JPWO2004033411A1 - Production method of enone ester - Google Patents

Production method of enone ester Download PDF

Info

Publication number
JPWO2004033411A1
JPWO2004033411A1 JP2004542836A JP2004542836A JPWO2004033411A1 JP WO2004033411 A1 JPWO2004033411 A1 JP WO2004033411A1 JP 2004542836 A JP2004542836 A JP 2004542836A JP 2004542836 A JP2004542836 A JP 2004542836A JP WO2004033411 A1 JPWO2004033411 A1 JP WO2004033411A1
Authority
JP
Japan
Prior art keywords
compound
ethyl acetate
reaction
minutes
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004542836A
Other languages
Japanese (ja)
Inventor
輝雄 阪田
輝雄 阪田
美貴 荒木
美貴 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shionogi and Co Ltd
Original Assignee
Shionogi and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shionogi and Co Ltd filed Critical Shionogi and Co Ltd
Publication of JPWO2004033411A1 publication Critical patent/JPWO2004033411A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D261/00Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
    • C07D261/02Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings
    • C07D261/04Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/317Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • C07C67/327Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups by elimination of functional groups containing oxygen only in singly bound form

Abstract

本発明は以下に示される、エノンエステルの工業的に有利な製法を提供する。The present invention provides an industrially advantageous process for producing enone esters as shown below.

Description

本発明は、リグナン誘導体の製造原料であるエノンエステル中間体の新規な製造方法に関する。  The present invention relates to a novel method for producing an enone ester intermediate which is a raw material for producing a lignan derivative.

本発明により製造されるリグナン誘導体は、動脈硬化症、特にアテローム性動脈硬化症の治療に有用な化合物である(特許文献1、2参照)。また該リグナン誘導体および中間体の製法も報告されている(特許文献3、4参照)。特許文献3では、実施例1〜9において、ラクトン化合物とエノンエステルとのマイケル付加反応によるリグナン誘導体の製法が記載され、参考例4において中間体であるエノンエステルの製造方法が記載されている。また、特許文献4では、リンゴ酸誘導体とグリニヤル試薬との反応により中間体であるエノンエステルの製造方法が報告されている。
(特許文献1)特開平05−310634号公報
(特許文献2)国際公開第93/08155号パンフレット
(特許文献3)特開平06−345695号公報
(特許文献4)国際公開第95/33707号パンフレット
The lignan derivative produced according to the present invention is a compound useful for the treatment of arteriosclerosis, particularly atherosclerosis (see Patent Documents 1 and 2). Moreover, the manufacturing method of this lignan derivative and an intermediate body is also reported (refer patent document 3, 4). In Patent Document 3, in Examples 1 to 9, a method for producing a lignan derivative by a Michael addition reaction between a lactone compound and an enone ester is described, and in Reference Example 4, a method for producing an enone ester as an intermediate is described. Moreover, in patent document 4, the manufacturing method of enone ester which is an intermediate body by reaction with a malic acid derivative and a Grignard reagent is reported.
(Patent Document 1) Japanese Patent Laid-Open No. 05-310634 (Patent Document 2) Pamphlet of International Publication No. 93/08155 (Patent Document 3) Japanese Patent Laid-Open No. 06-345695 (Patent Document 4) Pamphlet of International Publication No. 95/33707

上記、特許文献3の参考例4では、まずブロモ体からオキシム化合物を調製し、イソオキサゾリン誘導体を得ている。オキシム化合物からイソオキサゾリン誘導体への反応は、溶媒としてトルエン存在下で行われている。ブロモ体からイソオキサゾリン誘導体までの反応収率は49.5%であり、工業的製法として満足のいく製法ではなかった。続くイソオキサゾリンの還元反応は、パラジウム触媒を用い、メタノール存在下で行われている。パラジウムは貴金属であり、工業的製造に本触媒を用いるのは、大量使用時の入手性およびコスト面に問題が生じる場合がある。また、上記2工程(オキシム化合物からイソオキサゾリン誘導体への反応と、続くイソオキサゾリンの還元反応)は、トルエンおよびメタノール、即ち異なる溶媒を使用して行われているので、反応の後処理が煩雑となり効率的ではなかった。
本発明は、上記エノンエステルの製造法の改良に関する。例えば、オキシム化合物からイソオキサゾリン誘導体の反応収率が、溶媒を選択した結果、好ましくは酢酸エチルを用いることにより向上することが明らかとなった。また、溶媒として前工程と同じ酢酸エチルを使い、安価で入手容易なラネーニッケル触媒を用いて還元反応を行ったところ、パラジウム触媒を用いた時とほぼ同等の収率であった。さらに常温において油状であったエノンエステルは、結晶化の溶媒や温度を種々検討した結果、低温下、アルコール溶媒から良好な収率で結晶化され得ることを見出し、以下に示す本発明を完成した。
すなわち、本発明は、
1.式:

Figure 2004033411
で示される化合物(1)と式:
Figure 2004033411
で示される化合物(2)を酢酸エチル中で反応させることを特徴とする式:
Figure 2004033411
で示される化合物(3)の製造方法。
2.上記1記載の方法により化合物(3)を得た後、これをラネーニッケル存在下で還元することを特徴とする式:
Figure 2004033411
で示される化合物(4)の製造方法。
3.還元を酢酸エチル中で行う上記2記載の製造方法。
4.上記2または3記載の方法により化合物(4)を得た後、これを脱水することを特徴とする、式:
Figure 2004033411
で示される化合物(5)の製造方法。
5.上記4で示される化合物(5)をアルコールから結晶化することを特徴とする化合物(5)の結晶の製造方法。
6.上記4で示される化合物(5)の結晶
7.上記4または5記載の方法によりエノンエステルまたはその結晶を得た後、これを式:
Figure 2004033411
で示される化合物(6)と反応させて、式:
Figure 2004033411
で示される化合物(7)を得た後、これを脱水することを特徴とする式:
Figure 2004033411
で示される化合物(8)の製造方法に関する。In Reference Example 4 of Patent Document 3, an oxime compound is first prepared from a bromo compound to obtain an isoxazoline derivative. The reaction from the oxime compound to the isoxazoline derivative is performed in the presence of toluene as a solvent. The reaction yield from the bromo compound to the isoxazoline derivative was 49.5%, which was not a satisfactory production method as an industrial production method. The subsequent reduction reaction of isoxazoline is carried out in the presence of methanol using a palladium catalyst. Palladium is a noble metal, and using this catalyst for industrial production may cause problems in terms of availability and cost when used in large quantities. In addition, since the above two steps (reaction from the oxime compound to the isoxazoline derivative and subsequent reduction reaction of isoxazoline) are performed using toluene and methanol, that is, different solvents, the post-treatment of the reaction becomes complicated. It was not efficient.
The present invention relates to an improvement in the process for producing the enone ester. For example, it has been found that the reaction yield of isoxazoline derivatives from oxime compounds is preferably improved by using ethyl acetate as a result of selecting a solvent. Moreover, when the same ethyl acetate as the previous step was used as a solvent and a reduction reaction was carried out using an inexpensive and readily available Raney nickel catalyst, the yield was almost the same as when a palladium catalyst was used. Furthermore, as a result of various investigations on the crystallization solvent and temperature, the enone ester that was oily at room temperature was found to be crystallized in good yield from an alcohol solvent at low temperatures, and the present invention shown below was completed. .
That is, the present invention
1. formula:
Figure 2004033411
Compound (1) represented by the formula:
Figure 2004033411
A compound represented by the formula (2) is reacted in ethyl acetate:
Figure 2004033411
The manufacturing method of compound (3) shown by these.
2. A compound (3) obtained by the method described in 1 above, is then reduced in the presence of Raney nickel,
Figure 2004033411
The manufacturing method of compound (4) shown by these.
3. 3. The production method according to 2 above, wherein the reduction is carried out in ethyl acetate.
4). A compound (4) obtained by the method described in 2 or 3 above, and then dehydrated, is represented by the formula:
Figure 2004033411
The manufacturing method of compound (5) shown by these.
5). A method for producing a crystal of compound (5), wherein the compound (5) represented by 4 is crystallized from an alcohol.
6). 6. Crystal of compound (5) represented by 4 above After obtaining an enone ester or a crystal thereof by the method described in 4 or 5 above,
Figure 2004033411
Is reacted with a compound (6) represented by the formula:
Figure 2004033411
After obtaining the compound (7) represented by the formula, it is dehydrated:
Figure 2004033411
To a method for producing a compound (8)

本発明に係る化合物または結晶の製造法を以下に詳しく説明する。本発明製法は、以下の2製法から構成される。
第1製法

Figure 2004033411
第2製法
Figure 2004033411
第1製法のi)は、オキシム化合物(1)とアクリル酸エステル(2)とを酸化剤の存在下に反応させてイソオキサゾリン化合物(3)を得た後、生成したイソオキサゾリン化合物(3)をラネーニッケル触媒存在下、水素化分解反応に付してケトアルコール化合物(4)に導き、さらに脱水してエノンエステル(5)を合成するルートである。
ii)は、種々の溶媒を用い、低温下で(5)の結晶化および精製を行う工程である。
第2製法は、エノンエステル(5)とラクトン化合物(6)とを塩基存在下に反応させて化合物(7)を合成した後、脱水して目的とするリグナン誘導体(8)を得るルートを示している。
反応条件の説明
(第1製法)
原料のオキシム化合物(1)は、文献(例、特開平6−345695)の方法に従って合成できる。
Figure 2004033411
即ち、1−ブロモ−2−エチルブタン(9)をグリニヤル試薬に調製した後、ホルミル化し、得られたホルミル誘導体(10)をヒドロキシルアミンと反応させて(1)を得る。
ホルミル化剤としては、N,N−ジメチルホルムアミド、1−ホルミルピペリジン、1−ホルミルピロリジン、N−ホルミルモルホリン、N−メチル−N−フェニルホルムアミド、N−メチル−N−ピリジン−2−イル−ホルムアミド、N−メチル−N−ピリミジン−2−イル−ホルムアミド、N−(2−ジメチルアミノエチル)−N−メチルホルムアミド等が例示される。好ましくは、N,N−ジメチルホルムアミド、1−ホルミルピペリジン、特に好ましくは、N,N−ジメチルホルムアミドである。
オキシム化剤としては、ヒドロキシルアミンおよびその塩(塩酸、硝酸、硫酸、シュウ酸、過塩素酸等)である。
オキシム化合物(1)とアクリル酸エステル(2)の使用割合は特に制限されないが、通常は、(2)を(1)に対してモル換算で等量もしくは小過剰量、好ましくは、1:1〜1:3、さらに好ましくは1:1〜1:1.5で使用する。本反応は、所望によりトリエチルアミン等の塩基存在下で行われても良い。
使用する酸化剤としては、次亜塩素酸ナトリウム、次亜塩素酸カリウム、次亜塩素酸リチウム、次亜塩素酸カルシウム、次亜塩素酸アンモニウム、次亜臭素酸ナトリウム、N−クロロコハク酸イミド、N−ブロモコハク酸イミド、クロラミン−T、1−クロロベンゾトリアゾール、塩素、臭素、第3級ブチルヒポクライト、硝酸セリウムアンモニウム、ジアセトキシヨードベンゼン、ジクロロヨードベンゼン、二酸化マンガン、酢酸水銀(II)、酸化水銀(II)、ジメチルジオキシラン、塩素酸ナトリウム、亜臭素酸ナトリウム等が例示される。
反応溶媒は、水、テトラヒドロフラン、ジエチルエーテル、ジオキサン等のエーテル類、n−ヘキサン、n−ペンタン等の炭化水素類、アセトン、メチルエチルケトン等のケトン類、ベンゼン、トルエン等の芳香族炭化水素類、塩化メチレン、クロロホルム、ジクロルエタン等のハロゲン化炭化水素類、アセトニトリル等のニトリル類、N,N−ジメチルホルムアミド、ヘキサメチルホスホリックトリアミド等のアミド類、メタノール、エタノール、2−プロパノール、第3級ブタノール等のアルコール類、酢酸メチル、酢酸エチル、酢酸プロピル等のエステル類等が例示される。これらの溶媒は単独で使用しても、2種以上を混合して使用してもよい。中でもエステル類、エーテル類、アルコール類が好ましく、特にエステル類(例、酢酸エチル)が好ましい。酢酸エチルを使用した場合、オキシム化合物(1)からイソオキサゾリン化合物(3)への反応の吸率は、例えば約84%になる。その結果、原料のブロモ体(化合物9)からの収率は約76%に達する。
本反応は、通常−20℃から40℃、好ましくは、−5℃から室温にて、数分から数時間で完結する。
イソオキサゾリン化合物(3)と接触還元触媒の使用割合は、(3)に対し、0.1〜50重量%であって、好ましくは1〜10重量%である。
本接触還元反応は、酸存在下で行われてもよい。酸としては、酢酸、プロピオン酸等の有機酸、塩酸、硼酸等の無機酸である。
接触還元触媒としては、ラネーニッケル、ラネーコバルト、ラネー銅、ラネー鉄等のラネー触媒、パラジウム炭素等の貴金属系触媒である。好ましくは、ラネー触媒、特にラネーニッケル触媒である。
本発明における反応は、好ましくは水素ガス中で行われ、その水素圧は0.1〜10MPa、好ましくは0.1〜2MPaである。
溶媒としては、水、メタノール、エタノール等のアルコール系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、テトラヒドロフラン、エーテル等のエーテル系溶媒、酢酸エチル、酢酸メチル等のエステル系溶媒等である。これらの溶媒は単独で使用しても、2種以上を混合して使用してもよい。好ましくは、エステル系溶媒、アルコール系溶媒、特に酢酸エチルである。
反応温度は、10〜70℃、好ましくは20〜40℃が適当であり、通常1〜数十時間程度で反応は終了する。
還元反応で得たケトアルコール化合物(4)は、好ましくは有機溶媒中で活性化剤を用いて脱水反応を行い、エノンエステル(5)に変換できる。
活性化剤としては、塩化メタンスルホニル、塩化パラトルエンスルホニル、塩化ベンゼンスルホニル、メタンスルホン酸無水物等のスルホニル化剤、塩化アセチル、無水酢酸、塩化ベンゾイル、安息香酸無水物等のアシル化剤、クロロリン酸ジエチル、クロロリン酸ジフェニル等のリン酸化剤、塩化チオニル、オキシ塩化リン、五塩化リン、三臭化リン等のハロゲン化剤である。好ましくは、スルホニル化剤であり、特に好ましくは塩化メタンスルホニルである。
有機溶媒としては、前記の工程と同様の溶媒を使用し得るが、好ましくは酢酸エチルである。
この反応は−10〜70℃、好ましくは0〜40℃で、0.5〜10時間、好ましくは1〜2時間である。
エノンエステル(5)は、常温においては油状であり、(5)の単離精製は、当業界で慣用されている方法(例えば、蒸留)を利用して行われる。しかし、好ましくは結晶化によって得られる。これによって、エノンエステル(5)を実質的に純粋に得ることができる。
結晶化のために使用する可溶性溶媒としては、テトラヒドロフラン、ジエチルエーテル等のエーテル類、n−ヘキサン、n−ペンタン等の炭化水素類、アセトン、メチルイソブチルケトン等のケトン類、ベンゼン、トルエン等の芳香族炭化水素類、メタノール、エタノール、2−プロパノール、第3級ブタノール等のアルコール類、酢酸メチル、酢酸エチル等のエステル類等である。これらの溶媒は単独で使用しても、2種以上を混合して使用してもよい。また水を混合しても使用できる。中でもエステル類、ケトン類、アルコール類が好ましく、特にアルコール類(例、メタノール)が好ましい。
溶媒の使用量は、化合物(5)に対し総量が0.5〜100重量部であり、好ましくは1〜50重量部であり、特に好ましくは1〜15重量部である。上記結晶化方法において、溶液を冷却すると結晶が析出してくる場合もあるが、析出しない場合には、例えば、冷却下、超音波処理や攪拌等の刺激を与える、種結晶を加える等により結晶を析出させてもよい。結晶化に適切な冷却温度は、−150〜4℃であり、好ましくは−80〜−20℃である。
(第2製法)
化合物(6)は公知の方法(例、特開平6−345695)に従って製造できる。
第1工程で使用する化合物(5)および化合物(6)の使用割合は特に制限されないが、通常は、化合物(5)を化合物(6)に対して等量もしくは過剰量、好ましくは1:1〜1:2で使用する。
使用する塩基としては、通常用いられるジアルキル金属アミド類、例えば、リチウムジイソプロピルアミド、ナトリウムジシクロヘキシルアミド等、また、ビス(トリアルキルシリル)金属アミド類、例えば、リチウムビス(トリメチルシリル)アミド類、カリウムビス(トリメチルシリル)アミド、ナトリウムビス(トリエチルシリル)アミド等を用いることができ、好ましくは、リチウムビス(トリメチルシリル)アミドを用いる。
反応溶媒は、例えば、テトラヒドロフラン、ジエチルエーテル、ジオキサン等のエーテル類、n−ヘキサン、n−ペンタン等の炭化水素類、ベンゼン、トルエン等の芳香族炭化水素類、塩化メチレン等のハロゲン化炭化水素類、N,N−ジメチルホルムアミド、ヘキサメチルホスホリックトリアミド等のアミド類を単独で、又はそれらを混合して使用できる。好ましい溶媒は、テトラヒドロフラン、塩化メチレン、N,N−ジメチルホルムアミド、ヘキサメチルホスホリックトリアミドである。
本工程の反応は、通常−100℃から100℃、好ましくは−80℃から室温にて、数分から数時間で完結する。
第2工程で使用する酸としては無機酸又は有機酸を使用でき、例えば塩酸、硫酸、トリフルオロ酢酸、スルホン酸類(メタンスルホン酸、p−トルエンスルホン酸等)、ルイス酸(三フッ化ホウ素、四塩化チタン等)を用いることができ、好ましくは、三フッ化ホウ素、メタンスルホン酸を用いる。使用量については特に制限はないが、好ましくは1から2当量を用いる。
反応溶媒は、ベンゼン、トルエン等の芳香族炭化水素類、塩化メチレン等のハロゲン化炭化水素類、アセトニトリル等のニトリル類を使用する。
本反応は、通常、−70℃から100℃、好ましくは、−20℃から室温にて数分から数時間で完結する。
以下に実施例及び参考例を記載し、本発明をさらに詳細に説明するが、これらは本発明の限定を意図するものではない。
(略号)
DMF=N,N−ジメチルホルムアミド、THF=テトラヒドロフラン、Pa=パスカル、MPa=メガパスカル、1torr=1.33322x10Pa、HPLC=高速液体クロマトグラフ、常温=15〜25℃
参考例1
Figure 2004033411
DL−リンゴ酸(50.2kg、374mol)に無水酢酸(40.0kg、392mol)を加え、80℃で30分間加熱した。反応溶液を45℃に冷却した後、塩化アセチル(48.0kg、611mol)を180分かけて加え、同温で30分間攪拌した。20℃に冷却後、種晶(100g)を加え、トルエン(230kg)にて希釈し、15℃で40分間、−5℃で60分間晶析を行った。結晶をろ取した後、−5℃に冷却したトルエン(172kg)で洗浄し、化合物(11)の未乾結晶(58.7kg)を得た。The production method of the compound or crystal according to the present invention will be described in detail below. The production method of the present invention comprises the following two production methods.
First production method
Figure 2004033411
Second manufacturing method
Figure 2004033411
In the first production method i), an isoxazoline compound (3) is obtained by reacting an oxime compound (1) and an acrylic ester (2) in the presence of an oxidizing agent to obtain an isoxazoline compound (3). Is subjected to a hydrocracking reaction in the presence of a Raney nickel catalyst to lead to a ketoalcohol compound (4) and further dehydrated to synthesize enone ester (5).
ii) is a step of performing crystallization and purification of (5) at low temperature using various solvents.
The second production method shows a route in which enone ester (5) and lactone compound (6) are reacted in the presence of a base to synthesize compound (7) and then dehydrated to obtain the desired lignan derivative (8). ing.
Explanation of reaction conditions (1st manufacturing method)
The raw material oxime compound (1) can be synthesized according to literature methods (eg, JP-A-6-345695).
Figure 2004033411
That is, 1-bromo-2-ethylbutane (9) is prepared as a Grignard reagent, then formylated, and the resulting formyl derivative (10) is reacted with hydroxylamine to obtain (1).
As the formylating agent, N, N-dimethylformamide, 1-formylpiperidine, 1-formylpyrrolidine, N-formylmorpholine, N-methyl-N-phenylformamide, N-methyl-N-pyridin-2-yl-formamide N-methyl-N-pyrimidin-2-yl-formamide, N- (2-dimethylaminoethyl) -N-methylformamide and the like. N, N-dimethylformamide and 1-formylpiperidine are preferable, and N, N-dimethylformamide is particularly preferable.
Examples of the oximation agent include hydroxylamine and salts thereof (hydrochloric acid, nitric acid, sulfuric acid, oxalic acid, perchloric acid, etc.).
The use ratio of the oxime compound (1) and the acrylate ester (2) is not particularly limited. Usually, however, (2) is equivalent or small excess in terms of mole relative to (1), preferably 1: 1. ˜1: 3, more preferably 1: 1 to 1: 1.5. This reaction may be performed in the presence of a base such as triethylamine, if desired.
The oxidizing agent used is sodium hypochlorite, potassium hypochlorite, lithium hypochlorite, calcium hypochlorite, ammonium hypochlorite, sodium hypobromite, N-chlorosuccinimide, N -Bromosuccinimide, chloramine-T, 1-chlorobenzotriazole, chlorine, bromine, tertiary butyl hypocrite, cerium ammonium nitrate, diacetoxyiodobenzene, dichloroiodobenzene, manganese dioxide, mercury acetate (II), mercury oxide Examples include (II), dimethyldioxirane, sodium chlorate, sodium bromite and the like.
Reaction solvents include water, ethers such as tetrahydrofuran, diethyl ether and dioxane, hydrocarbons such as n-hexane and n-pentane, ketones such as acetone and methyl ethyl ketone, aromatic hydrocarbons such as benzene and toluene, chloride Halogenated hydrocarbons such as methylene, chloroform, dichloroethane, nitriles such as acetonitrile, amides such as N, N-dimethylformamide, hexamethylphosphoric triamide, methanol, ethanol, 2-propanol, tertiary butanol, etc. Alcohols, esters such as methyl acetate, ethyl acetate, and propyl acetate. These solvents may be used alone or in combination of two or more. Of these, esters, ethers, and alcohols are preferable, and esters (eg, ethyl acetate) are particularly preferable. When ethyl acetate is used, the absorptivity of the reaction from the oxime compound (1) to the isoxazoline compound (3) is, for example, about 84%. As a result, the yield from the starting bromo compound (Compound 9) reaches about 76%.
This reaction is usually completed within a few minutes to a few hours at −20 ° C. to 40 ° C., preferably −5 ° C. to room temperature.
The use ratio of the isoxazoline compound (3) and the catalytic reduction catalyst is 0.1 to 50% by weight, preferably 1 to 10% by weight, based on (3).
This catalytic reduction reaction may be performed in the presence of an acid. Examples of the acid include organic acids such as acetic acid and propionic acid, and inorganic acids such as hydrochloric acid and boric acid.
Examples of the catalytic reduction catalyst include Raney catalysts such as Raney nickel, Raney cobalt, Raney copper and Raney iron, and noble metal catalysts such as palladium carbon. Raney catalysts, particularly Raney nickel catalysts are preferred.
The reaction in the present invention is preferably carried out in hydrogen gas, and the hydrogen pressure is 0.1 to 10 MPa, preferably 0.1 to 2 MPa.
Examples of the solvent include water, alcohol solvents such as methanol and ethanol, aromatic hydrocarbon solvents such as toluene and xylene, ether solvents such as tetrahydrofuran and ether, and ester solvents such as ethyl acetate and methyl acetate. These solvents may be used alone or in combination of two or more. Preferred are ester solvents, alcohol solvents, particularly ethyl acetate.
The reaction temperature is suitably 10 to 70 ° C., preferably 20 to 40 ° C. The reaction is usually completed in about 1 to several tens of hours.
The keto alcohol compound (4) obtained by the reduction reaction can be converted to the enone ester (5) by performing a dehydration reaction, preferably using an activator in an organic solvent.
Activating agents include sulfonylating agents such as methanesulfonyl chloride, p-toluenesulfonyl chloride, benzenesulfonyl chloride, methanesulfonic anhydride, acylating agents such as acetyl chloride, acetic anhydride, benzoyl chloride, benzoic anhydride, chlorophosphorus Phosphorating agents such as diethyl acid and diphenyl chlorophosphate, and halogenating agents such as thionyl chloride, phosphorus oxychloride, phosphorus pentachloride and phosphorus tribromide. Preferred is a sulfonylating agent, and particularly preferred is methanesulfonyl chloride.
As the organic solvent, the same solvent as in the above step can be used, but ethyl acetate is preferable.
This reaction is carried out at −10 to 70 ° C., preferably 0 to 40 ° C., for 0.5 to 10 hours, preferably 1 to 2 hours.
The enone ester (5) is oily at room temperature, and the isolation and purification of (5) is carried out using a method commonly used in the art (for example, distillation). However, it is preferably obtained by crystallization. Thereby, the enone ester (5) can be obtained substantially pure.
Soluble solvents used for crystallization include ethers such as tetrahydrofuran and diethyl ether, hydrocarbons such as n-hexane and n-pentane, ketones such as acetone and methyl isobutyl ketone, and aromatics such as benzene and toluene. Group hydrocarbons, alcohols such as methanol, ethanol, 2-propanol and tertiary butanol, and esters such as methyl acetate and ethyl acetate. These solvents may be used alone or in combination of two or more. It can also be used by mixing water. Of these, esters, ketones, and alcohols are preferable, and alcohols (eg, methanol) are particularly preferable.
The total amount of the solvent used is 0.5 to 100 parts by weight, preferably 1 to 50 parts by weight, particularly preferably 1 to 15 parts by weight, based on the compound (5). In the above crystallization method, crystals may be precipitated when the solution is cooled, but in the case where the solution does not precipitate, for example, the crystal is produced by adding a seed crystal or the like while giving a stimulus such as ultrasonic treatment or stirring under cooling. May be deposited. The cooling temperature suitable for crystallization is −150 to 4 ° C., preferably −80 to −20 ° C.
(Second manufacturing method)
Compound (6) can be produced according to a known method (eg, JP-A-6-345695).
The ratio of the compound (5) and the compound (6) used in the first step is not particularly limited. Usually, the compound (5) is used in an equivalent amount or an excess amount, preferably 1: 1 with respect to the compound (6). Use at ~ 1: 2.
Examples of the base to be used include generally used dialkyl metal amides such as lithium diisopropylamide and sodium dicyclohexylamide, and bis (trialkylsilyl) metal amides such as lithium bis (trimethylsilyl) amide, potassium bis ( Trimethylsilyl) amide, sodium bis (triethylsilyl) amide and the like can be used, and lithium bis (trimethylsilyl) amide is preferably used.
Examples of the reaction solvent include ethers such as tetrahydrofuran, diethyl ether and dioxane, hydrocarbons such as n-hexane and n-pentane, aromatic hydrocarbons such as benzene and toluene, and halogenated hydrocarbons such as methylene chloride. , N, N-dimethylformamide, hexamethylphosphoric triamide and the like can be used alone or as a mixture thereof. Preferred solvents are tetrahydrofuran, methylene chloride, N, N-dimethylformamide, hexamethylphosphoric triamide.
The reaction in this step is usually completed within a few minutes to a few hours at −100 ° C. to 100 ° C., preferably −80 ° C. to room temperature.
As the acid used in the second step, an inorganic acid or an organic acid can be used. For example, hydrochloric acid, sulfuric acid, trifluoroacetic acid, sulfonic acids (methanesulfonic acid, p-toluenesulfonic acid, etc.), Lewis acid (boron trifluoride, Titanium tetrachloride, etc.) can be used, and preferably boron trifluoride or methanesulfonic acid is used. Although there is no restriction | limiting in particular about the usage-amount, Preferably 1 to 2 equivalent is used.
As the reaction solvent, aromatic hydrocarbons such as benzene and toluene, halogenated hydrocarbons such as methylene chloride, and nitriles such as acetonitrile are used.
This reaction is usually completed within a few minutes to a few hours at −70 ° C. to 100 ° C., preferably −20 ° C. to room temperature.
EXAMPLES Examples and reference examples will be described below to explain the present invention in more detail, but these are not intended to limit the present invention.
(Abbreviation)
DMF = N, N-dimethylformamide, THF = tetrahydrofuran, Pa = pascal, MPa = megapascal, 1 torr = 1.33322 × 10 2 Pa, HPLC = high performance liquid chromatograph, normal temperature = 15-25 ° C.
Reference example 1
Figure 2004033411
Acetic anhydride (40.0 kg, 392 mol) was added to DL-malic acid (50.2 kg, 374 mol) and heated at 80 ° C. for 30 minutes. After the reaction solution was cooled to 45 ° C., acetyl chloride (48.0 kg, 611 mol) was added over 180 minutes, and the mixture was stirred at the same temperature for 30 minutes. After cooling to 20 ° C., seed crystals (100 g) were added, diluted with toluene (230 kg), and crystallized at 15 ° C. for 40 minutes and at −5 ° C. for 60 minutes. The crystals were collected by filtration and washed with toluene (172 kg) cooled to −5 ° C. to obtain undried crystals (58.7 kg) of compound (11).

Figure 2004033411
マグネシウム(331g、13.62mol)をTHF(8.8L)に懸濁し、窒素置換後65℃に加熱した。化合物(9)(66g、0.40mol)を加え、15分間加熱を続けた。さらに化合物(9)(2182g、13.22mol)を85分かけて加え、1時間加熱還流を続け、反応液を20℃付近に冷却した。1−ホルミルピペリジン(1464g、12.94mol)のTHF(2.2L)溶液を100分かけて加え、20℃付近で1時間攪拌した。上記の操作を繰返し、化合物(10)の反応溶液を同量得た。ヒドロキシルアミン塩酸塩(2271g、32.68mol)を水(6.6L)に溶解し、窒素雰囲気下、11℃付近に冷却した。化合物(10)の反応液を合せ、50分かけて滴下し、20℃付近で1時間攪拌した。反応液に水(20L)および酢酸エチル(11L)を加えて分液し、有機層を10%食塩水(2×18L)で洗浄した。それぞれの水層を酢酸エチル(11L)で抽出し、有機層を合併後、減圧濃縮して化合物(1)(3277g、93.1%)を得た。
Figure 2004033411
Magnesium (331 g, 13.62 mol) was suspended in THF (8.8 L), purged with nitrogen, and heated to 65 ° C. Compound (9) (66 g, 0.40 mol) was added and heating was continued for 15 minutes. Further, compound (9) (2182 g, 13.22 mol) was added over 85 minutes, followed by heating and refluxing for 1 hour, and the reaction solution was cooled to around 20 ° C. A solution of 1-formylpiperidine (1464 g, 12.94 mol) in THF (2.2 L) was added over 100 minutes, and the mixture was stirred at around 20 ° C. for 1 hour. The above operation was repeated to obtain the same amount of the reaction solution of compound (10). Hydroxylamine hydrochloride (2271 g, 32.68 mol) was dissolved in water (6.6 L) and cooled to around 11 ° C. under a nitrogen atmosphere. The reaction liquid of the compound (10) was combined, added dropwise over 50 minutes, and stirred at around 20 ° C. for 1 hour. Water (20 L) and ethyl acetate (11 L) were added to the reaction solution for liquid separation, and the organic layer was washed with 10% brine (2 × 18 L). Each aqueous layer was extracted with ethyl acetate (11 L), and the organic layers were combined and concentrated under reduced pressure to obtain compound (1) (3277 g, 93.1%).

Figure 2004033411
14.3%次亜塩素酸ナトリウム水溶液(17.7kg、34.00mol)と酢酸エチル(8L)の混合溶液を5℃付近に冷却し、化合物(1)(2.0kg)、アクリル酸メチル(2)(1812mL、20.12mol)およびトリエチルアミン(324mL、2.32mol)の酢酸エチル(8L)溶液を100分かけて滴下した。反応液を10分間攪拌した後に分液し、有機層を水(15.3L)、氷冷した3%亜硫酸ナトリウム水溶液(15.3L)、水(2×15.3L)で順次洗浄した。それぞれの水層を酢酸エチル(8L)で抽出し、有機層を合併後無水硫酸ナトリウムで乾燥し、減圧濃縮して化合物(3)(2778g、84.1%)を得た。
Figure 2004033411
A mixed solution of 14.3% aqueous sodium hypochlorite solution (17.7 kg, 34.00 mol) and ethyl acetate (8 L) was cooled to around 5 ° C., and compound (1) (2.0 kg), methyl acrylate ( 2) A solution of (1812 mL, 20.12 mol) and triethylamine (324 mL, 2.32 mol) in ethyl acetate (8 L) was added dropwise over 100 minutes. The reaction solution was stirred for 10 minutes and separated, and the organic layer was washed successively with water (15.3 L), ice-cooled 3% aqueous sodium sulfite solution (15.3 L), and water (2 × 15.3 L). Each aqueous layer was extracted with ethyl acetate (8 L), and the organic layers were combined, dried over anhydrous sodium sulfate, and concentrated under reduced pressure to obtain compound (3) (2778 g, 84.1%).

Figure 2004033411
マグネシウム(6.61g、272mmol)をTHF(170mL)に懸濁し、触媒量のヨウ素を加えた後に窒素置換、60℃に加熱した。化合物(9)(1.80g、10.9mmol)を加え、50分間加熱を続けた。さらに化合物(9)(43.10g、261.1mmol)を80分かけて加え、1時間加熱還流を続け、反応液を20℃付近に冷却した。DMF(18.89g、258.4mmol)のTHF(40mL)溶液を70分かけて加え、20℃付近で1時間攪拌した。ヒドロキシルアミン塩酸塩(22.21g、310.1mmol)を水(66.6mL)に溶解し、窒素雰囲気下、13℃付近に冷却した。先の反応液を75分かけて滴下し、17℃付近で1時間攪拌した。反応液に水(180mL)および酢酸エチル(100mL)を加えて分液し、有機層を10%食塩水(2×180mL)で洗浄した。それぞれの水層を酢酸エチル(100mL)で抽出し、有機層を合併後、減圧濃縮して化合物(1)(65.43g)を得た。
Figure 2004033411
Magnesium (6.61 g, 272 mmol) was suspended in THF (170 mL), and a catalytic amount of iodine was added, followed by nitrogen substitution and heating to 60 ° C. Compound (9) (1.80 g, 10.9 mmol) was added and heating was continued for 50 minutes. Further, compound (9) (43.10 g, 261.1 mmol) was added over 80 minutes, and heating under reflux was continued for 1 hour, and the reaction solution was cooled to around 20 ° C. A solution of DMF (18.89 g, 258.4 mmol) in THF (40 mL) was added over 70 minutes, and the mixture was stirred at around 20 ° C. for 1 hour. Hydroxylamine hydrochloride (22.21 g, 310.1 mmol) was dissolved in water (66.6 mL) and cooled to around 13 ° C. under a nitrogen atmosphere. The previous reaction solution was added dropwise over 75 minutes, and the mixture was stirred at around 17 ° C. for 1 hour. Water (180 mL) and ethyl acetate (100 mL) were added to the reaction solution for liquid separation, and the organic layer was washed with 10% brine (2 × 180 mL). Each aqueous layer was extracted with ethyl acetate (100 mL), and the organic layers were combined and concentrated under reduced pressure to obtain compound (1) (65.43 g).

Figure 2004033411
(A)12.56%次亜塩素酸ナトリウム水溶液(235mL、396.5mmol)と酢酸エチル(93mL)の混合溶液を1℃付近に冷却し、実施例3で得た化合物(1)(49.1g)およびアクリル酸メチル(2)(20.17g、234.3mmol)の酢酸エチル(64mL)溶液を90分かけて滴下した。反応液を30分間攪拌した後に分液し、有機層を水(175mL)、氷冷した3%亜硫酸ナトリウム水溶液(175mL)、水(2×175mL)で順次洗浄した。それぞれの水層を酢酸エチル(94mL)で抽出し、有機層を合併後、減圧濃縮して化合物(3)(62.76g)を得た。
(B)化合物(1)(8.35g、64.6mmol)およびアクリル酸メチル(7.56mL、84.0mmol)の酢酸エチル(16.5mL)溶液を1℃付近に冷却し、12.56%次亜塩素酸ナトリウム水溶液(44.0g、71.0mmol)を55分かけて滴下した。反応液を30分間攪拌した後に分液し、有機層を水(35mL)、氷冷した3%亜硫酸ナトリウム水溶液(35mL)、水(2×35mL)で順次洗浄した。それぞれの水層を酢酸エチル(16.5mL)で抽出し、有機層を合併した後、減圧濃縮して化合物(3)を得た。
Figure 2004033411
(A) A mixed solution of 12.56% sodium hypochlorite aqueous solution (235 mL, 396.5 mmol) and ethyl acetate (93 mL) was cooled to around 1 ° C., and compound (1) obtained in Example 3 (49. 1 g) and methyl acrylate (2) (20.17 g, 234.3 mmol) in ethyl acetate (64 mL) were added dropwise over 90 minutes. The reaction solution was stirred for 30 minutes and then separated, and the organic layer was washed successively with water (175 mL), ice-cooled 3% aqueous sodium sulfite solution (175 mL), and water (2 × 175 mL). Each aqueous layer was extracted with ethyl acetate (94 mL), and the organic layers were combined and concentrated under reduced pressure to obtain compound (3) (62.76 g).
(B) A solution of compound (1) (8.35 g, 64.6 mmol) and methyl acrylate (7.56 mL, 84.0 mmol) in ethyl acetate (16.5 mL) was cooled to around 1 ° C., and 12.56% Sodium hypochlorite aqueous solution (44.0 g, 71.0 mmol) was added dropwise over 55 minutes. The reaction solution was stirred for 30 minutes and then separated, and the organic layer was washed successively with water (35 mL), ice-cooled 3% aqueous sodium sulfite solution (35 mL), and water (2 × 35 mL). Each aqueous layer was extracted with ethyl acetate (16.5 mL), combined with the organic layer, and then concentrated under reduced pressure to obtain compound (3).

Figure 2004033411
化合物(3)(41.84g)に酢酸エチル(64mL)、酢酸(27.12mL)、水(18.8mL)およびラネーニッケル(1.04g)を加え、水素雰囲気下(0.4MPa)、30℃付近で5.3時間攪拌した。ラネーニッケルをろ別し、酢酸エチル(4×5mL)で洗浄した。ろ液と洗浄液を合併し、水(80mL)を加えて分液した。有機層を7.5%炭酸水素ナトリウム水溶液(3×80mL)、15%食塩水(2×70mL)で順次洗浄した。それぞれの水層を酢酸エチル(40mL)で抽出し、有機層を合併後、減圧濃縮して化合物(4)(37.12g)を得た。
Figure 2004033411
Ethyl acetate (64 mL), acetic acid (27.12 mL), water (18.8 mL) and Raney nickel (1.04 g) were added to compound (3) (41.84 g), and hydrogen atmosphere (0.4 MPa) at 30 ° C. The mixture was stirred for 5.3 hours. Raney nickel was filtered off and washed with ethyl acetate (4 × 5 mL). The filtrate and the washing solution were combined, and water (80 mL) was added for liquid separation. The organic layer was washed sequentially with 7.5% aqueous sodium hydrogen carbonate solution (3 × 80 mL) and 15% brine (2 × 70 mL). Each aqueous layer was extracted with ethyl acetate (40 mL), and the organic layers were combined and concentrated under reduced pressure to obtain compound (4) (37.12 g).

Figure 2004033411
化合物(4)(18.16g)に酢酸エチル(31mL)を加え、窒素雰囲気下、氷冷下にトリエチルアミン(25.50g)および塩化メタンスルホニル(11.57g)を加えて20℃付近で1.5時間攪拌した。反応液に水(70mL)および酢酸エチル(54mL)を加えて分液した。有機層を水(2×70mL)、1N塩酸水溶液(70mL)、水(70mL)、7%炭酸水素ナトリウム水溶液(70mL)および5%食塩水(70mL)で順次洗浄した。それぞれの水層を酢酸エチル(33mL)で抽出し、有機層を合併後19.54gまで減圧濃縮した。濃縮液に酢酸エチル(20mL)を加え、16.92gまで減圧濃縮した。濃縮残渣のうち8.46gを減圧蒸留して淡黄色油状物質の化合物(5)(6.89g、実施例3から48.9%)を得た。沸点:92〜106℃(1.6×10Pa)
H−NMR(CDCl,ppm)δ:0.86(t,J=7.5Hz,6H),1.22−1.44(m,4H),1.87(quintet,J=6.6Hz,1H),2.54(d,J=6.6Hz,2H),3.82(s,3H),6.67(d,J=15.9Hz,1H),7.09(d,J=15.9Hz,1H)
(化合物(5)の結晶化検討)
常温において油状物質である化合物(5)は4℃以下に冷却すると結晶化することが判明した。各種溶媒中結晶化を検討した結果、メタノール、トルエン、アセトン、酢酸エチル、メチルイソブチルケトン、ヘキサン等から結晶化可能であった。表1は、メタノール、酢酸エチル、アセトン溶媒を用いた時の回収率の結果であり、特にメタノールが好ましい。
Figure 2004033411
Figure 2004033411
Ethyl acetate (31 mL) was added to compound (4) (18.16 g), triethylamine (25.50 g) and methanesulfonyl chloride (11.57 g) were added under a nitrogen atmosphere and ice cooling, and 1. Stir for 5 hours. Water (70 mL) and ethyl acetate (54 mL) were added to the reaction solution to separate the layers. The organic layer was washed successively with water (2 × 70 mL), 1N aqueous hydrochloric acid (70 mL), water (70 mL), 7% aqueous sodium bicarbonate (70 mL) and 5% brine (70 mL). Each aqueous layer was extracted with ethyl acetate (33 mL), and the organic layers were combined and concentrated under reduced pressure to 19.54 g. Ethyl acetate (20 mL) was added to the concentrate, and the mixture was concentrated under reduced pressure to 16.92 g. 8.46 g of the concentrated residue was distilled under reduced pressure to obtain a pale yellow oily compound (5) (6.89 g, 48.9% from Example 3). Boiling point: 92-106 ° C. (1.6 × 10 2 Pa)
1 H-NMR (CDCl 3 , ppm) δ: 0.86 (t, J = 7.5 Hz, 6H), 1.22-1.44 (m, 4H), 1.87 (quintet, J = 6. 6 Hz, 1H), 2.54 (d, J = 6.6 Hz, 2H), 3.82 (s, 3H), 6.67 (d, J = 15.9 Hz, 1H), 7.09 (d, J = 15.9Hz, 1H)
(Examination of crystallization of compound (5))
It was found that the compound (5) which is an oily substance at room temperature crystallizes when cooled to 4 ° C. or lower. As a result of examining crystallization in various solvents, it was possible to crystallize from methanol, toluene, acetone, ethyl acetate, methyl isobutyl ketone, hexane and the like. Table 1 shows the results of recovery rates when methanol, ethyl acetate, and acetone solvents were used, and methanol is particularly preferable.
Figure 2004033411

粗生成物(5)(33.7kg)を4分割し、それぞれをメタノール(79kg)に溶解して−40℃で30分、−60℃で60分間冷却して晶析を行った。得られた結晶をろ取し、−60℃に冷却したメタノール(123kg)で洗浄した後、化合物(5)の結晶を得た(化合物(5)として合計25.8kg、65%)。HPLC純度:95.6%,HPLC:SHIMADZU製HPLC、カラム;COSMOSIL ODS−MS 4.6x250mm
実施例8(化合物(5)の融点測定)
化合物(5)の結晶を3℃付近に温度調節した恒温槽に入れ13℃まで徐々に昇温した。9.6℃付近で一定温度を示した後、8.7℃付近に温度低下し、その後徐々に13℃まで温度上昇した。化合物(5)の融点は9〜10℃と決定した。
融点測定器:T and D社の「おんどとりTR−71S」を使用。
温度制御装置(恒温槽):EYELA COOL;ECS−50,THERMO CONTROLLER;THD−50,STIR PUMP;STR−1,WATER BATH;SBC−24
Crude product (5) (33.7 kg) was divided into 4 parts, and each was dissolved in methanol (79 kg), and cooled at -40 ° C for 30 minutes and -60 ° C for 60 minutes for crystallization. The obtained crystals were collected by filtration and washed with methanol (123 kg) cooled to −60 ° C., and then crystals of compound (5) were obtained (25.8 kg, 65% in total as compound (5)). HPLC purity: 95.6%, HPLC: HPLC manufactured by SHIMADZU, column; COSMOSIL ODS-MS 4.6 × 250 mm
Example 8 (Measurement of melting point of compound (5))
The crystal of the compound (5) was put in a thermostat adjusted to around 3 ° C., and the temperature was gradually raised to 13 ° C. After showing a constant temperature around 9.6 ° C., the temperature dropped to around 8.7 ° C., and then gradually raised to 13 ° C. The melting point of compound (5) was determined to be 9-10 ° C.
Melting point measuring device: “Andortori TR-71S” manufactured by T and D.
Temperature control device (constant temperature bath): EYELA COOL; ECS-50, THERMO CONTROLLER; THD-50, STIR PUMP; STR-1, WATER BATH; SBC-24

Figure 2004033411
窒素気流下、25.9重量%リチウムビス(トリメチルシリル)アミド−THF溶液(29.3kg、46.62mol)をTHF(10kg)で希釈し、−60℃付近においてラクトン(6)(14.0kg、38.85mol)のDMF(33kg)−THF(31kg)溶液を4.5時間かけて滴下した。更に10分間攪拌した後、エノンエステル(5)(9.3kg、46.91mol)のTHF(19kg)溶液を2.5時間かけて滴下した。滴下終了後、25.9重量%リチウムビス(トリメチルシリル)アミド−THF溶液(20.4kg、31.08mol)を約50分かけて滴下し、0℃まで昇温して、氷冷下2時間攪拌した。反応液に水(45kg)と35%合成塩酸(16.0kg)を加え、酢酸エチルで抽出した。減圧濃縮した残渣をメタノールより結晶化した後、アセトン−メタノールで再結晶し、化合物(7)(12.1kg、55.8%)を得た。
Figure 2004033411
Under a nitrogen stream, 25.9 wt% lithium bis (trimethylsilyl) amide-THF solution (29.3 kg, 46.62 mol) was diluted with THF (10 kg), and lactone (6) (14.0 kg, 38.85 mol) of DMF (33 kg) -THF (31 kg) was added dropwise over 4.5 hours. After further stirring for 10 minutes, a THF (19 kg) solution of enone ester (5) (9.3 kg, 46.91 mol) was added dropwise over 2.5 hours. After completion of the dropwise addition, 25.9 wt% lithium bis (trimethylsilyl) amide-THF solution (20.4 kg, 31.08 mol) was added dropwise over about 50 minutes, the temperature was raised to 0 ° C., and the mixture was stirred for 2 hours under ice cooling. did. Water (45 kg) and 35% synthetic hydrochloric acid (16.0 kg) were added to the reaction mixture, and the mixture was extracted with ethyl acetate. The residue concentrated under reduced pressure was crystallized from methanol and then recrystallized from acetone-methanol to obtain Compound (7) (12.1 kg, 55.8%).

Figure 2004033411
化合物(7)(9.00kg、16.11mol)のアセトニトリル(25.0kg)懸濁液に、メタンスルホン酸(1.86kg)を加え、室温で約100分間攪拌した。反応液に水(36.5kg)を加え、氷冷下、約90分間攪拌し、析出した結晶を濾取した。アセトン−メタノールより再結晶して化合物(8)(7.37kg、84.7%)を得た。
H−NMR(CDCl,ppm)δ:0.83(t,J=7.0Hz,6H),1.20−1.42(m,4H),1.96−2.12(m,1H),2.73(d,J=6.0Hz,2H),3.25(s,3H),3.44(s,3H),3.86(s,3H),3.89(s,3H),3.93(s,3H),4.04(s,3H),6.78−6.90(m,3H),7.73(s,1H),14.38(s,1H)
Figure 2004033411
Methanesulfonic acid (1.86 kg) was added to a suspension of compound (7) (9.00 kg, 16.11 mol) in acetonitrile (25.0 kg), and the mixture was stirred at room temperature for about 100 minutes. Water (36.5 kg) was added to the reaction solution, the mixture was stirred for about 90 minutes under ice cooling, and the precipitated crystals were collected by filtration. Recrystallization from acetone-methanol gave Compound (8) (7.37 kg, 84.7%).
1 H-NMR (CDCl 3 , ppm) δ: 0.83 (t, J = 7.0 Hz, 6H), 1.20-1.42 (m, 4H), 1.96-2.12 (m, 1H), 2.73 (d, J = 6.0 Hz, 2H), 3.25 (s, 3H), 3.44 (s, 3H), 3.86 (s, 3H), 3.89 (s) , 3H), 3.93 (s, 3H), 4.04 (s, 3H), 6.78-6.90 (m, 3H), 7.73 (s, 1H), 14.38 (s, 1H)

本発明は、工業的に有利なエノンエステルの製法を提供する。本発明を利用することにより、リグナン誘導体を工業的に効率よく生産することができる。  The present invention provides an industrially advantageous process for producing enone esters. By utilizing this invention, a lignan derivative can be industrially efficiently produced.

Claims (7)

式:
Figure 2004033411
で示される化合物(1)と式:
Figure 2004033411
で示される化合物(2)を酢酸エチル中で反応させることを特徴とする式:
Figure 2004033411
で示される化合物(3)の製造方法。
formula:
Figure 2004033411
Compound (1) represented by the formula:
Figure 2004033411
A compound represented by the formula (2) is reacted in ethyl acetate:
Figure 2004033411
The manufacturing method of compound (3) shown by these.
請求項1記載の方法により化合物(3)を得た後、これをラネーニッケル存在下で還元することを特徴とする式:
Figure 2004033411
で示される化合物(4)の製造方法。
A compound (3) obtained by the method according to claim 1, which is then reduced in the presence of Raney nickel:
Figure 2004033411
The manufacturing method of compound (4) shown by these.
還元を酢酸エチル中で行う請求項2記載の製造方法。The process according to claim 2, wherein the reduction is carried out in ethyl acetate. 請求項2または3に記載の方法により化合物(4)を得た後、これを脱水することを特徴とする、式:
Figure 2004033411
で示される化合物(5)の製造方法。
A compound (4) obtained by the method according to claim 2 or 3, and then dehydrated, is represented by the formula:
Figure 2004033411
The manufacturing method of compound (5) shown by these.
アルコールから結晶化することを特徴とする、請求項4記載の化合物(5)の結晶の製造方法。The method for producing a crystal of compound (5) according to claim 4, wherein the crystal is crystallized from alcohol. 請求項4記載の化合物(5)の結晶Crystal of compound (5) according to claim 4 請求項4または5記載の方法により化合物(5)またはその結晶を得た後、これを式:
Figure 2004033411
で示される化合物(6)と反応させて、式:
Figure 2004033411
で示される化合物(7)を得た後、これを脱水することを特徴とする式:
Figure 2004033411
で示される化合物(8)の製造方法。
After obtaining the compound (5) or a crystal thereof by the method according to claim 4 or 5, it is represented by the formula:
Figure 2004033411
Is reacted with a compound (6) represented by the formula:
Figure 2004033411
After obtaining the compound (7) represented by the formula, it is dehydrated:
Figure 2004033411
The manufacturing method of compound (8) shown by these.
JP2004542836A 2002-10-08 2003-10-07 Production method of enone ester Pending JPWO2004033411A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002295366 2002-10-08
JP2002295366 2002-10-08
PCT/JP2003/012838 WO2004033411A1 (en) 2002-10-08 2003-10-07 Process for producing enone ester

Publications (1)

Publication Number Publication Date
JPWO2004033411A1 true JPWO2004033411A1 (en) 2006-02-09

Family

ID=32089211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004542836A Pending JPWO2004033411A1 (en) 2002-10-08 2003-10-07 Production method of enone ester

Country Status (4)

Country Link
JP (1) JPWO2004033411A1 (en)
AU (1) AU2003271115A1 (en)
TW (1) TW200409752A (en)
WO (1) WO2004033411A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0701991B1 (en) * 1991-10-17 1999-01-20 Shionogi & Co., Ltd. Process for the preparation of lignin analogues and starting materials therefor
JP3467072B2 (en) * 1993-04-16 2003-11-17 塩野義製薬株式会社 Preparation of lignan analogs

Also Published As

Publication number Publication date
WO2004033411A1 (en) 2004-04-22
AU2003271115A1 (en) 2004-05-04
TW200409752A (en) 2004-06-16

Similar Documents

Publication Publication Date Title
JP6209541B2 (en) Method for producing N- (4-cyclohexyl-3-trifluoromethyl-benzyloxy) -acetimidic acid ethyl ester
JP4957257B2 (en) 1,2,3,4-Tetrahydroanthracene-9,10- (meth) acrylate compound and method for producing the same
WO2010122794A1 (en) Process for production of pyrazinecarboxylic acid derivative, and intermediate for the production
JP5667186B2 (en) Process for the preparation of pyrazolecarboxylic amides
JP2002544207A (en) 2,2-Dimethyl-1,3-dioxane intermediate salt and method for producing the same
JP4094654B1 (en) Azodicarboxylic acid bis (2-alkoxyethyl) ester compound, production intermediate thereof
JPWO2004033411A1 (en) Production method of enone ester
JP5248078B2 (en) Method for producing dibenzooxepin compound
JP2009242244A (en) Method for producing pyrazine derivative and intermediate of the same
JP4258658B2 (en) Method for producing acetylene compound
JP2009242243A (en) alpha-HYDROXYIMINO CARBOXYLIC ACID ESTER DERIVATIVE AND METHOD FOR PRODUCING alpha-AMINO-alpha-HALOALKYL CARBOXYLIC ACID ESTER DERIVATIVE BY USING THE SAME
JP5920622B2 (en) Method for producing azodicarboxylic acid diester compound
JP6998957B2 (en) 3-Substitution 2-Method for Producing Vinyl Phenyl Sulfonates
JP2523026B2 (en) α, β-Unsaturated ketone and ketoxime derivatives
JP4418430B2 (en) Method for producing sulfonamide-containing indole compound
JPWO2005063678A1 (en) Method for producing phenylacetic acid derivative
JP2002512210A (en) Method for producing 2-hydroxyalkylhalophenone
JP4013772B2 (en) 2-Hydroxyimino-3-oxopropionitrile and process for producing the same
JP2005097158A (en) Method for producing fluorine-containing organic compound
JPH05221947A (en) Production of cyclopropane derivative
JP4507390B2 (en) 1-alkyl-1-substituted-3-organosulfonyloxyazetidinium salts and process for producing the same
JP2005015402A (en) METHOD FOR PRODUCING OPTICALLY ACTIVE 3,5-DIHYDRO-4H-DINAPHTHO[2,1-c:1',2'-e]AZEPINE AND OXALATE THEREOF
JP4973210B2 (en) New synthesis method
JPH07252183A (en) Production of phenol derivative
JPH11189580A (en) Production of benzyl bromide derivative