JPWO2004028945A1 - Elevator brake control device - Google Patents

Elevator brake control device Download PDF

Info

Publication number
JPWO2004028945A1
JPWO2004028945A1 JP2004525638A JP2004525638A JPWO2004028945A1 JP WO2004028945 A1 JPWO2004028945 A1 JP WO2004028945A1 JP 2004525638 A JP2004525638 A JP 2004525638A JP 2004525638 A JP2004525638 A JP 2004525638A JP WO2004028945 A1 JPWO2004028945 A1 JP WO2004028945A1
Authority
JP
Japan
Prior art keywords
electromotive force
output
electromagnet
brake
current detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004525638A
Other languages
Japanese (ja)
Other versions
JP4102362B2 (en
Inventor
上田 隆美
隆美 上田
アレキサンドル フォライ
アレキサンドル フォライ
仮屋 佳孝
佳孝 仮屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2004028945A1 publication Critical patent/JPWO2004028945A1/en
Application granted granted Critical
Publication of JP4102362B2 publication Critical patent/JP4102362B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/32Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on braking devices, e.g. acting on electrically controlled brakes

Abstract

エレベータブレーキのブレーキシューを駆動させる電磁石のブレーキコイルに吸引されるアーマチュアの移動速度に起因する電磁石の起電力を推定する起電力推定部と、この起電力および起電力の積分値のいずれかを目標値に合わせるようにして補償された電磁石への電圧指令を供給する補償部とを備え、制動時のアーマチュア移動開始後、アーマチュア移動速度を抑えるようにブレーキコイル電圧を制御してブレーキシューがブレーキドラムに衝突する時に発生するブレーキ動作音を低減させるエレベータのブレーキ制御装置。The electromotive force estimation unit that estimates the electromotive force of the electromagnet caused by the moving speed of the armature attracted by the brake coil of the electromagnet that drives the brake shoe of the elevator brake, and either the electromotive force or the integral value of the electromotive force is the target A compensation unit that supplies a voltage command to the electromagnet compensated to match the value, and after starting the armature movement during braking, the brake shoe voltage is controlled by the brake coil voltage so as to suppress the armature movement speed. A brake control device for an elevator that reduces the brake operation sound generated when the vehicle collides with the elevator.

Description

この発明はエレベータのブレーキ制御装置、特にブレーキシューがブレーキドラムに衝突する時に発生するブレーキ動作音の低減に関する。  The present invention relates to an elevator brake control device, and more particularly to reduction of brake operation sound generated when a brake shoe collides with a brake drum.

従来のエレベータのブレーキ制御装置においては、ブレーキシューを駆動させるブレーキコイル(電磁石)に対する励磁電流指令を規定値に達するまで漸増させ、しかる後に励磁電流指令を急激に減少させるようにして、発生するブレーキ動作音を低減していた(例えば、特開平9−267982号公報参照)。
しかしながらこのような従来のエレベータのブレーキ制御装置においては、ブレーキ落下のタイミングや電流値が不明であり、ギャップ設定やブレーキ個体差によりその値は大きく変動し、また、電流値を漸増させる時間や電流値が理想状態から外れると、ドラムとの衝突速度が下がらない場合や、逆に吸引力が大きくなり過ぎてマグネットに引き戻されて、ブレーキ制動を阻害される場合が生じる。そしてこのように衝突音を下げるためには、ブレーキ調整と制御パラメータの調整に多大な労力を要するとともに、温度変化や経年変化などの不確定外乱が発生する場合の衝突音の低減効果は、ほとんど期待できないという問題があった。
この発明は上記のような問題点を解消するためになされたもので、ブレーキ調整作業が容易で、外乱に作用されずにブレーキの落下音を下げるエレベータのブレーキ制御装置を提供することを目的とする。
In a conventional elevator brake control device, an exciting current command for a brake coil (electromagnet) for driving a brake shoe is gradually increased until a specified value is reached, and then the exciting current command is rapidly decreased to generate a generated brake. The operation sound was reduced (for example, refer to Japanese Patent Laid-Open No. 9-267982).
However, in such a conventional elevator brake control device, the timing and current value of the brake drop are unknown, the value fluctuates greatly depending on gap settings and individual brake differences, and the time and current for gradually increasing the current value If the value deviates from the ideal state, the collision speed with the drum does not decrease, or conversely, the attraction force becomes too large and is pulled back to the magnet, which may impede brake braking. And in order to reduce the impact noise in this way, much effort is required for brake adjustment and control parameter adjustment, and the impact noise reduction effect when indefinite disturbances such as temperature change and aging change occur is almost There was a problem that I could not expect.
The present invention has been made to solve the above-described problems, and has an object to provide an elevator brake control device that facilitates brake adjustment work and reduces the falling sound of the brake without being affected by disturbance. To do.

本発明は、上記の目的に鑑み、この発明は、エレベータブレーキのブレーキシューを駆動させる電磁石のブレーキコイルに吸引されるアーマチュアの移動速度に起因する電磁石の起電力を推定する起電力推定部と、この起電力および起電力の積分値のいずれかを目標値に合わせるようにして補償された電磁石への電圧指令を供給する補償部とを備え、制動時のアーマチュア移動開始後、アーマチュア移動速度を抑えるようにブレーキコイル電圧を制御することを特徴とするエレベータのブレーキ制御装置にある。  In view of the above object, the present invention provides an electromotive force estimation unit that estimates an electromotive force of an electromagnet caused by a moving speed of an armature attracted by a brake coil of an electromagnet that drives a brake shoe of an elevator brake; A compensation unit that supplies a voltage command to the electromagnet that is compensated so that one of the electromotive force and the integral value of the electromotive force is adjusted to the target value, and suppresses the armature movement speed after the armature movement at the time of braking is started. Thus, the brake control device for an elevator is characterized by controlling the brake coil voltage.

図1はこの発明によるブレーキ制御装置を含むエレベータのブレーキシステムの全体の構成を示す図、
図2はこの発明の実施の形態1にかかわるブレーキ制御装置の一例を示す構成図、
図3はこの発明にかかわるブレーキ制御装置に関する動作の説明図、
図4はこの発明にかかわるブレーキ制御装置に関する動作の説明図、
図5はこの発明の実施の形態2にかかわるブレーキ制御装置の一例を示す構成図、
図6はこの発明の実施の形態3にかかわるブレーキ制御装置の一例を示す構成図、
図7はこの発明の実施の形態4にかかわるブレーキ制御装置の一例を示す構成図、
図8はこの発明の実施の形態5にかかわるブレーキ制御装置の一例を示す構成図、
図9はこの発明の実施の形態5にかかわる補償手段の一例を示す構成図、
図10はこの発明にかかわるブレーキ制御装置に関する動作の説明図、
図11はこの発明の実施の形態6にかかわる補償手段の一例を示す構成図、
図12はこの発明の実施の形態7にかかわるブレーキ制御装置の一例を示す構成図、
図13はこの発明の実施の形態8にかかわる補償手段の一例を示す構成図である。
FIG. 1 is a diagram showing the overall configuration of an elevator brake system including a brake control device according to the present invention;
2 is a block diagram showing an example of a brake control device according to Embodiment 1 of the present invention,
FIG. 3 is an explanatory view of the operation relating to the brake control device according to the present invention,
FIG. 4 is an explanatory view of the operation relating to the brake control device according to the present invention,
FIG. 5 is a block diagram showing an example of a brake control device according to Embodiment 2 of the present invention.
FIG. 6 is a block diagram showing an example of a brake control device according to Embodiment 3 of the present invention.
FIG. 7 is a block diagram showing an example of a brake control device according to Embodiment 4 of the present invention.
FIG. 8 is a block diagram showing an example of a brake control device according to Embodiment 5 of the present invention.
FIG. 9 is a block diagram showing an example of compensation means according to Embodiment 5 of the present invention.
FIG. 10 is an explanatory view of the operation relating to the brake control device according to the present invention,
FIG. 11 is a block diagram showing an example of compensation means according to Embodiment 6 of the present invention.
FIG. 12 is a block diagram showing an example of a brake control device according to Embodiment 7 of the present invention.
13 is a block diagram showing an example of compensation means according to Embodiment 8 of the present invention.

実施の形態1.
以下、この発明の実施の形態1によるブレーキ制御装置の一例を説明する。図1にこの発明によるブレーキ制御装置を含むエレベータのブレーキシステム全体の構成を示し、これは以下に説明する各実施の形態で同様である。エレベータのかご1は巻上機のシーブ2に巻き掛けられた主索3によって釣合おもり4とつるべ式に吊持され、巻上モータ5によって駆動されるブレーキドラム6は一般的には巻上モータ5とシーブ2を結合する軸上に設置され、バネ7の力によってブレーキシュー8をブレーキドラム6に押付け、摩擦力により制動力を得る。エレベータの起動時には制御装置9によりブレーキコイルすなわち電磁石10(以降の説明ではブレーキコイル10は電磁石と同一のものとして説明する)に電流を流して付勢し、ブレーキシュー8に取付けられたアーマチュア11をバネ7の力に打ち勝って吸引する。この時ブレーキ接点12が入り、その出力12aにより吸引が完了したことを検出する。また、制動時には同じく制御装置9によりブレーキコイル10を消勢する。消勢の際、ブレーキコイル10の電流値はコイルの抵抗とリアクタンス値によって定まる時定数に応じて減少し、ブレーキ電流の減少によって吸引力も減少する。この吸引力がバネ7の力よりも小さくなるとブレーキコイル10とアーマチュア11が離れ、バネ力に引かれ落下する。
図2は、この発明の実施の形態1による図の9,10,13の部分を含むブレーキ制御装置を示す構成図である。本願発明では基本的に、電磁石のブレーキコイルの起電力がアーマチュア速度を示すことに着目し、このコイルの起電力を電流検出器信号から推定し、これに基づき電磁石のブレーキコイルへの電圧指令を制御することでアーマチュア速度を制御、調整する。図2において、電流検出器13はブレーキコイル(電磁石)10に流れる電流を検出する。起電力推定手段30は電磁石10へのコイル印加電圧指令信号20と電流検出器13からの電流検出器信号21から電磁石に発生する起電力を推定する。目標値設定手段(設定値手段)22は起電力の目標値を与える。差分手段23aは起電力の目標値と推定起電力信号31との差分(差を求める)を求める。補償手段24は差分手段23aの出力のゲインと位相を整形して電磁石への電圧指令信号20として出力する。非線形補償手段32は電磁石10に流れる電流、例えば電流検出器13の出力21aと電磁石への電圧指令信号20が比例関係になるように加算手段25aを介して補償を行う。インダクタンス調整手段29は起電力推定手段30における電磁石のインダクタンス値26を電流検出器信号21に従って調整する。
また起電力推定手段30において、微分手段27は電流検出器信号を微分し、ブレーキコイルインダクタンス値26は実際にはその微分信号にブレーキコイルのインダクタンスを乗じる乗算手段、ブレーキコイル抵抗値28は実際には電流検出器信号にブレーキコイルの抵抗値を乗じる乗算手段、加算手段25bはこれらの両乗算信号を加算する。そして差分手段23bはブレーキコイルへの電圧指令信号20から前記加算手段25bの出力を差し引きこれを推定起電力信号31とする。
次に、この発明の実施の形態1にかかわるブレーキ制御装置の動作を説明する。図3はこの発明の実施の形態1にかかわるブレーキ制御装置に関する動作の説明図である。図3の(a)はブレーキコイル10に与える電圧を示し、図3の(b)はアーマチュア11の変位を示し、図3の(c)はアーマチュア11の速度変化を示している。図3において、ブレーキ解除時は、ブレーキコイル10に吸引電圧を印加することにより、ブレーキコイル10を備えた電磁石がバネ7に打ち勝ってアーマチュア11を吸引する。時刻T2において、ブレーキ接点12がアーマチュア11の吸引を検出すると、ブレーキコイル10に保持電圧を印加する。保持電圧は吸引電圧より低い値とし、吸引状態での電磁石の吸引力がバネ力より僅かに大きくなるように設定され、吸引時のブレーキコイル10の発熱を抑制するようにしている。
次に、保持電圧がブレーキコイル10に印加された状態で、ブレーキを制動させる場合は、時刻T4において、図3の(a)に示すように、ブレーキコイル10の印加電圧を保持電圧から零にする。これにより、ブレーキ電流は低下を始め、ブレーキ電流による吸引力がバネ力より小さくなるとアーマチュア11は落下を始め、アーマチュア11の速度は図3の(c)に示すように加速を始める。アーマチュア11が動き始めるのを起電力推定手段30で検出すると、制御装置9は、差分手段23aにより設定値手段22からの出力値と起電力推定手段30から出力される推定起電力信号31を差分し、差分信号を補償手段24により増幅倍率と位相を整形し制御電圧指令としてブレーキコイル10に与える。また、非線形補償手段32により、ブレーキコイル10に流れる電流とブレーキコイル10への電圧指令が比例関係になるように補償電圧を加算手段25aにより付加する。例えば、電流検出器13で検出されるブレーキコイル10のコイル電流(電流検出器信号)に比例する電圧をフィードバックする補償手段32がある。なお、図3の(a)に示すように、アーマチュア11が落下動作を終了する時間を過ぎる所定時間T6まで、制御電圧指令を与える。また、補償手段24の増幅倍率は、アーマチュア11を電磁石に引き戻さないだけの値に設定している。
次に、起電力推定手段30の動作について説明する。電磁石すなわちブレーキコイル10への電圧指令Eとブレーキコイル10に流れるコイル電流iの関係は、コイルの抵抗値をR、コイルのインダクタンスをLと表すと、電磁気学より
E=Ri+L(di/dt)+(∂L/∂t)i (1)
の関係がある。さらに、式(1)の右辺第3項は、アーマチュアの変位をx、その速度をvとすると
(∂L/∂t)i=(∂L/∂x)(dx/dt)i=(∂L/∂x)vi (2)
の関係があり、アーマチュア速度vに比例する電圧であり、速度に起因する起電力である。起電力推定手段30は、上記の関係式より
(∂L/∂x)vi≒E−Ri−L(di/dt) (3)
の関係式から推定起電力信号31を推定するように、微分手段27、コイル抵抗値28、インダクタンス値29を設け、式(3)の演算を行うように動作する。
次に、インダクタンス調整手段29の動作について説明する。例えば、図4に示すように、予めブレーキコイル電流iとインダクタンスLを求めて、ブレーキコイル電流iとインダクタンスLの関係をテーブル化し、制御装置9においては、電流検出器13の信号からこのテーブルによりインダクタンスLを呼び出して、起電力推定手段30内のインダクタンスLを変更するように動作する。
上述のようにブレーキ制御装置を構成すると、ブレーキの落下開始後、ブレーキ落下速度を抑えるようにブレーキコイル電圧を制御するので、ブレーキの落下速度が、図3の(c)の一点鎖線で示す従来の速度変化に対し、所定の値以下に遅くなり、ブレーキシュー8がブレーキドラム6に衝突する時に発生するブレーキ動作音が小さくなる。
実施の形態2.
図5は、この発明の実施の形態2によるブレーキ制御装置を示す構成図である。上記実施の形態と同一もしくは相当部分は同一符号で示す(以下同様)。図5において、起電力推定手段30は、電流検出器信号に電磁石のインダクタンスと抵抗から算出される零点を備えた所定のフィルタをかけるフィルタ手段33bと、電磁石への電圧指令にフィルタをかけるフィルタ手段33aと、両フィルタ手段の出力信号の差分を求める差分手段23bを含み、両フィルタ手段の時定数は同じにされている。
次に、この発明の実施の形態2にかかわるブレーキ制御装置の動作を説明する。起電力推定手段30の動作を除いて、他の動作は実施の形態1と同じである。起電力推定手段30は、式(3)の関係にフィルタ処理を行うように動作する。具体的には、起電力信号のラプラス変換をEv(s)とし、さらにコイル電圧指令Eおよびコイル電流のラプラス変換をそれぞれE(s)、i(s)とすると、式(3)の両辺に例えば時定数τのフィルタを付加して整理すると
{1/(τs+1)}Ev(s)≒{1/(τs+1)}E(s)−{(Ls+R)/(τs+1)}i(s) (4)
との関係が成り立つ。従って、起電力推定手段30は式(4)に従って動作して推定起電力31を推定する。上述のようにブレーキ制御装置を構成すると、電流検出器信号の微分動作を施さないためにノイズ外乱に対して堅牢となり、ブレーキシュー8がブレーキドラム6に衝突する時に発生するブレーキ音が更に小さくなる。
実施の形態3.
図6は、この発明の実施の形態3によるブレーキ制御装置を示す構成図である。図6において図2に示す実施の形態2のものと異なるところは、起電力推定手段30で推定された起電力を積分する積分手段34、積分手段34のための増幅手段35b、起電力の積分値すなわちアーマチュアの変位位置の目標値を与える設定値手段22、この設定値手段22の出力信号と増幅手段35bからの出力信号との差分を求める差分手段23c、起電力推定手段30の出力信号を増幅する増幅手段35a、および増幅手段35aの出力信号と差分手段23cの出力信号の差分を求め電磁石への電圧指令とする差分手段23dを備える。また補償手段24は設けられていない。
動作について説明すると、推定起電力は、積分手段34で積分を行い、さらに増幅手段35bで増幅され、設定値手段22の出力信号との差分を差分手段23cでとる。さらに、差分手段23cの出力信号と、増幅手段35aによって増幅された推定起電力との差分を差分手段23dでとり、差分手段23dの出力信号がコイルの電圧指令になるように動作する。
上述のようにブレーキ制御装置を構成すると、差分手段23cの出力信号は、アーマチュアが動き始めると共に増大する起電力の積分値信号と目標値設定手段すなわち設定値手段22の一定値信号との差分信号であるので、アーマチュアの動きと共に斬減して行く信号となる。したがって、差分手段23dでは、アーマチュアの動きと共に斬減して行く差分手段23cの出力信号を新たな目標値として、増幅手段35aで増幅された推定起電力信号との差分が行われる。
一方、式(2)で表せる起電力信号は、アーマチュア速度vとコイル電流iの積に比例する。コイル電流が斬減して行く、衝突直前のアーマチュア速度vを安定(一定値)に制御するためには、実施の形態1および2の目標値設定手段22の一定値信号を目標にするよりは、本実施の形態に示すように、アーマチュアの動きと共に斬減して行く可変信号を目標にする構成の方が好都合である。これらの構成により、ブレーキシュー8がブレーキドラム6に衝突する時に発生するブレーキ音が更に小さくなる。なお、起電力推定手段30に、実施の形態2の構成を用いても同様な動作が得られることは、明らかである。
実施の形態4.
図7の(a)は、この発明の実施の形態4によるブレーキ制御装置を示す構成図である。この実施の形態では補償器調整手段36をさらに設けた。この補償器調整手段36は図7の(b)に示すように、ラッチ回路37、比較器38、ゲインテーブル39を備える。
次に、動作を説明する。補償器調整手段36の動作以外は実施の形態1と同じ動作である。補償器調整手段36の動作について説明する。比較器38は起電力推定手段30からの起電力が発生するタイミングを判断するように動作するコンパレータ(下側に推定起電力信号から起電力発生の有無を判断する基準電圧が接続されている)であり、ラッチ回路37は、そのタイミングにおける電流検出器13の出力信号を記憶するように動作する。ゲインテーブル39は、起電力が発生する電流値と補償手段24における増幅率を関係つけているテーブルである。補償器調整手段36は、ラッチ回路37で記憶されたコイル電流値(電流検出器出力)に応じてその都度、補償手段24における増幅率をゲインテーブル39によって調整するように動作する。これは、アーマチュアの動き始めるコイル電流値は、バネ7の押し付け力に比例することを考慮して、押し付け力が増大すれば、補償手段24の増幅率を増大させ、また押し付け力が減少すれば、補償手段24の増幅率を減少させ、制御系の安定動作を高める効果がある。
上述のようにブレーキ制御装置を構成すると、ブレーキを構成しているバネ7の押し付け力が経年変化に応じて変化しても、ブレーキシュー8がブレーキドラム6に衝突する時に発生するブレーキ動作音が小さくなる。なお、起電力推定手段30に実施の形態2の構成を用いても同様な動作が得られることは、明らかである。
実施の形態5.
図8は、この発明の実施の形態5によるブレーキ制御装置を示す構成図である。この実施の形態は実施の形態3と同様、起電力の積分値すなわちアーマチュアの変位位置に関する可変の目標値に基づき制御を行うものである。アーマチュア動作電流検知手段18は、電流検出器信号21に基づき電磁石10のアーマチュア11が動作開始するコイル電流値を検知する。目標値設定手段22は増幅手段35で増幅された推定起電力信号31bの積分信号310の目標値を与える。差分手段23cは目標値と推定起電力信号の積分信号310を差分する。補償手段24は差分手段23cの出力信号と、電流検出器信号21と、起電力推定手段の推定起電力信号31aと、アーマチュア動作電流検知手段の出力信号32とに基づき、ブレーキコイル(電磁石)10へのコイル印加電圧指令信号20を出力する。インダクタンス調整手段29は起電力推定手段30における電磁石のインダクタンス値26を電流検出器信号21に従って調整する。
また起電力推定手段30において、差分手段23bはブレーキコイルへのコイル印加電圧指令信号20から前記加算手段25bの出力を差し引き、さらにフィルタ手段33を通して、これを推定起電力信号31a、31bとする。
図9は補償手段24の構成の一例を示す構成図である。補償手段24において、起電力推定手段30の出力信号31aは起電力補償手段40に入力される。アーマチュア動作電流検知手段18の出力信号320は、バネ力補償手段41と電磁力補償手段42に入力される。電流検出器信号21は電磁力補償手段42と微分手段27a、および釣合電圧補償手段47にそれぞれ入力される。起電力補償手段40の出力信号、バネ力補償手段41の出力信号および電磁力補償手段42の出力信号はそれぞれ乗算手段44に入力される。乗算手段44の出力信号は差分手段23dによって、図8に示す差分手段23cの出力信号17と差分され、切替手段45に入力される。零信号源48の出力信号は切替手段45に入力される。微分手段27aの出力信号も切替手段45に入力される。切替手段45の出力信号と釣合電圧補償手段47の出力信号は、加算手段25cで加算され、これをコイル印加電圧指令信号20とする。
次に、この発明の実施の形態5にかかわるブレーキ制御装置の動作を説明する。基本的な動作は上述の実施の形態と同じであり、保持電圧がブレーキコイル10に印加された状態で、ブレーキ制動をかける場合は、時刻T4において図3の(a)に示すように、ブレーキコイル10の印加電圧を保持電圧から零にする。これにより、ブレーキ電流(ブレーキコイル10の電流)は低下を始め、ブレーキ電流による吸引力がバネ力より小さくなるとアーマチュア11は落下を始め、アーマチュア11の速度は図3の(c)に示すように加速を始める。アーマチュア11が動き始めるのを起電力推定手段30で検出すると、制御装置9は、差分手段23cにより設定値手段22からの出力値と、起電力推定手段30から出力される推定起電力信号31bを積分手段34で積分した後、増幅手段35で増幅した信号とを差分する。補償手段24は差分手段23cの出力信号17と、電流検出器信号21と、起電力推定手段の出力信号31aと、アーマチュア動作電流検知手段18の出力信号320に基づいて、ブレーキコイル(電磁石)10へのコイル印加電圧指令信号20を出力する。
起電力推定手段30およびインダクタンス調整手段29等の基本動作は上述の実施の形態と同じである。
次に、補償手段24の動作について説明する。まず、起電力補償手段40は、起電力推定信号31aのゲインや位相を例えば、
C(s)=250(Ks+K)/(s+250) (5)
のような伝達関数を持つコントローラによって変更するように動作し、その出力信号は乗算手段44に入力される。ここで、C(s)は入力信号と出力信号の伝達関数を表し、sはラプラス演算子を表す。Kpは比例ゲインを、Kdは微分ゲインを表す定数である。
バネ力補償手段41は、アーマチュア動作電流検知手段18からの出力信号320に、例えば、
y=au+b (6)
≦y≦d (7)
のような一次関数を施した演算値を出力する。ここで、信号uはアーマチュア動作電流検知手段18からの出力信号32を表す。信号yはバネ力補償手段41の出力信号を表す。またcおよびdは、バネ力補償手段の出力信号yの下限値と上限値をそれぞれ表す。また、本例では(6)式を、一次方程式としたが、多次方程式さらには、信号uの大きさで区分して、演算式を変える非線形方程式でも良いことは言うまでもない。
電磁力補償手段42は、アーマチュア動作電流検知手段18からの出力信号320と、電流検出器の出力信号21より、例えば、
r=a(i−u)+b (8)
≦r≦d (9)
のような一次関数を施した演算値を出力する。ここで、信号uはアーマチュア動作電流検知手段18からの出力信号320を表す。信号iは電流検出器の出力信号21を表す。信号rは電磁力補償手段42の出力信号を表す。またcおよびdは、電磁力補償手段42の出力信号rの下限値と上限値をそれぞれ表す。本例では(8)式を、一次方程式としたが、多次方程式さらには、信号iの大きさで区分して、演算式を変える非線形方程式でも良いことは言うまでもない。
乗算手段44は、起電力補償手段40、バネ力補償手段41、および電磁力補償手段42の各々の出力信号を乗算するように動作する。乗算手段44の出力信号は差分手段23dによって差分手段23cからの出力信号17から差分され、切替手段45に入力される。
切替手段45は、差分手段23dの出力信号と零信号源48の出力信号を、コイル電流検出器信号21を微分手段27aで時間微分した信号の符号によって切り替えるように動作する。例えば、
z=w(q≧0)
z=0(q<0) (10)
のような演算を行う。ここで、qはコイル電流検出器信号21を微分手段27aで時間微分した信号を、wは差分手段23dの出力信号を、zは切替手段45の出力信号をそれぞれ表す。
さらに、切替手段45の出力信号は、加算手段25cによって、コイル電流検出器信号21に釣合電圧補償手段47を施した出力信号と加算され、コイル印加電圧指令信号20となる。釣合電圧補償手段47は、例えば、
e=Ri (11)
のような一次関数を施した演算値を出力する。ここで、信号iは、コイル電流検出器信号21を表す。信号eは釣合電圧補償手段47の出力信号を表す。Rは例えばブレーキコイル10の直流抵抗値である。
ブレーキ制御系の制御動作は、コイル電流検出器信号21に釣合電圧補償手段47を施した出力信号を常時コイル印加電圧指令信号に出力し、さらに電流検出器信号21が時間と共に斬増するときのみ、差分手段23dの出力信号(ネガティブフィードバック信号)をコイル印加電圧指令信号20に加算するように動作する。
図10の(a)にブレーキ制動時動作における、制御無(破線)と本制御装置(実線)のコイル電圧指令信号20の動作例を、(b)に制御無(破線)と本制御装置(実線)のアーマチュア変位の動作例を、さらに(c)に制御無(破線)と本制御装置(実線)のアーマチュア速度の動作例の動作例それぞれ示す。図10の(c)のアーマチュア速度を比較すると、ブレーキシューとドラムが接触したと予想される時刻において、速度の最大値が制御無(破線)に比べて、本制御装置(実線)のものが小さくなっている。これにより、ブレーキの落下速度が、図3の(c)の一点鎖線で示す従来の速度変化に対し、所定の値以下に遅くなり、ブレーキシュー8がブレーキドラム6に衝突する時に発生するブレーキ動作音が小さくなる。
アーマチュアの動作は、電磁気力とバネ力の力のバランスが変わった場合に開始される。このときの電流値の大きさはバネ力にほぼ比例する。従って、アーマチュア動作電流検知手段18の出力値によってコイル印加電圧指令信号20を補償する動作により、バネ力のバラツキがあっても安定に動作する効果がある。
また、アーマチュアの移動に伴い電磁気力はその距離に応じて斬減して行くため、コイルの印加電圧と電磁気力は比例しない。このため、移動距離に応じてコイルの印加電圧を斬増させる方が、アーマチュア速度の制御が容易となる。電磁力補償手段42は、アーマチュア移動に伴い、コイル電流が増えることに着目し、動作電流検知手段18の出力値とコイル電流検出器信号21の差に比例した数値を出力し、これを起電力補償手段40およびバネ力補償手段41の各々の出力値に乗じることにより、アーマチュア速度の制御性を高めている。これによりさらに、ブレーキシュー8がブレーキドラム6に衝突する時に発生するブレーキ動作音を安定的に小さくできる。
実施の形態6.
図11はこの発明の実施の形態6によるブレーキ制御装置の補償手段を示す構成図である。この実施の形態では補償手段24内に、タイマー手段43とゲイン変更手段50aを備える。
次に、動作を説明する。補償調整動作以外は上記実施の形態5と同じ動作である。タイマー手段43は、ブレーキ開放された時刻からブレーキ動作を開始した時刻までの時間をカウントする手段である。ここで、カウントされた時間をTholdとする。次に、ゲイン変更手段50aの動作について説明する。例えば、

Figure 2004028945
Figure 2004028945
のような演算を行う。ここで、KpiniはKpの初期値を、Kprateはゲイン変化率を、Thmaxは最大ブレーキ開放時間を、さらにThminは最小ブレーキ開放時間、をそれぞれ表す。この例では、カウントされた時間によって一次式でゲインを変更するように動作する。
上述のようにブレーキ制御装置を構成すると、ブレーキが開放されている時間、すなわちアーマチュアが電磁石に付着している時間によってアーマチュアが磁化され、ブレーキ動作時に、コイル電流が斬減しても、アーマチュアが電磁石から離れ難くなる。ブレーキ開放時間に応じて、起電力補償手段のゲインを変更するため、ブレーキが開放されている時間に左右されることなく、ブレーキシュー8がブレーキドラム6に衝突する時に発生するブレーキ動作音が小さくなる。
実施の形態7.
図12はこの発明の実施の形態7によるブレーキ制御装置を示す構成図である。この実施の形態では、抵抗値推定手段51を備える。次に、動作を説明する。抵抗値推定手段51の動作以外は実施の形態5と同じ動作である。抵抗値推定手段51は、コイル印加電圧指令信号20とコイル電流検出器信号21からコイルの抵抗値を推定するように動作する。例えばブレーキ開放時のある一定時間内のコイル印加電圧指令信号20の移動平均処理結果(所定期間における平均を求める)を、それに対応するコイル電流検出器信号21の移動平均処理結果で除して、抵抗を推定するように動作する。この推定抵抗値を起電力推定手段30のコイル抵抗値28に設定する。
上述のようにブレーキ制御装置を構成すると、起電力推定手段30の起電力推定精度が上がり、ブレーキシュー8がブレーキドラム6に衝突する時に発生するブレーキ動作音が小さくなる。
実施の形態8.
図13はこの発明の実施の形態8によるブレーキ制御装置の補償手段の構成を示す構成図である。この実施の形態では、補償手段24に第2のゲイン変更手段50bを備える。次に、動作を説明する。第2のゲイン変更手段50bの動作以外は上記実施の形態と同じ動作である。第2のゲイン変更手段50bは抵抗値推定手段51(例えば図12のもの)から推定されるコイルの抵抗値に応じて(図12の波線矢印参照)、第1のゲイン変更手段50aの初期値ゲインKpを変更するように動作する。例えば、Rを抵抗値推定手段51から推定された推定抵抗値とすると、
≦R Kpini=K
≦R≦R Kpini=K
≦R Kpini=K
(13)
のように、推定抵抗値の大きさで区分して初期値ゲインKpiniを変更する。
上述のようにブレーキ制御装置を構成すると、コイルの温度は抵抗値に比例するため、ブレーキの環境温度に応じて、起電力補償手段40のゲインを変えることができる。このため環境温度に変動があっても、安定な制御が実現でき、ブレーキシュー8がブレーキドラム6に衝突する時に発生するブレーキ動作音も小さくなる効果がある。
以上のようにこの発明によれば、アーマチャア(ブレーキシュー)移動速度に起因する電磁石の起電力を推定する手段と、起電力目標値設定手段と、補償器手段を具備することにより、ブレーキの落下開始後、ブレーキ落下速度を抑えるようにブレーキコイル電圧を制御するので、ブレーキの落下速度が、従来の速度変化に対し遅くなり、ブレーキシューがブレーキドラムに衝突する時に発生するブレーキ動作音が小さくなる。Embodiment 1 FIG.
  Hereinafter, an example of a brake control device according to Embodiment 1 of the present invention will be described. FIG. 1 shows the overall configuration of an elevator brake system including a brake control device according to the present invention, and this is the same in each embodiment described below. An elevator car 1 is suspended in a slidable manner with a counterweight 4 by a main rope 3 wound around a sheave 2 of a hoisting machine, and a brake drum 6 driven by a hoisting motor 5 is generally hoisted. It is installed on a shaft that connects the motor 5 and the sheave 2, and the brake shoe 8 is pressed against the brake drum 6 by the force of the spring 7, and the braking force is obtained by the frictional force. When the elevator is started, the control device 9 energizes the brake coil, that is, the electromagnet 10 (in the following description, the brake coil 10 will be described as the same as the electromagnet) to energize the armature 11 attached to the brake shoe 8. The force of the spring 7 is overcome and sucked. At this time, the brake contact 12 is entered, and it is detected from the output 12a that suction has been completed. Similarly, the brake coil 10 is deenergized by the control device 9 during braking. At the time of deactivation, the current value of the brake coil 10 decreases according to a time constant determined by the resistance and reactance value of the coil, and the attraction force decreases as the brake current decreases. When this attractive force is smaller than the force of the spring 7, the brake coil 10 and the armature 11 are separated from each other, and fall due to the spring force.
  FIG. 2 is a configuration diagram showing a brake control device including portions 9, 10, and 13 in the figure according to Embodiment 1 of the present invention. In the present invention, basically, focusing on the fact that the electromotive force of the electromagnet brake coil indicates the armature speed, the electromotive force of this coil is estimated from the current detector signal, and based on this, the voltage command to the electromagnet brake coil is issued. Control and adjust armature speed by controlling. In FIG. 2, the current detector 13 detects the current flowing through the brake coil (electromagnet) 10. The electromotive force estimation means 30 estimates the electromotive force generated in the electromagnet from the coil application voltage command signal 20 to the electromagnet 10 and the current detector signal 21 from the current detector 13. A target value setting means (setting value means) 22 gives a target value of electromotive force. The difference means 23a obtains a difference (a difference is obtained) between the target value of the electromotive force and the estimated electromotive force signal 31. The compensation means 24 shapes the gain and phase of the output of the difference means 23a, and outputs it as a voltage command signal 20 to the electromagnet. The non-linear compensation means 32 performs compensation through the adding means 25a so that the current flowing through the electromagnet 10, for example, the output 21a of the current detector 13 and the voltage command signal 20 to the electromagnet are in a proportional relationship. The inductance adjusting unit 29 adjusts the inductance value 26 of the electromagnet in the electromotive force estimating unit 30 according to the current detector signal 21.
  In the electromotive force estimation means 30, the differentiation means 27 differentiates the current detector signal, the brake coil inductance value 26 is actually a multiplication means for multiplying the differential signal by the inductance of the brake coil, and the brake coil resistance value 28 is actually Is a multiplying means for multiplying the current detector signal by the resistance value of the brake coil, and an adding means 25b adds both these multiplied signals. Then, the difference means 23b subtracts the output of the addition means 25b from the voltage command signal 20 to the brake coil, and this is used as the estimated electromotive force signal 31.
  Next, the operation of the brake control device according to the first embodiment of the present invention will be described. FIG. 3 is an explanatory view of the operation relating to the brake control device according to the first embodiment of the present invention. 3A shows the voltage applied to the brake coil 10, FIG. 3B shows the displacement of the armature 11, and FIG. 3C shows the speed change of the armature 11. In FIG. 3, when the brake is released, an attractive voltage is applied to the brake coil 10, so that the electromagnet including the brake coil 10 overcomes the spring 7 and attracts the armature 11. When the brake contact 12 detects suction of the armature 11 at time T2, a holding voltage is applied to the brake coil 10. The holding voltage is set to a value lower than the attraction voltage and is set so that the attraction force of the electromagnet in the attraction state is slightly larger than the spring force so as to suppress the heat generation of the brake coil 10 at the time of attraction.
  Next, when braking the brake while the holding voltage is applied to the brake coil 10, the voltage applied to the brake coil 10 is reduced from the holding voltage to zero at time T4 as shown in FIG. To do. As a result, the brake current starts to decrease, and when the attraction force by the brake current becomes smaller than the spring force, the armature 11 starts to fall, and the speed of the armature 11 starts to accelerate as shown in FIG. When the electromotive force estimation means 30 detects that the armature 11 starts to move, the control device 9 makes a difference between the output value from the set value means 22 and the estimated electromotive force signal 31 output from the electromotive force estimation means 30 by the difference means 23a. Then, the difference signal is shaped by the compensating means 24 in the amplification magnification and phase, and supplied to the brake coil 10 as a control voltage command. Further, the compensation voltage is added by the adding means 25a by the non-linear compensation means 32 so that the current flowing through the brake coil 10 and the voltage command to the brake coil 10 have a proportional relationship. For example, there is a compensation means 32 that feeds back a voltage proportional to the coil current (current detector signal) of the brake coil 10 detected by the current detector 13. In addition, as shown to (a) of FIG. 3, a control voltage command is given to predetermined time T6 which passes the time which the armature 11 complete | finishes dropping operation | movement. The amplification factor of the compensation means 24 is set to a value that does not pull the armature 11 back to the electromagnet.
  Next, the operation of the electromotive force estimation means 30 will be described. The relationship between the voltage command E to the electromagnet, that is, the brake coil 10 and the coil current i flowing through the brake coil 10 is expressed by electromagnetics when the resistance value of the coil is R and the inductance of the coil is L.
  E = Ri + L (di / dt) + (∂L / ∂t) i (1)
There is a relationship. Further, the third term on the right side of the equation (1) is expressed as follows: x is the armature displacement and v is the velocity.
  (∂L / ∂t) i = (∂L / ∂x) (dx / dt) i = (∂L / ∂x) vi (2)
The voltage is proportional to the armature speed v and is the electromotive force resulting from the speed. The electromotive force estimation means 30 is obtained from the above relational expression.
  (∂L / ∂x) vi≈E−Ri−L (di / dt) (3)
Differentiating means 27, a coil resistance value 28, and an inductance value 29 are provided so as to estimate the estimated electromotive force signal 31 from the relational expression, and the operation is performed to perform the calculation of Expression (3).
  Next, the operation of the inductance adjusting unit 29 will be described. For example, as shown in FIG. 4, the brake coil current i and the inductance L are obtained in advance, and the relationship between the brake coil current i and the inductance L is tabulated, and the control device 9 uses the table from the signal of the current detector 13. The operation is performed by calling the inductance L and changing the inductance L in the electromotive force estimation means 30.
  When the brake control device is configured as described above, the brake coil voltage is controlled so as to suppress the brake falling speed after the start of the brake dropping. Therefore, the brake dropping speed is indicated by a one-dot chain line in FIG. Therefore, the brake operation sound generated when the brake shoe 8 collides with the brake drum 6 is reduced.
Embodiment 2. FIG.
  FIG. 5 is a block diagram showing a brake control device according to Embodiment 2 of the present invention. The same or corresponding parts as those in the above embodiment are denoted by the same reference numerals (the same applies hereinafter). In FIG. 5, the electromotive force estimation means 30 includes a filter means 33b for applying a predetermined filter having a zero point calculated from the inductance and resistance of the electromagnet to the current detector signal, and a filter means for applying a filter to the voltage command to the electromagnet. 33a and difference means 23b for obtaining the difference between the output signals of both filter means, and the time constants of both filter means are the same.
  Next, the operation of the brake control apparatus according to the second embodiment of the present invention will be described. Except for the operation of the electromotive force estimation means 30, the other operations are the same as those in the first embodiment. The electromotive force estimation means 30 operates so as to perform the filtering process in the relationship of the expression (3). Specifically, if the Laplace transform of the electromotive force signal is Ev (s) and the Laplace transform of the coil voltage command E and the coil current is E (s) and i (s), respectively, For example, adding a filter with a time constant τ
{1 / (τs + 1)} Ev (s) ≈ {1 / (τs + 1)} E (s) − {(Ls + R) / (τs + 1)} i (s) (4)
The relationship is established. Therefore, the electromotive force estimation means 30 operates according to the equation (4) to estimate the estimated electromotive force 31. If the brake control device is configured as described above, the differential operation of the current detector signal is not performed, so that it is robust against noise disturbance, and the brake sound generated when the brake shoe 8 collides with the brake drum 6 is further reduced. .
Embodiment 3 FIG.
  6 is a block diagram showing a brake control apparatus according to Embodiment 3 of the present invention. 6 differs from the second embodiment shown in FIG. 2 in that the integration means 34 for integrating the electromotive force estimated by the electromotive force estimation means 30, the amplification means 35 b for the integration means 34, and the integration of the electromotive force A setting value means 22 for giving a value, that is, a target value of the armature displacement position, a difference means 23c for obtaining a difference between an output signal of the setting value means 22 and an output signal from the amplifying means 35b, and an output signal of the electromotive force estimation means 30 Amplifying means 35a for amplifying, and a difference means 23d for obtaining a difference between the output signal of the amplifying means 35a and the output signal of the difference means 23c as a voltage command to the electromagnet are provided. Further, the compensation means 24 is not provided.
  To explain the operation, the estimated electromotive force is integrated by the integrating means 34, further amplified by the amplifying means 35b, and the difference from the output signal of the set value means 22 is obtained by the difference means 23c. Further, the difference means 23d takes the difference between the output signal of the difference means 23c and the estimated electromotive force amplified by the amplification means 35a, and the output signal of the difference means 23d operates so as to become a coil voltage command.
  When the brake control device is configured as described above, the output signal of the difference means 23c is a difference signal between the integral value signal of the electromotive force that increases as the armature starts moving and the constant value signal of the target value setting means, that is, the set value means 22. Therefore, it becomes a signal that decreases with the movement of the armature. Therefore, in the difference means 23d, the difference from the estimated electromotive force signal amplified by the amplifying means 35a is performed using the output signal of the difference means 23c that decreases with the movement of the armature as a new target value.
  On the other hand, the electromotive force signal expressed by Equation (2) is proportional to the product of the armature speed v and the coil current i. In order to control the armature speed v immediately before the collision, in which the coil current is reduced, to be stable (constant value), rather than targeting the constant value signal of the target value setting means 22 of the first and second embodiments. As shown in the present embodiment, it is more advantageous to have a configuration that targets a variable signal that decreases with the movement of the armature. With these configurations, the brake sound generated when the brake shoe 8 collides with the brake drum 6 is further reduced. It is obvious that the same operation can be obtained even if the configuration of the second embodiment is used for the electromotive force estimation means 30.
Embodiment 4 FIG.
  FIG. 7A is a configuration diagram showing a brake control device according to Embodiment 4 of the present invention. In this embodiment, compensator adjusting means 36 is further provided. As shown in FIG. 7B, the compensator adjusting unit 36 includes a latch circuit 37, a comparator 38, and a gain table 39.
  Next, the operation will be described. The operation is the same as that of the first embodiment except for the operation of the compensator adjusting means 36. The operation of the compensator adjusting means 36 will be described. The comparator 38 operates to determine the timing at which the electromotive force from the electromotive force estimation means 30 is generated (a reference voltage for determining whether or not the electromotive force is generated from the estimated electromotive force signal is connected to the lower side). The latch circuit 37 operates to store the output signal of the current detector 13 at that timing. The gain table 39 is a table that associates the current value at which the electromotive force is generated with the amplification factor in the compensation means 24. The compensator adjusting means 36 operates so as to adjust the gain in the compensating means 24 by the gain table 39 each time according to the coil current value (current detector output) stored in the latch circuit 37. This is because, considering that the coil current value at which the armature starts to move is proportional to the pressing force of the spring 7, if the pressing force increases, the amplification factor of the compensating means 24 increases, and if the pressing force decreases. There is an effect that the amplification factor of the compensation means 24 is decreased and the stable operation of the control system is enhanced.
  When the brake control device is configured as described above, the brake operation sound generated when the brake shoe 8 collides with the brake drum 6 is generated even if the pressing force of the spring 7 constituting the brake changes according to the secular change. Get smaller. It is obvious that the same operation can be obtained even if the configuration of the second embodiment is used for the electromotive force estimation means 30.
Embodiment 5. FIG.
  FIG. 8 is a block diagram showing a brake control apparatus according to Embodiment 5 of the present invention. In this embodiment, as in the third embodiment, the control is performed based on the integral value of the electromotive force, that is, the variable target value relating to the displacement position of the armature. The armature operating current detector 18 detects a coil current value at which the armature 11 of the electromagnet 10 starts to operate based on the current detector signal 21. The target value setting means 22 gives the target value of the integrated signal 310 of the estimated electromotive force signal 31b amplified by the amplifying means 35. The difference means 23c makes a difference between the target value and the integrated signal 310 of the estimated electromotive force signal. The compensating means 24 is based on the output signal of the difference means 23c, the current detector signal 21, the estimated electromotive force signal 31a of the electromotive force estimating means, and the output signal 32 of the armature operating current detecting means 10 based on the brake coil (electromagnet) 10. The coil applied voltage command signal 20 is output. The inductance adjusting unit 29 adjusts the inductance value 26 of the electromagnet in the electromotive force estimating unit 30 according to the current detector signal 21.
  Further, in the electromotive force estimating means 30, the difference means 23b subtracts the output of the adding means 25b from the coil application voltage command signal 20 to the brake coil, and further passes through the filter means 33 to obtain estimated electromotive force signals 31a and 31b.
  FIG. 9 is a configuration diagram showing an example of the configuration of the compensation means 24. In the compensation unit 24, the output signal 31 a of the electromotive force estimation unit 30 is input to the electromotive force compensation unit 40. The output signal 320 of the armature operating current detection means 18 is input to the spring force compensation means 41 and the electromagnetic force compensation means 42. The current detector signal 21 is input to the electromagnetic force compensation means 42, the differentiation means 27a, and the balancing voltage compensation means 47, respectively. The output signal of the electromotive force compensation means 40, the output signal of the spring force compensation means 41, and the output signal of the electromagnetic force compensation means 42 are input to the multiplication means 44, respectively. The output signal of the multiplication means 44 is differentiated from the output signal 17 of the difference means 23 c shown in FIG. 8 by the difference means 23 d and input to the switching means 45. The output signal of the zero signal source 48 is input to the switching means 45. The output signal of the differentiating means 27a is also input to the switching means 45. The output signal of the switching means 45 and the output signal of the balancing voltage compensation means 47 are added by the adding means 25c, and this is used as the coil application voltage command signal 20.
  Next, the operation of the brake control apparatus according to the fifth embodiment of the present invention will be described. The basic operation is the same as that of the above-described embodiment. When brake braking is applied with the holding voltage applied to the brake coil 10, the brake is applied at time T4 as shown in FIG. The applied voltage of the coil 10 is reduced from the holding voltage to zero. As a result, the brake current (current of the brake coil 10) starts to decrease, and when the attraction force by the brake current becomes smaller than the spring force, the armature 11 starts to fall, and the speed of the armature 11 is as shown in FIG. Start accelerating. When the electromotive force estimating means 30 detects that the armature 11 starts to move, the control device 9 uses the difference means 23c to output the output value from the set value means 22 and the estimated electromotive force signal 31b output from the electromotive force estimating means 30. After integrating by the integrating means 34, the difference from the signal amplified by the amplifying means 35 is made. The compensation means 24 is based on the output signal 17 of the difference means 23c, the current detector signal 21, the output signal 31a of the electromotive force estimation means, and the output signal 320 of the armature operating current detection means 18, based on the brake coil (electromagnet) 10. The coil applied voltage command signal 20 is output.
  The basic operations of the electromotive force estimation means 30 and the inductance adjustment means 29 are the same as those in the above embodiment.
  Next, the operation of the compensation unit 24 will be described. First, the electromotive force compensation means 40 determines the gain and phase of the electromotive force estimation signal 31a, for example,
  C (s) = 250 (Kds + Kp) / (S + 250) (5)
The output signal is input to the multiplication means 44. Here, C (s) represents a transfer function between the input signal and the output signal, and s represents a Laplace operator. Kp is a constant representing a proportional gain, and Kd is a constant representing a differential gain.
  The spring force compensation means 41 outputs an output signal 320 from the armature operating current detection means 18 to, for example,
  y = asu + bs                          (6)
  cs≦ y ≦ ds                          (7)
An operation value obtained by applying a linear function such as is output. Here, the signal u represents the output signal 32 from the armature operating current detection means 18. A signal y represents an output signal of the spring force compensation means 41. CsAnd dsRepresents a lower limit value and an upper limit value of the output signal y of the spring force compensation means. In this example, equation (6) is a linear equation, but it goes without saying that it may be a multi-order equation or a non-linear equation in which the operation equation is changed by dividing the equation by the magnitude of the signal u.
  From the output signal 320 from the armature operating current detection means 18 and the output signal 21 of the current detector, the electromagnetic force compensation means 42, for example,
  r = am(I−u) + bm                  (8)
  cm≦ r ≦ dm                          (9)
An operation value obtained by applying a linear function such as is output. Here, the signal u represents the output signal 320 from the armature operating current detection means 18. Signal i represents the output signal 21 of the current detector. The signal r represents the output signal of the electromagnetic force compensation means 42. CmAnd dmRepresents the lower limit value and the upper limit value of the output signal r of the electromagnetic force compensation means 42, respectively. In this example, the equation (8) is a linear equation, but it goes without saying that it may be a multi-order equation or a nonlinear equation in which the arithmetic expression is changed by dividing it by the magnitude of the signal i.
  The multiplication unit 44 operates to multiply the output signals of the electromotive force compensation unit 40, the spring force compensation unit 41, and the electromagnetic force compensation unit 42, respectively. The output signal of the multiplication means 44 is subtracted from the output signal 17 from the difference means 23c by the difference means 23d and input to the switching means 45.
  The switching means 45 operates so as to switch the output signal of the difference means 23d and the output signal of the zero signal source 48 according to the sign of the signal obtained by time-differentiating the coil current detector signal 21 by the differentiating means 27a. For example,
  z = w (q ≧ 0)
  z = 0 (q <0) (10)
Perform operations like Here, q is a signal obtained by time differentiation of the coil current detector signal 21 by the differentiating means 27a, w is an output signal of the difference means 23d, and z is an output signal of the switching means 45.
  Further, the output signal of the switching means 45 is added by the adding means 25 c with the output signal obtained by applying the balancing voltage compensating means 47 to the coil current detector signal 21 to become the coil application voltage command signal 20. The balancing voltage compensation means 47 is, for example,
  e = Ri (11)
An operation value obtained by applying a linear function such as is output. Here, the signal i represents the coil current detector signal 21. The signal e represents the output signal of the balancing voltage compensation means 47. R is a DC resistance value of the brake coil 10, for example.
  The control operation of the brake control system is such that the output signal obtained by applying the balancing voltage compensation means 47 to the coil current detector signal 21 is always output to the coil application voltage command signal, and further, the current detector signal 21 increases with time. Only, the output signal (negative feedback signal) of the difference means 23d is added to the coil application voltage command signal 20.
  FIG. 10 (a) shows an operation example of the coil voltage command signal 20 of no control (broken line) and the present control device (solid line) in the brake braking operation, and FIG. An operation example of the armature displacement of the solid line is shown, and (c) shows an operation example of no control (broken line) and an operation example of the armature speed of the present control device (solid line). When the armature speed in FIG. 10C is compared, at the time when the brake shoe and the drum are expected to come into contact, the maximum value of the speed is that of the present control device (solid line) compared to that of no control (dashed line). It is getting smaller. As a result, the brake falling speed becomes slower than a predetermined value with respect to the conventional speed change indicated by the one-dot chain line in FIG. 3C, and the braking operation that occurs when the brake shoe 8 collides with the brake drum 6. The sound is reduced.
  The armature movement is started when the balance between the electromagnetic force and the spring force changes. The magnitude of the current value at this time is substantially proportional to the spring force. Therefore, the operation of compensating the coil application voltage command signal 20 by the output value of the armature operating current detection means 18 has the effect of operating stably even if there is a variation in spring force.
  In addition, since the electromagnetic force decreases with the distance of the armature, the applied voltage of the coil and the electromagnetic force are not proportional. For this reason, it is easier to control the armature speed by increasing the applied voltage of the coil according to the moving distance. The electromagnetic force compensation means 42 pays attention to the fact that the coil current increases with the movement of the armature, and outputs a numerical value proportional to the difference between the output value of the operating current detection means 18 and the coil current detector signal 21, which is used as the electromotive force. The controllability of the armature speed is enhanced by multiplying the output values of the compensation means 40 and the spring force compensation means 41. As a result, the brake operation sound generated when the brake shoe 8 collides with the brake drum 6 can be stably reduced.
Embodiment 6 FIG.
  FIG. 11 is a block diagram showing compensation means of a brake control device according to Embodiment 6 of the present invention. In this embodiment, the compensation means 24 includes a timer means 43 and a gain changing means 50a.
  Next, the operation will be described. Except for the compensation adjustment operation, the operation is the same as that of the fifth embodiment. The timer means 43 is means for counting the time from the time when the brake is released to the time when the brake operation is started. Here, the counted time is referred to as Thold. Next, the operation of the gain changing unit 50a will be described. For example,
Figure 2004028945
Figure 2004028945
Perform operations like Here, Kpini represents an initial value of Kp, Kprate represents a gain change rate, Thmax represents a maximum brake release time, and Thmin represents a minimum brake release time. In this example, the gain is changed by a linear expression according to the counted time.
  When the brake control device is configured as described above, the armature is magnetized according to the time when the brake is released, that is, the time when the armature is attached to the electromagnet, and even if the coil current is reduced during the braking operation, the armature It becomes difficult to leave the electromagnet. Since the gain of the electromotive force compensation means is changed according to the brake release time, the brake operation sound generated when the brake shoe 8 collides with the brake drum 6 is small regardless of the brake release time. Become.
Embodiment 7 FIG.
  12 is a block diagram showing a brake control apparatus according to Embodiment 7 of the present invention. In this embodiment, resistance value estimation means 51 is provided. Next, the operation will be described. Except for the operation of the resistance value estimating means 51, the operation is the same as that of the fifth embodiment. The resistance value estimating means 51 operates to estimate the coil resistance value from the coil application voltage command signal 20 and the coil current detector signal 21. For example, the moving average processing result of the coil application voltage command signal 20 within a certain time when the brake is released (the average for a predetermined period) is divided by the corresponding moving average processing result of the coil current detector signal 21; Operates to estimate resistance. This estimated resistance value is set to the coil resistance value 28 of the electromotive force estimating means 30.
  If the brake control device is configured as described above, the electromotive force estimation accuracy of the electromotive force estimation means 30 is increased, and the brake operation sound generated when the brake shoe 8 collides with the brake drum 6 is reduced.
Embodiment 8 FIG.
  FIG. 13 is a block diagram showing the configuration of compensation means of the brake control apparatus according to Embodiment 8 of the present invention. In this embodiment, the compensation means 24 includes a second gain changing means 50b. Next, the operation will be described. The operation is the same as that of the above embodiment except for the operation of the second gain changing means 50b. The second gain changing means 50b is the initial value of the first gain changing means 50a according to the resistance value of the coil estimated from the resistance value estimating means 51 (for example, the one shown in FIG. 12) (see the wavy arrow in FIG. 12). It operates to change the gain Kp. For example, R*Is the estimated resistance value estimated from the resistance value estimating means 51,
  R*≦ R1          Kpini = K1
  R1≦ R*≦ R2      Kpini = K2
  R2≦ R*          Kpini = K3
                                                (13)
As described above, the initial value gain Kpini is changed according to the estimated resistance value.
  When the brake control device is configured as described above, the coil temperature is proportional to the resistance value, and therefore the gain of the electromotive force compensation means 40 can be changed according to the environmental temperature of the brake. For this reason, even if the environmental temperature varies, stable control can be realized, and there is an effect that the brake operation sound generated when the brake shoe 8 collides with the brake drum 6 is also reduced.
  As described above, according to the present invention, by providing means for estimating the electromotive force of the electromagnet caused by the armature (brake shoe) moving speed, electromotive force target value setting means, and compensator means, After starting, the brake coil voltage is controlled to suppress the brake fall speed, so the brake fall speed becomes slower than the conventional speed change, and the brake operation sound generated when the brake shoe collides with the brake drum is reduced. .

産業上の利用の可能性Industrial applicability

この発明によれば、ブレーキの落下速度が、従来の速度変化に対し遅くなり、ブレーキシューがブレーキドラムに衝突する時に発生するブレーキ動作音が小さくなるので、騒音が問題になる場所においてもエレベータを使用でき、より多くの場所でエレベータが利用できる。  According to the present invention, the brake falling speed becomes slower than the conventional speed change, and the brake operation sound generated when the brake shoe collides with the brake drum is reduced. It can be used and elevators are available in more places.

Claims (11)

エレベータブレーキのブレーキシューを駆動させる電磁石のブレーキコイルに吸引されるアーマチュアの移動速度に起因する電磁石の起電力を推定する起電力推定手段と、この起電力および起電力の積分値のいずれかを目標値に合わせるようにして補償された電磁石への電圧指令を供給する補償部とを備え、制動時のアーマチュア移動開始後、アーマチュア移動速度を抑えるようにブレーキコイル電圧を制御することを特徴とするエレベータのブレーキ制御装置。The electromotive force estimation means for estimating the electromotive force of the electromagnet caused by the moving speed of the armature attracted by the brake coil of the electromagnet that drives the brake shoe of the elevator brake, and either of the electromotive force and the integral value of the electromotive force are targets And a compensation unit for supplying a voltage command to the electromagnet compensated to match the value, and after starting the armature movement at the time of braking, the brake coil voltage is controlled so as to suppress the armature movement speed. Brake control device. ブレーキコイルを含む前記電磁石に流れる電流を検出する電流検出器と、
電磁石への電圧指令と電流検出器出力から電磁石に発生する起電力を推定する前記起電力推定手段と、
起電力の目標値を与える目標値設定手段と、
起電力の目標値と推定された起電力との差分を求める差分手段と、
この差分手段の出力のゲインと位相を整形して電磁石への電圧指令とする補償手段と、
電流検出器出力と電磁石への電圧指令が比例関係になるように補償する非線形補償手段と、
前記起電力推定手段における電磁石のインダクタンス値を電流検出器出力に従って調整する手段と、
を備えたことを特徴とする請求の範囲第1項に記載のエレベータのブレーキ制御装置。
A current detector for detecting a current flowing in the electromagnet including a brake coil;
The electromotive force estimating means for estimating the electromotive force generated in the electromagnet from the voltage command to the electromagnet and the current detector output;
Target value setting means for giving a target value of electromotive force;
A difference means for obtaining a difference between the target value of the electromotive force and the estimated electromotive force;
Compensation means for shaping the gain and phase of the output of the difference means to make a voltage command to the electromagnet,
Non-linear compensation means for compensating so that the current detector output and the voltage command to the electromagnet have a proportional relationship;
Means for adjusting the inductance value of the electromagnet in the electromotive force estimation means according to the current detector output;
The elevator brake control device according to claim 1, further comprising:
ブレーキコイルを含む前記電磁石に流れる電流を検出する電流検出器と、
電磁石への電圧指令と電流検出器出力から電磁石に発生する起電力を推定する前記起電力推定手段と、
前記起電力推定手段で推定された起電力を積分する手段と、
起電力の積分値に目標値を与える目標値設定手段と、
この目標値設定手段の出力と起電力積分手段からの出力との差分を求める第1の差分手段と、
前記起電力推定手段の出力と前記第1の差分手段の出力の差分を求め電磁石への電圧指令とする第2の差分手段と、
電流検出器出力と電磁石への電圧指令が比例関係になるように補償する非線形補償手段と、
前記起電力推定手段における電磁石のインダクタンス値を電流検出器出力に従って調整する手段と、
を備えたことを特徴とする請求の範囲第1項に記載のエレベータのブレーキ制御装置。
A current detector for detecting a current flowing in the electromagnet including a brake coil;
The electromotive force estimating means for estimating the electromotive force generated in the electromagnet from the voltage command to the electromagnet and the current detector output;
Means for integrating the electromotive force estimated by the electromotive force estimation means;
Target value setting means for giving a target value to the integral value of the electromotive force;
First difference means for obtaining a difference between the output of the target value setting means and the output from the electromotive force integration means;
A second difference unit that obtains a difference between the output of the electromotive force estimation unit and the output of the first difference unit and sets it as a voltage command to the electromagnet;
Non-linear compensation means for compensating so that the current detector output and the voltage command to the electromagnet have a proportional relationship;
Means for adjusting the inductance value of the electromagnet in the electromotive force estimation means according to the current detector output;
The elevator brake control device according to claim 1, further comprising:
前記起電力推定手段の出力と電流検出器出力とに基づき起電力が発生する際の電流検出器出力の値に従って補償手段のゲインを変更する補償器調整手段をさらに備えたことを特徴とする請求項2に記載のエレベータのブレーキ制御装置。The compensator adjusting means for changing the gain of the compensating means according to the value of the current detector output when the electromotive force is generated based on the output of the electromotive force estimating means and the current detector output. Item 3. The elevator brake control device according to Item 2. ブレーキコイルを含む前記電磁石に流れる電流を検出する電流検出器と、
電磁石への電圧指令と電流検出器出力から電磁石に発生する起電力を推定する前記起電力推定手段と、
前記起電力推定手段で推定された起電力を積分する手段と、
起電力の積分値に目標値を与える目標値設定手段と、
この目標値設定手段の出力と起電力積分手段からの出力との差分を求める差分手段と、
電流検出器出力に基づき電磁石のアーマチュアが動作開始する際のコイル電流値を検知するアーマチュア動作電流検知手段と、
前記電流検出器、起電力推定手段、差分手段およびアーマチュア動作電流検知手段の出力から電磁石への電圧指令を供給する補償手段と、
前記起電力推定手段における電磁石のインダクタンス値を電流検出器出力に従って調整する手段と、
を備えたことを特徴とする請求の範囲第1項に記載のエレベータのブレーキ制御装置。
A current detector for detecting a current flowing in the electromagnet including a brake coil;
The electromotive force estimating means for estimating the electromotive force generated in the electromagnet from the voltage command to the electromagnet and the current detector output;
Means for integrating the electromotive force estimated by the electromotive force estimation means;
Target value setting means for giving a target value to the integral value of the electromotive force;
Difference means for obtaining a difference between the output of the target value setting means and the output from the electromotive force integration means,
Armature operating current detecting means for detecting the coil current value when the armature of the electromagnet starts to operate based on the current detector output;
Compensation means for supplying a voltage command to the electromagnet from the outputs of the current detector, electromotive force estimation means, difference means and armature operating current detection means;
Means for adjusting the inductance value of the electromagnet in the electromotive force estimation means according to the current detector output;
The elevator brake control device according to claim 1, further comprising:
前記起電力推定手段が、電流検出器出力を微分する手段と、その微分された信号に電磁石のインダクタンスを乗じる手段と、電流検出器出力に電磁石の抵抗値を乗じる手段と、両乗算信号を加算する推定手段内の加算手段と、電磁石への電圧指令から前記加算手段の出力を差し引く推定手段内の差分手段と、を含むことを特徴とする請求の範囲第2項、第3項、第5項のいずれか1項に記載のエレベータのブレーキ制御装置。The electromotive force estimating means adds means for differentiating the current detector output, means for multiplying the differentiated signal by the inductance of the electromagnet, means for multiplying the current detector output by the resistance value of the electromagnet, and adding both multiplication signals. The addition means in the estimation means to perform, and the difference means in the estimation means for subtracting the output of the addition means from the voltage command to the electromagnet, the second, third, fifth The elevator brake control device according to claim 1. 前記起電力推定手段が、電流検出器出力に電磁石のインダクタンスと抵抗から算出される零点を備えた所定のフィルタをかける第1のフィルタ手段と、電磁石への電圧指令にフィルタをかける第2のフィルタ手段と、前記両フィルタ手段の出力の差分を求める推定手段内の差分手段と、を含み、前記両フィルタ手段の時定数を同じにしたことを特徴とする請求の範囲第2項、第3項、第5項のいずれか1項に記載のエレベータのブレーキ制御装置。The first electromotive force estimating means applies a predetermined filter having a zero point calculated from the inductance and resistance of the electromagnet to the current detector output, and the second filter applies a filter to the voltage command to the electromagnet. And a difference means in an estimation means for obtaining a difference between outputs of the two filter means, wherein the time constants of the two filter means are the same. The elevator brake control device according to any one of claims 5 to 6. 前記補償手段が、
起電力推定手段の出力のゲインと位相を補償する起電力補償手段と、
アーマチュア動作電流検知手段の出力に応じて出力値を変更するバネ力補償手段と、
アーマチュア動作電流検知手段の出力と電流検出器出力から出力値を変更する電磁力補償手段と、
前記起電力補償手段、バネ力補償手段および電磁力補償手段の各出力を各々乗算する補償手段内の乗算手段と、
前記差分手段の出力と補償手段内の乗算手段の出力の差分を求める補償手段内の差分手段と、
電流検出器出力を微分する補償手段内の微分手段と、
補償手段内の前記差分手段の出力と零信号を補償手段内の微分手段の出力により切り替える切替手段と、
電流検出器出力に応じてバネ力と電磁力が釣り合う電圧信号を出力する釣合電圧補償手段と、
前記切替手段の出力と前記釣合電圧補償手段の出力を加算する補償手段内の加算手段と、
を含むことを特徴とする請求の範囲第5項に記載のエレベータのブレーキ制御装置。
The compensation means is
Electromotive force compensation means for compensating the gain and phase of the output of the electromotive force estimation means;
Spring force compensation means for changing the output value according to the output of the armature operating current detection means;
Electromagnetic force compensation means for changing the output value from the output of the armature operating current detection means and the output of the current detector;
Multiplication means in the compensation means for multiplying each output of the electromotive force compensation means, spring force compensation means and electromagnetic force compensation means,
Difference means in the compensation means for obtaining a difference between the output of the difference means and the output of the multiplication means in the compensation means;
Differentiating means in the compensating means for differentiating the current detector output;
Switching means for switching the output of the difference means in the compensation means and the zero signal by the output of the differentiation means in the compensation means;
A balanced voltage compensating means for outputting a voltage signal in which the spring force and the electromagnetic force are balanced according to the current detector output;
An adding means in a compensating means for adding the output of the switching means and the output of the balancing voltage compensating means;
The elevator brake control device according to claim 5, comprising:
電磁石がアーマチュアを吸引しブレーキを開放している時間をカウントするタイマー手段と、タイマー手段の出力から起電力補償手段のゲインを変更する手段を備えたことを特徴とする請求の範囲第8項に記載のエレベータのブレーキ制御装置。9. The system according to claim 8, further comprising: timer means for counting a time during which the electromagnet attracts the armature and releasing the brake; and means for changing the gain of the electromotive force compensation means from the output of the timer means. The elevator brake control device described. 電磁石がアーマチュアを吸引しブレーキを開放している際に電磁石への電圧指令と電流検出器出力からブレーキコイルの抵抗値を演算して推定し前記起電力推定手段における抵抗値をこの推定値に変更する抵抗値推定手段を備えたことを特徴とする請求の範囲第8項に記載のエレベータのブレーキ制御装置。When the electromagnet attracts the armature and the brake is released, the resistance value of the brake coil is calculated and estimated from the voltage command to the electromagnet and the current detector output, and the resistance value in the electromotive force estimation means is changed to this estimated value The elevator brake control device according to claim 8, further comprising a resistance value estimating means for performing the operation. 前記抵抗値推定手段の出力に従って前記補償手段におけるゲインを変更する手段を備えたことを特徴とする請求の範囲第10項に記載のエレベータのブレーキ制御装置。The elevator brake control device according to claim 10, further comprising means for changing a gain in the compensation means in accordance with an output of the resistance value estimating means.
JP2004525638A 2002-09-27 2003-02-10 Elevator brake control device Expired - Lifetime JP4102362B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002283672 2002-09-27
JP2002283672 2002-09-27
PCT/JP2003/001385 WO2004028945A1 (en) 2002-09-27 2003-02-10 Brake controller of elevator

Publications (2)

Publication Number Publication Date
JPWO2004028945A1 true JPWO2004028945A1 (en) 2006-01-19
JP4102362B2 JP4102362B2 (en) 2008-06-18

Family

ID=32040565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004525638A Expired - Lifetime JP4102362B2 (en) 2002-09-27 2003-02-10 Elevator brake control device

Country Status (5)

Country Link
EP (1) EP1544148B1 (en)
JP (1) JP4102362B2 (en)
KR (1) KR100572787B1 (en)
CN (1) CN1325361C (en)
WO (1) WO2004028945A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY192706A (en) * 2004-12-17 2022-09-02 Inventio Ag Lift installation with a braking device, and method for braking and holding a lift installation
JP4925105B2 (en) * 2005-09-06 2012-04-25 三菱電機株式会社 Elevator brake equipment
KR100963357B1 (en) * 2005-09-30 2010-06-14 미쓰비시덴키 가부시키가이샤 Elevator apparatus
KR20100036371A (en) * 2006-03-14 2010-04-07 미쓰비시덴키 가부시키가이샤 Electromagnetic brake control device
KR200424453Y1 (en) * 2006-06-07 2006-08-22 현대엘리베이터주식회사 Elevator winch having direct electron break of drum type
JP5073678B2 (en) * 2006-12-20 2012-11-14 三菱電機株式会社 Electromagnetic brake control device
JP5335903B2 (en) 2008-06-17 2013-11-06 オーチス エレベータ カンパニー Control circuit and brake control circuit
IT1392823B1 (en) * 2009-02-04 2012-03-23 Rossi Motoriduttori S P A BRAKE-CONDITIONING SIGNALING DEVICE IN AN ELECTROMAGNETIC BRAKE PARTICULARLY FOR ELECTRIC MOTORS
JP5474040B2 (en) * 2009-02-20 2014-04-16 三菱電機株式会社 Elevator brake equipment
WO2011101978A1 (en) * 2010-02-19 2011-08-25 三菱電機株式会社 Elevator device
JP5578901B2 (en) * 2010-03-19 2014-08-27 東芝エレベータ株式会社 Elevator brake control device
JPWO2012140945A1 (en) * 2011-04-15 2014-07-28 三菱電機株式会社 Elevator brake device and elevator brake braking method
US9371873B2 (en) 2011-06-16 2016-06-21 Otis Elevator Company Permanent magnet centering system for brake
JP5794067B2 (en) * 2011-09-16 2015-10-14 三菱電機株式会社 Elevator brake control device
US8860352B2 (en) * 2012-05-10 2014-10-14 Mitsubishi Electric Research Laboratories, Inc. System and method for controlling actuators
FI126171B (en) 2014-06-19 2016-07-29 Kone Corp System, machine brake and procedure for controlling a machine brake
DE102018205633A1 (en) * 2018-04-13 2019-10-17 Thyssenkrupp Ag elevator system
WO2021186680A1 (en) * 2020-03-19 2021-09-23 三菱電機株式会社 Elevator control device
CN114988247A (en) * 2022-04-27 2022-09-02 宁波欣达电梯配件厂 Current detection-based power-off brake control method and system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1315589A (en) * 1970-01-21 1973-05-02 Hitachi Ltd Control apparatus for an elevator car
JPH02110090A (en) * 1988-10-18 1990-04-23 Mitsubishi Electric Corp Elevator controller
JPH0764493B2 (en) * 1988-06-27 1995-07-12 三菱電機株式会社 Elevator control equipment
JPH07102949B2 (en) * 1989-09-28 1995-11-08 三菱電機株式会社 Elevator braking system
JPH09267982A (en) * 1996-03-29 1997-10-14 Mitsubishi Electric Corp Linear motor driven moving body device
US5717174A (en) * 1996-05-08 1998-02-10 Inventio Ag Elevator brake drop silencing apparatus and method
CN1128091C (en) * 1999-01-25 2003-11-19 三菱电机株式会社 Elevator brake control device
JP2001158575A (en) * 1999-12-03 2001-06-12 Mitsubishi Electric Corp Elevator controller
JP4620912B2 (en) * 2001-09-11 2011-01-26 三菱電機株式会社 Braking system and control device therefor

Also Published As

Publication number Publication date
EP1544148A4 (en) 2008-03-26
CN1325361C (en) 2007-07-11
JP4102362B2 (en) 2008-06-18
KR20040054806A (en) 2004-06-25
CN1556770A (en) 2004-12-22
WO2004028945A1 (en) 2004-04-08
EP1544148A1 (en) 2005-06-22
KR100572787B1 (en) 2006-04-24
EP1544148B1 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP4102362B2 (en) Elevator brake control device
TW502141B (en) Positioning servo controller
JP4830257B2 (en) Elevator brake control device
KR101202267B1 (en) Transfer apparatus
EP0584790B1 (en) Zero-power control type vibration eliminating apparatus
JP4275377B2 (en) Brake control device for elevator
EP0477867A2 (en) Elevator start control technique for reduced start jerk and acceleration overshoot
JP4424350B2 (en) POSITION CONTROL DEVICE AND ITS CONTROL METHOD
JP2000063049A (en) Control device for electromagnetic actuator for elevator active suspension
JP2008259271A (en) Servo controller and automatic constant adjustment method
JP5920054B2 (en) Elevator brake device and elevator
KR900001791B1 (en) Control system
JP2011105484A (en) Device for detecting failure of electromagnetic brake
WO2012140945A1 (en) Brake device for elevator and brake operation method for elevator
JP5073678B2 (en) Electromagnetic brake control device
CN116568990A (en) Wear amount estimation device, wear amount learning device, and wear amount monitoring system
JP2000334512A (en) Damping device for steel sheet
JP5975943B2 (en) Motor control device
JPH11301815A (en) Speed and position control method of stacker crane
JP2003040547A (en) Brake adjusting method, and brake system for elevator
JPH04286586A (en) Rope tension vibration suppressing control method in elevator drive control system
JPH089672A (en) Speed controller for motor
JP4147512B2 (en) Crane steady rest control device
JP2001294372A (en) Brake controlling device for elevator
CA1258484A (en) Control system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4102362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term