-week-old db / db mice using heparinized capillaries, and plasma was collected after centrifugation, and the plasma glucose concentration, insulin concentration and triglyceride concentration were measured to perform grouping. The administration of the compound was started from the day after blood collection, and was orally administered once a day for 14 days. Blood was collected from the orbital venous plexus 2 hours after administration of the compound on day 14 after administration. Plasma was collected and plasma glucose concentration, insulin concentration and triglyceride concentration were measured.
  As for plasma glucose concentration, in order to clarify the efficacy ratio of the compound of the present invention and the comparative compound, a dose (ED) that decreases by 25% when the average value in vehicle administration is 100%.25) Was obtained and compared for each of the compounds of the present invention and the comparative compound (Arznimittel-Forschung, 40, pp156-162, 1990).
(2) Results
  Table 1 shows the plasma glucose, insulin, and triglyceride lowering activities of the compounds of the present invention and comparative compounds. From the results shown in Table 1, it can be seen that the compounds of the present invention show a plasma glucose, insulin, and triglyceride lowering action superior to those of Compound A and pioglitazone hydrochloride.
Figure 2004103946
  Since the compound of the present invention has an effect from a low dose, it is ED for plasma glucose lowering effect.25Values were calculated to compare doses of action. Table 2 shows the efficacy ratio of the plasma glucose lowering action of the compound of the present invention and the comparative compound as ED.25Summarized by value. Among the compounds of the present invention, the compound of Example 2 (4) is 0.6 mg / kg, the compound of Example 4 (4) is 1.1 mg / kg, and the compound of Example 5 (4) is 0.5 mg / kg. On the other hand, in compound A, it was 2.8 mg / kg. That is, the compound of the present invention showed an equivalent plasma glucose lowering effect at a dose of 1 / 2.5 to 1 / 5.6 of Compound A.
  From these results, it was found that a drug containing the compound of the present invention as an active ingredient can be expected to reduce side effects and avoid drug interactions in combination with other drugs.
Figure 2004103946

上記一般式(1)で表わされる化合物、その塩、及びそのエステルは、強力な血糖降下作用、血漿インスリン低下作用、及びトリグリセライド低下作用を有しており、体重増加や肥満を伴わずに、糖尿病、糖尿病合併症、高脂血症、及び動脈硬化症等の疾患の予防及び/又は治療を可能にする医薬の有効成分として有用である。  The compound represented by the above general formula (1), a salt thereof, and an ester thereof have a strong hypoglycemic action, a plasma insulin lowering action, and a triglyceride lowering action. Diabetes mellitus is not accompanied by weight gain and obesity. It is useful as an active ingredient of a medicament that enables prevention and / or treatment of diseases such as diabetic complications, hyperlipidemia, and arteriosclerosis.

Claims (6)

次の一般式(1):
Figure 2004103946
[式中、mは0から4の整数を示し、nは5から9の整数を示し、Wは−CH(OR)−(Rは水素原子又は水酸基の保護基を示す)又は−C(=O)−を示す]で表される化合物、その塩、又はそのエステル。
The following general formula (1):
Figure 2004103946
[Wherein, m represents an integer of 0 to 4, n represents an integer of 5 to 9, W represents —CH (OR) — (R represents a hydrogen atom or a hydroxyl-protecting group) or —C (= A compound represented by O)-, a salt thereof, or an ester thereof.
n+mが9である請求の範囲第1項に記載の化合物、その塩、又はそのエステル。The compound according to claim 1, wherein n + m is 9, a salt thereof, or an ester thereof. 2,2−ジクロロ−12−(4−クロロフェニル)−10−ヒドロキシドデカン酸及び2,2−ジクロロ−12−(4−クロロフェニル)−11−ヒドロキシドデカン酸からなる群から選ばれる化合物、その塩、又はそのエステル。A compound selected from the group consisting of 2,2-dichloro-12- (4-chlorophenyl) -10-hydroxydodecanoic acid and 2,2-dichloro-12- (4-chlorophenyl) -11-hydroxydodecanoic acid, a salt thereof, Or its esters. 請求の範囲第1項に記載の一般式(1)[式中、mは0から4の整数を示し、nは5から9の整数を示し、Wは−CH(OR)−(Rは水素原子又は水酸基の保護基を示す)又は−C(=O)−を示す]で表わされる化合物、生理学的に許容されるその塩、及び生理学的に許容されるそのエステルからなる群から選ばれる物質を有効成分として含む医薬。The general formula (1) according to claim 1, wherein m represents an integer of 0 to 4, n represents an integer of 5 to 9, and W represents -CH (OR)-(R represents hydrogen. A compound selected from the group consisting of: a compound represented by the formula: a protective group for an atom or a hydroxyl group] or -C (= O)-; a physiologically acceptable salt thereof; A pharmaceutical comprising as an active ingredient. 高脂血症、動脈硬化症、糖尿病、糖尿病合併症、炎症、及び心疾患からなる群から選ばれる疾患の予防及び/又は治療のための請求の範囲第4項に記載の医薬。The medicament according to claim 4, for preventing and / or treating a disease selected from the group consisting of hyperlipidemia, arteriosclerosis, diabetes, diabetic complications, inflammation, and heart disease. さらに薬学的に許容される担体を含む医薬組成物の形態の請求の範囲第4項又は第5項に記載の医薬。Furthermore, the pharmaceutical of Claim 4 or 5 of the form of the pharmaceutical composition containing a pharmaceutically acceptable carrier.
JP2005506421A 2003-05-23 2004-05-21 Carboxylic acid compound and pharmaceutical containing the same Withdrawn JPWO2004103946A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US47273703P 2003-05-23 2003-05-23
US60/472,737 2003-05-23
JP2003154372 2003-05-30
JP2003154372 2003-05-30
PCT/JP2004/007316 WO2004103946A1 (en) 2003-05-23 2004-05-21 Carboxylic acid compound and medicine containing the same

Publications (1)

Publication Number Publication Date
JPWO2004103946A1 true JPWO2004103946A1 (en) 2006-07-20

Family

ID=57798127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005506421A Withdrawn JPWO2004103946A1 (en) 2003-05-23 2004-05-21 Carboxylic acid compound and pharmaceutical containing the same

Country Status (2)

Country Link
JP (1) JPWO2004103946A1 (en)
TW (1) TW200503681A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116332765B (en) * 2023-05-12 2023-08-04 江西省药品检验检测研究院 Alkanoate compound and preparation method and application thereof

Also Published As

Publication number Publication date
TW200503681A (en) 2005-02-01

Similar Documents

Publication Publication Date Title
US8017786B2 (en) Substituted β-phenyl-α-hydroxy-propanoic acid, synthesis method and use thereof
KR101127390B1 (en) Compounds for the treatment of metabolic disorders
US11434205B2 (en) Substituted imidazole carboxylate derivatives and the use thereof
JP2009007258A (en) 3-anilino-2-cycloalkenone derivative having inhibitory action on production of pai-1
JPH07108881B2 (en) Valproic acid or (E) -2-valproic acid derivative, method for producing them and antiepileptic agent or anticonvulsant containing them
JPH10182583A (en) New hydroxamic acid derivative
JP2911239B2 (en) Di- and tetra-fluoro analogs of squalene as inhibitors of squalene epoxidase
DE3811120A1 (en) NEOPENTYL ESTER DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE AS MEDICINAL PRODUCTS
US4496578A (en) Antihypertensive sulfur-containing compounds
JPS5916881A (en) Blood sugar lowering alicyclically substituted oxazolidin-2,4-dione
FR2580632A1 (en) CYCLOPENTILIC ETHERS, THEIR PHARMACEUTICAL PREPARATION AND FORMULATION CONTAINING THEM
LU83183A1 (en) NOVEL CLASS OF ACYLATED CARNITINE DERIVATIVES, THEIR PREPARATION PROCESS AND THEIR THERAPEUTIC USE
US7109242B2 (en) Carboxylic compound and medicine comprising the same
EP1627866B1 (en) Carboxylic acid compound and medicine containing the same
JPWO2004103946A1 (en) Carboxylic acid compound and pharmaceutical containing the same
JP2539734B2 (en) Phenylalkanoate
HU204834B (en) Process for producing new thienopyran derivative
US20230026724A1 (en) Substituted nitrogen heterocyclic compound and anesthetic effect thereof
CN109796455B (en) Salt of aminopyrane derivative, crystal form of salt, preparation method and application of salt
FR2534577A1 (en) NAPHTHALENECARBOXAMIDES, PROCESS FOR THEIR PREPARATION AND USE
JP2790335B2 (en) Conjugated γ-oxybutenolide compound and anti-ulcer agent containing the same as active ingredient
CZ239496A3 (en) Substituted 4h-pyrans, process of their preparation, their use and pharmaceutical composition containing thereof
JP2686879B2 (en) Novel itaconic acid derivative
JP3179896B2 (en) New succinic acid derivatives
JP3179897B2 (en) New succinic acid derivatives

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090313