JPWO2004072649A1 - Reagent for superoxide anion analysis - Google Patents

Reagent for superoxide anion analysis Download PDF

Info

Publication number
JPWO2004072649A1
JPWO2004072649A1 JP2004568194A JP2004568194A JPWO2004072649A1 JP WO2004072649 A1 JPWO2004072649 A1 JP WO2004072649A1 JP 2004568194 A JP2004568194 A JP 2004568194A JP 2004568194 A JP2004568194 A JP 2004568194A JP WO2004072649 A1 JPWO2004072649 A1 JP WO2004072649A1
Authority
JP
Japan
Prior art keywords
group
molecule
compound
superoxide anion
cyclodextrin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004568194A
Other languages
Japanese (ja)
Other versions
JP4203667B2 (en
Inventor
寺西 克倫
克倫 寺西
Original Assignee
株式会社三重ティーエルオー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三重ティーエルオー filed Critical 株式会社三重ティーエルオー
Publication of JPWO2004072649A1 publication Critical patent/JPWO2004072649A1/en
Application granted granted Critical
Publication of JP4203667B2 publication Critical patent/JP4203667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof

Abstract

従来技術の問題点を解消し、高い検出感度、長波長領域での発光、タンパク質・脂質や糖鎖等の成分による発光に対する影響の低減化、水溶性の向上、高い精度での分析等の特性を有するスーパーオキシドアニオンを検出するためのスーパーオキシドアニオン分析用試薬とその製造法およびそれを用いたスーパーオキシドアニオンの分析方法を提供することを目的とする。シクロデキストリン分子にフルオレセイン分子およびイミダゾ[1,2−a]ピラジン−3(7H)−オン分子が共に共有結合した化合物によって、上記目的を達成することができる。Eliminates the problems of the conventional technology, and features high detection sensitivity, light emission in the long wavelength range, reduced influence on light emission by components such as proteins, lipids and sugar chains, improved water solubility, and analysis with high accuracy It is an object of the present invention to provide a reagent for analyzing a superoxide anion for detecting a superoxide anion having a salt, a method for producing the same, and a method for analyzing a superoxide anion using the same. The above object can be achieved by a compound in which a fluorescein molecule and an imidazo [1,2-a] pyrazin-3 (7H) -one molecule are covalently bonded to a cyclodextrin molecule.

Description

本発明は、スーパーオキシドアニオンの分析に関するものである。さらに詳しくは、本発明は、シクロデキストリン分子に、発光試薬(例えば、フルオレセイン分子およびイミダゾ[1,2−a]ピラジン−3(7H)−オン分子)が共に共有結合した化合物を有効成分として含有するスーパーオキシドアニオン分析用試薬とその製造法およびそれを用いたスーパーオキシドアニオンの分析方法に関するものである。  The present invention relates to the analysis of superoxide anions. More specifically, the present invention contains, as an active ingredient, a compound in which a luminescent reagent (for example, a fluorescein molecule and an imidazo [1,2-a] pyrazin-3 (7H) -one molecule) is covalently bonded to a cyclodextrin molecule. The present invention relates to a reagent for analyzing superoxide anion, a method for producing the same, and a method for analyzing superoxide anion using the same.

スーパーオキシドアニオンは活性酸素の一種であり、生体での解毒活性をはじめとする生理活性作用を有している。一方、過剰なスーパーオキシドアニオンは正常な部位を破壊するため、癌化や老化を招く。このような機能を持つスーパーオキシドアニオンの生体での分析は重要であり、これまでに比色法、蛍光法、ESR法が用いられてきた。しかし、これらの方法は、感度が低いことに加え、被検体を破壊して分析するため好ましい分析法とはいえない。これに対し、近年になって開発されてきた発光法は、感度がよく、かつ被検体を非破壊的に分析することができる。
発光法に用いられる発光試薬としては、2−メチル−6−フェニルイミダゾ[1,2−a]ピラジン−3(7H)−オン(CLA:下図化合物A)、2−メチル−6−(4−メトキシフェニル)イミダゾ[1,2−a]ピラジン−3(7H)−オン(MCLA:下図化合物B)、3,7−ジヒドロ−6−[4−[2−[N’(5−フルオレセイニル)チオウレイド]−エトキシ]フェニル]−2−メチルイミダゾ[1,2−a]ピラジン−3(7H)−オン(FCLA:下図化合物C)が知られている(例えば東京化成工業株式会社/東京化成販売株式会社)。

Figure 2004072649
CLAの最大発光波長は約380−410nmであり、MCLAの最大発光波長は約420−460nmであり、FCLAの最大発光波長は約520−540nmである。生体のスーパーオキシドアニオン分析では他の成分の影響が少ない方が望ましいことから、より長波長域での発光が望まれる。このため、長波長域の発光を示すFCLAがよいとされる。また、CLA、MCLA、およびFCLAのうち、発光強度はMCLAがもっとも強く、生体のスーパーオキシドアニオン分析では発光強度が高い方が望ましいことから、発光強度の点ではMCLAがよいとされる。従って、MCLAとFCLAの両化合物の良い特性を兼ね備えた、すなわち、高い発光強度を有し、かつ発光波長が長波長領域であるという特性を有した発光分析試薬の創製が望まれる。更に好ましくは、MCLAおよびFCLAよりも発光強度が高く、しかも、さらなる長波長領域(例えば、オレンジ色や赤色の発光)での発光を示す発光試薬が望まれる。また、CLA、MCLA、FCLAの発光は、生体中のタンパク質、脂質や糖鎖等の成分による影響を受けやすいため、スーパーオキシドアニオンの分析精度が低いと言う問題がある。また、CLA、MCLA、FCLAは水溶性が低いために、被検体系への注入が困難であり、加えて細胞表面等への吸着が生じ易く有効に作用できずに発光性能が低下するという問題がある。
本発明は、以上のとおりの事情に鑑みてなされたものであり、その目的は、従来技術の問題点を解消し、高い検出感度、長波長領域での発光、タンパク質・脂質や糖鎖等の成分による発光に対する影響の低減化、水溶性の向上、高い精度での分析等の特性を有するスーパーオキシドアニオンを検出するためのスーパーオキシドアニオン分析用試薬とその製造法およびそれを用いたスーパーオキシドアニオンの分析方法を提供することである。Superoxide anion is a kind of active oxygen and has physiological activity such as detoxification activity in living body. On the other hand, excessive superoxide anion destroys normal sites, leading to canceration and aging. In vivo analysis of superoxide anions having such functions is important, and colorimetric methods, fluorescent methods, and ESR methods have been used so far. However, these methods are not preferable analysis methods because they are analyzed by destroying a specimen in addition to low sensitivity. On the other hand, the luminescence method that has been developed in recent years has a high sensitivity and can analyze a specimen nondestructively.
As the luminescent reagent used in the luminescence method, 2-methyl-6-phenylimidazo [1,2-a] pyrazin-3 (7H) -one (CLA: Compound A in the figure below), 2-methyl-6- (4- Methoxyphenyl) imidazo [1,2-a] pyrazin-3 (7H) -one (MCLA: lower compound B), 3,7-dihydro-6- [4- [2- [N ′ (5-fluoresceinyl) thioureido ] -Ethoxy] phenyl] -2-methylimidazo [1,2-a] pyrazin-3 (7H) -one (FCLA: Compound C shown below) is known (for example, Tokyo Chemical Industry Co., Ltd./Tokyo Chemical Sales Co., Ltd.) Company).
Figure 2004072649
The maximum emission wavelength of CLA is about 380-410 nm, the maximum emission wavelength of MCLA is about 420-460 nm, and the maximum emission wavelength of FCLA is about 520-540 nm. In the superoxide anion analysis of a living body, it is desirable that the influence of other components is small, and therefore light emission in a longer wavelength region is desired. For this reason, the FCLA showing light emission in the long wavelength region is considered good. In addition, among CLA, MCLA, and FCLA, MCLA has the strongest emission intensity, and it is desirable that the emission intensity is high in the superoxide anion analysis of a living body. Therefore, it is desired to create a luminescence analysis reagent having the good characteristics of both the MCLA and FCLA compounds, that is, having a high emission intensity and a characteristic that the emission wavelength is in the long wavelength region. More preferably, a luminescent reagent that has higher luminescence intensity than MCLA and FCLA and that emits light in a longer wavelength region (for example, orange or red light emission) is desired. In addition, the light emission of CLA, MCLA, and FCLA is easily affected by components such as proteins, lipids, and sugar chains in the living body, so that there is a problem that the analysis accuracy of the superoxide anion is low. In addition, since CLA, MCLA, and FCLA are low in water solubility, it is difficult to inject them into the subject system, and in addition, they are easily adsorbed on the cell surface, etc., and cannot effectively function, resulting in a decrease in luminous performance. There is.
The present invention has been made in view of the circumstances as described above, and its purpose is to solve the problems of the prior art, such as high detection sensitivity, light emission in a long wavelength region, protein / lipid, sugar chain, etc. Reagent for superoxide anion analysis for detecting superoxide anion having characteristics such as reduction of luminescence by components, improvement of water solubility, analysis with high accuracy, and its production method, and superoxide anion using the same It is to provide an analysis method.

本発明者は、鋭意研究の結果、上記の課題を解決するものとして、第一の発明は、第1図に示す化合物(13)及び(14)(但し、Mは5〜14の整数、nは0〜(M−1)の整数、R〜R、及びR〜R13は、HまたはC〜C20のアルキル基、アルケニル基、アルキニル基、フェニル基、ヒドロキシル基、アルキルヒドロキシル基、ベンジル基、アリール基、ハロゲン基、ニトロ基、シアノ基、スルホニル基、カルボニル基、アミノ基、ナフチル基、インドリル基のうちの一つであり、XおよびYは、0〜20の整数、Rは、0〜4個の置換度によるフェニル環である)を有効成分として含有することを特徴とするスーパーオキシドアニオン分析用試薬である。この化合物は、一つのシクロデキストリン分子内に、スーパーオキシドと反応する分子と、そこで生じたエネルギーを受け取って発光する分子との両分子を含むものであり、スーパーオキシドアニオンを良好に分析することができる。
なお、シクロデキストリンとは、D−グルコピラノースがα1→4結合した非還元性の環状オリゴ糖であり、グルコピラノース6分子、7分子、8分子からなるものをそれぞれα−、β−、γ−シクロデキストリンと称する。本発明のシクロデキストリンとしては、これらα〜γ−シクロデキストリンの他に、グルコピラノースが9分子〜15分子結合した環状性のオリゴ糖を用いることができるが、好ましくは、グルコピラノースが6分子〜8分子のα−、β−、γ−シクロデキストリンであり、更に好ましくはγ−シクロデキストリンである。
また、第二の発明は、少なくとも、シクロデキストリン分子にフルオレセイン分子およびイミダゾ[1,2−a]ピラジン−3(7H)−オン分子が共に共有結合した化合物を有効成分として含有することを特徴とするスーパーオキシドアニオン分析用試薬であり、その化合物は、第2図の式(15)及び(16)(ただし、Mは5〜7の整数、nは0〜(M−1)の整数である)で表されるシクロデキストリン分子にフルオレセイン分子およびイミダゾ[1,2−a]ピラジン−3(7H)−オン分子が共に共有結合した化合物であることが好ましい。このうち、好ましくは、M=7であるとき、すなわちγ−シクロデキストリン分子にフルオレセイン分子およびイミダゾ[1,2−a]ピラジン−3(7H)−オン分子が共に共有結合した化合物を有効成分として含有するスーパーオキシドアニオン分析用試薬である。
また、第三の発明は、シクロデキストリン分子にフルオレセイン分子およびイミダゾ[1,2−a]ピラジン−3(7H)−オン分子が共に共有結合した化合物(15)及び(16)の製造方法を提供する。
第四の発明は、前記のスーパーオキシドアニオン分析用試薬を検体溶液と接触させた後、発光強度を測定することを特徴とするスーパーオキシドアニオンの分析方法を提供する。
本発明によれば、スーパーオキシドアニオンの分析を簡便かつ精度高く行なうためのスーパーオキシドアニオン分析用試薬、及びその製造法さらには分析方法が提供される。この発明のスーパーオキシドアニオン分析用試薬は、水溶性であり、スーパーオキシドアニオンと反応して高い発光強度を示す。また、最大発光波長約530nmであることから、他成分の影響が少なく、効率的なスーパーオキシドアニオンの分析が可能となる。
As a result of diligent research, the inventor of the present invention has solved the above-mentioned problems. The first invention is the compounds (13) and (14) shown in FIG. 1 (where M is an integer of 5 to 14, n Is an integer of 0 to (M-1), R 1 to R 3 , and R 5 to R 13 are H or C 1 to C 20 alkyl group, alkenyl group, alkynyl group, phenyl group, hydroxyl group, alkyl hydroxyl group Group, benzyl group, aryl group, halogen group, nitro group, cyano group, sulfonyl group, carbonyl group, amino group, naphthyl group, indolyl group, and X and Y are integers of 0 to 20, R 4 is a phenyl oxide ring having 0 to 4 substitution degrees) as an active ingredient. This compound contains both a molecule that reacts with superoxide and a molecule that emits light upon receiving the energy generated in one cyclodextrin molecule, and it can analyze the superoxide anion well. it can.
Cyclodextrin is a non-reducing cyclic oligosaccharide in which D-glucopyranose is linked by α1 → 4, and is composed of 6 molecules, 7 molecules, and 8 molecules of glucopyranose, α-, β-, γ-, respectively. It is called cyclodextrin. As the cyclodextrin of the present invention, in addition to these α to γ-cyclodextrins, cyclic oligosaccharides in which 9 to 15 molecules of glucopyranose are bonded can be used. Preferably, 6 to 6 molecules of glucopyranose are used. Eight molecules of α-, β-, and γ-cyclodextrin are preferable, and γ-cyclodextrin is more preferable.
The second invention is characterized in that it contains at least a compound in which a fluorescein molecule and an imidazo [1,2-a] pyrazin-3 (7H) -one molecule are covalently bonded to a cyclodextrin molecule as an active ingredient. The superoxide anion analysis reagent is represented by the formulas (15) and (16) in FIG. 2 (where M is an integer of 5 to 7, and n is an integer of 0 to (M-1)). ) Is preferably a compound in which a fluorescein molecule and an imidazo [1,2-a] pyrazin-3 (7H) -one molecule are both covalently bonded to a cyclodextrin molecule represented by Among these, preferably, when M = 7, that is, a compound in which a fluorescein molecule and an imidazo [1,2-a] pyrazin-3 (7H) -one molecule are both covalently bonded to a γ-cyclodextrin molecule as an active ingredient It is a reagent for analyzing superoxide anion.
The third invention provides a method for producing compounds (15) and (16) in which a fluorescein molecule and an imidazo [1,2-a] pyrazin-3 (7H) -one molecule are covalently bonded to a cyclodextrin molecule. To do.
The fourth invention provides a method for analyzing superoxide anion, characterized in that the luminescence intensity is measured after contacting the reagent for analyzing superoxide anion with a sample solution.
According to the present invention, there are provided a superoxide anion analysis reagent for easily and accurately analyzing a superoxide anion, a production method thereof, and an analysis method. The reagent for analyzing superoxide anion of the present invention is water-soluble and reacts with the superoxide anion to show high emission intensity. In addition, since the maximum emission wavelength is about 530 nm, the influence of other components is small and efficient analysis of the superoxide anion becomes possible.

第1図は、本発明に係る化合物(13)及び(14)を示す化学構造式である。
第2図は、本発明に係る化合物(15)及び(16)を示す化学構造式である。
また、第3図は、化合物(15)及び(16)において、M=7のときの化合物(1)及び(2)を製造する手順を説明したものである。
FIG. 1 is a chemical structural formula showing compounds (13) and (14) according to the present invention.
FIG. 2 is a chemical structural formula showing compounds (15) and (16) according to the present invention.
FIG. 3 illustrates the procedure for producing compounds (1) and (2) when M = 7 in compounds (15) and (16).

発明者は、これまで、シクロデキストリンにMCLAを共有結合させた化合物の合成やその発光反応について報告している(例えば、Carbohydr.Rese.,306,177−187(1998).Luminescence,14,303−314(1999).特開平10−77286)。
発明者は、これらの知見をもとに鋭意研究を進めた結果、シクロデキストリン分子にスーパーオキシドアニオンと反応する分子(例えば、イミダゾ[1,2−a]ピラジン−3(7H)−オン分子、又はその誘導体)、およびその物質からのエネルギーを受け取って発光する分子(例えば、フルオレセイン分子、又はその誘導体)が共有結合した化合物を発光剤として用いることにより、検体中のスーパーオキシドアニオンを検出できることを見い出し、本発明に至ったものである。
本発明のスーパーオキシドアニオン分析用試薬は、少なくともシクロデキストリン分子にイミダゾ[1,2−a]ピラジン−3(7H)−オン分子およびフルオレセイン分子が共有結合した化合物を含有することを特徴とするものである。
具体的には、本発明のスーパーオキシドアニオン分析用試薬に用いられるシクロデキストリン分子にイミダゾ[1,2−a]ピラジン−3(7H)−オン分子およびフルオレセイン分子が共有結合した化合物は、図1の式(1)および(2)のものが好ましく例示される。
本発明のスーパーオキシドアニオン分析用試薬は、水溶性であり、スーパーオキシドアニオンと反応して最大発光波長が約530nmの緑色の発光を示し、かつ、MCLAおよびFCLAよりも高い発光強度を示し(FCLAの約100倍の発光強度)、さらには、タンパク質や脂質などの生体成分の影響を受けにくいため、有効成分として好ましい。
本発明においてスーパーオキシドアニオン分析用試薬の有効成分として使用されるシクロデキストリン分子にフルオレセイン分子およびイミダゾ[1,2−a]ピラジン−3(7H)−オン分子が共に共有結合した化合物は、以上のとおりのものであり、その製造法を提供する。例えば、第3図に示した以下の方法がある。既知の方法(例えば、特開平10−77303、Biosci.Biotech.Biochem.,1998、62,1249−1252)より合成されるモノ−2−O−トシル−γ−CDのアルカリ処理により得られた既知物質モノマンノエポキシ−γ−シクロデキストリン(Bull.Chem.Soc.Jpn.,1990,63,1409−1414)をピリジン中でm−ニトロベンゼンスルホニルクロリドと反応させ、6位水酸基にニトロベンゼンスルホニル基を結合させた新規化合物3および4を得る。本化合物には8個の異性体が存在するがこれら8個の異性体の分離を行なわず8個の異性体の混合物すなわち化合物3および4の混合物として以後の反応を進める。6−O−ニトロベンゼンスルホニル−γ−シクロデキストリン(3及び4)をDMF中、アジ化ナトリウムと反応させ、6位にアジド基を導入し新規化合物(5)および化合物(6)を合成する。次に接触水素添加によりアジド基を還元し新規化合物(7)および化合物(8)の混合体を得る。次に化合物(7)および化合物(8)の混合体をフルオレセインイソチオシアナートと反応させ、新規化合物(9)および化合物(10)の混合体を得る。続いて化合物(9)および化合物(10)の混合体をアンモニア水と反応させることによりエポキシを開環し、3位にアミノ基を導入した新規化合物(11)および化合物(12)の混合体を得る。続いて化合物(11)および化合物(12)の混合体をMCLA−COOHとアミド結合させ、目的とする新規化合物(1)および化合物(2)の混合体を得る。もちろんこれ以外の方法によって合成されるものであってもよく、上記例によって、限定されるものではない。
さらに、本発明のスーパーオキシドアニオン分析用試薬は、以上のとおりのシクロデキストリン分子にフルオレセイン分子およびイミダゾ[1,2−a]ピラジン−3(7H)−オン分子が共に共有結合した化合物を有効成分とするものであれば、その他の物質、例えば、溶剤、緩衝剤、安定剤、界面活性剤などを含有していてもよい。
そして、本発明は、以上の通りのスーパーオキシドアニオン分析用試薬を用いてスーパーオキシドアニオンを検出する方法をも提供する。すなわち、本発明のスーパーオキシドアニオン分析用試薬を検体溶液に添加、混合するなどして接触させ、シクロデキストリン分子にイミダゾ[1,2−a]ピラジン−3(7H)−オン分子およびフルオレセイン分子が共有結合した化合物によって発せられる光の強さを測定することによりスーパーオキシドアニオンを簡便に分析することが可能となるのである。
この時、添加するスーパーオキシドアニオン分析試薬の量等の分析条件は特に限定されない。具体的には、スーパーオキシドアニオン分析試薬の濃度は、分析系に影響を与えない程度であればよい。また、スーパーオキシドアニオン分析は、被検体に影響を与えない温度範囲で行なえばよい。例えば、一般に生体を被検体とし、水溶液中で分析を行なう場合には、約10−40℃の温度範囲が好ましく例示される。
本発明のスーパーオキシドアニオンの分析方法において用いられるスーパーオキシドアニオン分析試薬の有効成分であるシクロデキストリン分子にフルオレセイン分子およびイミダゾ[1,2−a]ピラジン−3(7H)−オン分子が共に共有結合した化合物は、水溶性であるため血液や血清、あるいは細胞培養液等にも溶解できる上、タンパク質や脂質、糖の存在においてもその発光反応に影響を与えない。また、発光波長は、最大波長約530nmであるため他成分の影響が小さい。さらに、発光強度がCLA,MCLA,FCLAに比べて非常に高い。従って、このようなシクロデキストリン分子にフルオレセイン分子およびイミダゾ[1,2−a]ピラジン−3(7H)−オン分子が共に共有結合した化合物は、従来のCLA,MCLA,FCLAなどのスーパーオキシドアニオン分析用試薬に比べ、高い精度でのスーパーオキシドアニオンの分析を可能とする。
以下、実施例を示し、この発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の例に限定されるものではなく、その要旨を変更しない範囲内で様々な態様で実施することが可能である。加えて、本発明の技術的範囲は、いわゆる均等の範囲にまで及ぶものである。
The inventor has so far reported the synthesis of a compound in which MCLA is covalently bonded to cyclodextrin and the luminescence reaction thereof (for example, Carbohydr. Res., 306, 177-187 (1998). Luminescence, 14, 303). -314 (1999), JP-A-10-77286).
The inventor has conducted extensive research based on these findings, and as a result, the cyclodextrin molecule reacts with a superoxide anion (for example, an imidazo [1,2-a] pyrazin-3 (7H) -one molecule, Or a derivative thereof) and a compound in which a molecule that receives light from the substance and emits light (for example, a fluorescein molecule or a derivative thereof) is covalently bonded, can be used to detect a superoxide anion in a specimen. The present invention has been found and led to the present invention.
The reagent for analyzing superoxide anion according to the present invention contains at least a compound in which an imidazo [1,2-a] pyrazin-3 (7H) -one molecule and a fluorescein molecule are covalently bonded to a cyclodextrin molecule. It is.
Specifically, a compound in which an imidazo [1,2-a] pyrazin-3 (7H) -one molecule and a fluorescein molecule are covalently bonded to the cyclodextrin molecule used in the reagent for analyzing superoxide anion of the present invention is shown in FIG. The formulas (1) and (2) are preferably exemplified.
The reagent for analyzing superoxide anion of the present invention is water-soluble, reacts with the superoxide anion, emits green light having a maximum emission wavelength of about 530 nm, and exhibits higher emission intensity than MCLA and FCLA (FCLA Is more preferable as an active ingredient because it is hardly affected by biological components such as proteins and lipids.
A compound in which a fluorescein molecule and an imidazo [1,2-a] pyrazin-3 (7H) -one molecule are both covalently bonded to a cyclodextrin molecule used as an active ingredient of a superoxide anion analysis reagent in the present invention is And provides a method for its manufacture. For example, there is the following method shown in FIG. Known obtained by alkaline treatment of mono-2-O-tosyl-γ-CD synthesized by a known method (for example, JP-A-10-77303, Biosci. Biotech. Biochem., 1998, 62, 1249-1252) The substance monomannoepoxy-γ-cyclodextrin (Bull. Chem. Soc. Jpn., 1990, 63, 1409-1414) is reacted with m-nitrobenzenesulfonyl chloride in pyridine to bond the nitrobenzenesulfonyl group to the 6-position hydroxyl group. New compounds 3 and 4 are obtained. Although the present compound has 8 isomers, these 8 isomers are not separated and the subsequent reaction proceeds as a mixture of 8 isomers, that is, a mixture of compounds 3 and 4. 6-O-nitrobenzenesulfonyl-γ-cyclodextrin (3 and 4) is reacted with sodium azide in DMF to introduce an azide group at the 6-position to synthesize novel compounds (5) and (6). Next, the azide group is reduced by catalytic hydrogenation to obtain a mixture of the new compound (7) and the compound (8). Next, the mixture of compound (7) and compound (8) is reacted with fluorescein isothiocyanate to obtain a mixture of novel compound (9) and compound (10). Subsequently, a mixture of the compound (9) and the compound (10) was reacted with aqueous ammonia to open the epoxy, and a mixture of the novel compound (11) and the compound (12) having an amino group introduced at the 3-position was obtained. obtain. Subsequently, the mixture of compound (11) and compound (12) is amide-bonded with MCLA-COOH to obtain the desired mixture of novel compound (1) and compound (2). Of course, it may be synthesized by other methods and is not limited by the above example.
Further, the reagent for analyzing superoxide anion of the present invention comprises a compound in which a fluorescein molecule and an imidazo [1,2-a] pyrazin-3 (7H) -one molecule are both covalently bound to the cyclodextrin molecule as described above as an active ingredient. In other words, other substances such as solvents, buffers, stabilizers, surfactants and the like may be contained.
And this invention also provides the method of detecting a superoxide anion using the reagent for a superoxide anion analysis as mentioned above. That is, the reagent for analyzing superoxide anion of the present invention is brought into contact with a sample solution by mixing, mixing, etc., and imidazo [1,2-a] pyrazin-3 (7H) -one molecule and fluorescein molecule are added to the cyclodextrin molecule. The superoxide anion can be easily analyzed by measuring the intensity of light emitted by the covalently bonded compound.
At this time, analysis conditions such as the amount of the superoxide anion analysis reagent to be added are not particularly limited. Specifically, the concentration of the superoxide anion analysis reagent may be a level that does not affect the analysis system. The superoxide anion analysis may be performed in a temperature range that does not affect the analyte. For example, in general, when a living body is a subject and analysis is performed in an aqueous solution, a temperature range of about 10 to 40 ° C. is preferably exemplified.
A fluorescein molecule and an imidazo [1,2-a] pyrazin-3 (7H) -one molecule are both covalently bonded to a cyclodextrin molecule which is an active ingredient of a superoxide anion analysis reagent used in the method for analyzing a superoxide anion of the present invention. These compounds are soluble in water, so that they can be dissolved in blood, serum, cell culture medium, etc., and the presence of proteins, lipids, and sugars does not affect the luminescence reaction. In addition, since the maximum emission wavelength is about 530 nm, the influence of other components is small. Furthermore, the emission intensity is very high compared to CLA, MCLA, and FCLA. Therefore, a compound in which a fluorescein molecule and an imidazo [1,2-a] pyrazin-3 (7H) -one molecule are covalently bonded to such a cyclodextrin molecule is analyzed by a conventional superoxide anion analysis such as CLA, MCLA, FCLA. This makes it possible to analyze the superoxide anion with higher accuracy than the reagents for use.
Hereinafter, examples will be shown, and the embodiments of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and can be implemented in various modes within the scope not changing the gist thereof. In addition, the technical scope of the present invention extends to a so-called equivalent range.

KCl(ナカライテスク株式会社製)(0.2M)、EDTA(SIGMA社製)(0.1mM)、3−モルホリノプロパンスルホン酸(MOPS、ナカライテスク株式会社製)(20mM)を含む緩衝水溶液(pH7.2、0.5ml)に25℃でヒポキサンチン(和光純薬工業株式会社製)水溶液(0.3mM、0.5ml)、化合物(1)および化合物(2)の混合水溶液(2.5x10−5M、40μl)およびキサンチンオキシダーゼ(SIGMA社製)水溶液(0.37unit/ml、40μl)を加え、アロカルミネッセンスリーダーBL201(アロカ社製)を用いて発光強度を測定した。発光はキサンチンオキシダーゼ水溶液の添加後、すぐに最高強度を示した。比較のため化合物(1)および(2)の混合物の代わりにMCLA(東京化成工業株式会社製)およびFCLA(東京化成工業株式会社製)を用いて同様にして実験を行なった。得られた相対発光強度の結果を表1に示した。Buffered aqueous solution (pH 7) containing KCl (Nacalai Tesque) (0.2M), EDTA (SIGMA) (0.1 mM), 3-morpholinopropanesulfonic acid (MOPS, Nacalai Tesque) (20 mM) .2, 0.5 ml) at 25 ° C. with a hypoxanthine (Wako Pure Chemical Industries, Ltd.) aqueous solution (0.3 mM, 0.5 ml), a mixed aqueous solution of compound (1) and compound (2) (2.5 × 10 − 5 M, 40 μl) and xanthine oxidase (manufactured by SIGMA) aqueous solution (0.37 unit / ml, 40 μl) were added, and the luminescence intensity was measured using Aloka luminescence reader BL201 (manufactured by Aloka). Luminescence showed the highest intensity immediately after addition of the xanthine oxidase aqueous solution. For comparison, experiments were conducted in the same manner using MCLA (manufactured by Tokyo Chemical Industry Co., Ltd.) and FCLA (manufactured by Tokyo Chemical Industry Co., Ltd.) instead of the mixture of compounds (1) and (2). The results of the relative light emission intensity obtained are shown in Table 1.

KCl(0.2M)、EDTA(0.1mM)、3−モルホリノプロパンスルホン酸(MOPS)(20mM)を含む緩衝水溶液(pH7.2、0.5ml)に25℃でヘキサデシルトリメチルアンモニウムブロミド(CTAB:ナカライテスク株式会社製)水溶液(0.5%、50μl)、ヒポキサンチン水溶液(0.3mM、0.5ml)、化合物(1)および化合物(2)の混合水溶液(2.5x10−5M、40μl)およびキサンチンオキシダーゼ水溶液(0.37unit/ml、40μl)を加え、アロカルミネッセンスリーダーBL201を用いて発光強度を測定した。発光はキサンチンオキシダーゼ水溶液の添加後、すぐに最高強度を示した。比較のため化合物(1)および(2)の混合物の代わりにMCLAおよびFCLAも同様にして実験を行なった。得られた相対発光強度の結果を表1に示した。Hexadecyltrimethylammonium bromide (CTAB) was added to a buffered aqueous solution (pH 7.2, 0.5 ml) containing KCl (0.2 M), EDTA (0.1 mM) and 3-morpholinopropanesulfonic acid (MOPS) (20 mM) at 25 ° C. : Nacalai Tesque, Inc.) aqueous solution (0.5%, 50 μl), hypoxanthine aqueous solution (0.3 mM, 0.5 ml), mixed aqueous solution of compound (1) and compound (2) (2.5 × 10 −5 M, 40 μl) and an aqueous xanthine oxidase solution (0.37 unit / ml, 40 μl) were added, and the luminescence intensity was measured using Aloka luminescence reader BL201. Luminescence showed the highest intensity immediately after addition of the xanthine oxidase aqueous solution. For comparison, MCLA and FCLA were similarly tested instead of the mixture of compounds (1) and (2). The results of the relative light emission intensity obtained are shown in Table 1.

KCl(0.2M)、EDTA(0.1mM)、アルブミンタンパク質(BSA:和光純薬工業株式会社製)(0.1%)、3−モルホリノプロパンスルホン酸(MOPS)(20mM)を含む緩衝水溶液(pH7.2、0.5ml)に25℃で、ヒポキサンチン水溶液(0.3mM、0.5ml)、化合物(1)および化合物(2)の混合水溶液(2.5x10−5M、40μl)およびキサンチンオキシダーゼ水溶液(0.37unit/ml、40μl)を加え、アロカルミネッセンスリーダーBL201を用いて発光強度を測定した。発光はキサンチンオキシダーゼ水溶液の添加後、すぐに最高強度を示した。比較のため化合物(1)および(2)の混合物の代わりにMCLAおよびFCLAも同様にして実験を行なった。得られた相対発光強度の結果を表1に示した。

Figure 2004072649
以上の実施例1−3より、シクロデキストリン分子にフルオレセイン分子およびイミダゾ[1,2−a]ピラジン−3(7H)−オン分子が共に共有結合した化合物(1)および(2)の混合物は、MCLAおよびFCLAよりも高い発光強度を示すことが明かとなった。また、CTABは、MCLAやFCLAの発光強度を増強する効果があるが、シクロデキストリン分子にフルオレセイン分子およびイミダゾ[1,2−a]ピラジン−3(7H)−オン分子が共に共有結合した化合物(1)および(2)の混合物は、CTABの影響をあまり受けないことが確認された。また、BSAはMCLAやFCLAの発光強度を増減する効果があるが、シクロデキストリン分子にフルオレセイン分子およびイミダゾ[1,2−a]ピラジン−3(7H)−オン分子が共に共有結合した化合物(1)および(2)の混合物は、BSAの影響が小さいことが確認された。CTAB添加実験あるいはBSA添加実験の結果は、シクロデキストリン分子にフルオレセイン分子およびイミダゾ[1,2−a]ピラジン−3(7H)−オン分子が共に共有結合した化合物(1)および(2)の混合物は、タンパク質や脂質の影響を受けにくい発光をする発光試薬であることを示している。Buffered aqueous solution containing KCl (0.2 M), EDTA (0.1 mM), albumin protein (BSA: Wako Pure Chemical Industries, Ltd.) (0.1%), 3-morpholinopropanesulfonic acid (MOPS) (20 mM) (PH 7.2, 0.5 ml) at 25 ° C., hypoxanthine aqueous solution (0.3 mM, 0.5 ml), mixed aqueous solution of compound (1) and compound (2) (2.5 × 10 −5 M, 40 μl) and An aqueous xanthine oxidase solution (0.37 unit / ml, 40 μl) was added, and the luminescence intensity was measured using Aloka luminescence reader BL201. Luminescence showed the highest intensity immediately after addition of the xanthine oxidase aqueous solution. For comparison, MCLA and FCLA were similarly tested instead of the mixture of compounds (1) and (2). The results of the relative light emission intensity obtained are shown in Table 1.
Figure 2004072649
From the above Example 1-3, the mixture of the compounds (1) and (2) in which the fluorescein molecule and the imidazo [1,2-a] pyrazin-3 (7H) -one molecule are both covalently bonded to the cyclodextrin molecule, It was revealed that the emission intensity was higher than that of MCLA and FCLA. CTAB has the effect of enhancing the luminescence intensity of MCLA and FCLA, but a compound in which a fluorescein molecule and an imidazo [1,2-a] pyrazin-3 (7H) -one molecule are covalently bonded to a cyclodextrin molecule ( It was confirmed that the mixture of 1) and (2) was not significantly affected by CTAB. BSA has the effect of increasing or decreasing the luminescence intensity of MCLA or FCLA, but is a compound in which a fluorescein molecule and an imidazo [1,2-a] pyrazin-3 (7H) -one molecule are covalently bonded to a cyclodextrin molecule (1 ) And (2) were confirmed to be less affected by BSA. As a result of the CTAB addition experiment or BSA addition experiment, a mixture of compounds (1) and (2) in which a fluorescein molecule and an imidazo [1,2-a] pyrazin-3 (7H) -one molecule are covalently bonded together to a cyclodextrin molecule is obtained. Indicates a luminescent reagent that emits light that is not easily affected by proteins and lipids.

KCl(0.2M)、EDTA(0.1mM)、3−モルホリノプロパンスルホン酸(MOPS)(20mM)を含む緩衝水溶液(pH7.2、0.5ml)に25℃でCTAB水溶液(0.5%、50μl)、ヒポキサンチン水溶液(0.3mM、0.5ml)、化合物(1)および化合物(2)の混合水溶液(2.5x10−5M、40μl)およびキサンチンオキシダーゼ水溶液(0.37unit/ml、40μl)を加え、蛍光分光光度計FP750DS(日本分光株式会社製)を用いて発光スペクトルを測定した(ただし、励起光は使用しない)。発光スペクトルは最大発光波長約530nmを示した。CTAB aqueous solution (0.5%) at 25 ° C. in a buffered aqueous solution (pH 7.2, 0.5 ml) containing KCl (0.2 M), EDTA (0.1 mM), 3-morpholinopropanesulfonic acid (MOPS) (20 mM). , 50 μl), hypoxanthine aqueous solution (0.3 mM, 0.5 ml), mixed aqueous solution of compound (1) and compound (2) (2.5 × 10 −5 M, 40 μl) and xanthine oxidase aqueous solution (0.37 unit / ml, 40 μl) was added, and the emission spectrum was measured using a fluorescence spectrophotometer FP750DS (manufactured by JASCO Corporation) (excitation light was not used). The emission spectrum showed a maximum emission wavelength of about 530 nm.

モノ−6−O−ニトロベンゼンスルホニル−2,3−モノマンノエポキシγ−CD(3)および(4)の混合物の合成
次に、化合物(1)及び(2)の製造方法について説明する。なお、下記の説明において、化合物番号は、第3図中の符号による。
モノマンノエポキシ−γ−シクロデキストリン(0.500g、0.000391mol)をピリジン(10.0ml)に溶解し、m−ニトロベンゼンスルホニルクロリド(0.130g、0.000586mol)を加え−20℃で30分間攪拌した。ピリジンを減圧除去し、ODSカラムクロマトグラフィー(20×130mm、0% MeOH/HO→20% MeOH/HO)を行ない、化合物(3)および(4)の混合物(0.204g)を35%の収率で得た。混合物をH NMR(DMSOD6,40℃)にて測定したところ、δ3.2−3.9(majority,H of−cyclodextrin unit),4.4−4.5(2H,m,H−6),4.7−5.0(8H,m,H−1),8.00(1H,m,Ar−H),8.39(1H,m,Ar−H)and 8.61(2H,m,Ar−H)の結果を得た。
Synthesis of Mixture of Mono-6-O-nitrobenzenesulfonyl-2,3-monomannoepoxy γ-CD (3) and (4) Next, a method for producing the compounds (1) and (2) will be described. In the following description, compound numbers are given by reference numerals in FIG.
Monomannoepoxy-γ-cyclodextrin (0.500 g, 0.000391 mol) was dissolved in pyridine (10.0 ml), m-nitrobenzenesulfonyl chloride (0.130 g, 0.000586 mol) was added, and 30 ° C. at −20 ° C. Stir for minutes. Pyridine was removed under reduced pressure, and ODS column chromatography (20 × 130 mm, 0% MeOH / H 2 O → 20% MeOH / H 2 O) was performed to obtain a mixture of compound (3) and (4) (0.204 g). Obtained in 35% yield. The mixture was measured by 1 H NMR (DMSO D6 , 40 ° C.) and found to be δ3.2-3.9 (majority, H of Y- cyclodextrin unit), 4.4-4.5 (2H, m, H— 6 * ), 4.7-5.0 (8H, m, H-1), 8.00 (1H, m, Ar-H), 8.39 (1H, m, Ar-H) and 8.61. The result of (2H, m, Ar-H) was obtained.

モノ−6−アジド−2,3−モノマンノエポキシ−CD(5)および(6)の混合物の合成
化合物(3)および(4)の混合物(0.190g、0.000129mol)をDMF(3.80ml)に溶解し、アジ化ナトリウム(0.0250g、0.000384mol)を加え室温で20時間攪拌した。DMFを減圧除去し、ODSカラムクロマトグラフィー(20×130mm、0% MeOH/HO→15% MeOH/HO)を行ない、化合物(5)および(6)の混合物(0.165g)を97%の収率で得た。混合物をH NMR(DMSOD6,50℃)にて測定したところ、δ3.3−3.8(majority,H of−cyclodextrin unit)and 4.9−5.0(8H,m,H−1)の結果を得た。
Synthesis of a mixture of mono-6-azido-2,3-monomannoepoxy Y- CD (5) and (6) A mixture of compounds (3) and (4) (0.190 g, 0.000129 mol) was added to DMF ( 3.80 ml), sodium azide (0.0250 g, 0.000384 mol) was added, and the mixture was stirred at room temperature for 20 hours. DMF was removed under reduced pressure, and ODS column chromatography (20 × 130 mm, 0% MeOH / H 2 O → 15% MeOH / H 2 O) was performed to obtain a mixture of compounds (5) and (6) (0.165 g). Obtained in 97% yield. When the mixture was measured by 1 H NMR (DMSO D6 , 50 ° C.), δ 3.3-3.8 (majority, H of Y- cyclodextrin unit) and 4.9-5.0 (8H, m, H— The result of 1) was obtained.

モノ−6−N−(5−フルオレセイニル)チオウレイド−2,3−モノマンノエポキシ−CD(9)および(10)の混合物の合成
化合物(5)および(6)の混合物(0.154g、0.000118mol)をメタノール:水=1:1(5.00ml)に溶かし、Pd−C(5wt.% on activated carbon)(0.100g)を加え水素雰囲気下、室温で15時間攪拌した。セライト及びメンブランフィルターを用いてPd−Cを濾別し、粗アミノ体(7)および(8)の混合体(0.172g)を得た。この粗アミノ体(0.150g、0.000117mol)をピリジン(3.00ml)に溶解し、FITC(0.0460g、0.000118mol)を加え室温で1時間攪拌した。ピリジンを減圧除去し、ODSカラムクロマトグラフィー(15×70mm、0% MeOH/HO(0.1%TFAを含む)→30% MeOH/HO(0.1% TFAを含む))を行ない、化合物(9)および(10)の混合物(0.121g)を70%の収率で得た。混合物をH NMR(DMSOD6,50℃)にて測定したところ、δ3.3−3.9(majority,H of−cyclodextrin unit),4.9−5.1(br.,H−1),6.63(4H,m,Ar−H),6.75(2H,s,Ar−H),7.18(1H,m,Ar−H),7.81(br.,Ar−H)and 8.34(br.,Ar−H)の結果を得た。
Synthesis of a mixture of mono-6-N- (5-fluoresceinyl) thioureido-2,3-monomannoepoxy Y- CD (9) and (10) A mixture of compounds (5) and (6) (0.154 g, 0.000118 mol) was dissolved in methanol: water = 1: 1 (5.00 ml), Pd—C (5 wt.% On activated carbon) (0.100 g) was added, and the mixture was stirred at room temperature for 15 hours in a hydrogen atmosphere. Pd-C was separated by filtration using Celite and membrane filter to obtain a mixture (0.172 g) of crude amino compounds (7) and (8). This crude amino compound (0.150 g, 0.000117 mol) was dissolved in pyridine (3.00 ml), FITC (0.0460 g, 0.000118 mol) was added, and the mixture was stirred at room temperature for 1 hour. Pyridine was removed under reduced pressure and ODS column chromatography (15 × 70 mm, 0% MeOH / H 2 O (including 0.1% TFA) → 30% MeOH / H 2 O (including 0.1% TFA)) was performed. As a result, a mixture (0.121 g) of the compounds (9) and (10) was obtained in a yield of 70%. When the mixture was measured by 1 H NMR (DMSO D6 , 50 ° C.), δ3.3-3.9 (majority, H of Y- cyclodextrin unit), 4.9-5.1 (br., H-1). ), 6.63 (4H, m, Ar-H), 6.75 (2H, s, Ar-H), 7.18 (1H, m, Ar-H), 7.81 (br., Ar-). H) and 8.34 (br., Ar-H).

モノ−6−N−(5−フルオレセイニル)チオウレイド−モノ−3−デオキシ−3−[[6−(4−メトキシフェニル)イミダゾ[1,2−a]ピラジン−3(7H)−オン−2−イル]プロピオニル]アミノ−−CD(1)および(2)の合成
化合物(9)および(10)の混合物(0.110g、0.0000659mol)を濃アンモニア水(2.20ml)に溶解し、37℃で3日間反応させた。反応液を濃縮し、粗アミノ体(11)および(12)の混合体(0.142g)を得た。この粗アミノ体(0.130g、0.0000771mol)ピリジン(2.60ml)に溶解し、既知化合物MCLA−COOH(Carbohydr.Rese.,1998,306,177−187)(0.0250g、0.0000797mol)、WSC(ナカライテスク株式会社製)(0.0440g、0.000229mol)を加えアルゴン雰囲気下、室温で4時間攪拌した。ピリジンを減圧除去し、ODSカラムクロマトグラフィー(20×90mm、0% MeOH/HO(0.1% TFAを含む)→、50% MeOH/HO(0.1%TFAを含む))を行なった。さらにHPLC(COSMOSIL Code No.379−76 Size20×250mm 5C−18−MS Type Waters流速6.0ml/min、30% MeOH/HO(0.1%TFAを含む)→50% MeOH/HO(0.1% TFAを含む)(60min))によって精製した。得られた化合物を少量のメタノールに溶解し、大量の酢酸エチルを加えパウダー化させることにより化合物(1)および(2)の混合物(0.0300g)を25%の収率で得た。混合物をH NMR(CDOD,20℃)にて測定したところ、δ2.7−3.2(m,CHCH),3.3−4.1(majority,H of−cyclodextrin unit),4.6−5.1(m,H−1),6.6−6.8(m,Ar−H),7.08(m,Ar−H),7.6−7.8(m,Ar−H and H of pyrazine)and 7.9−8.2(m,Ar−H and H of pyrazine)の結果を得た。また、UV(0.03M phosphate buffer,pH8.0)にて測定したところ、λmaxnm(ε):492(48000)の結果を得た。
Mono-6-N- (5-fluoresceinyl) thioureido-mono-3-deoxy-3-[[6- (4-methoxyphenyl) imidazo [1,2-a] pyrazin-3 (7H) -one-2- Synthesis of (yl) propionyl] amino- Y- CD (1) and (2) A mixture of compounds (9) and (10) (0.110 g, 0.0000659 mol) was dissolved in concentrated aqueous ammonia (2.20 ml), The reaction was carried out at 37 ° C. for 3 days. The reaction solution was concentrated to obtain a mixture (0.142 g) of crude amino compounds (11) and (12). This crude amino compound (0.130 g, 0.0000771 mol) dissolved in pyridine (2.60 ml) was dissolved in a known compound MCLA-COOH (Carbohydr. Res., 1998, 306, 177-187) (0.0250 g, 0.0000797 mol). ), WSC (manufactured by Nacalai Tesque Co., Ltd.) (0.0440 g, 0.000229 mol) was added, and the mixture was stirred at room temperature for 4 hours under an argon atmosphere. Pyridine was removed under reduced pressure and ODS column chromatography (20 × 90 mm, 0% MeOH / H 2 O (including 0.1% TFA) →, 50% MeOH / H 2 O (including 0.1% TFA)) Was done. Further, HPLC (COSMOSIL Code No. 379-76 Size 20 × 250 mm 5C-18-MS Type Waters flow rate 6.0 ml / min, 30% MeOH / H 2 O (including 0.1% TFA) → 50% MeOH / H 2 O (containing 0.1% TFA) (60 min)). The obtained compound was dissolved in a small amount of methanol, and a large amount of ethyl acetate was added to form a powder, whereby a mixture (0.0300 g) of compounds (1) and (2) was obtained in a yield of 25%. When the mixture was measured by 1 H NMR (CD 3 OD, 20 ° C.), δ2.7-3.2 (m, CH 2 CH 2 ), 3.3-4.1 (majority, H of Y- cyclodextrin). unit), 4.6-5.1 (m, H-1), 6.6-6.8 (m, Ar-H), 7.08 (m, Ar-H), 7.6-7. 8 (m, Ar-H and H of pyridine) and 7.9-8.2 (m, Ar-H and H of pyridine) were obtained. Moreover, when it measured by UV (0.03M phosphate buffer, pH8.0), the result of (lambda) maxnm ((epsilon)): 492 (48000) was obtained.

Claims (5)

下記の化合物(13)及び(14):
Figure 2004072649
(但し、Mは5〜14の整数、nは0〜(M−1)の整数、R〜R、及びR〜R13は、HまたはC〜C20のアルキル基、アルケニル基、アルキニル基、フェニル基、ヒドロキシル基、アルキルヒドロキシル基、ベンジル基、アリール基、ハロゲン基、ニトロ基、シアノ基、スルホニル基、カルボニル基、アミノ基、ナフチル基、インドリル基のうちの一つであり、XおよびYは、0〜20の整数、Rは、0〜4個の置換度によるフェニル環である)を有効成分として含有することを特徴とするスーパーオキシドアニオン分析用試薬。
The following compounds (13) and (14):
Figure 2004072649
(Where, M is an integer of 5 to 14, n is an integer of 0~ (M-1), R 1 ~R 3, and R 5 to R 13 is H or an alkyl group C 1 -C 20, alkenyl groups , Alkynyl group, phenyl group, hydroxyl group, alkyl hydroxyl group, benzyl group, aryl group, halogen group, nitro group, cyano group, sulfonyl group, carbonyl group, amino group, naphthyl group, indolyl group , X and Y are integers of 0 to 20, and R 4 is a phenyl ring having 0 to 4 substitution degrees) as an active ingredient.
少なくとも、シクロデキストリン分子にフルオレセイン分子およびイミダゾ[1,2−a]ピラジン−3(7H)−オン分子が共に共有結合した化合物を有効成分として含有することを特徴とするスーパーオキシドアニオン分析用試薬。A reagent for analyzing a superoxide anion comprising at least a compound in which a fluorescein molecule and an imidazo [1,2-a] pyrazin-3 (7H) -one molecule are covalently bonded to a cyclodextrin molecule as an active ingredient. 下記の化合物(15)及び(16):
Figure 2004072649
(但し、Mは5〜14の整数、nは0〜(M−1)の整数である)にて示されるシクロデキストリン分子にフルオレセイン分子およびイミダゾ[1,2−a]ピラジン−3(7H)−オン分子が共に共有結合した化合物。
The following compounds (15) and (16):
Figure 2004072649
(Wherein M is an integer of 5 to 14 and n is an integer of 0 to (M-1)), a fluorescein molecule and imidazo [1,2-a] pyrazine-3 (7H) A compound in which the on molecule is covalently bonded together.
シクロデキストリン分子にフルオレセイン分子およびイミダゾ[1,2−a]ピラジン−3(7H)−オン分子が共に共有結合した化合物を製造する方法であって、▲1▼モノマンノエポキシ−シクロデキストリンの水酸基にニトロベンゼンスルホニル基を結合させ、▲2▼その結果物である6−O−ニトロベンゼンスルホニル−シクロデキストリンの6位にアジド基を導入し、▲3▼このアジド基を還元し、▲4▼フルオレセインイソチオシアナートと反応させた後、▲4▼エポキシを開環し、3位にアミノ基を導入し、▲5▼この結果物とMCLA−COOHとをアミド結合させ、目的とする化合物を得ることを特徴とする製造方法。A method for producing a compound in which a fluorescein molecule and an imidazo [1,2-a] pyrazin-3 (7H) -one molecule are covalently bonded to a cyclodextrin molecule, comprising: (1) the hydroxyl group of monomannoepoxy-cyclodextrin Nitrobenzenesulfonyl group was bound to (2), an azide group was introduced into the 6-position of the resulting 6-O-nitrobenzenesulfonyl-cyclodextrin, (3) this azide group was reduced, and (4) fluorescein isothi After reacting with the isocyanate, (4) opening the epoxy, introducing an amino group at the 3-position, and (5) amide bonding the resulting product with MCLA-COOH to obtain the desired compound. A featured manufacturing method. 請求項1〜請求項3に記載の化合物を検体溶液と接触させた後、発光強度を測定することを特徴とするスーパーオキシドアニオンの分析方法。A method for analyzing a superoxide anion, wherein the luminescence intensity is measured after contacting the compound according to claim 1 with a sample solution.
JP2004568194A 2003-02-17 2003-02-17 Reagent for superoxide anion analysis Expired - Fee Related JP4203667B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/001617 WO2004072649A1 (en) 2003-02-17 2003-02-17 Reagent for analysis for superoxide anion

Publications (2)

Publication Number Publication Date
JPWO2004072649A1 true JPWO2004072649A1 (en) 2006-06-01
JP4203667B2 JP4203667B2 (en) 2009-01-07

Family

ID=32866126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004568194A Expired - Fee Related JP4203667B2 (en) 2003-02-17 2003-02-17 Reagent for superoxide anion analysis

Country Status (3)

Country Link
JP (1) JP4203667B2 (en)
AU (1) AU2003211230A1 (en)
WO (1) WO2004072649A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4982735B2 (en) * 2005-10-06 2012-07-25 国立大学法人三重大学 Chemiluminescent material
CN104165877B (en) * 2014-08-31 2017-03-01 桂林理工大学 A kind of method of detection ultra-oxygen anion free radical content
CN107884349B (en) * 2017-10-13 2020-12-15 昆明理工大学 Determination method of superoxide anion free radicals in microorganisms
CN113563360A (en) * 2021-08-16 2021-10-29 中国科学技术大学 Amphiphilic fluorescent dye and synthetic method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560697A (en) * 1991-08-30 1993-03-12 Nippon Oil & Fats Co Ltd Assay of superoxide anion and assay of superoxide anion extinction substance
JP4026876B2 (en) * 1996-09-05 2007-12-26 日本食品化工株式会社 Luminescent cyclodextrin derivative and method for producing the same
JPH11209379A (en) * 1998-01-21 1999-08-03 Atoo Kk Superoxide detection reagent
JP3393220B2 (en) * 1999-05-14 2003-04-07 科学技術振興事業団 Fluorescent probe for active oxygen detection

Also Published As

Publication number Publication date
AU2003211230A1 (en) 2004-09-06
WO2004072649A1 (en) 2004-08-26
JP4203667B2 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
US10167497B2 (en) Stable NAD/NADH derivatives
Gerardi et al. Analytical applications of tris (2, 2′-bipyridyl) ruthenium (III) as a chemiluminescent reagent
US7524876B2 (en) Luciferin derivatives
JP5139085B2 (en) Solid-phase oligosaccharide tagging: manipulation techniques for immobilized carbohydrates
CN107328748B (en) Detection method for determining bisulfite in sample and application
US9051598B2 (en) Specific detection of D-glucose by a tetraphenylethene-base fluorescent sensor
CN109836394B (en) Near-infrared fluorescent probe for identifying hydrogen sulfide and preparation method and application thereof
CN106892947A (en) One kind contains(Hydrazinocarbonyl)Complex of iridium of ferrocene ligands and its preparation method and application
CN111892552A (en) Triphenylamine derivative, preparation method thereof and application thereof in double-channel fluorescence detection of hydrogen sulfide
JP4203667B2 (en) Reagent for superoxide anion analysis
ES2322990T3 (en) COLORIMETER AND REAGENT METHOD THAT IS USED FOR THE SAME.
JP5800816B2 (en) Metal complexes, fluorescent probes
JPH0655158B2 (en) Fluorogenic substrate
CN109824592B (en) Dual-functional fluorescent probe intermediate for detecting formaldehyde and pH, and preparation method and application thereof
CN112876426B (en) Benzothiazole fluorescent probe for detecting human serum albumin, preparation and kit
CN108623522A (en) A kind of hypochlorous method of quick high-selectivity detection
CN108801993A (en) A kind of hypochlorous kit of quick high-selectivity analysis
CN110407849B (en) Naphthyl fluorescent molecule, preparation method thereof and tyrosinase detection method
JP5015794B2 (en) Fluorescent contrast agent
JP4453528B2 (en) New chemiluminescent reagent
KR100862236B1 (en) 1,1'-oxalyldisodiumbenzoate derivates, preparing method thereof and chemiluminescent composition containing the same
JPH08271430A (en) Novel fluorescent dye
JP2015083549A (en) Redox molecule-detecting method and assay by emission of light
KR101255261B1 (en) Cysteine-targeting chemodosimetric fluorescent probe, method for preparing the same, and method for bioimaging of cysteine using the same
JP2005517185A (en) Folic acid analysis method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees