JPWO2004016825A1 - Hafnium silicide target and method for manufacturing the same - Google Patents

Hafnium silicide target and method for manufacturing the same Download PDF

Info

Publication number
JPWO2004016825A1
JPWO2004016825A1 JP2004528832A JP2004528832A JPWO2004016825A1 JP WO2004016825 A1 JPWO2004016825 A1 JP WO2004016825A1 JP 2004528832 A JP2004528832 A JP 2004528832A JP 2004528832 A JP2004528832 A JP 2004528832A JP WO2004016825 A1 JPWO2004016825 A1 JP WO2004016825A1
Authority
JP
Japan
Prior art keywords
ppm
powder
target
less
hfsi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004528832A
Other languages
Japanese (ja)
Other versions
JP4160557B2 (en
Inventor
修一 入間田
修一 入間田
鈴木 了
了 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Publication of JPWO2004016825A1 publication Critical patent/JPWO2004016825A1/en
Application granted granted Critical
Publication of JP4160557B2 publication Critical patent/JP4160557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation

Abstract

HfSi0.82−0.98からなり、酸素含有量が500〜10000ppmであることを特徴とするゲート酸化膜形成用ハフニウムシリサイドターゲットに関する。HfSi0.82−0.98からなる組成の粉末を合成し、これを100メッシュ以下に粉砕したものを1700℃〜2120℃、150〜2000kgf/cm2で、ホットプレス又は熱間静水圧プレス(HIP)することによりゲート酸化膜形成用ハフニウムシリサイドターゲットを製造する。SiO2膜及びSiON膜に替わる特性を備えた高誘電体ゲート絶縁膜として使用することが可能であるHfSiO膜及びHfSiON膜の形成に好適であり、耐脆化性に富み、パーティクルの発生が少なく、かつターゲット製造工程における発火、爆発等の危険のないハフニウムシリサイドターゲット及びその製造方法を得る。The present invention relates to a hafnium silicide target for forming a gate oxide film, which is made of HfSi 0.82 to 0.98 and has an oxygen content of 500 to 10,000 ppm. A powder having a composition of HfSi0.82-0.98 was synthesized and pulverized to 100 mesh or less at 1700 ° C. to 2120 ° C. and 150 to 2000 kgf / cm 2, hot press or hot isostatic press (HIP) As a result, a hafnium silicide target for forming a gate oxide film is manufactured. Suitable for the formation of HfSiO film and HfSiON film that can be used as high dielectric gate insulating film with the characteristics that can replace SiO2 film and SiON film, has excellent resistance to embrittlement, and generates less particles. In addition, a hafnium silicide target having no danger of ignition or explosion in the target manufacturing process and a method for manufacturing the same are obtained.

Description

この発明は、高誘電体ゲート絶縁膜として使用することが可能であるHfSiO膜及びHfSiON膜の形成に好適な、パーティクル発生量の少ないハフニウムシリサイドターゲット及び製造工程中の焼結粉の発火や粉塵爆発の虞の少ないターゲットの製造方法に関する。なお、本明細書で使用する単位「ppm」は全てwtppmを意味する。  The present invention is suitable for forming a HfSiO film and a HfSiON film that can be used as a high dielectric gate insulating film, and has a small amount of generated hafnium silicide target, as well as ignition of sintered powder and dust explosion during the manufacturing process. The present invention relates to a method for manufacturing a target with a low risk of occurrence. The unit “ppm” used in this specification means wtppm.

誘電体ゲート絶縁膜の膜厚は、MOSトランジスタの性能に大きく影響するものであり、シリコン基板との界面が電気的にスムーズでキャリヤの移動度が劣化しないことが必要である。
従来、このゲート絶縁膜としてSiO膜が使用されているが、界面特性からみて最も優れたものであった。そして、このゲート絶縁膜として使用されているSiO膜が薄いほどキャリヤ(すなわち電子又は正孔)の数が増えてドレイン電流を増やすことができるという特性を有している。
このようなことから、ゲートSiO膜は配線の微細化によって電源電圧が下がるたびに、絶縁破壊の信頼性を損ねない範囲で常に薄膜化がなされてきた。しかし、ゲートSiO膜が3nm以下になると直接トンネルリーク電流が流れ、絶縁膜として作動しなくなるという問題を生じた。
一方で、トランジスタをより微細化しようとしているが、前記のようにゲート絶縁膜であるSiO膜の膜厚に制限がある以上、トランジスタの微細化が意味をなさず、性能が改善されないという問題を生じた。
また、LSIの電源電圧を下げ消費電力を下げるためには、ゲート絶縁膜をより一層薄くする必要があるが、SiO膜を3nm以下にすると上記のようにゲート絶縁破壊の問題があるので、薄膜化それ自体に限界があった。
以上から、最近ではSiO膜に替えて高誘電体ゲート絶縁膜の検討がなされている。この高誘電体ゲート絶縁膜として注目されているのがHfSiO膜及びHfSiON膜である。
この高誘電体ゲート絶縁膜は比較的厚い膜でSiO膜と同等の容量を得ることができ、トンネル漏れ電流を抑制できるという特徴を有している。また、SiO膜又はSiON膜にHfを添加したものとみなすことができるため、界面特性もSiOに近いものとなると予想される。
このため、良質のHfSiO又はHfSiON高誘電体ゲート絶縁膜を、容易かつ安定して形成できるスパッタリングターゲットが求められている。
一方、純度の高いハフニウムシリサイド粉は酸化力が極めて大きいため、焼結によるハフニウムシリサイドターゲットの製造工程中に、焼結粉の発火や粉塵による爆発が生ずるという危険が問題となっており、このような発火や粉塵による爆発の虞のないターゲットの製造方法が求められている。
The film thickness of the dielectric gate insulating film greatly affects the performance of the MOS transistor, and it is necessary that the interface with the silicon substrate is electrically smooth and the carrier mobility does not deteriorate.
Conventionally, a SiO 2 film has been used as the gate insulating film, but it was the most excellent in terms of interface characteristics. The thinner the SiO 2 film used as the gate insulating film, the more the number of carriers (that is, electrons or holes) increases and the drain current can be increased.
For this reason, the gate SiO 2 film has always been thinned within a range that does not impair the reliability of the dielectric breakdown every time the power supply voltage is lowered due to the miniaturization of the wiring. However, when the gate SiO 2 film has a thickness of 3 nm or less, a tunnel leakage current flows directly, resulting in a problem that the gate SiO 2 film does not operate as an insulating film.
On the other hand, we are trying to make transistors finer, but as mentioned above, there is a limit to the thickness of the SiO 2 film, which is a gate insulating film, so that miniaturization of transistors does not make sense and performance is not improved. Produced.
Further, in order to lower the power supply voltage of LSI and lower the power consumption, it is necessary to make the gate insulating film thinner. However, if the SiO 2 film is 3 nm or less, there is a problem of gate dielectric breakdown as described above. There was a limit to thinning itself.
From the above, recently, a high dielectric gate insulating film has been studied in place of the SiO 2 film. The HfSiO film and the HfSiON film are attracting attention as the high dielectric gate insulating film.
This high dielectric gate insulating film is a relatively thick film, and can obtain a capacitance equivalent to that of the SiO 2 film, and can suppress a tunnel leakage current. Further, since it can be considered that Hf is added to the SiO 2 film or the SiON film, the interface characteristics are expected to be close to those of SiO 2 .
Therefore, a sputtering target capable of easily and stably forming a high-quality HfSiO or HfSiON high dielectric gate insulating film is required.
On the other hand, high-purity hafnium silicide powder has an extremely high oxidizing power, and thus there is a risk of ignition of sintered powder or explosion due to dust during the production process of a hafnium silicide target by sintering. There is a need for a method of manufacturing a target that is free from the risk of explosion and explosion due to dust.

本発明は、上記の問題を解決するために、SiO膜に替わる特性を備えた高誘電体ゲート絶縁膜として使用することが可能であるHfSiO膜及びHfSiON膜の形成に好適な、加工性、耐脆化性等を有し、かつ焼結粉の発火や粉塵による爆発の危険の少ないハフニウムシリサイドターゲットの製造方法及びターゲットを提供する課題とする。
以上から、本発明は、
1.HfSi0.82−0.98からなり、酸素含有量が500〜10000ppmであることを特徴とするゲート酸化膜形成用ハフニウムシリサイドターゲット。
2.相対密度が95%以上であることを特徴とする上記1記載のゲート酸化膜形成用ハフニウムシリサイドターゲット
3.ジルコニウムの含有量が2.5wt%以下であることを特徴とする上記1又は2記載のゲート酸化膜形成用ハフニウムシリサイドターゲット
4.不純物であるC:300ppm以下、Ti:100ppm以下、Mo:100ppm以下、W:10ppm以下、Nb:10ppm以下、Fe:10ppm以下、Ni:10ppm以下、Cr:10ppm以下、Na:0.1ppm以下、K:0.1ppm以下、U:0.01ppm以下、Th:0.01ppm以下であることを特徴とする上記1〜3のそれぞれに記載のゲート酸化膜形成用ハフニウムシリサイドターゲット
5.平均結晶粒径が5〜200μmであることを特徴とする上記1〜4のそれぞれに記載のゲート酸化膜形成用ハフニウムシリサイドターゲット
6.HfSi0.82−0.98からなる組成の粉末を合成し、これを100メッシュ以下に粉砕したものを1700°C〜2120°C、150〜2000kgf/cmでホットプレス又は熱間静水圧プレス(HIP)することを特徴とするゲート酸化膜形成用ハフニウムシリサイドターゲットの製造方法
7.HfSi0.82−0.98からなる組成の粉末を合成し、これを100メッシュ以下に粉砕したものを1700°C〜2120°C、150〜2000kgf/cmでホットプレス又は熱間静水圧プレス(HIP)することを特徴とする上記1〜6のそれぞれに記載のゲート酸化膜形成用ハフニウムシリサイドターゲットの製造方法
を提供する。
In order to solve the above problems, the present invention is suitable for forming an HfSiO film and an HfSiON film, which can be used as a high dielectric gate insulating film having characteristics in place of the SiO 2 film, It is an object of the present invention to provide a method and a method for manufacturing a hafnium silicide target that has embrittlement resistance and the like, and has a low risk of ignition of sintered powder and explosion due to dust.
From the above, the present invention
1. A hafnium silicide target for forming a gate oxide film, comprising HfSi 0.82-0.98 and having an oxygen content of 500-10000 ppm.
2. 2. The hafnium silicide target for forming a gate oxide film as described in 1 above, wherein the relative density is 95% or more. 3. The hafnium silicide target for forming a gate oxide film according to 1 or 2 above, wherein the zirconium content is 2.5 wt% or less. Impurities C: 300 ppm or less, Ti: 100 ppm or less, Mo: 100 ppm or less, W: 10 ppm or less, Nb: 10 ppm or less, Fe: 10 ppm or less, Ni: 10 ppm or less, Cr: 10 ppm or less, Na: 0.1 ppm or less, 4. The hafnium silicide target for forming a gate oxide film according to each of the above items 1 to 3, wherein K: 0.1 ppm or less, U: 0.01 ppm or less, and Th: 0.01 ppm or less. 5. The hafnium silicide target for forming a gate oxide film according to each of the above items 1 to 4, wherein the average crystal grain size is 5 to 200 μm. A powder having a composition of HfSi 0.82-0.98 was synthesized, and pulverized to 100 mesh or less, hot pressed or hot isostatic pressed at 1700 ° C to 2120 ° C and 150 to 2000 kgf / cm 2. (HIP) A method for manufacturing a hafnium silicide target for forming a gate oxide film A powder having a composition of HfSi 0.82-0.98 was synthesized, and pulverized to 100 mesh or less, hot pressed or hot isostatic pressed at 1700 ° C to 2120 ° C and 150 to 2000 kgf / cm 2. (1) A method for producing a hafnium silicide target for forming a gate oxide film according to each of (1) to (6) above.

SiO膜に替わる特性を備えた高誘電体ゲート絶縁膜は、HfSiターゲットを使用して酸素反応性スパッタリングにより形成する。この酸化物膜はHfO・SiOとして表される酸化物膜の混成体と見なされており、ターゲットには通常Si/Hf=1.0の組成が求められていた。
一般には、HfとSiの組成比は、目的とする膜に近い組成比にすることが要求されるが、Hfリッチの酸化膜は比誘電率が高くなる傾向にあり、Siリッチの酸化膜は下地となるSi基板との整合性がよく、またアモルファス構造になり易いため、リーク電流が少なくなるといった特徴がある。
このようなことから、使用目的に応じて誘電率とリーク電流のバランスを考慮して決める必要がある。また、デバイスの製造プロセスにはそれぞれ固有のコンパチビリティ(適合性)が要求されるため、必要に応じてHfとSiの組成比を任意に変えることができる材料が要求されている。
ハフニウムとシリコンとの混合物粉を焼結した場合、その組成比に応じて、HfSi相、HfSi相などのシリサイド相とHf相、Si相などの混晶となるが、一般には、これらの間化合物ハフニウムシリサイドは、その融点が高いことに起因して焼結時に十分な密度上昇が得られず、ポーラスな組織の焼結体となり、パーティクル発生の多いターゲットとなる問題があった。
そして、組成比に応じて、ホットプレスの条件すなわち、加熱温度と圧力を調節しなければ、最適な密度のターゲットを得ることはできない。
本発明は、密度向上を目途としてさらに改良を重ね、ゲート酸化膜形成用ハフニウムシリサイドターゲットとして好適なターゲットを得ることに成功した。
本発明は、誘電率とリーク電流のバランスを考慮したHfSi0.82−0.98からなるゲート酸化膜形成用ハフニウムシリサイドターゲットとするものである。このハフニウムシリサイドターゲットは、ポーラスな組織が消失し、相対密度が95%以上であるハフニウムシリサイドターゲットが得られた。
相対密度を95%未満では、密度不足で脆性が低くなり加工性も悪くなる。さらに脆性結晶の破壊飛散によるパーティクル増を引き起こす。したがって、上記相対密度の範囲であることが望ましい。
一方、ゲート酸化膜形成用ハフニウムシリサイドターゲットの製造工程において、非常に問題となることが発生した。それは、純度の高いハフニウムシリサイド粉は酸化力が極めて強いため、粉砕・篩別工程において焼結粉の発火や粉塵による爆発が起こることである。このため、ある程度粉末の表面に酸化膜を存在させることにより、焼結粉の発火や粉塵による爆発を防止できることが予想された。
この表面酸化膜は、その量が適度な量、すなわち過量でなければ後工程のホットプレスでHfSi内に十分固溶させることができる。
しかし、酸化膜が多量に存在させた場合、ホットプレス後もハフニウムシリサイドターゲットターゲット中にHfOあるいはHfSiOの絶縁物が残留し、これが半導体デバイスの製造で広く使用されているDCマグネトロンスパッタリングの際にノジュール(突起物)となって露出し、ここを起点として異常放電(アーキング)するという問題が発生した。このような異常放電は周辺のHfSi部を溶解させ、一部はクラスターとなってウエハ上に欠陥(パーティクル)を形成し、不良品の発生、歩留まりの低下ということが起こる。
本発明は、このような双方の問題を考慮し、ハフニウムシリサイド粉中に酸素を積極的に導入すると共に、一方ではパーティクルの発生を抑制できる方法及びそのためのターゲットを提供するものである。
このようなことから、ハフニウムシリサイドターゲット中の酸素含有量を500〜10000ppmとすることが極めて有効であり、一方ではパーティクルの発生を防止でき、他方では製造工程中のハフニウムシリサイド粉の発火又は爆発の危険を抑制できることが分かった。
この酸素量の規定及び管理は極めて重要である。すなわち、酸素量が500ppm未満ではターゲット製造中に発火及び爆発の危険性が常にあり、逆に10000ppmを超えるとターゲット中の酸素が酸化物として析出してスパッタ中の異常放電の原因となり、パーティクルが増え製品歩留まりが低下するからである。
また、ターゲット中のジルコニウムの含有量は2.5wt%以下に抑えることが望ましい。ジルコニウム量が2.5wt%を超えた場合、酸化膜形成のための反応性スパッタ時の電圧、電流、基板温度などのプロセス条件が大きく変動し、好ましくないからである。
さらに、ゲート酸化膜形成用ハフニウムシリサイドターゲット中の不純物であるC:300ppm以下、Ti:100ppm以下、Mo:100ppm以下、W:10ppm以下、Nb:10ppm以下、Fe:10ppm以下、Ni:10ppm以下、Cr:10ppm以下、Na:0.1ppm以下、K:0.1ppm以下、U:0.01ppm以下、Th:0.01ppm以下であることが望ましい。これらは、ゲート電極及び下部Si基板への汚染源となるからである。
HfSi0.82−0.98からなる耐脆化性に優れたゲート酸化膜形成用ハフニウムシリサイドターゲットを製造するには、HfSi0.82−0.98からなる組成の粉末を合成し、これを粉砕・篩別した後、1700°C〜2120°Cでホットプレスか又は熱間静水圧プレス(HIP)することによって製造する。
本発明のHfSi0.82−0.98からなる組成の粉末では、1700°C未満では密度が十分に上がらず、また2120°Cを超えると一部溶解を始めるために好ましくない。
一般に、HfSix、x=0.80の組成範囲のHfSiは、2320(±15)°C以上で液相が出現し、この温度近傍でホットプレスしなければ密度が上がらない。一方、HfSi、x=1.0のHfSiは、2142(±15)°C以上で液相が出現するため、この温度近傍でホットプレスすることで密度をあげることができる。
HfSix、x=0.8−1.0の組成のHfSiは、2142(±15)°Cから30−500°C低い温度でホットプレス成形し、変形しにくいHfSi0. の隙間を変形しやすいHfSi1.0が埋めることで密度をあげている。
HfSix、x<0.82のとき、隙間を埋めるべきHfSi1.0が少ないためにホットプレスしても密度が上がらない。
HfSix、x>0.98のとき、局部的にHfSi2.0の部分があった場合、HfSi2.0の液相出現温度が1543(±8)°Cになるため一部溶融してホットプレスダイスに焼き付いてしまう。それを避けるためには、ホットプレス温度を1543(±8)°C未満に下げる事が考えられるが、その場合密度が充分に上がらない。
このように、金属間化合物組成より高い側と低い側の溶融温度の差が大きい金属間化合物(HfSi0.8、HfSi1.0)又はその直近傍の組成を避けることによって、すなはちHfSi0.82−0.98からなる組成の粉末を使用することによって、高密度化が可能となり、よりパーティクルの少ないターゲットを製造することができる。
HfSi0.82−0.98からなる組成の粉末の合成に際しては、例えばHfH粉(100メッシュアンダー)とSi粉(100メッシュアンダー)の粉をハフニウムとシリコンの比で1:0.82〜1:0.98のモル比に調製・混合した後、800°C程度(600°C〜800°C)まで加熱して合成する。この場合、予め合成してある粉を加えてもよい。
Hf粉は酸化力が強く、微粉化すると発火するという問題を生ずるので、Hf粉を単独使用することは好ましくない。このようなことから、発火防止のために水素化ハフニウムを使用することができる。
そして、この水素化ハフニウム粉とシリコン粉を混合し、真空中で加熱することによりハフニウムシリサイドを合成する。脱水素は約600°Cから起こる。シリサイド化を行う際にシリコン粉の含有酸素量の調節して、合成シリサイド粉塊の酸素量の調整を行うことができる。
このハフニウムシリサイド合金塊を大気中や純水を加えた雰囲気でボールミル等により粉砕する。これによって、トータルの酸素含有量が500〜10000ppmであるハフニウムシリサイド用焼結粉を得る。
シリサイド化は、上記のように低温で焼成するため結晶粒の成長を抑制できる大きな特徴を有している。加熱合成する際、低温で脱水素とシリサイド化を行うことにより、粒成長を抑え、焼成粉は一次粒子が微細なままであり、成型した際に高密度化できる。
焼成粉が粗大化すると、焼結前の微粉砕が困難であるため、粗大粒の残存及び密度低下を引き起こす。このように、低温で焼成するため結晶粒の成長を抑制できるので、ターゲットの平均結晶粒径を5〜200μmにすることができる。そして、焼結する際に高密度化が達成できる。
平均結晶粒径が5μmに満たないターゲットは、酸素量を10000ppm以下とすることが難しく、また製造工程中で発火の虞があり、また200μmを超える場合には、パーティクルが増加し、製品歩留まりが低下するので、上記のように平均結晶粒径を5〜200μmにすることが望ましい。
上記のHfSi0.82−0.98からなる組成の粉末の合成と、これを170°C〜2120°Cでホットプレス又は熱間静水圧プレス(HIP)することによって、焼結時の高密度化が可能となった。
上記のホットプレス又は熱間静水圧プレス(HIP)の温度は、合成粉の液相生成直下の温度であり、この温度域での焼結は重要である。これによって相対密度を95%以上に高密度化したハフニウムシリサイドターゲットが得られる。
高密度化された本発明のハフニウムシリサイドターゲットは、スパッタリング中にポアに起因するパーティクルの発生を著しく防止できる効果を有する。
A high-dielectric gate insulating film having characteristics that can replace the SiO 2 film is formed by oxygen reactive sputtering using an HfSi target. This oxide film is regarded as a composite of an oxide film expressed as HfO 2 · SiO 2 , and a target usually requires a composition of Si / Hf = 1.0.
In general, the composition ratio of Hf and Si is required to be a composition ratio close to the target film. However, the Hf-rich oxide film tends to have a higher dielectric constant, and the Si-rich oxide film There is a feature that the compatibility with the Si substrate as a base is good and the amorphous structure is easily formed, so that the leakage current is reduced.
For this reason, it is necessary to determine the balance between the dielectric constant and the leakage current according to the purpose of use. In addition, each device manufacturing process requires specific compatibility (compatibility), and therefore, a material capable of arbitrarily changing the composition ratio of Hf and Si is required as required.
When a mixture powder of hafnium and silicon is sintered, depending on the composition ratio, a silicide phase such as HfSi phase and HfSi 2 phase and a mixed crystal such as Hf phase and Si phase are formed. The compound hafnium silicide has a problem that it cannot obtain a sufficient density increase during sintering due to its high melting point, becomes a sintered body having a porous structure, and becomes a target with many particles.
The target having the optimum density cannot be obtained unless the hot pressing conditions, that is, the heating temperature and pressure are adjusted according to the composition ratio.
The present invention has been further improved with the aim of increasing the density, and succeeded in obtaining a target suitable as a hafnium silicide target for forming a gate oxide film.
The present invention is a hafnium silicide target for forming a gate oxide film made of HfSi 0.82-0.98 considering the balance between dielectric constant and leakage current. In this hafnium silicide target, a porous structure disappeared, and a hafnium silicide target having a relative density of 95% or more was obtained.
If the relative density is less than 95%, the density is insufficient and the brittleness is lowered and the workability is also deteriorated. Furthermore, it causes an increase in particles due to the breaking and scattering of brittle crystals. Therefore, it is desirable that the relative density range.
On the other hand, in the manufacturing process of the hafnium silicide target for forming the gate oxide film, it has become very problematic. This is because the high-purity hafnium silicide powder has an extremely strong oxidizing power, and therefore, firing of the sintered powder and explosion due to dust occur in the grinding and sieving process. For this reason, it was expected that the presence of an oxide film on the surface of the powder to some extent could prevent the firing of the sintered powder and the explosion caused by the dust.
If the amount of the surface oxide film is an appropriate amount, that is, an excessive amount, the surface oxide film can be sufficiently dissolved in HfSi by a subsequent hot press.
However, when a large amount of oxide film is present, an insulator of HfO or HfSiO remains in the hafnium silicide target target even after hot pressing, and this is a nodule during DC magnetron sputtering widely used in the manufacture of semiconductor devices. (Protrusions) were exposed, and there was a problem of abnormal discharge (arcing) starting here. Such abnormal discharge dissolves the surrounding HfSi part, and a part thereof becomes a cluster to form defects (particles) on the wafer, resulting in generation of defective products and a decrease in yield.
In consideration of both of these problems, the present invention provides a method capable of positively introducing oxygen into hafnium silicide powder while suppressing the generation of particles, and a target therefor.
For this reason, it is extremely effective to set the oxygen content in the hafnium silicide target to 500 to 10,000 ppm. On the other hand, the generation of particles can be prevented, and on the other hand, the ignition or explosion of the hafnium silicide powder during the manufacturing process can be prevented. It turns out that danger can be suppressed.
The regulation and management of the oxygen amount is extremely important. That is, if the amount of oxygen is less than 500 ppm, there is always a risk of ignition and explosion during the production of the target. Conversely, if it exceeds 10000 ppm, oxygen in the target precipitates as an oxide, causing abnormal discharge during sputtering, and particles This is because the product yield increases and the product yield decreases.
Further, it is desirable that the content of zirconium in the target is suppressed to 2.5 wt% or less. This is because if the amount of zirconium exceeds 2.5 wt%, process conditions such as voltage, current, and substrate temperature during reactive sputtering for forming an oxide film greatly vary, which is not preferable.
Further, impurities in the hafnium silicide target for forming the gate oxide film are C: 300 ppm or less, Ti: 100 ppm or less, Mo: 100 ppm or less, W: 10 ppm or less, Nb: 10 ppm or less, Fe: 10 ppm or less, Ni: 10 ppm or less, It is desirable that Cr: 10 ppm or less, Na: 0.1 ppm or less, K: 0.1 ppm or less, U: 0.01 ppm or less, Th: 0.01 ppm or less. This is because they become a source of contamination to the gate electrode and the lower Si substrate.
In order to manufacture a hafnium silicide target for gate oxide film formation having excellent embrittlement resistance composed of HfSi 0.82 to 0.98 , a powder having a composition composed of HfSi 0.82 to 0.98 was synthesized, After pulverization and sieving, it is manufactured by hot pressing or hot isostatic pressing (HIP) at 1700 ° C to 2120 ° C.
In the powder of the composition comprising HfSi 0.82 to 0.98 of the present invention, the density is not sufficiently increased below 1700 ° C., and if it exceeds 2120 ° C., partial dissolution is not preferable.
In general, in the case of HfSi having a composition range of HfSix, x = 0.80, a liquid phase appears at 2320 (± 15) ° C. or more, and the density does not increase unless hot pressing is performed near this temperature. On the other hand, HfSi, where H = Si = x = 1.0, a liquid phase appears at 2142 (± 15) ° C. or higher, and the density can be increased by hot pressing near this temperature.
HfSi having a composition of HfSix, x = 0.8-1.0 is hot-press-molded at a temperature lower than 2142 (± 15) ° C. to 30-500 ° C., and is not easily deformed . The density is increased by filling the gap of 8 with HfSi 1.0 which is easily deformed.
When HfSix, x <0.82, there is little HfSi 1.0 to fill the gap, so the density does not increase even with hot pressing.
When HfSix, x> 0.98, if there is a portion of HfSi 2.0 locally, the liquid phase appearance temperature of HfSi 2.0 becomes 1543 (± 8) ° C. It will burn into the press die. In order to avoid this, it is conceivable to lower the hot press temperature to less than 1543 (± 8) ° C. However, in that case, the density does not increase sufficiently.
Thus, by avoiding the intermetallic compound (HfSi 0.8 , HfSi 1.0 ) having a large difference in melting temperature between the higher side and the lower side than the intermetallic compound composition or the composition in the immediate vicinity thereof, that is, HfSi. By using a powder having a composition of 0.82 to 0.98 , the density can be increased, and a target with fewer particles can be produced.
When synthesizing powder having a composition of HfSi 0.82-0.98 , for example, HfH 2 powder (100 mesh under) and Si powder (100 mesh under) are mixed in a ratio of hafnium to silicon of 1: 0.82. The mixture is prepared and mixed to a molar ratio of 1: 0.98, and then heated to about 800 ° C. (600 ° C. to 800 ° C.) for synthesis. In this case, powder synthesized in advance may be added.
Since Hf powder has a strong oxidizing power and causes a problem of ignition when pulverized, it is not preferable to use Hf powder alone. Because of this, hafnium hydride can be used to prevent ignition.
Then, this hafnium hydride powder and silicon powder are mixed and heated in vacuum to synthesize hafnium silicide. Dehydrogenation occurs from about 600 ° C. When silicidation is performed, the oxygen content of the synthetic silicide powder lump can be adjusted by adjusting the oxygen content of the silicon powder.
The hafnium silicide alloy lump is pulverized by a ball mill or the like in the atmosphere or an atmosphere to which pure water is added. Thereby, a sintered powder for hafnium silicide having a total oxygen content of 500 to 10000 ppm is obtained.
Since silicidation is performed at a low temperature as described above, it has a great feature that can suppress the growth of crystal grains. During heat synthesis, dehydrogenation and silicidation are performed at a low temperature to suppress grain growth, and the primary particle of the fired powder remains fine and can be densified when molded.
When the calcined powder becomes coarse, fine pulverization before sintering is difficult, which causes residual coarse grains and a decrease in density. In this manner, since the growth of crystal grains can be suppressed because the firing is performed at a low temperature, the average crystal grain size of the target can be set to 5 to 200 μm. And when densifying, densification can be achieved.
Targets with an average crystal grain size of less than 5 μm are difficult to reduce the oxygen content to 10000 ppm or less, and may ignite during the manufacturing process. If the target exceeds 200 μm, the number of particles increases and the product yield increases. Therefore, the average crystal grain size is desirably 5 to 200 μm as described above.
High density during sintering by synthesizing a powder having the composition of HfSi 0.82-0.98 and hot pressing or hot isostatic pressing (HIP) at 170 ° C. to 2120 ° C. It became possible.
The temperature of the above hot press or hot isostatic press (HIP) is a temperature just below the liquid phase generation of the synthetic powder, and sintering in this temperature range is important. As a result, a hafnium silicide target having a relative density of 95% or higher can be obtained.
The hafnium silicide target of the present invention having a high density has an effect of remarkably preventing the generation of particles due to pores during sputtering.

次に、実施例について説明する。なお、本実施例は発明の一例を示すためのものであり、本発明はこれらの実施例に制限されるものではない。すなわち、本発明の技術思想に含まれる他の態様及び変形を含むものである。  Next, examples will be described. In addition, a present Example is for showing an example of invention, This invention is not restrict | limited to these Examples. In other words, other aspects and modifications included in the technical idea of the present invention are included.

100メッシュアンダーのHfH粉と100メッシュアンダーのSi粉とを混合し、真空中、800°Cで加熱することにより、脱水素反応とシリサイド合成反応を行い、HfSi0.95の合成塊を得た。この合成塊の酸素量を分析したところ300ppmであった。
この合成塊を大気中でボールミル粉砕後、ボールと粉砕粉を分離し、温度20°C、湿度70%の雰囲気に24時間おいた。その酸素量を測定したところ550ppmであった。
このシリサイド粉末を用いて、2000°C、300kgf/cm×2時間の条件でホットプレス法により密度99.9%の焼結体を得た。これをさらに、機械加工によりφ300mm×6.35mmtのターゲットを作製した。これによって、ポアが殆どない組織が得られた。
このようにして作製したターゲットを用いてスパッタリングを行い、8インチ型ウエハー上のパーティクル数を測定したところ、0.2μm以上の寸法のパーティクル数が合計5個/8インチウエハであり、パーティクル発生が著しく低減した。以上により、スパッタ時のパーティクル数の少ないハフニウムシリサイドターゲットが得られ、さらに上記ターゲットの製造工程中に発火又は爆発等の発生がなく、安全に製造することができた。
A 100-mesh under HfH 2 powder and a 100-mesh under-Si powder are mixed and heated in vacuum at 800 ° C. to perform a dehydrogenation reaction and a silicide synthesis reaction to obtain a synthetic mass of HfSi 0.95. It was. When the oxygen content of this synthetic lump was analyzed, it was 300 ppm.
This synthetic lump was pulverized in a ball mill in the air, and then the ball and pulverized powder were separated and placed in an atmosphere at a temperature of 20 ° C. and a humidity of 70% for 24 hours. The amount of oxygen measured was 550 ppm.
Using this silicide powder, a sintered body having a density of 99.9% was obtained by hot pressing under the conditions of 2000 ° C. and 300 kgf / cm 2 × 2 hours. This was further machined to produce a target of φ300 mm × 6.35 mmt. As a result, a tissue with almost no pores was obtained.
Sputtering was performed using the target thus prepared, and the number of particles on an 8-inch wafer was measured. As a result, the number of particles having a size of 0.2 μm or more was a total of 5/8 inch wafers, and the generation of particles occurred. Remarkably reduced. As described above, a hafnium silicide target having a small number of particles during sputtering was obtained, and further, there was no occurrence of ignition or explosion during the production process of the target, and it was possible to produce it safely.

100メッシュアンダーのHfH粉と100メッシュアンダーのSi粉とを混合し、真空中、800°Cまで加熱することにより、脱水素反応とシリサイド合成反応を行い、HfSi0.95の合成粉を得た。この合成塊の酸素量を分析したところ300ppmであった。
この合成塊を大気中でHfSi粉重量の0.1%の純水を加え、ボールミル粉砕後、ボールと粉砕粉を分離し、その酸素量を測定したところ2100ppmであった。
このシリサイド粉末を用いて、2000°C、300kgf/cm×2時間の条件でホットプレス法により密度99.8%の焼結体を得た。機械加工によりφ300mm×6.35mmtのターゲットを作製した。
このようにして作製したハフニウムシリサイドターゲットを用いてスパッタリングを行い、8インチ型ウエハー上のパーティクル数を測定したところ、0.2μm以上の寸法のパーティクル数が合計5個/8インチウエハであり、パーティクル発生が著しく低減した。
以上により、スパッタ時のパーティクル数の少ないハフニウムシリサイドターゲットが得られ、さらに上記ターゲットの製造工程中に発火又は爆発等の発生がなく、安全に製造することができた。
A 100-mesh-under HfH 2 powder and a 100-mesh-under Si powder are mixed and heated to 800 ° C. in vacuum to perform a dehydrogenation reaction and a silicide synthesis reaction to obtain a synthetic powder of HfSi 0.95. It was. When the oxygen content of this synthetic lump was analyzed, it was 300 ppm.
This synthetic lump was added with 0.1% pure water of HfSi powder weight in the atmosphere, pulverized with a ball mill, the ball and pulverized powder were separated, and the amount of oxygen measured was 2100 ppm.
Using this silicide powder, a sintered body having a density of 99.8% was obtained by hot pressing under the conditions of 2000 ° C. and 300 kgf / cm 2 × 2 hours. A target of φ300 mm × 6.35 mmt was produced by machining.
Sputtering was performed using the thus prepared hafnium silicide target, and the number of particles on an 8-inch wafer was measured. As a result, the number of particles having a size of 0.2 μm or more was a total of 5/8 inch wafers. The occurrence was significantly reduced.
As described above, a hafnium silicide target having a small number of particles during sputtering was obtained, and further, there was no occurrence of ignition or explosion during the production process of the target, and it was possible to produce it safely.

100メッシュアンダーのHfH粉と100メッシュアンダーのSi粉とを混合し、真空中、800°Cまで加熱することにより、脱水素反応とシリサイド合成反応を行い、HfSi0.95の合成粉を得た。この合成塊の酸素量を分析したところ300ppmであった。
この合成塊を大気中でHfSi粉重量の1%の純水を加え、ボールミル粉砕後、ボールと粉砕粉を分離し、その酸素量を測定したところ2000ppmであった。
このシリサイド粉末を用いて、2000°C、300kgf/cm×2時間の条件でホットプレス法により密度99.8%の焼結体を得た。
次に、これを機械加工によりφ300mm×6.35mmtのターゲットを作製した。このようにして作製したハフニウムシリサイドターゲットを用いてスパッタリングを行い、8インチ型ウエハー上のパーティクル数を測定したところ、0.2μm以上の寸法のパーティクル数が合計10個/8インチウエハであり、パーティクル発生が著しく低減した。
以上により、スパッタ時のパーティクル数が少ないハフニウムシリサイドターゲットが得られ、さらに上記ターゲットの製造工程中に発火又は爆発等の発生がなく、安全に製造することができた。
(比較例1)
100メッシュアンダーのHfH粉と100メッシュアンダーのSi粉とを混合し、真空中、800°Cで加熱することにより、脱水素反応とシリサイド合成反応を行い、HfSi0.95の合成塊を得た。この合成塊の酸素量を分析したところ300ppmであった。
この合成塊をArで置換したボールミル中で粉砕後、ボールと粉砕粉を分離したが、分離中に粉砕粉が発火した。
(比較例2)
100メッシュアンダーのHfH粉と100メッシュアンダーのSi粉とを混合し、真空中、800°Cで加熱することにより、脱水素反応とシリサイド合成反応を行い、HfSi0.95の合成塊を得た。この合成塊の酸素量を分析したところ300ppmであった。
この合成塊を大気中でボールミル粉砕後、ボールと粉砕粉を分離し酸素量を測定したところ450ppmであった。この粉を50メッシュの篩で篩別中、篩下のHfSi粉が赤熱した。
(比較例3)
100メッシュアンダーのHfH粉と100メッシュアンダーのSi粉とを混合し、真空中、800°Cで加熱することにより、脱水素反応とシリサイド合成反応を行い、HfSi0.95の合成塊を得た。この合成塊の酸素量を分析したところ300ppmであった。
この合成塊を大気中でHfSi粉重量の1%の純水を加え、ボールミル粉砕後、ボールと粉砕粉を分離し、温度50°C、湿度80%の雰囲気に24時間置いた後、その酸素量を測定したところ11,000ppmであった。
このシリサイド粉末を用いて、2000°C、300kgf/cm×2時間の条件でホットプレス法により密度99.3%の焼結体を得た。
次に、これを機械加工によりφ300mm×6.35mmtのターゲットを作製した。このようにして作製したハフニウムシリサイドターゲットを用いてスパッタリングを行い、8インチ型ウエハー上のパーティクル数を測定したところ、0.2μm以上の寸法のパーティクル数が合計150個/8インチウエハであり、パーティクル発生が著しく増加した。しかし、上記ターゲットの製造工程中に発火又は爆発等の発生がなかった。
(比較例4)
100メッシュアンダーのHfH粉と100メッシュアンダーのSi粉とを混合し、真空中、800°Cで加熱することにより、脱水素反応とシリサイド合成反応を行い、HfSi0.95の合成塊を得た。この合成塊の酸素量を分析したところ300ppmであった。
この合成塊を大気中でHfSi粉重量の1%の純水を加え、ボールミル粉砕後、ボールと粉砕粉を分離し、温度100°C、湿度90%の雰囲気に24時間置いた後、その酸素量を測定したところ17,000ppmであった。
このシリサイド粉末を用いて、2000°C、300kgf/cm×2時間の条件でホットプレス法により密度98.7%の焼結体を得た。
次に、これを機械加工によりφ300mm×6.35mmtのターゲットを作製した。このようにして作製したハフニウムシリサイドターゲットを用いてスパッタリングを行い、8インチ型ウエハー上のパーティクル数を測定したところ、0.2μm以上の寸法のパーティクル数が合計360個/8インチウエハであり、パーティクル発生が著しく増加した。しかし、上記ターゲットの製造工程中に発火又は爆発等の発生がなかった。
A 100-mesh-under HfH 2 powder and a 100-mesh-under Si powder are mixed and heated to 800 ° C. in vacuum to perform a dehydrogenation reaction and a silicide synthesis reaction to obtain a synthetic powder of HfSi 0.95. It was. When the oxygen content of this synthetic lump was analyzed, it was 300 ppm.
The synthetic mass was added with 1% pure water of HfSi powder weight in the atmosphere, and after ball milling, the ball and ground powder were separated, and the oxygen content was measured and found to be 2000 ppm.
Using this silicide powder, a sintered body having a density of 99.8% was obtained by hot pressing under the conditions of 2000 ° C. and 300 kgf / cm 2 × 2 hours.
Next, a target of φ300 mm × 6.35 mmt was produced by machining this. Sputtering was performed using the thus prepared hafnium silicide target, and the number of particles on an 8-inch wafer was measured. As a result, the number of particles having a size of 0.2 μm or more was a total of 10/8 inch wafers. The occurrence was significantly reduced.
As described above, a hafnium silicide target having a small number of particles at the time of sputtering was obtained, and further, there was no occurrence of ignition or explosion during the manufacturing process of the target, and it was possible to manufacture safely.
(Comparative Example 1)
A 100-mesh under HfH 2 powder and a 100-mesh under-Si powder are mixed and heated in vacuum at 800 ° C. to perform a dehydrogenation reaction and a silicide synthesis reaction to obtain a synthetic mass of HfSi 0.95. It was. When the oxygen content of this synthetic lump was analyzed, it was 300 ppm.
The synthetic mass was pulverized in a ball mill substituted with Ar, and then the ball and the pulverized powder were separated. The pulverized powder ignited during the separation.
(Comparative Example 2)
A 100-mesh under HfH 2 powder and a 100-mesh under-Si powder are mixed and heated in vacuum at 800 ° C. to perform a dehydrogenation reaction and a silicide synthesis reaction to obtain a synthetic mass of HfSi 0.95. It was. When the oxygen content of this synthetic lump was analyzed, it was 300 ppm.
This synthetic lump was ball milled in the air, the ball and ground powder were separated, and the oxygen content was measured and found to be 450 ppm. During sieving of this powder with a 50-mesh sieve, the HfSi powder under the sieve was red hot.
(Comparative Example 3)
A 100-mesh under HfH 2 powder and a 100-mesh under-Si powder are mixed and heated in vacuum at 800 ° C. to perform a dehydrogenation reaction and a silicide synthesis reaction to obtain a synthetic mass of HfSi 0.95. It was. When the oxygen content of this synthetic lump was analyzed, it was 300 ppm.
After adding 1% pure water of HfSi powder weight to the synthetic mass in the atmosphere and ball milling, the ball and the ground powder are separated and placed in an atmosphere at a temperature of 50 ° C. and a humidity of 80% for 24 hours. When the amount was measured, it was 11,000 ppm.
Using this silicide powder, a sintered body having a density of 99.3% was obtained by hot pressing under the conditions of 2000 ° C. and 300 kgf / cm 2 × 2 hours.
Next, a target of φ300 mm × 6.35 mmt was produced by machining this. Sputtering was performed using the thus prepared hafnium silicide target, and the number of particles on an 8-inch wafer was measured. As a result, the total number of particles having a size of 0.2 μm or more was 150/8 inch wafers. The occurrence has increased significantly. However, there was no occurrence of ignition or explosion during the manufacturing process of the target.
(Comparative Example 4)
A 100-mesh under HfH 2 powder and a 100-mesh under-Si powder are mixed and heated in vacuum at 800 ° C. to perform a dehydrogenation reaction and a silicide synthesis reaction to obtain a synthetic mass of HfSi 0.95. It was. When the oxygen content of this synthetic lump was analyzed, it was 300 ppm.
This synthetic mass is added with 1% pure water of HfSi powder weight in the air, pulverized with a ball mill, separated from the ball and pulverized powder, placed in an atmosphere of 100 ° C. and 90% humidity for 24 hours, and then the oxygen When the amount was measured, it was 17,000 ppm.
Using this silicide powder, a sintered body having a density of 98.7% was obtained by hot pressing under the conditions of 2000 ° C. and 300 kgf / cm 2 × 2 hours.
Next, a target of φ300 mm × 6.35 mmt was produced by machining this. Sputtering was performed using the hafnium silicide target thus prepared, and the number of particles on an 8-inch wafer was measured. As a result, the total number of particles having a size of 0.2 μm or more was 360/8 inch wafers. The occurrence has increased significantly. However, there was no occurrence of ignition or explosion during the manufacturing process of the target.

100メッシュアンダーのHfH粉と100メッシュアンダーのSi粉とを混合し、真空中、800°Cで加熱することにより、脱水素反応とシリサイド合成反応を行い、HfSi0.83の合成塊を得た。この合成塊の酸素量を分析したところ300ppmであった。
この合成塊を大気中でHfSi粉重量の0.1%の純水を加え、ボールミル粉砕後、ボールと粉砕粉を分離し、その酸素量を測定したところ2500ppmであった。
このシリサイド粉末を用いて、2000°C、300kgf/cm×2時間の条件でホットプレス法により密度98.4%の焼結体を得た。機械加工によりφ300mm×6.35mmtのターゲットを作製した。
このようにして作製したハフニウムシリサイドターゲットを用いてスパッタリングを行い、8インチ型ウエハー上のパーティクル数を測定したところ、0.2μm以上の寸法のパーティクル数が合計20個/8インチウエハであり、パーティクル発生が著しく低減した。
以上により、スパッタ時のパーティクル数の少ないハフニウムシリサイドターゲットが得られ、さらに上記ターゲットの製造工程中に発火又は爆発等の発生がなく、安全に製造することができた。
A 100-mesh under HfH 2 powder and a 100-mesh under Si powder are mixed and heated in vacuum at 800 ° C. to perform a dehydrogenation reaction and a silicide synthesis reaction to obtain a synthetic mass of HfSi 0.83. It was. When the oxygen content of this synthetic lump was analyzed, it was 300 ppm.
This synthetic lump was added with 0.1% pure water of HfSi powder weight in the atmosphere, pulverized with a ball mill, the ball and pulverized powder were separated, and the amount of oxygen measured was 2500 ppm.
Using this silicide powder, a sintered body having a density of 98.4% was obtained by hot pressing under the conditions of 2000 ° C. and 300 kgf / cm 2 × 2 hours. A target of φ300 mm × 6.35 mmt was produced by machining.
Sputtering was performed using the hafnium silicide target thus prepared, and the number of particles on an 8-inch wafer was measured. As a result, the number of particles having a size of 0.2 μm or more was a total of 20/8 inch wafers. The occurrence was significantly reduced.
As described above, a hafnium silicide target having a small number of particles during sputtering was obtained, and further, there was no occurrence of ignition or explosion during the production process of the target, and it was possible to produce it safely.

100メッシュアンダーのHfH粉と100メッシュアンダーのSi粉とを混合し、真空中、800°Cで加熱することにより、脱水素反応とシリサイド合成反応を行い、HfSi0.98の合成塊を得た。この合成塊の酸素量を分析したところ300ppmであった。
この合成塊を大気中でHfSi粉重量の0.1%の純水を加え、ボールミル粉砕後、ボールと粉砕粉を分離し、その酸素量を測定したところ2000ppmであった。
このシリサイド粉末を用いて、2000°C、300kgf/cm×2時間の条件でホットプレス法により密度99.7%の焼結体を得た。機械加工によりφ300mm×6.35mmtのターゲットを作製した。
このようにして作製したハフニウムシリサイドターゲットを用いてスパッタリングを行い、8インチ型ウエハー上のパーティクル数を測定したところ、0.2μm以上の寸法のパーティクル数が合計7個/8インチウエハであり、パーティクル発生が著しく低減した。
以上により、スパッタ時のパーティクル数の少ないハフニウムシリサイドターゲットが得られ、さらに上記ターゲットの製造工程中に発火又は爆発等の発生がなく、安全に製造することができた。
(比較例5)
100メッシュアンダーのHfH粉と100メッシュアンダーのSi粉とを混合し、真空中、800°Cで加熱することにより、脱水素反応とシリサイド合成反応を行い、HfSi0.81の合成塊を得た。この合成塊の酸素量を分析したところ300ppmであった。
この合成塊を大気中でHfSi粉重量の0.1%の純水を加え、ボールミル粉砕後、ボールと粉砕粉を分離し、その酸素量を測定したところ2000ppmであった。
このシリサイド粉末を用いて、2000°C、300kgf/cm×2時間の条件でホットプレス法により密度94.5%の焼結体を得た。機械加工によりφ300mm×6.35mmtのターゲットを作製した。
このようにして作製したハフニウムシリサイドターゲットを用いてスパッタリングを行い、8インチ型ウエハー上のパーティクル数を測定したところ、0.2μm以上の寸法のパーティクル数が合計120個/8インチウエハであり、パーティクルが著しく増加した。
しかし、上記ターゲットの製造工程中に発火又は爆発等の発生がなかった。
(比較例6)
100メッシュアンダーのHfH粉と100メッシュアンダーのSi粉とを混合し、真空中、800°Cで加熱することにより、脱水素反応とシリサイド合成反応を行い、HfSi0.99の合成塊を得た。この合成塊の酸素量を分析したところ300ppmであった。
この合成塊を大気中でHfSi粉重量の0.1%の純水を加え、ボールミル粉砕後、ボールと粉砕粉を分離し、その酸素量を測定したところ1800ppmであった。
このシリサイド粉末を用いて、2000°C、300kgf/cm×2時間の条件でホットプレス法により密度96.3%の焼結体を得た。機械加工によりφ300mm×6.35mmtのターゲットを作製しようとした。
しかし、ダイスに焼き付き、ダイスから取り出す際に割れてしまったためにターゲットに加工できなかった。
(比較例7)
100メッシュアンダーのHfH粉と100メッシュアンダーのSi粉とを混合し、真空中、800°Cで加熱することにより、脱水素反応とシリサイド合成反応を行い、HfSi0.99の合成塊を得た。この合成塊の酸素量を分析したところ300ppmであった。
この合成塊を大気中でHfSi粉重量の0.1%の純水を加え、ボールミル粉砕後、ボールと粉砕粉を分離し、その酸素量を測定したところ2600ppmであった。
このシリサイド粉末を用いて、1500°C、300kgf/cm×2時間の条件でホットプレス法により密度85.9%の焼結体を得た。機械加工によりφ300mm×6.35mmtのターゲットを作製した。
このようにして作製したハフニウムシリサイドターゲットを用いてスパッタリングを行い、8インチ型ウエハー上のパーティクル数を測定したところ、0.2μm以上の寸法のパーティクル数が合計350個/8インチウエハであり、パーティクルが著しく増加した。
しかし、上記ターゲットの製造工程中に発火又は爆発等の発生がなかった。
以上の実施例及び比較例の結果を表1に示す。表1に示すように、実施例1〜3のターゲットの相対密度はいずれも95%以上である。また、パーティクル数は20ケ以下であった。そして、1700°C〜2120°Cでの最適なホットプレス条件下で、同様に相対密度の向上を達成することができた。
このように、Hf:Siの比が1:0.82〜0.98のハフニウムシリサイドターゲットを上記の条件により焼結体の密度を向上させ、かつ安定して製造することができるということが確認できた。
これに対し、比較例1及び比較例2では、製造工程中にシリサイドハフニウム焼結粉が発火又は赤熱し、ターゲット製造が困難であった。これは酸素含有量が500ppm未満であることが原因である。
逆に酸素量が多すぎ、10000ppmを超える場合には、比較例3、4に示すように、パーティクルの発生量が多くなり、ターゲットの品質が低下した。これは、ハフニウムシリサイドターゲットターゲット中にHfOあるいはHfSiOの絶縁物が形成され、これがスパッタリングの際に露出し、ここを起点としてアーキングを発生しパーティクルを増加させたものと考えられる。
比較例5はSiのモル比が本発明に比べて少ない(x=0.81)ために、焼結が十分でなく相対密度が95%未満となり、パーティクル数も増加した。比較例6はSiのモル比が本発明に比べて多すぎる(x=0.99)ために、焼き付きを起こし、ターゲットが割れてしまい、ターゲット製造ができなかった。
このため、焼結温度を下げた比較例7では、逆に焼結密度が上がらず、パーティクルの発生が増加した。
以上から、本発明の実施例の優位性は明らかであり、優れた特性を有することが分かる。

Figure 2004016825
A 100-mesh under HfH 2 powder and a 100-mesh under-Si powder are mixed and heated in vacuum at 800 ° C. to perform a dehydrogenation reaction and a silicide synthesis reaction to obtain a synthetic mass of HfSi 0.98. It was. When the oxygen content of this synthetic lump was analyzed, it was 300 ppm.
This synthetic lump was added with 0.1% pure water of HfSi powder weight in the atmosphere, pulverized with a ball mill, the ball and pulverized powder were separated, and the amount of oxygen measured was 2000 ppm.
Using this silicide powder, a sintered body having a density of 99.7% was obtained by hot pressing under the conditions of 2000 ° C. and 300 kgf / cm 2 × 2 hours. A target of φ300 mm × 6.35 mmt was produced by machining.
Sputtering was performed using the thus prepared hafnium silicide target, and the number of particles on an 8-inch wafer was measured. As a result, the total number of particles having a size of 0.2 μm or more was 7/8 inch wafer. The occurrence was significantly reduced.
As described above, a hafnium silicide target having a small number of particles during sputtering was obtained, and further, there was no occurrence of ignition or explosion during the production process of the target, and it was possible to produce it safely.
(Comparative Example 5)
A 100-mesh under HfH 2 powder and a 100-mesh under Si powder are mixed and heated in vacuum at 800 ° C. to perform a dehydrogenation reaction and a silicide synthesis reaction to obtain a synthetic mass of HfSi 0.81. It was. When the oxygen content of this synthetic lump was analyzed, it was 300 ppm.
This synthetic lump was added with 0.1% pure water of HfSi powder weight in the atmosphere, pulverized with a ball mill, the ball and pulverized powder were separated, and the amount of oxygen measured was 2000 ppm.
Using this silicide powder, a sintered body having a density of 94.5% was obtained by hot pressing under the conditions of 2000 ° C. and 300 kgf / cm 2 × 2 hours. A target of φ300 mm × 6.35 mmt was produced by machining.
Sputtering was performed using the thus prepared hafnium silicide target, and the number of particles on an 8-inch wafer was measured. As a result, the total number of particles having a size of 0.2 μm or more was 120/8 inch wafers. Increased significantly.
However, there was no occurrence of ignition or explosion during the manufacturing process of the target.
(Comparative Example 6)
A 100-mesh under HfH 2 powder and a 100-mesh under Si powder are mixed and heated in vacuum at 800 ° C. to perform a dehydrogenation reaction and a silicide synthesis reaction to obtain a synthetic mass of HfSi 0.99. It was. When the oxygen content of this synthetic lump was analyzed, it was 300 ppm.
The synthetic mass was added with 0.1% pure water of HfSi powder in the atmosphere, pulverized with a ball mill, the ball and pulverized powder were separated, and the amount of oxygen measured was 1800 ppm.
Using this silicide powder, a sintered body having a density of 96.3% was obtained by hot pressing under the conditions of 2000 ° C. and 300 kgf / cm 2 × 2 hours. An attempt was made to produce a target of φ300 mm × 6.35 mmt by machining.
However, it could not be processed into a target because it burned into the die and cracked when taken out from the die.
(Comparative Example 7)
A 100-mesh under HfH 2 powder and a 100-mesh under Si powder are mixed and heated in vacuum at 800 ° C. to perform a dehydrogenation reaction and a silicide synthesis reaction to obtain a synthetic mass of HfSi 0.99. It was. When the oxygen content of this synthetic lump was analyzed, it was 300 ppm.
This synthetic lump was added with 0.1% pure water of HfSi powder weight in the atmosphere, pulverized with a ball mill, the ball and pulverized powder were separated, and the amount of oxygen measured was 2600 ppm.
Using this silicide powder, a sintered body having a density of 85.9% was obtained by hot pressing under conditions of 1500 ° C. and 300 kgf / cm 2 × 2 hours. A target of φ300 mm × 6.35 mmt was produced by machining.
Sputtering was performed using the thus prepared hafnium silicide target, and the number of particles on an 8-inch wafer was measured. As a result, the total number of particles having a size of 0.2 μm or more was 350/8 inch wafers. Increased significantly.
However, there was no occurrence of ignition or explosion during the manufacturing process of the target.
The results of the above examples and comparative examples are shown in Table 1. As shown in Table 1, the relative densities of the targets of Examples 1 to 3 are all 95% or more. The number of particles was 20 or less. And the improvement of the relative density was able to be achieved similarly under the optimal hot press conditions in 1700 degreeC-2120 degreeC.
Thus, it has been confirmed that a hafnium silicide target having a Hf: Si ratio of 1: 0.82 to 0.98 can be stably manufactured under the above-described conditions while improving the density of the sintered body. did it.
On the other hand, in Comparative Example 1 and Comparative Example 2, the silicide hafnium sintered powder ignited or red-hot during the manufacturing process, making it difficult to manufacture the target. This is because the oxygen content is less than 500 ppm.
On the other hand, when the amount of oxygen was too much and exceeded 10,000 ppm, the amount of particles generated increased as shown in Comparative Examples 3 and 4, and the quality of the target was lowered. This is presumably because an insulator of HfO or HfSiO was formed in the hafnium silicide target target, and this was exposed during sputtering, and arcing was generated from this point to increase particles.
In Comparative Example 5, since the Si molar ratio was smaller than that of the present invention (x = 0.81), the sintering was not sufficient, the relative density was less than 95%, and the number of particles increased. In Comparative Example 6, since the molar ratio of Si was too much as compared with the present invention (x = 0.99), seizure occurred, the target cracked, and the target could not be manufactured.
For this reason, in Comparative Example 7 in which the sintering temperature was lowered, on the contrary, the sintering density did not increase and the generation of particles increased.
From the above, it can be seen that the advantages of the embodiments of the present invention are clear and have excellent characteristics.
Figure 2004016825

発明の効果The invention's effect

本発明は、SiO膜に替わる特性を備えた高誘電体ゲート絶縁膜として使用することが可能であるHfO・SiO膜の形成に好適な、加工性、耐脆化性等に富むハフニウムシリサイドターゲットを得ることができる特徴を有している。
本ハフニウムシリサイドターゲットは相対密度95%以上と高密度であり、優れた強度をもつ。また、高密度化された本発明のシリサイドターゲットは、スパッタリング中にノジュールに起因するパーティクルの発生や脆性組織の破壊飛散に起因するパーティクルの発生を防止でき、ターゲットの加工や製造工程中に焼結粉の発火、赤熱、爆発等の危険、ターゲットの破壊がないという著しい効果を有する。
The present invention is suitable for the formation of HfO 2 · SiO 2 film can be used as a high dielectric gate insulating film having a characteristic alternative to the SiO 2 film, workability, hafnium rich in embrittlement resistance, etc. It has a feature that a silicide target can be obtained.
This hafnium silicide target has a high relative density of 95% or more and an excellent strength. Further, the silicide target of the present invention having a high density can prevent generation of particles due to nodules during sputtering and generation of particles due to fracture scattering of brittle structures, and sintering during target processing and manufacturing processes. It has a remarkable effect that there is no danger of powder ignition, red heat, explosion, etc. and target destruction.

Claims (7)

HfSi0.82−0.98からなり、酸素含有量が500〜10000ppmであることを特徴とするゲート酸化膜形成用ハフニウムシリサイドターゲット。A hafnium silicide target for forming a gate oxide film, comprising HfSi 0.82-0.98 and having an oxygen content of 500-10000 ppm. 相対密度が95%以上であることを特徴とする請求項1記載のゲート酸化膜形成用ハフニウムシリサイドターゲット。2. A hafnium silicide target for forming a gate oxide film according to claim 1, wherein the relative density is 95% or more. ジルコニウムの含有量が2.5wt%以下であることを特徴とする請求項1又は2記載のゲート酸化膜形成用ハフニウムシリサイドターゲット。The hafnium silicide target for forming a gate oxide film according to claim 1 or 2, wherein the zirconium content is 2.5 wt% or less. 不純物であるC:300ppm以下、Ti:100ppm以下、Mo:100ppm以下、W:10ppm以下、Nb:10ppm以下、Fe:10ppm以下、Ni:10ppm以下、Cr:10ppm以下、Na:0.1ppm以下、K:0.1ppm以下、U:0.01ppm以下、Th:0.01ppm以下であることを特徴とする請求項1〜3のそれぞれに記載のゲート酸化膜形成用ハフニウムシリサイドターゲット。Impurities C: 300 ppm or less, Ti: 100 ppm or less, Mo: 100 ppm or less, W: 10 ppm or less, Nb: 10 ppm or less, Fe: 10 ppm or less, Ni: 10 ppm or less, Cr: 10 ppm or less, Na: 0.1 ppm or less, The hafnium silicide target for forming a gate oxide film according to claim 1, wherein K: 0.1 ppm or less, U: 0.01 ppm or less, and Th: 0.01 ppm or less. 平均結晶粒径が5〜200μmであることを特徴とする請求項1〜4のそれぞれに記載のゲート酸化膜形成用ハフニウムシリサイドターゲット。The hafnium silicide target for forming a gate oxide film according to each of claims 1 to 4, wherein the average crystal grain size is 5 to 200 µm. HfSi0.82−0.98からなる組成の粉末を合成し、これを100メッシュ以下に粉砕したものを1700°C〜2120°C、150〜2000kgf/cmでホットプレス又は熱間静水圧プレス(HIP)することを特徴とするゲート酸化膜形成用ハフニウムシリサイドターゲットの製造方法。A powder having a composition of HfSi 0.82-0.98 was synthesized, and pulverized to 100 mesh or less, hot pressed or hot isostatic pressed at 1700 ° C to 2120 ° C and 150 to 2000 kgf / cm 2. (HIP) A method of manufacturing a hafnium silicide target for forming a gate oxide film. HfSi0.82−0.98からなる組成の粉末を合成し、これを100メッシュ以下に粉砕したものを1700°C〜2120°C、150〜2000kgf/cmでホットプレス又は熱間静水圧プレス(HIP)することを特徴とする請求項1−6記載のゲート酸化膜形成用ハフニウムシリサイドターゲットの製造方法。A powder having a composition of HfSi 0.82-0.98 was synthesized, and pulverized to 100 mesh or less, hot pressed or hot isostatic pressed at 1700 ° C to 2120 ° C and 150 to 2000 kgf / cm 2. The method of manufacturing a hafnium silicide target for forming a gate oxide film according to claim 1, wherein the method is (HIP).
JP2004528832A 2002-08-06 2003-07-03 Hafnium silicide target Expired - Fee Related JP4160557B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002228143 2002-08-06
JP2002228143 2002-08-06
PCT/JP2003/008461 WO2004016825A1 (en) 2002-08-06 2003-07-03 Hafnium silicide target and method for preparation thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008155302A Division JP4777390B2 (en) 2002-08-06 2008-06-13 Method for manufacturing hafnium silicide target

Publications (2)

Publication Number Publication Date
JPWO2004016825A1 true JPWO2004016825A1 (en) 2005-12-02
JP4160557B2 JP4160557B2 (en) 2008-10-01

Family

ID=31884315

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2004528832A Expired - Fee Related JP4160557B2 (en) 2002-08-06 2003-07-03 Hafnium silicide target
JP2008155302A Expired - Fee Related JP4777390B2 (en) 2002-08-06 2008-06-13 Method for manufacturing hafnium silicide target

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2008155302A Expired - Fee Related JP4777390B2 (en) 2002-08-06 2008-06-13 Method for manufacturing hafnium silicide target

Country Status (8)

Country Link
US (1) US6986834B2 (en)
EP (1) EP1528120B1 (en)
JP (2) JP4160557B2 (en)
KR (1) KR100611904B1 (en)
CN (1) CN100335676C (en)
DE (1) DE60336726D1 (en)
TW (1) TWI255297B (en)
WO (1) WO2004016825A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3995082B2 (en) * 2001-07-18 2007-10-24 日鉱金属株式会社 Hafnium silicide target for gate oxide film formation and method of manufacturing the same
JP4388263B2 (en) * 2002-09-11 2009-12-24 日鉱金属株式会社 Iron silicide sputtering target and manufacturing method thereof
JP4526758B2 (en) * 2002-09-11 2010-08-18 日鉱金属株式会社 Iron silicide powder and method for producing the same
JP4203070B2 (en) * 2003-03-07 2008-12-24 日鉱金属株式会社 Hafnium alloy target and manufacturing method thereof
CN100376696C (en) * 2003-07-25 2008-03-26 日矿金属株式会社 Highly pure hafnium material, target and thin film comprising the same and method for producing highly pure hafnium
WO2005049882A1 (en) * 2003-11-19 2005-06-02 Nikko Materials Co., Ltd. High purity hafnium, target and thin film comprising said high purity hafnium, and method for producing high purity hafnium
KR100623177B1 (en) * 2005-01-25 2006-09-13 삼성전자주식회사 Dielectric structure having a high dielectric constant, method of forming the dielectric structure, non-volatile semiconductor memory device including the dielectric structure, and method of manufacturing the non-volatile semiconductor memory device
DE602006019454D1 (en) * 2005-07-07 2011-02-17 Nippon Mining Co HIGH-PURITY HAFNIUM, TARGET AND HIGH-PURITY HAFNIUM COMPREHENSIVE THIN FILM AND METHOD FOR PRODUCING HIGHLY CLEAN HAFNIUM
US7871942B2 (en) * 2008-03-27 2011-01-18 Applied Materials, Inc. Methods for manufacturing high dielectric constant film
JP2009167530A (en) * 2009-02-10 2009-07-30 Nippon Mining & Metals Co Ltd Nickel alloy sputtering target, and nickel silicide film
CN111777072B (en) * 2020-07-23 2022-05-20 辽宁中色新材科技有限公司 Production process of hafnium disilicide
CN112144024B (en) * 2020-09-14 2022-12-02 浙江最成半导体科技有限公司 Chromium silicide target material and preparation method thereof
CN116789451A (en) * 2023-06-06 2023-09-22 先导薄膜材料(广东)有限公司 Silicon-germanium-antimony-tellurium doped target material and preparation method thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4619697A (en) * 1984-08-30 1986-10-28 Mitsubishi Kinzoku Kabushiki Kaisha Sputtering target material and process for producing the same
JPS6272122A (en) * 1985-09-25 1987-04-02 Nec Corp High melting point metal silicide formation
US5209835A (en) * 1988-03-03 1993-05-11 Asahi Glass Company Ltd. Method for producing a specified zirconium-silicon amorphous oxide film composition by sputtering
EP0374931B1 (en) * 1988-12-21 1994-03-02 Kabushiki Kaisha Toshiba Sputtering target and method of manufacturing the same
US5294321A (en) * 1988-12-21 1994-03-15 Kabushiki Kaisha Toshiba Sputtering target
KR940008936B1 (en) 1990-02-15 1994-09-28 가부시끼가이샤 도시바 Highly purified metal material and sputtering target using the same
US5409517A (en) * 1990-05-15 1995-04-25 Kabushiki Kaisha Toshiba Sputtering target and method of manufacturing the same
JPH05230644A (en) * 1991-12-24 1993-09-07 Asahi Glass Co Ltd Ceramics rotary cathode target and its manufacture
JPH05214523A (en) * 1992-02-05 1993-08-24 Toshiba Corp Sputtering target and its manufacture
JP3792007B2 (en) * 1997-06-12 2006-06-28 株式会社日鉱マテリアルズ Manufacturing method of sputtering target
EP1028824B1 (en) * 1997-07-15 2002-10-09 Tosoh Smd, Inc. Refractory metal silicide alloy sputter targets, use and manufacture thereof
US6291283B1 (en) * 1998-11-09 2001-09-18 Texas Instruments Incorporated Method to form silicates as high dielectric constant materials
US6165413A (en) * 1999-07-08 2000-12-26 Praxair S.T. Technology, Inc. Method of making high density sputtering targets
JP4501250B2 (en) * 2000-06-19 2010-07-14 日鉱金属株式会社 Silicide target for gate oxide formation with excellent embrittlement resistance
JP4642813B2 (en) * 2000-06-19 2011-03-02 Jx日鉱日石金属株式会社 Silicide target for forming gate oxide film having excellent embrittlement resistance and method for manufacturing the same
JP4813425B2 (en) * 2000-06-19 2011-11-09 Jx日鉱日石金属株式会社 Method for manufacturing silicide target for forming gate oxide film having excellent embrittlement resistance
JP5036936B2 (en) * 2001-03-12 2012-09-26 Jx日鉱日石金属株式会社 Silicide target for forming gate oxide film and method for manufacturing the same
JP4596379B2 (en) * 2001-07-09 2010-12-08 Jx日鉱日石金属株式会社 Hafnium silicide target for gate oxide formation
JP3995082B2 (en) * 2001-07-18 2007-10-24 日鉱金属株式会社 Hafnium silicide target for gate oxide film formation and method of manufacturing the same
US6759005B2 (en) * 2002-07-23 2004-07-06 Heraeus, Inc. Fabrication of B/C/N/O/Si doped sputtering targets

Also Published As

Publication number Publication date
EP1528120B1 (en) 2011-04-13
JP2008291366A (en) 2008-12-04
EP1528120A4 (en) 2008-04-02
KR20050029226A (en) 2005-03-24
WO2004016825A1 (en) 2004-02-26
US6986834B2 (en) 2006-01-17
DE60336726D1 (en) 2011-05-26
US20040195094A1 (en) 2004-10-07
TWI255297B (en) 2006-05-21
CN1568378A (en) 2005-01-19
EP1528120A1 (en) 2005-05-04
KR100611904B1 (en) 2006-08-11
JP4160557B2 (en) 2008-10-01
TW200402477A (en) 2004-02-16
CN100335676C (en) 2007-09-05
JP4777390B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
JP4777390B2 (en) Method for manufacturing hafnium silicide target
US7674446B2 (en) Hafnium silicide target for forming gate oxide film, and method for preparation thereof
JP4596379B2 (en) Hafnium silicide target for gate oxide formation
JP2001098364A (en) Tungsten target for sputtering and its producing method
JP4501250B2 (en) Silicide target for gate oxide formation with excellent embrittlement resistance
JP2001295036A (en) Tungsten sputtering target and its manufacturing method
JPWO2014148424A1 (en) Ti-Al alloy sputtering target
JP5036936B2 (en) Silicide target for forming gate oxide film and method for manufacturing the same
JP4739310B2 (en) Method for manufacturing hafnium silicide target for forming gate oxide film
JPH0849068A (en) Tungsten silicide target material and its production
JP4813425B2 (en) Method for manufacturing silicide target for forming gate oxide film having excellent embrittlement resistance
JP4642813B2 (en) Silicide target for forming gate oxide film having excellent embrittlement resistance and method for manufacturing the same
JP2000064032A (en) Titanium silicide target and its production
JPH0770744A (en) Ti-w target material and production thereof
JPH01131073A (en) Target made of high-melting metal silicide and production thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080717

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4160557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees