JPWO2004050641A1 - Aniline oligomer or polymer, production method thereof, organic EL element and production method thereof, and photoelectric conversion organic device - Google Patents

Aniline oligomer or polymer, production method thereof, organic EL element and production method thereof, and photoelectric conversion organic device Download PDF

Info

Publication number
JPWO2004050641A1
JPWO2004050641A1 JP2004556849A JP2004556849A JPWO2004050641A1 JP WO2004050641 A1 JPWO2004050641 A1 JP WO2004050641A1 JP 2004556849 A JP2004556849 A JP 2004556849A JP 2004556849 A JP2004556849 A JP 2004556849A JP WO2004050641 A1 JPWO2004050641 A1 JP WO2004050641A1
Authority
JP
Japan
Prior art keywords
group
aryl
formula
phenyl
aniline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004556849A
Other languages
Japanese (ja)
Inventor
俊一 平尾
俊一 平尾
英博 櫻井
英博 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Technology Licensing Organization Co Ltd
Original Assignee
Kansai Technology Licensing Organization Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Technology Licensing Organization Co Ltd filed Critical Kansai Technology Licensing Organization Co Ltd
Publication of JPWO2004050641A1 publication Critical patent/JPWO2004050641A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/36Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems
    • C07D241/38Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems with only hydrogen or carbon atoms directly attached to the ring nitrogen atoms
    • C07D241/40Benzopyrazines
    • C07D241/42Benzopyrazines with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/351Metal complexes comprising lanthanides or actinides, e.g. comprising europium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1416Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1425Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1433Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1466Heterocyclic containing nitrogen as the only heteroatom

Abstract

本発明は、導電性、加工性、電気的安定性、熱的安定性、機械的安定性等に優れ、各種分野において導電性分子等として好適に使用可能なアニリン系誘導体及びその金属錯体を提供する。下記式(I)において、繰り返し単位が、(A)ないし(A’)および/または(B)ないし(B’)を必須とし、必要に応じてさらに(C)ないし(C’)を含み得るアニリン系誘導体またはその酸化体。(式中、R、R’、Z、nは,明細書に定義された通りである。)The present invention provides an aniline derivative and a metal complex thereof that are excellent in conductivity, processability, electrical stability, thermal stability, mechanical stability, etc. and can be suitably used as conductive molecules in various fields. To do. In the following formula (I), the repeating unit may contain (A) to (A ′) and / or (B) to (B ′), and may further contain (C) to (C ′) as necessary. Aniline derivatives or oxidized forms thereof. (Wherein R, R ′, Z and n are as defined in the specification.)

Description

本発明は、導電性、加工性、電気的安定性、熱的安定性、機械的安定性等に優れ、各種分野において導電性分子等として好適に使用可能なアニリン系誘導体及びその金属錯体、該アニリン系誘導体又はその金属錯体を用いた有機EL素子または光電変換有機デバイスに関する。  The present invention is excellent in conductivity, workability, electrical stability, thermal stability, mechanical stability, etc., and can be suitably used as a conductive molecule in various fields, and its metal complex, The present invention relates to an organic EL element or a photoelectric conversion organic device using an aniline derivative or a metal complex thereof.

エレクトロニクス、エネルギー、ライフサイエンス等をはじめ各種分野において、有機半導体、無機高分子等と並び、導電性ポリマーが有用な非金属導電性材料として用いられてきている。前記導電性ポリマーの中でも、ポリアニリンは製造が容易な点で従来より注目されている。
しかしながら、ポリアニリンは同様なポリマーであるポリピロール、ポリチオフェンなどと比べて電気伝導度が低く、有機溶媒への溶解性が低いために加工性に劣る不具合があった。
In various fields including electronics, energy, life science, etc., conductive polymers have been used as useful non-metallic conductive materials along with organic semiconductors and inorganic polymers. Among the conductive polymers, polyaniline has been attracting attention in the past because it is easy to produce.
However, since polyaniline has a lower electrical conductivity than the similar polymers such as polypyrrole and polythiophene, and has low solubility in organic solvents, it has a problem of poor processability.

本発明は、導電性、加工性、電気的安定性、熱的安定性、機械的安定性等に優れ、各種分野において導電性分子等として好適に使用可能なアニリン系誘導体及びその金属錯体、該アニリン系誘導体又はその金属錯体を用いた有機EL素子または光電変換有機デバイスを提供することを目的とする。
前記課題を解決するための手段は、以下の通りである。
項1. 下記式(I)において、繰り返し単位が、(A)ないし(A’)および/または(B)ないし(B’)を必須とし、必要に応じてさらに(C)ないし(C’)を含み得るアニリン系誘導体またはその酸化体。

Figure 2004050641
(式中、R及びR’は、同一又は異なって、水素原子、アルキル基、アルコキシ基、アリール基、アラルキル基、モノアルキルアミノ基、ジアルキルアミノ基、アセチルアミノ基、COOH,SOH,OH,NO,ハロゲン原子またはCOOR(Rはアルキル基、アリール基またはアラルキル基を示す。)を示す。ZはCR”,O又はNHを示し、R”は水素原子、アルキル基、アリール基、アラルキル基、COOH,SOH,NO,ハロゲン原子またはCOOR(Rはアルキル基、アリール基またはアラルキル基を示す。)を示す。nは1〜500,000の整数である。)
項2. 繰り返し単位が(A)および(C)を含む項1に記載のアニリン系誘導体。
項3. 繰り返し単位が(B)および(C)を含む項1に記載のアニリン系誘導体。
項4. 項1〜3のいずれかに記載のアニリン系誘導体に金属イオンを配位させてなる金属錯体。
項5. 項1〜3のいずれかに記載のアニリン系誘導体または項4に記載の金属錯体を用いたことを特徴とする光電変換有機デバイス。
項6. 項1〜3のいずれかに記載のアニリン系誘導体または項4に記載の金属錯体を用いたことを特徴とする有機EL素子。
項7. 式:
Figure 2004050641
(式中、R’は水素原子、アルキル基、アルコキシ基、アリール基、アラルキル基、モノアルキルアミノ基、ジアルキルアミノ基、アセチルアミノ基、COOH,SOH,OH,NO,ハロゲン原子またはCOOR(Rはアルキル基、アリール基またはアラルキル基を示す。)を示す。)
で表される化合物と、式:
Figure 2004050641
(式中、Rは水素原子、アルキル基、アルコキシ基、アリール基、アラルキル基、モノアルキルアミノ基、ジアルキルアミノ基、アセチルアミノ基、COOH,SOH,OH,NO,ハロゲン原子またはCOOR(Rはアルキル基、アリール基またはアラルキル基を示す。)を示し、n0は0以上の整数であり、R’は前記に同じ。)
で表される化合物を反応させることを特徴とする、式:
Figure 2004050641
(但し、R,R’及びn0は前記に同じ。)
で表される化合物の製造方法。The present invention is excellent in conductivity, processability, electrical stability, thermal stability, mechanical stability, etc., and can be suitably used as a conductive molecule in various fields, and its metal complex, An object is to provide an organic EL element or a photoelectric conversion organic device using an aniline derivative or a metal complex thereof.
Means for solving the above problems are as follows.
Item 1. In the following formula (I), the repeating unit may contain (A) to (A ′) and / or (B) to (B ′), and may further contain (C) to (C ′) as necessary. Aniline derivative or its oxidant.
Figure 2004050641
(In the formula, R and R ′ are the same or different and each represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aralkyl group, a monoalkylamino group, a dialkylamino group, an acetylamino group, COOH, SO 3 H, OH. , NO 2 , a halogen atom or COOR a (R a represents an alkyl group, an aryl group or an aralkyl group). Z represents CR ″ 2 , O or NH, R ″ represents a hydrogen atom, an alkyl group, an aryl A group, an aralkyl group, COOH, SO 3 H, NO 2 , a halogen atom or COOR b (R b represents an alkyl group, an aryl group or an aralkyl group). N is an integer of 1 to 500,000. )
Item 2. Item 2. The aniline derivative according to Item 1, wherein the repeating unit contains (A) and (C).
Item 3. Item 2. The aniline derivative according to Item 1, wherein the repeating unit contains (B) and (C).
Item 4. Item 4. A metal complex obtained by coordinating a metal ion with the aniline derivative according to any one of Items 1 to 3.
Item 5. Item 5. A photoelectric conversion organic device using the aniline derivative according to any one of Items 1 to 3 or the metal complex according to Item 4.
Item 6. Item 5. An organic EL device using the aniline derivative according to any one of Items 1 to 3 or the metal complex according to Item 4.
Item 7. formula:
Figure 2004050641
(In the formula, R ′ is a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aralkyl group, a monoalkylamino group, a dialkylamino group, an acetylamino group, COOH, SO 3 H, OH, NO 2 , a halogen atom or COOR. a (R a represents an alkyl group, an aryl group or an aralkyl group.)
And a compound represented by the formula:
Figure 2004050641
(In the formula, R is a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aralkyl group, a monoalkylamino group, a dialkylamino group, an acetylamino group, COOH, SO 3 H, OH, NO 2 , a halogen atom, or COOR a. (R a represents an alkyl group, an aryl group or an aralkyl group.), N0 is an integer of 0 or more, and R ′ is the same as above.)
Wherein the compound represented by the formula is reacted:
Figure 2004050641
(However, R, R ′ and n0 are the same as above.)
The manufacturing method of the compound represented by these.

図1は、導電性の評価結果を示す。
図2は、有機EL素子の構造の模式図の一例を示す。
発明の詳細な記述
上記式(I)で表されるアニリン系誘導体の繰り返し単位は、繰り返し単位(A)および/または繰り返し単位(B)を必須とし、任意に繰り返し単位(C)を更に含み得る。本発明のアニリン誘導体は、オリゴマー及びポリマーを含む。
本発明の好ましいオリゴマーを以下に例示する。なお、オリゴマーの繰り返し単位(A),(B),(C)の合計数は、1〜7であり、ポリマーの繰り返し単位(A),(B),(C)の合計数は、8〜500,000、好ましくは20〜100,000、より好ましくは50〜50,000である。なお、以下の(1)〜(28)において、アリール基(例えば、フェニル基)は、前記に定義されたRまたはR’で置換されていてもよく、具体的には式:

Figure 2004050641
(式中、R及びR’は前記に同じ。)
で表される化合物が挙げられる。
(1)アリールNH−(A)−アリール
(2)アリールNH−(B)−アリール
(3)アリールNH−(A)−(C)−(C)−アリール
(4)アリールNH−(A)−(C)−(A)−アリール
(5)アリールNH−(C)−(A)−(C)−アリール
(6)アリールNH−(A)−(A)−(A)−アリール
(7)アリールNH−(B)−(C)−(C)−アリール
(8)アリールNH−(B)−(C)−(B)−アリール
(9)アリールNH−(C)−(B)−(C)−アリール
(10)アリールNH−(B)−(B)−(B)−アリール
(11)アリールNH−(A)−(C)−(C)−(C)−(C)−アリール
(12)アリールNH−(C)−(A)−(C)−(C)−(C)−アリール
(13)アリールNH−(C)−(C)−(A)−(C)−(C)−アリール
(14)アリールNH−(A)−(A)−(C)−(C)−(C)−アリール
(15)アリールNH−(A)−(C)−(A)−(C)−(C)−アリール
(16)アリールNH−(A)−(C)−(C)−(A)−(C)−アリール
(17)アリールNH−(A)−(C)−(C)−(C)−(A)−アリール
(18)アリールNH−(C)−(A)−(A)−(C)−(C)−アリール
(19)アリールNH−(C)−(A)−(C)−(A)−(C)−アリール
(20)アリールNH−(B)−(C)−(C)−(C)−(C)−アリール
(21)アリールNH−(C)−(B)−(C)−(C)−(C)−アリール
(22)アリールNH−(C)−(C)−(B)−(C)−(C)−アリール
(23)アリールNH−(B)−(B)−(C)−(C)−(C)−アリール
(24)アリールNH−(B)−(C)−(B)−(C)−(C)−アリール
(25)アリールNH−(B)−(C)−(C)−(B)−(C)−アリール
(26)アリールNH−(B)−(C)−(C)−(C)−(B)−アリール
(27)アリールNH−(C)−(B)−(B)−(C)−(C)−アリール
(28)アリールNH−(C)−(B)−(C)−(B)−(C)−アリール
ポリマーに関しては、上記オリゴマーに準じて、繰り返し単位(A),(B),(C)を適宜組み合わせて合成することが可能である。
なお、上記式(I)中、(R’)又は(R’)で示される基は、4個又は2個の置換基R’がベンゼン環上の炭素原子と結合していることを意味する。
上記式(I)のR及びR’において、アルキル基としては直鎖又は分岐鎖のC1−30アルキル基が挙げられ、アルコキシ基としては直鎖又は分岐鎖のC1−30アルコキシ基が挙げられ、アリール基としてはフェニル基等が挙げられ、アラルキル基としてはベンジル基、フェネチル基等が挙げられ、モノアルキルアミノ基としてはモノ(直鎖又は分岐鎖のC1−30アルキル)アミノ基が挙げられ、ジアルキルアミノ基としてはジ(直鎖又は分岐鎖のC1−30アルキル)アミノ基が挙げられる。Rで示されるアルキル基、アリール基またはアラルキル基は上記したものが挙げられる。
R”で示される水素原子、アルキル基、アリール基、アラルキル基、COOH,SOH,NO又はハロゲン原子についてもそれぞれ上記したものが挙げられ、R”がCOORの場合のRで示されるアルキル基、アリール基またはアラルキル基もそれぞれ上記したものが挙げられる。
nは1〜500,000の整数、好ましくは1〜20の整数である。
上記式(I)において、Rが水素原子、R’が水素原子のものが好ましく選択される。
本発明のアニリン系誘導体のポリマーは、以下のアニリン誘導体(A1)及び/又は(B1)と、必要に応じて(C1)を混合し、ポリアニリン、ポリチオフェン、ポリピロール等を合成する方法(例えば、A.G.MacDiarmid et.al.,”Conducting Polymers”,L.Alcacer,ed,Reidel Publ.(1987)p105)と同様な条件下に重合させることにより得ることが可能である。
Figure 2004050641
(式中、R、R’及びZは前記に同じ。)
本発明のアニリン系誘導体のオリゴマーないしポリマーにおいて、繰り返し単位(A)および(B)の合計が1つのものは、以下のようにして合成することが可能である。
Figure 2004050641
(式中、Z、R及びR’は前記に定義される通りである。n0,n1及びn2は同一または異なって0以上の整数を示す。)
上記(1)に示されるように、キノキサリン残基を含むアニリン系オリゴマー乃至ポリマーは、5,8−ジブロモキノキサリンと2倍モル量のアニリンオリゴマー乃至ポリマーを、触媒、強塩基、必要に応じて配位子の存在下、溶媒中で反応させることにより得ることができる。触媒としては、例えば、Pd(PPh、Pd(OAc)などのパラジウム触媒が挙げられ、キノキサリンに対し1〜50モル%程度(好ましくは5〜10モル%程度)用いられる。強塩基としては、例えば、t−BuONa、t−BuOKなどの強塩基が挙げられ、キノキサリンに対し2当量以上(好ましくは、2〜2.5等量程度)用いられる。配位子としては、例えば、DPEphos(ビス(2−ジフェニルホスフィノフェニル)エーテル)、BINAP(2,2’−ビス(ジフェニルホスフィノ)−1,1’−ビナフチル)等が挙げられ、キノキサリンに対し1〜10モル%程度)用いられる。溶媒としては、例えば、トルエン、ジオキサン等が例示される。本反応は、室温〜120℃程度で、1〜96時間反応させることにより目的とするアニリン系オリゴマーないしポリマーを得ることができる。
上記(2)に示されるように、5,8−ジブロモキノキサリン(1モル)とアニリンオリゴマー乃至ポリマー(1モル)とを、上記(1)と同様の条件で反応することにより、5,8−ジブロモキノキサリンの一方の臭素原子をアニリンオリゴマー乃至ポリマーで置換し、次いで重合度の異なるアニリンオリゴマー(1モル)を5,8−ジブロモキノキサリンの他方の臭素原子と置換させることで、式(A)の繰り返し単位を1個含む本発明のアニリン系オリゴマー乃至ポリマーを得ることができる。
上記(3)に示されるように、出発原料のジブロマイドを変更し、上記(2)と同様の条件で反応することにより、式(B)の繰り返し単位を1個含む本発明の他のアニリン系オリゴマーないしポリマーを得ることができる。
上記(1)〜(3)においてn0,n1及びn2は同一または異なって1〜500,000の整数であればよい。
上記(1)において、R及びR’が水素原子であり、n0が1〜7の整数のものが好ましく選択される。
上記(2)において、R及びR’が水素原子であり、n1が1〜7の整数、n2が1〜7の整数のものが好ましく選択される。
上記(3)において、R及びR’が水素原子であり、ZがO又はSであり、n1が1〜7の整数、n2が1〜7の整数のものが好ましく選択される。
式(A)ないし(B)の繰り返し単位を2個含む本発明のアニリン系ポリマー乃至オリゴマーは、以下のようにして製造することができる。
Figure 2004050641
(式中、Z、R及びR’は前記に定義された通りである。)
上記(4)及び(5)で示される反応は、上述の式(A)ないし(B)の繰り返し単位を1個含む本発明のアニリン系ポリマー乃至オリゴマーの製造条件に準じて行うことができる。
上記以外の繰り返し単位の配列(組み合わせ)を有する本発明のポリマー乃至オリゴマーについても、上記の記載を参考にして合成することが可能である。
アニリン誘導体と錯体を構成する金属イオンの金属としては、希土類元素(Sc,Y,La,Nd,Sm,Eu,Gd,Tm,Yb,Lu)、Fe,Co,Ni,Pd,Rb,Pt,Rh,Mn,Zn,Ti,Zr,W,Mb,In,Ag,Cu,Cr,Pb,Zn、Ir、V、Reなどが例示される。金属イオンの価数は金属が錯形成可能な範囲で選択される。好ましい金属としては、例えば、Pd2+などが挙げられる。アニリン誘導体金属イオンから構成される錯体は、電気導電性材料として好適に用いられ、場合により発光材料として用いることもできる。
繰り返し単位(A)及び(B)と金属との錯形成挙動は、以下に例示される。
Figure 2004050641
(式中、R、R’及びZは前記に定義される通りである。Mは錯形成に関与する金属イオン、Lは配位子、mは配位子の数であり0〜6の整数を示す。)
特に、MがPd,Ptであり、Lが塩素原子、AcOであり、mが2の場合、上記の安定な錯体を形成することができる。
本発明のアニリン系誘導体の酸化体は、式(A)、(B)、(C)の繰り返し単位のいずれか或いはすべてが式(A’)、(B’)、(C’)で置換されたものを包含し、例えば式(I)の化合物の酸化体である、エメラルジン体(Emeraldine)、ペルニグラニリン体(Pernigraniline)が例示される。このような式(I)の化合物の酸化体は、式(I)の化合物の電解酸化により製造することができるが、酸化剤を用いて酸化してもよい。
本発明の金属錯体は、アニリン系誘導体と金属塩を含水有機溶媒等の適切な溶媒系で混合することにより得ることができる。
本発明の光電変換有機デバイスは、光エネルギーを電気エネルギーに変換する機能を有し、本発明のアニリン系誘導体を用いたこと以外には特に制限はなく、用途、目的等に応じて適宜公知の構成を採用することができる。
前記光電変換有機デバイスの具体例としては、光電変換素子、有機EL素子、光ボルタ型電池、太陽電池、二次電池、ソフトアクチュエーターなどが挙げられる。
また、本発明の有機EL素子は、本発明のアニリン系誘導体を用いたこと以外には特に制限はなく、公知の構成を採用することができる。本発明のアニリン系誘導体は、有機EL素子の電子輸送層材料やバッファ層材料(特に、陽極バッファ層材料)として使用することができ、場合によっては発光物質(発光材料)として使用することも可能である。
有機EL素子の構造は、基本的には発光材料である有機分子の薄膜(厚さ50〜150nm程度)を、陰極及び陽極で挟んでなる。陽極電極としては、透明電極材料であるITO(インジウム−スズ−オキサイド)が用いられ、その厚さは十分な光透過率を得るために100〜300nm程度であればよい。また、陰極材料は、効率よく電子注入を行うために、アルカリ金属やアルカリ土類金属、それらの合金などが用いられる。また、発光層と電極の間に、正孔輸送層や電子輸送層を設けてもよく、これにより発光効率を向上させることができる。
具体的には、図2に示されるような有機EL素子が例示される。図2中、陰極バッファ層及び陽極バッファ層は任意である。本発明のアニリン系誘導体及びその金属錯体は、図2中の発光層に含まれる電子輸送層材料、バッファ層材料や発光材料として用いることができる。これらの積層構造は、分子線蒸着、キャスティング、インクジェット、スクリーン印刷等を繰り返して湿式で積層し、最後に電極を形成することにより作成される。FIG. 1 shows the evaluation results of conductivity.
FIG. 2 shows an example of a schematic diagram of the structure of the organic EL element.
DETAILED DESCRIPTION OF THE INVENTION The repeating unit of the aniline derivative represented by the above formula (I) requires the repeating unit (A) and / or the repeating unit (B), and may optionally further include the repeating unit (C). . The aniline derivatives of the present invention include oligomers and polymers.
Preferred oligomers of the present invention are exemplified below. The total number of oligomer repeating units (A), (B) and (C) is 1 to 7, and the total number of polymer repeating units (A), (B) and (C) is 8 to 8. 500,000, preferably 20 to 100,000, more preferably 50 to 50,000. In the following (1) to (28), an aryl group (for example, a phenyl group) may be substituted with R or R ′ as defined above, specifically, the formula:
Figure 2004050641
(In the formula, R and R ′ are the same as above.)
The compound represented by these is mentioned.
(1) Aryl NH- (A) -Aryl (2) Aryl NH- (B) -Aryl (3) Aryl NH- (A)-(C)-(C) -Aryl (4) Aryl NH- (A) -(C)-(A) -aryl (5) aryl NH- (C)-(A)-(C) -aryl (6) aryl NH- (A)-(A)-(A) -aryl (7 ) Aryl NH- (B)-(C)-(C) -aryl (8) aryl NH- (B)-(C)-(B) -aryl (9) aryl NH- (C)-(B)- (C) -aryl (10) aryl NH- (B)-(B)-(B) -aryl (11) aryl NH- (A)-(C)-(C)-(C)-(C)- Aryl (12) arylNH- (C)-(A)-(C)-(C)-(C) -aryl (13) arylNH- (C)-(C) (A)-(C)-(C) -aryl (14) aryl NH- (A)-(A)-(C)-(C)-(C) -aryl (15) aryl NH- (A)- (C)-(A)-(C)-(C) -aryl (16) aryl NH- (A)-(C)-(C)-(A)-(C) -aryl (17) aryl NH- (A)-(C)-(C)-(C)-(A) -aryl (18) aryl NH- (C)-(A)-(A)-(C)-(C) -aryl (19 ) Aryl NH- (C)-(A)-(C)-(A)-(C) -Aryl (20) Aryl NH- (B)-(C)-(C)-(C)-(C) -Aryl (21) aryl NH- (C)-(B)-(C)-(C)-(C) -aryl (22) aryl NH- (C)-(C)-(B)-(C) -(C) -aryl ( 3) Aryl NH- (B)-(B)-(C)-(C)-(C) -Aryl (24) Aryl NH- (B)-(C)-(B)-(C)-(C ) -Aryl (25) aryl NH- (B)-(C)-(C)-(B)-(C) -aryl (26) aryl NH- (B)-(C)-(C)-(C )-(B) -aryl (27) aryl NH- (C)-(B)-(B)-(C)-(C) -aryl (28) aryl NH- (C)-(B)-(C )-(B)-(C) -Aryl polymers can be synthesized by appropriately combining repeating units (A), (B), (C) according to the above oligomer.
In the above formula (I), the group represented by (R ′) 4 or (R ′) 2 is such that four or two substituents R ′ are bonded to a carbon atom on the benzene ring. means.
In R and R ′ of the above formula (I), the alkyl group includes a linear or branched C 1-30 alkyl group, and the alkoxy group includes a linear or branched C 1-30 alkoxy group. Examples of the aryl group include a phenyl group, examples of the aralkyl group include a benzyl group and a phenethyl group, and examples of the monoalkylamino group include a mono (linear or branched C 1-30 alkyl) amino group. Examples of the dialkylamino group include a di (linear or branched C 1-30 alkyl) amino group. Examples of the alkyl group, aryl group or aralkyl group represented by Ra include those described above.
Examples of the hydrogen atom represented by R ″, alkyl group, aryl group, aralkyl group, COOH, SO 3 H, NO 2 and halogen atom include those described above. When R ″ is COOR b , it is represented by R b . Examples of the alkyl group, aryl group, and aralkyl group described above include those described above.
n is an integer of 1 to 500,000, preferably an integer of 1 to 20.
In the above formula (I), those in which R is a hydrogen atom and R ′ is a hydrogen atom are preferably selected.
The polymer of the aniline derivative of the present invention is a method of synthesizing polyaniline, polythiophene, polypyrrole, etc. by mixing the following aniline derivatives (A1) and / or (B1) and (C1) as necessary (for example, A G. MacDiarmid et al., “Conducting Polymers”, L. Alcercer, ed, Reidel Publ. (1987) p105).
Figure 2004050641
(In the formula, R, R ′ and Z are the same as above.)
In the oligomer or polymer of the aniline derivative of the present invention, one having a total of repeating units (A) and (B) can be synthesized as follows.
Figure 2004050641
(In the formula, Z, R and R ′ are as defined above. N0, n1 and n2 are the same or different and represent an integer of 0 or more.)
As shown in (1) above, the aniline-based oligomer or polymer containing a quinoxaline residue comprises 5,8-dibromoquinoxaline and a 2-fold molar amount of an aniline oligomer or polymer arranged as a catalyst, a strong base, and if necessary. It can be obtained by reacting in a solvent in the presence of a ligand. Examples of the catalyst include palladium catalysts such as Pd (PPh 3 ) 4 and Pd (OAc) 2, and about 1 to 50 mol% (preferably about 5 to 10 mol%) is used with respect to quinoxaline. Examples of the strong base include strong bases such as t-BuONa and t-BuOK, and 2 equivalents or more (preferably about 2 to 2.5 equivalents) are used with respect to quinoxaline. Examples of the ligand include DPEphos (bis (2-diphenylphosphinophenyl) ether), BINAP (2,2′-bis (diphenylphosphino) -1,1′-binaphthyl) and the like. About 1 to 10 mol%). Examples of the solvent include toluene and dioxane. In this reaction, the target aniline oligomer or polymer can be obtained by reacting at room temperature to about 120 ° C. for 1 to 96 hours.
As shown in (2) above, by reacting 5,8-dibromoquinoxaline (1 mol) with an aniline oligomer or polymer (1 mol) under the same conditions as in (1) above, 5,8- By substituting one bromine atom of dibromoquinoxaline with an aniline oligomer or polymer and then substituting an aniline oligomer (1 mol) having a different degree of polymerization with the other bromine atom of 5,8-dibromoquinoxaline, An aniline-based oligomer or polymer of the present invention containing one repeating unit can be obtained.
As shown in (3) above, another aniline of the present invention containing one repeating unit of the formula (B) is obtained by changing the starting dibromide and reacting under the same conditions as in (2) above. System oligomers or polymers can be obtained.
In the above (1) to (3), n0, n1 and n2 are the same or different and may be integers of 1 to 500,000.
In the above (1), those in which R and R ′ are hydrogen atoms and n0 is an integer of 1 to 7 are preferably selected.
In the above (2), R and R ′ are hydrogen atoms, n1 is an integer of 1 to 7, and n2 is an integer of 1 to 7 is preferably selected.
In the above (3), R and R ′ are hydrogen atoms, Z is O or S, n1 is an integer of 1 to 7, and n2 is an integer of 1 to 7 is preferably selected.
The aniline polymer or oligomer of the present invention containing two repeating units of the formulas (A) to (B) can be produced as follows.
Figure 2004050641
(Wherein Z, R and R ′ are as defined above.)
The reaction represented by the above (4) and (5) can be carried out according to the production conditions of the aniline polymer or oligomer of the present invention containing one repeating unit of the above formulas (A) to (B).
The polymer or oligomer of the present invention having a sequence (combination) of repeating units other than those described above can also be synthesized with reference to the above description.
Examples of the metal ions constituting the complex with the aniline derivative include rare earth elements (Sc, Y, La, Nd, Sm, Eu, Gd, Tm, Yb, Lu), Fe, Co, Ni, Pd, Rb, Pt, Examples include Rh, Mn, Zn, Ti, Zr, W, Mb, In, Ag, Cu, Cr, Pb, Zn, Ir, V, and Re. The valence of the metal ion is selected within a range where the metal can form a complex. Preferable metals include, for example, Pd 2+ . A complex composed of an aniline derivative metal ion is suitably used as an electrically conductive material, and can be used as a luminescent material in some cases.
The complex formation behavior of the repeating units (A) and (B) with the metal is exemplified below.
Figure 2004050641
Wherein R, R ′ and Z are as defined above. M is a metal ion involved in complex formation, L is a ligand, m is the number of ligands and is an integer from 0 to 6 Is shown.)
In particular, when M is Pd, Pt, L is a chlorine atom, AcO, and m is 2, the above-described stable complex can be formed.
In the oxidized form of the aniline derivative of the present invention, any or all of the repeating units of the formulas (A), (B) and (C) are substituted by the formulas (A ′), (B ′) and (C ′). For example, emeraldine and pernigraniline, which are oxidants of the compound of formula (I), are exemplified. Such an oxidant of the compound of formula (I) can be produced by electrolytic oxidation of the compound of formula (I), but may be oxidized using an oxidizing agent.
The metal complex of the present invention can be obtained by mixing an aniline derivative and a metal salt in an appropriate solvent system such as a water-containing organic solvent.
The photoelectric conversion organic device of the present invention has a function of converting light energy into electric energy, and is not particularly limited except that the aniline derivative of the present invention is used. A configuration can be employed.
Specific examples of the photoelectric conversion organic device include a photoelectric conversion element, an organic EL element, an optical voltaic battery, a solar battery, a secondary battery, and a soft actuator.
The organic EL device of the present invention is not particularly limited except that the aniline derivative of the present invention is used, and a known configuration can be adopted. The aniline derivative of the present invention can be used as an electron transport layer material or a buffer layer material (particularly, an anode buffer layer material) of an organic EL element, and can be used as a luminescent substance (a luminescent material) in some cases. It is.
The structure of the organic EL element is basically formed by sandwiching a thin film (thickness of about 50 to 150 nm) of organic molecules, which is a light emitting material, between a cathode and an anode. As the anode electrode, ITO (indium-tin-oxide), which is a transparent electrode material, is used, and the thickness thereof may be about 100 to 300 nm in order to obtain sufficient light transmittance. As the cathode material, an alkali metal, an alkaline earth metal, an alloy thereof, or the like is used in order to efficiently inject electrons. In addition, a hole transport layer or an electron transport layer may be provided between the light emitting layer and the electrode, whereby the light emission efficiency can be improved.
Specifically, an organic EL element as illustrated in FIG. 2 is exemplified. In FIG. 2, the cathode buffer layer and the anode buffer layer are optional. The aniline derivative and its metal complex of the present invention can be used as an electron transport layer material, a buffer layer material or a light emitting material contained in the light emitting layer in FIG. These laminated structures are created by repeating the molecular beam evaporation, casting, ink jetting, screen printing, etc., and laminating them in a wet manner, and finally forming electrodes.

以下、実施例を用いて本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。
合成例1:5,8−ジアニリノキノキサリン(フェニル−NH−A−フェニル、R=R’=H)の合成
20mLの2口フラスコにモレキュラーシーブ5Aを入れ、充分に加熱しながら真空乾燥を行い、アルゴン置換した。5,8−ジブロモキノキサリン(288mg,1mmol)、酢酸パラジウム(23mg,0.1mmol)、BINAP(62mg,0.1mmol)、およびt−ブトキシナトリウム(269mg,2.8mmol)を入れたのち、トルエン(5mL)を加え、良く撹拌した。この溶液にアニリン(218μL,2.4mmol)をゆっくり滴下した。滴下終了後、反応溶液を加熱還流し、72時間後反応溶液を室温に戻した。反応混合物をセライトろ過したのち、溶媒を留去し、得られた混合物をシリカゲルカラムクロマトグラフィー(ヘキサン:ジクロロメタン=7:3)で精製することにより、表題化合物を収率48%で濃赤色の固体として得た。
表題化合物の物性値は以下の通りである。Mp146−147℃;H NMR(CDCl,600MHz)δ=8.76(s,2H)(dd,J=8.1,7.2Hz,4H),7.24(d,J=8.1Hz,4H),7.16(s,2H),6.98(t,J=7.2Hz,2H),6.74(s,2H);13C NMR(CDCl,150MHz)109.2,109.8,118.2,121.5,128.0,129.3,142.1ppm;IR(KBr,cm−1)3379,3025,1599,1507,1294,1242,891,819,747,695,626,503.Anal.Calcd for C2016:C,76.90;H,5.16;N,17.94%.Found:C,76.98;H,5.29;N,17.71%.HRMS(EI)Calcd for C2015:312.1375.Found:312.1368.
合成例2:5,8−ジアニリノキノキサリン(フェニル−NH−A−フェニル、R=R’=H)の合成(4,7−ジアニリノ−2,1,3−ベンゾチアジアゾールからの合成法)
公知の方法により(”Synthesis and characterization of p−phenylenediamine derivatives bearing a thiadiazole unit”,M.T.S.Ritonga,H.Sakurai,and T.Hirao,Tetrahedron Lett.,43,9009−9013(2002))4,7−ジアニリノ−2,1,3−ベンゾチアジアゾールを合成した。30mLの2口フラスコを充分に加熱しながら真空乾燥を行い、アルゴン置換した。4,7−ジアニリノ−2,1,3−ベンゾチアジアゾール(318mg,1mmol)、酢酸(4mL)、脱イオン水(1.5mL)を加え、良く撹拌した。反応溶液を60度に加熱したのち、亜鉛粉末(970mg,15mmol)を添加した。添加終了後、反応溶液を70度に加熱し、12時間後、反応溶液を熱時ろ過し、ろ液を速やかに50%水酸化ナトリウム水溶液の中に加えた。反応混合物を氷浴で冷却した後、エーテルで抽出(30mLx3)し、合わせた有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させた。乾燥剤を除去したのち減圧下溶媒を留去することにより対応するo−フェニレンジアミン誘導体を淡赤色の固体で得た。この固体は精製することなく直ちに次の反応に用いた。100mLの2口フラスコを充分に加熱しながら真空乾燥を行い、アルゴン置換した。上記で調製したo−フェニレンジアミン誘導体を加え、エタノール(30mL)に溶解し、よく撹拌した。この溶液にグリオキサール水溶液(1mmol)をゆっくり滴下した。滴下終了後、反応溶液を加熱還流し、16時間後反応溶液を室温に戻した。溶媒を減圧下留去し.得られた固体をシリカゲルカラムクロマトグラフィー(ヘキサン:ジクロロメタン=7:3)で精製することにより、表題化合物を総収率39%で濃赤色の固体として得た。
合成例3:(フェニル−NH−C−A−C−フェニル、R=R’=H)の合成(5,8−ジブロモキノキサリンからの合成法)
20mLの2口フラスコにモレキュラーシーブ5Aを入れ、充分に加熱しながら真空乾燥を行い、アルゴン置換した。5,8−ジブロモキノキサリン(288mg,1mmol)、酢酸パラジウム(23mg,0.1mmol)、BINAP(62mg,0.1mmol)、およびt−ブトキシナトリウム(269mg,2.8mmol)を入れたのち、トルエン(5mL)を加え、良く撹拌した。この溶液にp−アミノジフェニルアミン(405mg,2.2mmol)をゆっくり加えた。添加終了後、反応溶液を加熱還流し、72時間後反応溶液を室温に戻した。反応混合物をセライトろ過したのち、溶媒を留去し、得られた混合物をシリカゲルカラムクロマトグラフィー(ヘキサン:ジクロロメタン=1:1)で精製することにより、表題化合物を収率23%で暗青色の固体として得た。
表題化合物の物性値は以下の通りである。Mp143−145℃;H NMR(CDCl,600MHz)δ8.79(s,2H),7.46(s,2H),7.37(s,2H),7.25−7.18(m,8H),7.20(d,J=8.4Hz,4H),6.99(d,J=7.8Hz,4H),6.85(t,J=7.2Hz,2H),5.71(s,2H);IR(KBr,cm−1)3361,1657,1598,1510,1493,1452,1301,1230,1066,812,747,695,635,563,503;HRMS(EI)Calcd for C3226:494.2219.Found:494.2225.
合成例4:(フェニル−NH−C−A−C−フェニル、R=R’=H)の合成(フェニル−NH−C−B(Z=S)−C−フェニルからの合成法)
公知の方法により(”Synthesis and characterization of p−phenylenediamine derivatives bearing a thiadiazole unit”,M.T.S.Ritonga,H.Sakurai,and T.Hirao,Tetrahedron Lett.,43,9009−9013(2002))フェニル−NH−C−B(Z=S)−C−フェニルを合成した。30mLの2口フラスコを充分に加熱しながら真空乾燥を行い、アルゴン置換した。フェニル−NH−C−B(Z=S)−C−フェニル(500mg,1mmol)、酢酸(4mL)、脱イオン水(1.5mL)を加え、良く撹拌した。反応溶液にを60度に加熱したのち、亜鉛粉末(970mg,15mmol)を添加した。添加終了後、反応溶液を70度に加熱し、12時間後、反応溶液を熱時ろ過し、ろ液を速やかに50%水酸化ナトリウム水溶液の中に加えた。反応混合物を氷浴で冷却した後、エーテルで抽出(30mLx3)し、合わせた有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させた。乾燥剤を除去したのち減圧下溶媒を留去することにより対応するo−フェニレンジアミン誘導体を淡赤色の固体で得た。この固体は精製することなく直ちに次の反応に用いた。100mLの2口フラスコを充分に加熱しながら真空乾燥を行い、アルゴン置換した。上記で調製したo−フェニレンジアミン誘導体を加え、エタノール(30mL)に溶解し、よく撹拌した。この溶液にグリオキサール水溶液(1mmol)をゆっくり滴下した。滴下終了後、反応溶液を加熱還流し、16時間後反応溶液を室温に戻した。溶媒を減圧下留去し.得られた固体をシリカゲルカラムクロマトグラフィー(ヘキサン:ジクロロメタン=1:1)で精製することにより、表題化合物を収率17%で暗青色の固体として得た。
合成例5:(フェニル−NH−A−C−C−フェニル、R=R’=H)の合成(5,8−ジブロモキノキサリンからの合成法)
表題化合物の前駆体として5−ブロモ−8−フェニルアミノキノキサリンの合成を行った。20mLの2口フラスコにモレキュラーシーブ5Aを入れ、充分に加熱しながら真空乾燥を行い、アルゴン置換した。5,8−ジブロモキノキサリン(288mg,1mmol)、酢酸パラジウム(12mg,0.05mmol)、BINAP(31mg,0.05mmol)、およびt−ブトキシナトリウム(140mg,1.4mmol)を入れたのち、トルエン(5mL)を加え、良く撹拌した。この溶液にアニリン(109μL,1.2mmol)をゆっくり滴下した。滴下終了後、反応溶液を80度に加熱し、16時間後反応溶液を室温に戻した。反応混合物をセライトろ過したのち、溶媒を留去し、得られた混合物をシリカゲルカラムクロマトグラフィー(ヘキサン)で精製することにより、5−ブロモ−8−フェニルアミノキノキサリンを収率63%でオレンジ色の固体として得た。
5−ブロモ−8−フェニルアミノキノキサリンの物性値は以下の通りである。Mp134−135℃;H NMR(CDCl,300MHz)d8.97(d,J=1.8Hz,1H),8.74(d,J=1.8Hz,1H),8.11(s,1H),7.89(d,J=8.7Hz,1H),7.44−7.34(m,5H),7.11(t,J=7.2Hz,1H);13C NMR(CDCl,75MHz)145.5,141.4,140.6,140.4,140.2,133.8,133.6,129.0,122.7,120.2,108.9,107.7ppm;IR(KBr,cm−1)3333,1597,1568,1521,1490,1457,1384,1340,1071,944,751,700,503.Anal.Calcd for C1210Br:C,52.20;H,3.65;N,15.22.Found:C,52.37;H,3.45;N,15.01.HRMS(EI)Calcd for C1210Br:276.1356.Found:276.1358.
次に、20mLの2口フラスコにモレキュラーシーブ5Aを入れ、充分に加熱しながら真空乾燥を行い、アルゴン置換した。上記で得られた5−ブロモ−8−フェニルアミノキノキサリン(165mg,0.6mmol)、酢酸パラジウム(5.6mg,0.025mmol)、BINAP(17.4mg,0.028mmol)、およびt−ブトキシナトリウム(67.3mg,0.7mmol)を入れたのち、トルエン(5mL)を加え、良く撹拌した。この溶液に4−(4’−アミノフェニルアミノ)ジフェニルアミン(138mg,0.5mmol)をゆっくり加えた。添加終了後、反応溶液を加熱還流し、72時間後反応溶液を室温に戻した。反応混合物をセライトろ過したのち、溶媒を留去し、得られた混合物をシリカゲルカラムクロマトグラフィー(ジクロロメタン)で精製することにより、表題化合物を収率34%で紫色の固体として得た。
表題化合物の物性値は以下の通りである。Mp148−149℃;H NMR(CDCl,600MHz)δ8.79(d,J=1.8Hz,1H),8.78(d,J=1.8Hz,1H),7.40−7.56(m,4H),7.20−7.32(m,8H),7.04−7.09(m,7H),7.95(d,J=7.2Hz,2H),6.82(t,J=7.2Hz,1H),5.64(br,2H);IR(KBr,cm−1)3385,1598,1509,1291,814,748,692,630,576,512;HRMS(EI)calcd for C3226:494.2219.Found:494.2216.
合成例6:(フェニル−NH−A−C−C−フェニル、R=R’=H)の合成(フェニル−NH−B(Z=S)−C−C−フェニルからの合成法)
公知の方法により(”Synthesis and characterization of p−phenylenediamine derivatives bearing a thiadiazole unit”,M.T.S.Ritonga,H.Sakurai,and T.Hirao,Tetrahedron Lett.,43,9009−9013(2002))フェニル−NH−B(Z=S)−C−C−フェニルを合成した。30mLの2口フラスコを充分に加熱しながら真空乾燥を行い、アルゴン置換した。フェニル−NH−C−B(Z=S)−C−フェニル(500mg,1mmol)、酢酸(4mL)、脱イオン水(1.5mL)を加え、良く撹拌した。反応溶液にを60度に加熱したのち、亜鉛粉末(970mg,15mmol)を添加した。添加終了後、反応溶液を70度に加熱し、12時間後、反応溶液を熱時ろ過し、ろ液を速やかに50%水酸化ナトリウム水溶液の中に加えた。反応混合物を氷浴で冷却した後、エーテルで抽出(30mLx3)し、合わせた有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させた。乾燥剤を除去したのち減圧下溶媒を留去することにより対応するo−フェニレンジアミン誘導体を淡赤色の固体で得た。この固体は精製することなく直ちに次の反応に用いた。100mLの2口フラスコを充分に加熱しながら真空乾燥を行い、アルゴン置換した。上記で調製したo−フェニレンジアミン誘導体を加え、エタノール(30mL)に溶解し、よく撹拌した。この溶液にグリオキサール水溶液(1mmol)をゆっくり滴下した。滴下終了後、反応溶液を加熱還流し、16時間後反応溶液を室温に戻した。溶媒を減圧下留去し.得られた固体をシリカゲルカラムクロマトグラフィー(ジクロロメタン)で精製することにより、表題化合物を収率11%で紫色の固体として得た。
合成例7:(フェニル−NH−A−フェニル、R=R’=H)の酸化体の合成と金属錯体の調製
20mLの2口フラスコを充分に加熱しながら真空乾燥を行い、アルゴン置換した。5,8−ジアニリノキノキサリン(フェニル−NH−A−フェニル)(15.6mg,0.05mmol)と酸化第1銀(13.9mg,0.06mmol)をTHF(10ml)に溶解させ、室温で12時間撹拌した。反応混合物をアルミナろ過したのち、溶媒を留去することにより、表題化合物を定量的にオレンジ色の固体として得た。
酸化体の物性値は以下の通りである。Mp145−147℃;H NMR(CDCl,600MHz)δ8.97(s,2H),7.42(dd,J=8.1,7.2Hz,4H),7.20(t,J=7.2Hz,2H),6.94(s,2H),6.91(d,J=8.1Hz,4H);13C NMR(CDCl,150MHz)156.3,151.4,148.0,146.3,130.1,126.9,125.9,120.8ppm;IR(KBr,cm−1)3026,1571,1507,1481,1320,1219,1102,768,691,634,580,525,502;HRMS(EI)Calcd for C2014:310.1219.Found:310.1226.
得られた酸化体に対し、アセトニトリル溶媒中、塩化パラジウムを当量を変化させながら加え、その錯形成挙動を紫外可視吸収スペクトルならびに核磁気共鳴スペクトルで追跡した。その結果、酸化体:塩化パラジウム=1:2の組成の錯体を安定に形成することが判明した。
合成例8(フェニル−NH−B(Z=O)−フェニル、R=R’=H)の酸化体の合成と金属錯体の調製
20mLの2口フラスコを充分に加熱しながら真空乾燥を行い、アルゴン置換した。4,7−ジアニリノ−2,1,3−ベンゾオキサジアゾール(フェニル−NH−B(Z=O)−フェニル)(15.0mg,0.05mmol)と酸化第1銀(13.9mg,0.06mmol)をTHF(10ml)に溶解させ、室温で12時間撹拌した。反応混合物をアルミナろ過したのち、溶媒を留去することにより、表題化合物を定量的にオレンジ色の固体として得た。
得られた酸化体に対し、アセトニトリル溶媒中、塩化パラジウムを当量を変化させながら加え、その錯形成挙動を紫外可視吸収スペクトルならびに核磁気共鳴スペクトルで追跡した。その結果、酸化体:塩化パラジウム=2:1の組成の錯体を安定に形成することが判明した。
<UV測定>
導電性評価の一環として、紫外可視光吸収スペクトルを測定した。測定は日立U−3500スペクトロフォトメーターを用い、溶媒は和光純薬のスペクトル用クロロホルムを用いた。また測定は全て溶液濃度を5x10−5Mに調製して行った。その結果、導電性の評価基準として用いられるλmaxの値が、5,8−ジアニリノキノキサリン(フェニル−NH−A−フェニル)の場合490nmに、5,8−ジアニリノキノキサリン(フェニル−NH−B−フェニル)の場合522nmに観測され、いずれの場合も参照化合物であるアニリントリマー(フェニル−NH−C−フェニル)(460nm)やチオフェン置換体(チオフェニル−NH−B−チオフェニル)(447nm)(H.A.M.van Mullekom et.al.Chem.Eur.J.4 1235(1998)を参照)よりも大きかった。
電気伝導度の指標として、最高被占軌道と最低空軌道の差が小さい程良く、これはλmaxの値が大きいほど良いことに相当する。したがって従来の有機EL等の素子に用いられている類似化合物に比べ、本発明品は導電性の向上が認められた。本発明のアニリン系オリゴマーの導電性を評価した結果を図1に示す。
<CV測定>
サイクリックボルタモグラムはBAS社CV−50Wを用いて測定した。直前に研磨した白金電極を作用電極に、また白金ワイヤーの対電極、およびAg/AgCl(0.01M)基準の参照電極を用いた。溶媒は直前に蒸留したアセトニトリルを用いた。電解質としてはBuNClOを用い、濃度を0.10Mとし、サンプル濃度1.0mMで、アルゴンガスで充分に脱気した後に、スキャン速度100mV/sで測定を行った。以下に示す酸化還元電位はフェロセンの酸化還元電位を0Vとして算出した。
サンプル(3)(フェニルNH−(A)−(C)−(C)−フェニル)およびサンプル(5)(フェニルNH−(C)−(A)−(C)−フェニル)の結果を例示すると、観測された酸化還元電位はそれぞれ、−1.94V,−0.12V,+0.07V,+0.44V(以上サンプル3)、−2.05V,−0.12V,+0.13V,+0.57V(以上サンプル5)となり、多段階レドックス過程が観測されたと同時に、置換様式の違いによって様々な酸化還元電位をとることが示された。
<加工性の評価>
アニリンペンタマー、本発明の2つのオリゴマーの加工性を評価するために、NMP,DMF,THF,MeCN,CHCl,AcOEtに対する溶解性について検討した。結果を表1に示す。
溶解性の評価は次の基準により評価した。
◎:良く溶ける
○:溶ける
△:溶けにくい
×:不溶

Figure 2004050641
なお、本明細書に記載された公知文献は、参考として援用される。EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, this invention is not limited to these Examples.
Synthesis Example 1 Synthesis of 5,8-dianilinoquinoxaline (phenyl-NH-A-phenyl, R = R ′ = H) The molecular sieve 5A was placed in a 20 mL two-necked flask and vacuum dried with sufficient heating. And replaced with argon. After adding 5,8-dibromoquinoxaline (288 mg, 1 mmol), palladium acetate (23 mg, 0.1 mmol), BINAP (62 mg, 0.1 mmol), and sodium t-butoxy (269 mg, 2.8 mmol), toluene ( 5 mL) was added and stirred well. To this solution aniline (218 μL, 2.4 mmol) was slowly added dropwise. After completion of the dropwise addition, the reaction solution was heated to reflux, and after 72 hours, the reaction solution was returned to room temperature. The reaction mixture was filtered through celite, the solvent was evaporated, and the obtained mixture was purified by silica gel column chromatography (hexane: dichloromethane = 7: 3) to give the title compound in 48% yield as a dark red solid. Got as.
The physical properties of the title compound are as follows. Mp146-147 ° C .; 1 H NMR (CDCl 3 , 600 MHz) δ = 8.76 (s, 2H) (dd, J = 8.1, 7.2 Hz, 4H), 7.24 (d, J = 8. 1 Hz, 4H), 7.16 (s, 2H), 6.98 (t, J = 7.2 Hz, 2H), 6.74 (s, 2H); 13 C NMR (CDCl 3 , 150 MHz) 109.2 , 109.8, 118.2, 121.5, 128.0, 129.3, 142.1 ppm; IR (KBr, cm −1 ) 3379, 3025, 1599, 1507, 1294, 1242, 891, 819, 747 695, 626, 503. Anal. Calcd for C 20 H 16 N 4 : C, 76.90; H, 5.16; N, 17.94%. Found: C, 76.98; H, 5.29; N, 17.71%. HRMS (EI) Calcd for C 20 H 15 N 4: 312.1375. Found: 312.1368.
Synthesis Example 2 Synthesis of 5,8-dianilinoquinoxaline (phenyl-NH-A-phenyl, R = R ′ = H) (Synthesis Method from 4,7-dianilino-2,1,3-benzothiadiazole)
(“Synthesis and characterization of p-phenylenediamine derivatives bearing a thiadiazole unit”, M. S. Ritonga, H. Sakrai, and T. Hirak et al. 4,7-dianilino-2,1,3-benzothiadiazole was synthesized. A 30 mL two-necked flask was vacuum-dried while being sufficiently heated, and purged with argon. 4,7-dianilino-2,1,3-benzothiadiazole (318 mg, 1 mmol), acetic acid (4 mL) and deionized water (1.5 mL) were added and stirred well. After the reaction solution was heated to 60 degrees, zinc powder (970 mg, 15 mmol) was added. After completion of the addition, the reaction solution was heated to 70 ° C., and after 12 hours, the reaction solution was filtered while hot, and the filtrate was quickly added into a 50% aqueous sodium hydroxide solution. The reaction mixture was cooled in an ice bath, extracted with ether (30 mL × 3), and the combined organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. After removing the desiccant, the solvent was distilled off under reduced pressure to obtain the corresponding o-phenylenediamine derivative as a pale red solid. This solid was immediately used for the next reaction without purification. A 100 mL two-necked flask was vacuum-dried while being sufficiently heated, and purged with argon. The o-phenylenediamine derivative prepared above was added, dissolved in ethanol (30 mL), and stirred well. Glyoxal aqueous solution (1 mmol) was slowly added dropwise to this solution. After completion of the dropwise addition, the reaction solution was heated to reflux, and after 16 hours, the reaction solution was returned to room temperature. The solvent was distilled off under reduced pressure. The obtained solid was purified by silica gel column chromatography (hexane: dichloromethane = 7: 3) to give the title compound as a deep red solid in a total yield of 39%.
Synthesis Example 3 Synthesis of (phenyl-NH-C-A-C-phenyl, R = R ′ = H) (Synthesis Method from 5,8-Dibromoquinoxaline)
The molecular sieve 5A was placed in a 20 mL two-necked flask and vacuum-dried with sufficient heating, followed by substitution with argon. After adding 5,8-dibromoquinoxaline (288 mg, 1 mmol), palladium acetate (23 mg, 0.1 mmol), BINAP (62 mg, 0.1 mmol), and sodium t-butoxy (269 mg, 2.8 mmol), toluene ( 5 mL) was added and stirred well. To this solution p-aminodiphenylamine (405 mg, 2.2 mmol) was added slowly. After completion of the addition, the reaction solution was heated to reflux, and after 72 hours, the reaction solution was returned to room temperature. The reaction mixture was filtered through Celite, the solvent was evaporated, and the obtained mixture was purified by silica gel column chromatography (hexane: dichloromethane = 1: 1) to give the title compound in a yield of 23% as a dark blue solid. Got as.
The physical properties of the title compound are as follows. Mp143-145 ° C .; 1 H NMR (CD 2 Cl 2 , 600 MHz) δ 8.79 (s, 2H), 7.46 (s, 2H), 7.37 (s, 2H), 7.25-7.18 (M, 8H), 7.20 (d, J = 8.4 Hz, 4H), 6.99 (d, J = 7.8 Hz, 4H), 6.85 (t, J = 7.2 Hz, 2H) , 5.71 (s, 2H); IR (KBr, cm −1 ) 3361, 1657, 1598, 1510, 1493, 1452, 1301, 1230, 1066, 812, 747, 695, 635, 563, 503; HRMS ( EI) Calcd for C 32 H 26 N 6: 494.2219. Found: 494.2225.
Synthesis Example 4 : Synthesis of (phenyl-NH-C-A-C-phenyl, R = R '= H) (Synthesis Method from Phenyl-NH-C-B (Z = S) -C-Phenyl)
(“Synthesis and characterization of p-phenylenediamine derivatives bearing a thiadiazole unit”, M. S. Ritonga, H. Sakrai, and T. Hirak et al. Phenyl-NH-C-B (Z = S) -C-phenyl was synthesized. A 30 mL two-necked flask was vacuum-dried while being sufficiently heated, and purged with argon. Phenyl-NH-C-B (Z = S) -C-phenyl (500 mg, 1 mmol), acetic acid (4 mL) and deionized water (1.5 mL) were added and stirred well. After the reaction solution was heated to 60 degrees, zinc powder (970 mg, 15 mmol) was added. After completion of the addition, the reaction solution was heated to 70 ° C., and after 12 hours, the reaction solution was filtered while hot, and the filtrate was quickly added into a 50% aqueous sodium hydroxide solution. The reaction mixture was cooled in an ice bath, extracted with ether (30 mL × 3), and the combined organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. After removing the desiccant, the solvent was distilled off under reduced pressure to obtain the corresponding o-phenylenediamine derivative as a pale red solid. This solid was immediately used for the next reaction without purification. A 100 mL two-necked flask was vacuum-dried while being sufficiently heated, and purged with argon. The o-phenylenediamine derivative prepared above was added, dissolved in ethanol (30 mL), and stirred well. Glyoxal aqueous solution (1 mmol) was slowly added dropwise to this solution. After completion of the dropwise addition, the reaction solution was heated to reflux, and after 16 hours, the reaction solution was returned to room temperature. The solvent was distilled off under reduced pressure. The obtained solid was purified by silica gel column chromatography (hexane: dichloromethane = 1: 1) to give the title compound as a dark blue solid in a yield of 17%.
Synthesis Example 5 : Synthesis of (phenyl-NH-AC-C-phenyl, R = R '= H) (synthesis method from 5,8-dibromoquinoxaline)
Synthesis of 5-bromo-8-phenylaminoquinoxaline was performed as a precursor of the title compound. The molecular sieve 5A was placed in a 20 mL two-necked flask and vacuum-dried with sufficient heating, followed by substitution with argon. After adding 5,8-dibromoquinoxaline (288 mg, 1 mmol), palladium acetate (12 mg, 0.05 mmol), BINAP (31 mg, 0.05 mmol), and sodium t-butoxy (140 mg, 1.4 mmol), toluene ( 5 mL) was added and stirred well. To this solution was slowly added aniline (109 μL, 1.2 mmol) dropwise. After completion of the dropwise addition, the reaction solution was heated to 80 degrees, and after 16 hours, the reaction solution was returned to room temperature. The reaction mixture was filtered through celite, the solvent was distilled off, and the resulting mixture was purified by silica gel column chromatography (hexane) to give 5-bromo-8-phenylaminoquinoxaline in orange at a yield of 63%. Obtained as a solid.
The physical properties of 5-bromo-8-phenylaminoquinoxaline are as follows. 1 H NMR (CDCl 3 , 300 MHz) d8.97 (d, J = 1.8 Hz, 1H), 8.74 (d, J = 1.8 Hz, 1H), 8.11 (s, Mp134-135 ° C. 1H), 7.89 (d, J = 8.7 Hz, 1H), 7.44-7.34 (m, 5H), 7.11 (t, J = 7.2 Hz, 1H); 13 C NMR ( (CDCl 3 , 75 MHz) 145.5, 141.4, 140.6, 140.4, 140.2, 133.8, 133.6, 129.0, 122.7, 120.2, 108.9, 107 IR (KBr, cm −1 ) 3333, 1597, 1568, 1521, 1490, 1457, 1384, 1340, 1071, 944, 751, 700, 503. Anal. Calcd for C 12 H 10 Br 1 N 3: C, 52.20; H, 3.65; N, 15.22. Found: C, 52.37; H, 3.45; N, 15.01. HRMS (EI) Calcd for C 12 H 10 Br 1 N 3: 276.1356. Found: 276.1358.
Next, the molecular sieve 5A was placed in a 20 mL two-necked flask, vacuum-dried while being sufficiently heated, and purged with argon. 5-bromo-8-phenylaminoquinoxaline obtained above (165 mg, 0.6 mmol), palladium acetate (5.6 mg, 0.025 mmol), BINAP (17.4 mg, 0.028 mmol), and t-butoxy sodium (67.3 mg, 0.7 mmol) was added, and then toluene (5 mL) was added and stirred well. To this solution 4- (4′-aminophenylamino) diphenylamine (138 mg, 0.5 mmol) was added slowly. After completion of the addition, the reaction solution was heated to reflux, and after 72 hours, the reaction solution was returned to room temperature. The reaction mixture was filtered through celite, the solvent was evaporated, and the obtained mixture was purified by silica gel column chromatography (dichloromethane) to give the title compound as a purple solid in a yield of 34%.
The physical properties of the title compound are as follows. Mp148-149 ° C .; 1 H NMR (CD 2 Cl 2 , 600 MHz) δ 8.79 (d, J = 1.8 Hz, 1H), 8.78 (d, J = 1.8 Hz, 1H), 7.40− 7.56 (m, 4H), 7.20-7.32 (m, 8H), 7.04-7.09 (m, 7H), 7.95 (d, J = 7.2 Hz, 2H), 6.82 (t, J = 7.2 Hz, 1H), 5.64 (br, 2H); IR (KBr, cm −1 ) 3385, 1598, 1509, 1291, 814, 748, 692, 630, 576 512; HRMS (EI) calcd for C 32 H 26 N 6: 494.2219. Found: 494.2216.
Synthesis Example 6 : Synthesis of (phenyl-NH-AC-C-phenyl, R = R '= H) (Synthesis Method from Phenyl-NH-B (Z = S) -C-C-Phenyl)
(“Synthesis and characterization of p-phenylenediamine derivatives bearing a thiadiazole unit”, M. S. Ritonga, H. Sakrai, and T. Hirak et al. Phenyl-NH-B (Z = S) -C-C-phenyl was synthesized. A 30 mL two-necked flask was vacuum-dried while being sufficiently heated, and purged with argon. Phenyl-NH-C-B (Z = S) -C-phenyl (500 mg, 1 mmol), acetic acid (4 mL) and deionized water (1.5 mL) were added and stirred well. After the reaction solution was heated to 60 degrees, zinc powder (970 mg, 15 mmol) was added. After completion of the addition, the reaction solution was heated to 70 ° C., and after 12 hours, the reaction solution was filtered while hot, and the filtrate was quickly added into a 50% aqueous sodium hydroxide solution. The reaction mixture was cooled in an ice bath, extracted with ether (30 mL × 3), and the combined organic layer was washed with saturated brine and dried over anhydrous sodium sulfate. After removing the desiccant, the solvent was distilled off under reduced pressure to obtain the corresponding o-phenylenediamine derivative as a pale red solid. This solid was immediately used for the next reaction without purification. A 100 mL two-necked flask was vacuum-dried while being sufficiently heated, and purged with argon. The o-phenylenediamine derivative prepared above was added, dissolved in ethanol (30 mL), and stirred well. Glyoxal aqueous solution (1 mmol) was slowly added dropwise to this solution. After completion of the dropwise addition, the reaction solution was heated to reflux, and after 16 hours, the reaction solution was returned to room temperature. The solvent was distilled off under reduced pressure. The obtained solid was purified by silica gel column chromatography (dichloromethane) to give the title compound as a purple solid in a yield of 11%.
Synthesis Example 7 : Synthesis of oxidized form of (phenyl-NH-A-phenyl, R = R '= H) and preparation of metal complex A 20 mL two-necked flask was vacuum-dried while being sufficiently heated, and purged with argon. 5,8-dianilinoquinoxaline (phenyl-NH-A-phenyl) (15.6 mg, 0.05 mmol) and primary silver oxide (13.9 mg, 0.06 mmol) were dissolved in THF (10 ml) at room temperature. Stir for 12 hours. The reaction mixture was filtered through alumina, and the solvent was evaporated to quantitatively obtain the title compound as an orange solid.
The physical properties of the oxidant are as follows. Mp145-147 ° C .; 1 H NMR (CDCl 3 , 600 MHz) δ 8.97 (s, 2H), 7.42 (dd, J = 8.1, 7.2 Hz, 4H), 7.20 (t, J = 7.2 Hz, 2H), 6.94 (s, 2H), 6.91 (d, J = 8.1 Hz, 4H); 13 C NMR (CDCl 3 , 150 MHz) 156.3, 151.4, 148. 0, 146.3, 130.1, 126.9, 125.9, 120.8 ppm; IR (KBr, cm −1 ) 3026, 1571, 1507, 1481, 1320, 1219, 1102, 768, 691, 634, 580,525,502; HRMS (EI) Calcd for C 20 H 14 N 4: 310.1219. Found: 310.1226.
To the obtained oxidant, palladium chloride was added in acetonitrile solvent while changing the equivalent amount, and the complex formation behavior was traced by UV-visible absorption spectrum and nuclear magnetic resonance spectrum. As a result, it was found that a complex having a composition of oxidant: palladium chloride = 1: 2 was stably formed.
Synthesis Example 8 Synthesis of oxidized form of (phenyl-NH-B (Z = O) -phenyl, R = R '= H) and preparation of metal complex Vacuum drying while sufficiently heating a 20 mL two-necked flask, Argon substitution was performed. 4,7-dianilino-2,1,3-benzooxadiazole (phenyl-NH-B (Z = O) -phenyl) (15.0 mg, 0.05 mmol) and primary silver oxide (13.9 mg, 0 0.06 mmol) was dissolved in THF (10 ml) and stirred at room temperature for 12 hours. The reaction mixture was filtered through alumina, and the solvent was evaporated to quantitatively obtain the title compound as an orange solid.
To the obtained oxidant, palladium chloride was added in acetonitrile solvent while changing the equivalent amount, and the complex formation behavior was traced by UV-visible absorption spectrum and nuclear magnetic resonance spectrum. As a result, it was found that a complex having a composition of oxidant: palladium chloride = 2: 1 was stably formed.
<UV measurement>
As part of the conductivity evaluation, an ultraviolet-visible light absorption spectrum was measured. The measurement used Hitachi U-3500 spectrophotometer, and the solvent used was Wako Pure Chemical's spectrum chloroform. All measurements were made with the solution concentration adjusted to 5 × 10 −5 M. As a result, when the value of λ max used as a conductivity evaluation criterion is 5,8-dianilinoquinoxaline (phenyl-NH-A-phenyl) at 490 nm, 5,8-dianilinoquinoxaline (phenyl-NH— In the case of (B-phenyl), it is observed at 522 nm. In either case, the reference compound aniline trimer (phenyl-NH-C-phenyl) (460 nm) or thiophene-substituted product (thiophenyl-NH-B-thiophenyl) (447 nm) ( H. A. M. van Mullomom et.al.Chem.Eur.J.4 1235 (1998)).
As an indicator of the electrical conductivity, as the difference between the highest occupied molecular orbital and the lowest unoccupied molecular orbital is small well, this corresponds to better value of lambda max is large. Therefore, compared with a similar compound used in a conventional element such as organic EL, the product of the present invention was found to have improved conductivity. The results of evaluating the conductivity of the aniline oligomer of the present invention are shown in FIG.
<CV measurement>
The cyclic voltammogram was measured using BAS CV-50W. The platinum electrode polished immediately before was used as a working electrode, a counter electrode of platinum wire, and a reference electrode based on Ag / AgCl (0.01M). As the solvent, acetonitrile distilled immediately before was used. Bu 4 NClO 4 was used as the electrolyte, the concentration was 0.10 M, the sample concentration was 1.0 mM, and after sufficient deaeration with argon gas, the measurement was performed at a scan rate of 100 mV / s. The redox potential shown below was calculated with the redox potential of ferrocene as 0V.
To illustrate the results of sample (3) (phenyl NH- (A)-(C)-(C) -phenyl) and sample (5) (phenyl NH- (C)-(A)-(C) -phenyl) The observed redox potentials are -1.94V, -0.12V, + 0.07V, + 0.44V (sample 3 above), -2.05V, -0.12V, + 0.13V, + 0.57V, respectively. (Sample 5), a multi-step redox process was observed, and at the same time, it was shown that various oxidation-reduction potentials were taken depending on the substitution mode.
<Evaluation of workability>
In order to evaluate the processability of the aniline pentamer and the two oligomers of the present invention, the solubility in NMP, DMF, THF, MeCN, CHCl 3 and AcOEt was examined. The results are shown in Table 1.
The solubility was evaluated according to the following criteria.
◎: melts well ○: melts △: difficult to melt ×: insoluble
Figure 2004050641
In addition, the well-known literature described in this specification is used as reference.

発明の効果The invention's effect

本発明によると、従来における前記問題を解決し、光電機能性、導電性、加工性、電気的安定性、熱的安定性、機械的安定性等に優れ、各種分野において導電性材料等として好適に使用可能なアニリン系誘導体を提供することができる。  According to the present invention, the conventional problems are solved, and the photoelectric functionality, conductivity, workability, electrical stability, thermal stability, mechanical stability, etc. are excellent, and it is suitable as a conductive material in various fields. An aniline derivative that can be used in the present invention can be provided.

Claims (7)

下記式(I)において、繰り返し単位が、(A)ないし(A’)および/または(B)ないし(B’)を必須とし、必要に応じてさらに(C)ないし(C’)を含み得るアニリン系誘導体またはその酸化体。
Figure 2004050641
(式中、R及びR’は、同一又は異なって、水素原子、アルキル基、アルコキシ基、アリール基、アラルキル基、モノアルキルアミノ基、ジアルキルアミノ基、アセチルアミノ基、COOH,SOH,OH,NO,ハロゲン原子またはCOOR(Rはアルキル基、アリール基またはアラルキル基を示す。)を示す。ZはCR”,O又はNHを示し、R”は水素原子、アルキル基、アリール基、アラルキル基、COOH,SOH,NO,ハロゲン原子またはCOOR(Rはアルキル基、アリール基またはアラルキル基を示す。)を示す。nは1〜500,000の整数である。)
In the following formula (I), the repeating unit may contain (A) to (A ′) and / or (B) to (B ′), and may further contain (C) to (C ′) as necessary. Aniline derivative or its oxidant.
Figure 2004050641
(In the formula, R and R ′ are the same or different and each represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aralkyl group, a monoalkylamino group, a dialkylamino group, an acetylamino group, COOH, SO 3 H, OH. , NO 2 , a halogen atom or COOR a (R a represents an alkyl group, an aryl group or an aralkyl group). Z represents CR ″ 2 , O or NH, R ″ represents a hydrogen atom, an alkyl group, an aryl A group, an aralkyl group, COOH, SO 3 H, NO 2 , a halogen atom or COOR b (R b represents an alkyl group, an aryl group or an aralkyl group). N is an integer of 1 to 500,000. )
繰り返し単位が(A)および(C)を含む請求項1に記載のアニリン系誘導体。The aniline derivative according to claim 1, wherein the repeating unit contains (A) and (C). 繰り返し単位が(B)および(C)を含む請求項1に記載のアニリン系誘導体。The aniline derivative according to claim 1, wherein the repeating unit contains (B) and (C). 請求項1〜3のいずれかに記載のアニリン系誘導体に金属イオンを配位させてなる金属錯体。The metal complex formed by coordinating a metal ion to the aniline type derivative in any one of Claims 1-3. 請求項1〜3のいずれかに記載のアニリン系誘導体または請求項4に記載の金属錯体を用いたことを特徴とする光電変換有機デバイス。A photoelectric conversion organic device using the aniline derivative according to any one of claims 1 to 3 or the metal complex according to claim 4. 請求項1〜3のいずれかに記載のアニリン系誘導体または請求項4に記載の金属錯体を用いたことを特徴とする有機EL素子。An organic EL device comprising the aniline derivative according to any one of claims 1 to 3 or the metal complex according to claim 4. 式:
Figure 2004050641
(式中、R’は水素原子、アルキル基、アルコキシ基、アリール基、アラルキル基、モノアルキルアミノ基、ジアルキルアミノ基、アセチルアミノ基、COOH,SOH,OH,NO,ハロゲン原子またはCOOR(Rはアルキル基、アリール基またはアラルキル基を示す。)を示す。)
で表される化合物と、式:
Figure 2004050641
(式中、Rは水素原子、アルキル基、アルコキシ基、アリール基、アラルキル基、モノアルキルアミノ基、ジアルキルアミノ基、アセチルアミノ基、COOH,SOH,OH,NO,ハロゲン原子またはCOOR(Rはアルキル基、アリール基またはアラルキル基を示す。)を示し、n0は0以上の整数であり、R’は前記に同じ。)
で表される化合物を反応させることを特徴とする、式:
Figure 2004050641
(但し、R,R’及びn0は前記に同じ。)
で表される化合物の製造方法。
formula:
Figure 2004050641
(In the formula, R ′ is a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aralkyl group, a monoalkylamino group, a dialkylamino group, an acetylamino group, COOH, SO 3 H, OH, NO 2 , a halogen atom or COOR. a (R a represents an alkyl group, an aryl group or an aralkyl group.)
And a compound represented by the formula:
Figure 2004050641
(In the formula, R represents a hydrogen atom, an alkyl group, an alkoxy group, an aryl group, an aralkyl group, a monoalkylamino group, a dialkylamino group, an acetylamino group, COOH, SO 3 H, OH, NO 2 , a halogen atom, or COOR a. (R a represents an alkyl group, an aryl group or an aralkyl group.), N0 is an integer of 0 or more, and R ′ is the same as above.)
Wherein the compound represented by the formula is reacted:
Figure 2004050641
(However, R, R ′ and n0 are the same as above.)
The manufacturing method of the compound represented by these.
JP2004556849A 2002-11-29 2003-11-28 Aniline oligomer or polymer, production method thereof, organic EL element and production method thereof, and photoelectric conversion organic device Pending JPWO2004050641A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002348751 2002-11-29
JP2002348751 2002-11-29
PCT/JP2003/015207 WO2004050641A1 (en) 2002-11-29 2003-11-28 Aniline oligomer or polymer, process for producing the same, organic el element and process for producing the same, and photo-electric converting organic device

Publications (1)

Publication Number Publication Date
JPWO2004050641A1 true JPWO2004050641A1 (en) 2006-03-30

Family

ID=32462938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004556849A Pending JPWO2004050641A1 (en) 2002-11-29 2003-11-28 Aniline oligomer or polymer, production method thereof, organic EL element and production method thereof, and photoelectric conversion organic device

Country Status (4)

Country Link
JP (1) JPWO2004050641A1 (en)
AU (1) AU2003302647A1 (en)
TW (1) TW200420546A (en)
WO (1) WO2004050641A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4951224B2 (en) * 2005-08-23 2012-06-13 富士フイルム株式会社 Photoelectric conversion film, photoelectric conversion element, imaging element, and method of applying electric field to them
JP5982990B2 (en) * 2012-04-25 2016-08-31 日立化成株式会社 Organic electronic material and manufacturing method thereof, polymerization initiator and thermal polymerization initiator, ink composition, organic thin film and manufacturing method thereof, organic electronics element, organic electroluminescence element, lighting device, display element, and display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3621977B2 (en) * 1993-08-12 2005-02-23 隆一 山本 Organic EL device
JP3959943B2 (en) * 1999-09-29 2007-08-15 コニカミノルタホールディングス株式会社 Organic electroluminescence device
JP2004002703A (en) * 2002-03-15 2004-01-08 Sumitomo Chem Co Ltd Polymeric compound and polymeric luminescent element using the same
US6822069B2 (en) * 2002-05-10 2004-11-23 Nissan Chemical Industries, Ltd. Poly (5-aminoquinoxalines) and use thereof

Also Published As

Publication number Publication date
AU2003302647A1 (en) 2004-06-23
WO2004050641A1 (en) 2004-06-17
TW200420546A (en) 2004-10-16

Similar Documents

Publication Publication Date Title
Sun et al. Highly stable electrochromic and electrofluorescent dual-switching polyamide containing bis (diphenylamino)-fluorene moieties
CN101720330B (en) Light emitting cu (I) complex compound
Song et al. Asymmetric thermally activated delayed fluorescence (TADF) emitters with 5, 9-dioxa-13 b-boranaphtho [3, 2, 1-de] anthracene (OBA) as the acceptor and highly efficient blue-emitting OLEDs
Zhang et al. Mechanofluorochromic properties of β-iminoenolate boron complexes tuned by the electronic effects of terminal phenothiazine and phenothiazine-S, S-dioxide
JP5113571B2 (en) Pyrido [3,2-h] quinazolinones and / or 5,6-dihydro derivatives thereof, process for their production, and doped organic semiconductor materials containing them
US20040097725A1 (en) Charge transport compositions and electronic devices made with such compositions
Wang et al. Realizing efficient red thermally activated delayed fluorescence organic light-emitting diodes using phenoxazine/phenothiazine-phenanthrene hybrids
Maruyama et al. Syntheses and emission properties of novel violet-blue emissive aromatic bis (diazaborole) s
WO2007032258A1 (en) Quinoxaline derivative, and light emitting element, light emitting device, and electronic appliance using the same
EP3140312B1 (en) Porphyrin molecular catalysts for selective electrochemical reduction of co2 into co
Qin et al. Syntheses, characterization, and properties of rhenium (I) tricarbonyl complexes with tetrathiafulvalene-fused phenanthroline ligands
Baraket et al. Novel phenoxazine-benzonitrile and phenothiazine-benzonitrile donor-acceptor molecules with thermally activated delayed fluorescence (TADF)
Sun et al. High-contrast electrochromic and electrofluorescent dual-switching materials based on 2-diphenylamine-(9, 9-diphenylfluorene)-functionalized semi-aromatic polymers
Han et al. Novel ratio fluorescence probes for selectively detecting zinc ion based on Y-type quinoxaline framework
Andersson et al. Synthesis and characterization of a ferrocene-linked bis-fullerene [60] dumbbell
Guarìn et al. Photophysical, electrochemical, and crystallographic investigation of conjugated fluoreno azomethines and their precursors
Nishikawa et al. Redox properties of Copper (I) complex bearing 4, 7-Diphenyl-2, 9-dimethyl-1, 10-phenanthroline and 1, 4-Bis (diphenylphosphino) butane ligands and effects of light in the presence of chloroform
Raichure et al. Multi-stimuli distinct responsive D–A based fluorogen oligomeric tool and efficient detection of TNT vapor
Ueda et al. A phenol-fused tetrathiafulvalene: modulation of hydrogen-bond patterns and electrical conductivity in the charge-transfer salt
Vacareanu et al. Electrochemical characterization of arylene vinylene oligomers containing triphenylamine and carbazole units
Tang et al. Achieving high efficiency at high luminance in fluorescent organic light‐emitting diodes through triplet–triplet fusion based on phenanthroimidazole‐benzothiadiazole derivatives
Wu et al. Organometallic polymers based on fluorene-bridged bis-benzimidazolylidene via direct ligand–metal coordination: synthesis, characterization and optical properties
JPWO2004050641A1 (en) Aniline oligomer or polymer, production method thereof, organic EL element and production method thereof, and photoelectric conversion organic device
Ohba et al. Synthesis of a new terpyridine ligand combined with ruthenium (II) complex and its usage in the stepwise fabrication of complex polymer wires on gold
JP2004083563A (en) Poly(5-aminoquinoxaline) and its use

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090722