JPWO2003031294A1 - Powder distribution device and shifter - Google Patents

Powder distribution device and shifter Download PDF

Info

Publication number
JPWO2003031294A1
JPWO2003031294A1 JP2003534287A JP2003534287A JPWO2003031294A1 JP WO2003031294 A1 JPWO2003031294 A1 JP WO2003031294A1 JP 2003534287 A JP2003534287 A JP 2003534287A JP 2003534287 A JP2003534287 A JP 2003534287A JP WO2003031294 A1 JPWO2003031294 A1 JP WO2003031294A1
Authority
JP
Japan
Prior art keywords
distribution
cylinder
granular material
powder
end portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003534287A
Other languages
Japanese (ja)
Other versions
JP4219272B2 (en
Inventor
田中 章裕
章裕 田中
土井 眞
眞 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshin Seifun Group Inc
Original Assignee
Nisshin Seifun Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Seifun Group Inc filed Critical Nisshin Seifun Group Inc
Publication of JPWO2003031294A1 publication Critical patent/JPWO2003031294A1/en
Application granted granted Critical
Publication of JP4219272B2 publication Critical patent/JP4219272B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/60Mixing solids with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/80Falling particle mixers, e.g. with repeated agitation along a vertical axis
    • B01F25/82Falling particle mixers, e.g. with repeated agitation along a vertical axis uniting flows of material taken from different parts of a receptacle or from a set of different receptacles

Abstract

この粉粒体分配装置14は、円盤状または円錐状の分配台18と、この分配台の上部に同軸状に配置され、分配台とともに粉粒体の貯留室20を形成する分配筒22と、その外径が分配筒の内径よりも小さく設計され、その下端部が分配筒内に位置するように分配筒と同軸状に配置され、粉粒体を貯留室内に導入する供給筒24と、貯留室から分配筒を通り抜けた粉粒体を分配台より外部へ個別に排出する複数の排出口32が形成され、分配台及び分配筒の外周を覆う外周壁26とを備える。シフター10は、粉粒体分配装置14を備える。その結果、分配装置及びシフターは、簡単な構造で、特に大質量速度で供給される粉粒体の質量速度が大幅に変動した場合であっても、粉粒体を高精度に等分配することができる。The powder distribution device 14 includes a disk-shaped or conical distribution table 18, a distribution cylinder 22 that is coaxially arranged on the upper part of the distribution table, and forms a storage chamber 20 for powder particles together with the distribution table, The outer cylinder is designed to be smaller than the inner diameter of the distribution cylinder, and is arranged coaxially with the distribution cylinder so that the lower end thereof is located in the distribution cylinder, and the supply cylinder 24 for introducing the powder into the storage chamber; A plurality of discharge ports 32 for individually discharging powder particles passing through the distribution cylinder from the chamber to the outside from the distribution base are formed, and an outer peripheral wall 26 covering the outer periphery of the distribution base and the distribution cylinder is provided. The shifter 10 includes a powder particle distribution device 14. As a result, the dispensing device and shifter have a simple structure, and evenly distribute the granular material with high accuracy even when the mass velocity of the granular material supplied at a large mass velocity varies greatly. Can do.

Description

技術分野
本発明は、粉粒体、例えば小麦粉等のような粉粒体を複数のグループに均等分配する粉粒体分配装置およびこれを用いたシフターに関するものである。
背景技術
粉粒体を多量に処理する場合、装置の一部に過重な負担がかかるのを防止するために、予め粉粒体を均等分配して次工程に供給する必要がある。例えば、篩分け処理では、多量の粉粒体を篩分けする場合、複数のセクションを有するシフター(篩機)が用いられる。従って、これら複数のセクションの一部にのみ過重な負担がかからないように、あらかじめ粉粒体分配装置により粉粒体が均等分配され、均等分配された粉粒体が各々のセクションに供給される。
このような目的で提案された従来の粉粒体分配装置としては、例えば、本出願人に係る特公平3−6092号公報に開示の粉粒体等分配装置や、特開平11−208856号公報に開示の粉粒体分配機等がある。
まず、特公平3−6092号公報に開示の粉粒体等分配装置は、上方に粉体供給口を有するとともに水平底を有する粉粒体中央集積室と、この中央集積室から外周方向に延出し次の処理工程に粉粒体を供給するためのそれぞれ粉粒体排出口を有する少なくとも4個のシュートと、中央集積室から各シュートへの水平な遷移区域のそれぞれ各シュートに対応する位置であって、これらの位置が中央集積室を中心とする正多角形のほぼ頂点または中心に対してほぼ均等かつ中心を通る少なくとも2本の対称軸に対してほぼ対称となるような位置に設けられ、中央集積室から各シュートに向けて等量の粉粒体を水平方向に分割分配するための水平方向の開口度が調整可能なゲートと、中央集積室−シュート組立体に揺動あるいは振動運動を与えるための運動付与手段とを備え、粉粒体供給口より中央集積室内に供給された粉粒体が運動付与手段により定レベルにならされて所定の等開口度に調整された各ゲートより各シュートに等量に水平方向に分割分配されるよう構成したものである。
しかし、同公報に開示の粉粒体等分配装置では、ゲートにより粉粒体の流量比を決定しているため、粉粒体の全質量速度が変動した場合に、その分配比が変動しやすいという問題があった。
また、特開平11−208856号公報に開示の粉粒体分配機は、環状の外周壁で囲まれた円錐形の上面を有する分配台と、分配台に振動を付与する振動発生体とを備え、外周壁には周方向に等間隔をおいて複数の排出口を設け、分配台の頂部と外周壁との間には、頂部を中心として径が異なる複数の環状せき板を立設すると共に各せき板の高さを外周壁側に行くに従い順次低くなるように形成することにより、分配台頂部を含む第1段目の貯溜槽から順次せき止め高さが低くなる環状の貯溜槽を形成し、最も外周側のせき板と外周壁の間には、周方向に等間隔をおいて排出口と同数の仕切り板を設け、第1段目の貯溜槽に連続的に供給される粉粒体を、振動によって均しながら順次外方側の貯溜槽にオーバーフローさせ、各排出口に均等分配するようにしたものである。
しかし、同公報に開示の粉粒体分配機では、複数の環状せき板が必要であり、分配台の構成が複雑になってコストが上昇するという問題があった。
また、同公報に開示の粉粒体分配機では、粉粒体の投入口と最も内周側のせき板との間に空間があるため、投入口から供給された粉粒体が第1段目の貯溜槽内に貯溜されず、第2段目以降の貯溜槽へ直接供給される場合があり、粉粒体の分配比のばらつきが大きいという問題があった。
発明の開示
本発明の目的は、前記従来技術に基づく問題点を解消し、より簡単な構造で、特に、大質量速度で供給される粉粒体の質量速度が大幅に変動した場合であっても、粉粒体を高精度に等分配することができる粉粒体分配装置およびシフターを提供することにある。
上記目的を達成するために、本発明は、円盤状または円錐状の分配台と、この分配台の上部に同軸状に配置され、前記分配台とともに粉粒体の貯留室を形成する分配筒と、その外径が前記分配筒の内径よりも小さく設定され、その下端部が前記分配筒内に位置するように前記分配筒と同軸状に配置され、前記粉粒体を前記貯留室内に導入する供給筒と、前記貯留室から前記分配筒を通り抜けた前記粉粒体を前記分配台より外部へ個別に排出する複数の排出口が形成され、前記分配台および前記分配筒の外周を覆う外周壁と、を備えることを特徴とする粉粒体分配装置を提供するものである。
ここで、前記分配筒の上端部に、周方向において複数の切り欠きが形成されたのが好ましく、また、複数の切り欠きの各々が、上方にいくに従って幅広に形成されるのが好ましい。
また、前記供給筒の下端部は、前記分配筒の上端部と前記複数の切り欠きの下端部との間の位置に配置されるものであるのが好ましい。
また、上記各粉粒体分配装置は、さらに、前記外周壁の上端部に設けられる、中心に円形開口部を持つ円板状の天井部を有し、前記供給筒は、前記外周壁の天井部に前記円形開口部を貫通するように取り付けられるのが好ましい。
また、上記各粉粒体分配装置は、さらに、前記供給筒の下端部を前記分配筒内に位置させ、しかも前記供給筒の下端部の高さを調整する高さ調整手段を備えるのが好ましい。
また、上記各粉粒体分配装置は、さらに、前記供給筒の下端部に取り付けられた複数の貫通孔を有する衝撃緩衝部材を備えるのが好ましい。
また、前記衝撃緩衝部材は、前記供給筒の下端部を覆うように取り付けられるのが好ましい。
また、前記衝撃緩衝部材は、網目状に形成された衝撃緩衝網を含むのが好ましい。
また、前記衝撃緩衝部材は、前記複数の貫通孔として、中心開口部、複数の円状貫通孔およびその中心から放射方向に傾斜する複数の傾斜貫通長孔を有する衝撃緩衝板を含むのが好ましい。
また、前記衝撃緩衝部材は、網目状に形成された衝撃緩衝網と、前記複数の貫通孔として、中心開口部、複数の円状貫通孔およびその中心から放射方向に傾斜する複数の傾斜貫通長孔を有する衝撃緩衝板とを含み、前記衝撃緩衝板は、前記衝撃緩衝網より下方に配置されるるのが好ましい。
また、前記衝撃緩衝板は、前記分配筒内に位置するのが好ましい。
また、前記分配筒の上端部に、周方向において複数の切り欠きが形成されている時、前記衝撃緩衝板は、前記分配筒の上端部と前記複数の切り欠きの下端部との間の位置に配置されるものであるのが好ましい。
また、上記各粉粒体分配装置は、さらに前記分配筒の下端部と前記分配台との間に、前記分配筒の下端部全周に亘って設けられたスリットを備えるのが好ましい。
また、前記分配筒の下端部と前記分配台との間の前記スリットの寸法は、4〜30mmであるのが好ましい。
また、上記の各粉粒体分配装置は、さらに、当該粉粒体分配装置を振動させる振動発生手段を備えるのが好ましい。
また、本発明は、複数のグループに分配された粉粒体を同時に篩分けするシフター本体と、このシフター本体を振動させる振動発生手段と、前記シフター本体の上面部に設置され、前記振動発生手段によって前記シフター本体が振動されると同時に振動され、前記粉粒体を前記複数のグループに分配して前記シフター本体に供給する請求項1〜20のいずれかに記載の粉粒体分配装置とを具備したことを特徴とするシフターを提供するものである。
なお、本発明でいう「振動」とは、垂直(鉛直)方向、水平方向の振動はもちろん、略円状を描く回転運動をも含むものである。
また、本発明において、分配筒は、堰板として機能するものをいう。
発明を実施するための最良の形態
本発明に係る粉粒体分配装置およびシフターを添付の図面に示す好適実施例に基づいて以下に詳細に説明する。
図1は、本発明のシフターの一実施例の側断面図である。また、図2は、図1に示すシフターで用いられている本発明の粉粒体分配装置の一実施例の上断面図である。なお、図1に示す粉粒体分配装置は、図2に示す粉粒体分配装置のA−A線における側断面図を示すものである。
これらの図に示すシフター10は、例えば小麦粉等のような粉粒体を均等に分配、本実施例の場合には粉粒体を3つのグループに均等分配し、これらの3つのグループに分配された粉粒体を同時に篩分けするもので、篩分けを行うシフター本体12と、このシフター本体を振動させる振動発生手段(図示省略)と、粉粒体を3つのグループに均等分配してシフター本体12に供給する粉粒体分配装置14とを備えている。
同図に示すシフター10において、まず、粉粒体分配装置14は、図示例の場合、振動発生手段によってシフター本体12が振動される時同時に振動され、粉粒体を3つのグループに分配してシフター本体12の各セクションの粉粒体の供給口に供給するもので、シフター本体12の上面部に設置台16を配置し、この設置台16の上に設置されている。なお、設置台16は、粉粒体分配装置14と分離型に構成しても一体型に構成してもよい。
粉粒体分配装置14は、基本的に、円錐状の分配台18と、この分配台18の中心を中心として、すなわち同軸状に分配台18の上部に配置され、分配台18と共に粉粒体の貯留室20を形成するとともに堰板として機能する中空円筒状の分配筒22と、分配台18の中心を中心として、すなわち同軸状に分配台18の上部に配置され、粉粒体を貯留室20内に導入するための中空円筒状の供給筒24と、分配台18、分配筒22および供給筒24の外周を覆う中空円筒状の外周壁26とを備えている。
ここで、分配台18は、図示例では円錐状のものであるが、円盤状のものでもよい。なお、円盤状の分配台よりも円錐状の分配台の方が、粉粒体が外周壁26側へ付勢され、速やかに排出されるため、好ましい形状と言える。
中空円筒状の外周壁26には、上部中央部に円形に開口した開口部を持つ天井部27aが取り付けられ、外周壁26および天井部27aは、有底円筒形のケーシング27を構成し、この有底円筒形のケーシング27内の底面上に円錐状の分配台18が同軸状に設置され、この分配台18の上方に中空円筒状の分配筒22が同軸状に配置されている。分配台18の上方には、粉粒体を貯留室20内に導入するための供給筒24が、分配筒22に同軸状に配置されるように、ケーシング27の天井部27aの円形開口部に挿入されて、好ましくは上下動可能に天井部27aに取り付けられている。
供給筒24の上端部は、ケーシング27の外部、すなわち外周壁26に取り付けられている天井部27aの上方に延在しており、振動による振れを吸収する可撓性の中空部材を介して、例えばホッパーやスクリューフィーダー等の粉粒体の排出口に接続される。これらのホッパーに貯留される粉粒体やスクリューフィーダーにより搬送される粉粒体が供給筒24を介して粉粒体分配装置14の貯留室20内へ導入される。なお、貯留室20は、粉粒体を一時的に貯留する空間であり、分配台18の上面をその底面とし、堰として機能する分配筒22の内壁をその内壁として構成される。
また、供給筒24の外径は、分配筒22の内径よりも小径であり、供給筒24の下端部は、分配台18よりも高く、なおかつ、分配筒22の上端部以下の位置(分配筒22の上端部の位置、またはそれよりも低い位置)に設定される。すなわち、供給筒24の下端部は、分配筒22内に配置されている。これにより、貯留室20内に落下した粉粒体は、供給筒24の下端部に接触されることになり、この状態で、粉粒体分配装置14を振動させれば、粉粒体を貯留室20内でより効果的に均すことができるようになる。つまり、大質量流量で粉粒体が偏心して落下してきてもその勢いで特定の方向に粉粒体が多く流れるという現象が抑制され、全周排出の均等性が維持される。このため、本発明の粉粒体分配装置14では、特開平11−208856号公報に開示の粉粒体分配機のような複数の環状せき板は不要である。
また、図示例の場合には、好ましい実施形態として供給筒24の下端部の高さを調整するための調整手段28を備えている。この調整手段28をケーシング27の天井部27aに設けることにより、粉粒体の種類や流量等に応じて供給筒24の下端部の高さを適宜調整し、粉粒体の分配精度を最適化することができるという利点がある。なお、もちろん、この調整手段28を設けることなく、供給筒24をケーシング27の天井部27aに取り付けて、供給筒24の下端部の高さを上記範囲内の所定位置に固定するようにしてもよい。
分配筒22の上端部は、波形に成形されており、複数の波形の切り欠きが均等に形成されているのが好ましい。ここで、供給筒24の下端部は、この分配筒22の上端部の波形の切り欠きの下端部より上方にあるのが好ましい、すなわち分配筒22の上端部(切り欠きの上端部)と切り欠きの下端部との間に位置させるのが好ましい。こうすることにより、分配筒22の上端部に形成された複数の波形の切り欠きから、貯留室に貯留された粉粒体を均等排出することができる。
また、図示例のように、分配筒22の下端部は、分配台18から所定間隔離されており、分配台18との間に分配筒22の下端部全周にわたるスリット30が設けられているのが好ましい。
なお、分配筒22の上端部の形状は、図示例の波形に限定されず、どのような形状でも良く、スリット状の切り欠きのない平坦なものであっても良いが、複数の切り欠きが形成されているのが好ましい。切り欠きとしては、例えば、図示例の波形切り欠きやV字型切り欠きのように、上方になるほど幅広の切り欠きが複数設けてあるのがより好ましい。このように、分配筒22の上端部に、上方になるほど幅広の切り欠きを複数設けることによって、大質量流量時に、供給筒24と分配筒22との間の粉面高さが上昇した場合であっても粉粒体流出のための実質的な開口面積が増大し、全周排出の均等性を確保したまま、全質量排出速度を増加させることができる。
また、分配台18と分配筒22との間のスリットの所定間隔は粉粒体の種類に応じて適宜決定すればよいが、通常、4〜30mm程度であるのが好ましい。このように、分配台18と分配筒22の下端部との間に全周に亘るスリットを設けることによって、粉粒体の分配時に、貯留室20の底部に粉粒体が留まるのを防止すると共に、大質量速度の粉粒体の供給終了後、速やかに装置より全量排出することができるという利点がある。
外周壁26の側面部には、均等分配される3つのグループに各々対応する3つの粉粒体の排出口32が設けられており、これらの排出口32には、それぞれ均等分配された後の粉粒体をシフター本体12の粉粒体の供給口へ搬送するための所定傾斜角を持つ中空のアーム34が接続されている。そして、これらのアーム34の開口部とシフター本体12の供給口との間は、可撓性の中空部材36により接続されている。
ここで、分配筒22の側面部の外壁と外周壁26の側面部の内壁との間には、図3に示すように、互いに隣接する排出口32の間に各々仕切り板38が設けられている。これらの仕切り板38により、分配筒22と外周壁26との間の空間は、3つの排出口32の各々に対応する3つの空間に分割される。なお、これらの3つの空間において、分配筒22の上端部の波形の形状は同一形状となるように形成されている。波形以外の形状に形成される場合も同様である。
また、分配筒22は、互いに隣接する仕切り板38の間に設けられた3つの固定部材40により、排出口32の位置を除く、外周壁26の側面部の内壁に固定されている。
また、外周壁26に取り付けられている天井部27a(ケーシング27の上面部)には、外周壁26および天井部27a(ケーシング27)によって覆われた粉粒体分配装置14の内部の様子を点検するために、3つの排出口32に各々対応して3つの透明な点検窓42が設けられている。
図示例のシフター10においては、シフター本体12は、本実施例の場合、例えば、目の粗さの違う複数の篩網を有する篩枠を積み重ねて構成される3つの篩分セクションを備えている。このシフター本体12は、振動発生手段により振動され、3つの篩分セクションにより、粉粒体分配装置14から供給される3つのグループの粉粒体を同時に篩分けする。シフター本体12から排出される粉粒体は、例えば袋詰等の次工程に供給される。
なお、シフター本体12の構成は何ら限定されず、従来公知の構成のシフター本体がいずれも適用可能である。
図示例のシフター10では、粉粒体が供給筒24を介して粉粒体分配装置14の貯留室20内へ導入される。粉粒体分配装置14は、振動発生手段によってシフター本体12が振動される時同時に振動され、この振動により、貯留室20に貯留された粉粒体は、分配筒22の上端部の波形の切り欠きおよび分配筒22と分配台18との間のスリット30から、仕切り板38によって区切られた3つの空間へほぼ均等にこぼれ落ちる。
なお、振動発生手段による振動は、大質量速度の粉粒体を効率良く分配するために、水平方向の回転振動であるのが好ましい。
仕切り板38によって区切られた3つの空間にこぼれ落ちた3つのグループの粉粒体は、外周壁26に設けられている3つの排出口32からアーム34および中空部材36を介して、シフター本体12の供給口へそれぞれ供給される。そして、シフター本体12は振動発生手段により振動され、3つの篩分セクションにより、粉粒体分配装置14から供給される3つのグループの粉粒体が同時に篩分けされる。
なお、前記実施例では、粉粒体を3つのグループに均等分配して同時に篩分けする場合を示しているが、本発明はこれに限定されず、2つ以上のグループであれば、粉粒体をいくつのグループに分配するようにしてもよい。
また、シフター本体12と粉粒体分配装置14とを組み合わせたシフター10の例を挙げて説明しているが、本発明はこれに限定されず、粉粒体分配装置14を単体で使用してもよいし、あるいは、シフター本体12以外の別の装置と組み合わせて使用してもよい。この場合、シフター本体12のように振動発生手段を備えていない場合には、別途、粉粒体分配装置14を振動させるための振動発生手段を備える必要がある。
ここで、本発明の粉粒体分配装置を使用して実際に粉粒体を4つのグループに分配した結果を表1に示す。

Figure 2003031294
なお、分配台と分配筒との間のスリットの間隔を約10mm、また、供給筒の下端部の位置を分配筒の上端部から45mm下方とした。また、粉粒体は、ゆき:オーション:フラワー(いずれも日清製粉株式会社製)=3:1:1の混合粉とした。そして、あらかじめ貯留室に粉粒体を導入している状態から、シフターへの粉粒体の供給とシフターの稼働を同時に停止し、その後、両者を指定時間だけ同時に運転して、4つのグループに分配された粉粒体の重量を計測した。
表1に示すように、粉粒体の供給速度を4.4トン/時(t/h)、供給時間を60秒(s)とした場合、取口A,B,C,D毎の重量比が±1%以内に入っていて非常に高精度に均等分配できていることが分かる。
これに対し、供給速度を27.0トン/時、供給時間を10秒間とした場合のように、粉粒体の供給速度を増加した場合には、各取口A,B,C,Dの重量比は±2%前後までばらつく。これは、供給速度を上昇することにより、上部から供給筒を介して粉粒体分配装置の貯留室に導入される粉粒体が偏心していて、その衝撃で落下位置に近い取口により多くの粉粒体が分配されたためであると推察できる。
いずれにしても、粉粒体の分配重量比は2%前後以下の値であり、本発明の粉粒体分配装置を用いて粉粒体を分配した場合、極めて高精度に粉粒体を均等分配することができるということが分かる。
以上に説明した本発明の粉粒体分配装置およびシフターは、供給筒24の下端位置を分配筒22の上端部より下方に、すなわち分配筒22の内部に位置させ、好ましくは、分配筒22の上端部に複数の波形の切り欠きを形成して、供給筒24から貯留室20内に供給される粉粒体を均等に分配するものであるが、本発明はこの実施例に限定されず、供給筒の下端部に衝撃緩衝部材を取り付けることにより、供給筒から貯留室内に供給される粉粒体を均等に分配するようにしても良い。
このような衝撃緩衝板を備える粉粒体分配装置の一実施例を図4に示す。
なお、図4に示す粉粒体分配装置50は、図1に示す粉粒体分配装置14と、供給筒57の構成(形状)と、この供給筒57の下端部に取り付けられる衝撃緩衝部材(衝撃緩衝網55および衝撃緩衝板56)とを除いて、その基本的な装置構成において同様な構成を有するものであり、同様な構成についての詳細な説明は省略し、主に、異なる部分について詳細に説明する。
同図に示すように、粉粒体分配装置50では、上部中央部に円形に開口した開口部を持つ天井部51cおよび中空円筒状外周壁51dとを備える有底円筒形のケーシング51内の底面上に円錐状の分配台52が同軸状に設置され、この分配台52の上方に中空円筒状の分配筒53が同軸状に配置され、これらの分配台52および分配筒53によって粉粒体が導入される貯留室54が形成されている。また、分配筒53の上端部は、波形に形成され、すなわち上端部には複数の波形の切り欠きが形成され、分配筒53の下端部全周と分配台52との間には粉粒体を排出するスリット60が設けられている。
分配台52の上方には、分配筒53に同軸状に配置されるように、粉粒体を貯留室54内に導入するための供給筒57が、ケーシング51の天井部51cの円形開口部に挿入されてその縁部に取り付けられている、または固定されている。この供給筒57は、天井部51cの円形開口部の上部の円筒状ガイド筒58と下部の縮径部51eとによって形成される。
供給筒57の下端部には、本発明の衝撃緩衝部材の1つである衝撃緩衝板56が水平に取り付けられる。なお、図示例では、ケーシング51の天井部51c、供給筒57の下部の縮径部51eおよび衝撃緩衝板56は、一体成形されているが、本発明はこれに限定されるわけではない。
ここで、供給筒57の下端部、従って、ここに取り付けられている衝撃緩衝板56は、図1に示す供給筒24および分配筒22の場合と同様に、分配筒53内に位置する、すなわち、分配筒53の上端部またはその下方に位置する。換言すれば、供給筒57の下端部(衝撃緩衝板56)が、分配筒53の波形の切り欠き上端部と下端部との間に位置するように、供給筒57および分配筒53は配置される。
供給筒57には、上述したように、その下端部に衝撃緩衝板56が水平に配置されるとともに、さらに、衝撃緩衝網55が、衝撃緩衝板56より所定距離上方に離れた位置に、衝撃緩衝板56と平行に配置される。
ここで、衝撃緩衝網55および衝撃緩衝板56は、供給筒と、分配筒および分配台で構成される貯留室との間であれば、供給筒57の下端部のどこに配置しても良いが、どこに取り付けた場合であっても、分配筒53の上端部(波形の切り欠きの上端部)と切り欠きの下端部との間に配置されるのが好ましいが、いずれか一方のみが、波形の切り欠きの上端部と下端部との間に配置されるようにしても良い。
なお、図示例においては、衝撃緩衝部材として、衝撃緩衝網55および衝撃緩衝板56の2つを取り付けているが、本発明はこれに限定されず、いずれか一方のみを取り付けるものであっても良い。この場合にも、衝撃緩衝部材は、分配筒53の上端部の波形の切り欠きの上端部と下端部との間に配置されるようにするのが好ましい。
さらに、本発明の衝撃緩衝部材としては、衝撃緩衝網55や衝撃緩衝板56が好ましいが、これらに限定されるわけではない。
ここで、衝撃緩衝網55は、図5に示すように、環状の枠体55a内に網部55bが張設され、枠体55aの外周部がケーシング51の天井部51cの中央開口部の内周部に縮径して突設されたフランジ51bと、その押えフランジ51aと間に挟持された状態でねじ59によって締結固定されている。衝撃緩衝網55の網部55bの大きさ(外径)は、供給筒57のガイド筒58からの全ての粉粒体が衝撃緩衝網55の網部55bに投入されるように、大きい方が良いが、分配筒53の内径より小さい方が好ましい。なお、衝撃緩衝網55のみを供給筒57の下端部に取り付ける場合には、衝撃緩衝網55の網部55bのサイズは、分配筒53の内径より小さくする必要があり、衝撃緩衝網55は、分配筒53の内部に位置させる必要がある。
なお、図中、55cは、衝撃緩衝網55を取付ける際に用いるねじ孔を示す。
また、衝撃緩衝網は、図示例のものが好ましいが、本発明ではこれに限定されず、粉粒体の種類や処理量や処理速度や装置構成等に応じて種々のものを用いても良い。
また、衝撃緩衝板56は、図6に示すように、その中央部に表裏を貫通する大径孔56aが形成され、外周部にはその表裏を貫通し、大径孔56aを中心として放射方向に傾斜する長孔56bが多数形成されるとともに、前記大径孔56aと長孔56bとの間には、その表裏を貫通する小径孔56cが周状に多数形成されている。ここで、衝撃緩衝板56のサイズ、すなわち長孔56bの外側包絡円の直径は、供給筒57のガイド筒58からの全ての粉粒体が衝撃緩衝板56の大径孔56a、多数の長孔56bおよび多数の小径孔56c形成部分に投入されるように、大きい方が良いが、分配筒53の内径より小さい方が好ましい。なお、図示例のように、衝撃緩衝板56を供給筒57の下端部に水平に取り付け、衝撃緩衝網55と衝撃緩衝板56とを上下に平行に重ねて配置する場合や、衝撃緩衝板56のみを供給筒57の下端部に水平に取り付ける場合には、衝撃緩衝板56のサイズは、分配筒53の内径より小さくする必要があり、衝撃緩衝板56は、分配筒53の内部に位置させる必要がある。しかし、衝撃緩衝網55と衝撃緩衝板56とを重ねて配置する場合には、衝撃緩衝網55は、分配筒53の内部に位置させるのが好ましいが、限定されるわけではない。
なお、長孔56bの傾斜方向は、分配筒53を回転振動させる場合には、その回転方向に一致させるとよい。
衝撃緩衝板56は、図6には省略されているが、図4に示すように、ケーシング51の天井部51cおよび供給筒57の下部の縮径部51eと一体に成形されているものであるが、これらの各部分を別体で構成し、ねじ等の固定具で固定しても良い。
また、衝撃緩衝板は、図示例のものが好ましいが、本発明ではこれに限定されず、粉粒体の種類や処理量や処理速度や装置構成等に応じて種々のものを用いても良い。
ケーシング51の外周壁51dには、均等分配される4つのグループに各々対応する4つの粉粒体の排出口61が設けられ、これらの排出口61には、それぞれ均等分配された粉粒体をシフター本体65の粉粒体の供給口へ中空部材63を介して搬送するための所定傾斜角を持つ中空のアーム62が接続されている。なお、図中、64は、粉粒体分配装置50の設置台を示す。
粉粒体分配装置50は、以上のように構成されているので、粉状体が供給筒57より貯留室54内に導入される際、粉状体は、先ず衝撃緩衝網55に衝突し、網目を擦り抜けた後、衝撃緩衝板56に衝突し、大径孔56a、長孔56bおよび小径孔56cを通過して貯留室54内に導入される。
即ち、粉粒体が大質量速度で貯留室54内に導入される場合であっても、粉粒体は、衝撃緩衝網55および衝撃緩衝板56に衝突することで、その質量速度が抑制され、しかも粉粒体は網目および孔56a〜56cを通過するとき、細かく分散されるので、貯留室54内の粉状体に塊が生じることなく、その流動性が促進され、均等分配が効果的かつ高精度に行われるようになる。なお、このような効果は、上述したように、衝撃緩衝部材として、衝撃緩衝網55および衝撃緩衝板56のどちらか一方のみを用いた場合でも期待できる。
例えば、粉粒体分配装置50を使用して粉粒体を4つのグループに分配した結果を、図7に示す。
図7においては、粉粒体の供給速度を横軸、4つのグループへの分配率を縦軸にとっている。また、○は、衝撃緩衝板56のみを設けた場合、△は、衝撃緩衝網55のみを設けた場合、□は、衝撃緩衝部材がない場合を示す。図7から明らかなように、衝撃緩衝部材を設けた場合の方が衝撃緩衝部材がない場合より均等分配率の25%のラインに対してのばらつきが小さく、均等分配率が向上していることが分かる。
以上、本発明の粉粒体分配装置およびシフターについて詳細に説明したが、本発明は前記実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいことは勿論である。
産業上の利用可能性
以上詳細に説明した様に、本発明によれば、供給筒の下端部を分配筒の上端部以下としているため、好ましくは、さらに分配筒の上端部に複数の波形の切り欠きを均等に設けているため、あるいはさらに、供給筒と、分配筒および分配台で構成される貯留室との間(供給筒の下端部)に衝撃緩衝部材を設けているため、大質量速度で供給される粉粒体の質量速度が大幅に変動した場合であっても、粉粒体を高精度に等分配することができる。
また、本発明の粉粒体分配装置はその構造が簡単であり、特に、これをシフター本体の上面部に設置して使用する本発明のシフターの場合には、粉粒体分配装置の振動発生手段とシフター本体の振動発生手段を共用することができるため、コストも安価であるという利点がある。
【図面の簡単な説明】
図1は、本発明のシフターの一実施例の側断面図である。
図2は、図1に示すシフターで用いられている本発明の粉粒体分配装置の一実施例の上断面図である。
図3は、図2に示す粉粒体分配装置において、分配筒と仕切り板の位置関係を表す一実施例の斜視概略図である。
図4は、本発明のシフターの他の実施例の側断面図である。
図5は、図4に示す衝撃緩衝網の一実施例の平面図である。
図6は、図4に示す衝撃緩衝板の一実施例の平面図である。
図7は、本発明の粉粒体分配装置を用いて粉粒体を4つのグループに分配した結果を表す他の実施例の特性図である。Technical field
The present invention relates to a powder distribution device that evenly distributes powder particles such as wheat flour and the like into a plurality of groups, and a shifter using the powder distribution device.
Background art
When processing a large amount of powder particles, it is necessary to distribute the particles in advance and supply them to the next step in order to prevent an excessive burden on a part of the apparatus. For example, in the sieving process, when sieving a large amount of powder particles, a shifter (sieving machine) having a plurality of sections is used. Therefore, the granular material is distributed in advance by the granular material distributor so that only a part of the plurality of sections is not overloaded, and the uniformly distributed granular material is supplied to each section.
As a conventional powder and particle distribution device proposed for such a purpose, for example, a powder particle distribution device disclosed in Japanese Patent Publication No. 3-6092 related to the present applicant, and Japanese Patent Application Laid-Open No. 11-208856. There is a powder particle distributor etc. disclosed in the above.
First, a powder particle distribution device disclosed in Japanese Patent Publication No. 3-6092 has a powder particle central collection chamber having a powder supply port at the top and a horizontal bottom, and extends from the central collection chamber in the outer circumferential direction. At least four chutes each having a powder outlet for supplying powder to the next processing step, and at a position corresponding to each chute in the horizontal transition area from the central collection chamber to each chute The positions of the regular polygons are substantially equal to or substantially symmetrical with respect to at least two symmetry axes passing through the center. A gate with adjustable horizontal opening for horizontally dividing and distributing equal amounts of particles from the central collection chamber to each chute, and swinging or oscillating motion in the central collection chamber-chute assembly Give Each of the shoots from each gate adjusted to a predetermined equal opening degree by the motion applying means. It is configured to be equally divided and distributed in the horizontal direction.
However, in the granular material distribution device disclosed in the publication, since the flow rate ratio of the granular material is determined by the gate, when the total mass velocity of the granular material fluctuates, the distribution ratio tends to fluctuate. There was a problem.
In addition, a granular material distributor disclosed in Japanese Patent Laid-Open No. 11-208856 includes a distribution table having a conical upper surface surrounded by an annular outer peripheral wall, and a vibration generator for applying vibration to the distribution table. The outer peripheral wall is provided with a plurality of outlets at equal intervals in the circumferential direction, and a plurality of annular crests having different diameters around the top are provided between the top of the distribution table and the outer peripheral wall. An annular storage tank is formed in which the height of each dam is sequentially reduced from the first stage storage tank including the top of the distribution stand by forming the height of each dam plate in order to decrease toward the outer peripheral wall side. In addition, between the outermost peripheral plate and the outer peripheral wall, the same number of partition plates as the discharge ports are provided at equal intervals in the circumferential direction, and the granular material continuously supplied to the first-stage storage tank Are gradually overflowed into the storage tank on the outer side while being leveled by vibration. It is obtained by way.
However, the granular material distributor disclosed in the publication requires a plurality of annular slats, which has a problem that the configuration of the distribution table is complicated and the cost is increased.
Further, in the granular material distributor disclosed in the publication, since there is a space between the granular material inlet and the innermost side slat, the granular material supplied from the inlet is the first stage. In some cases, the particles are not stored in the storage tank of the eye but are directly supplied to the storage tanks in the second and subsequent stages, and there is a problem that the dispersion ratio of the granular material is large.
Disclosure of the invention
The object of the present invention is to solve the problems based on the above prior art, and with a simpler structure, especially even when the mass rate of the granular material supplied at a large mass rate varies greatly. An object of the present invention is to provide a powder and particle distribution device and a shifter capable of equally distributing particles with high accuracy.
In order to achieve the above object, the present invention provides a disc-shaped or conical distribution table, and a distribution cylinder that is coaxially disposed above the distribution table and forms a storage chamber for powder particles together with the distribution table. The outer diameter is set smaller than the inner diameter of the distribution cylinder, and the lower end thereof is arranged coaxially with the distribution cylinder so as to be located in the distribution cylinder, and the powder particles are introduced into the storage chamber. An outer peripheral wall formed with a supply cylinder and a plurality of outlets for individually discharging the powder particles passing through the distribution cylinder from the storage chamber to the outside from the distribution table and covering the outer periphery of the distribution table and the distribution cylinder And a granular material distribution device characterized by comprising:
Here, it is preferable that a plurality of notches be formed in the circumferential direction at the upper end portion of the distribution cylinder, and it is preferable that each of the plurality of notches be formed wider as it goes upward.
Moreover, it is preferable that the lower end part of the said supply cylinder is arrange | positioned in the position between the upper end part of the said distribution cylinder and the lower end part of these notches.
Each of the granular material distribution devices further includes a disk-shaped ceiling portion provided at the upper end portion of the outer peripheral wall and having a circular opening at the center, and the supply cylinder is a ceiling of the outer peripheral wall. It is preferable to attach to a part so that the said circular opening part may be penetrated.
Moreover, it is preferable that each said granular material distribution apparatus is further provided with the height adjustment means which positions the lower end part of the said supply cylinder in the said distribution cylinder, and adjusts the height of the lower end part of the said supply cylinder. .
Moreover, it is preferable that each said powder particle | grain distribution apparatus is further provided with the shock-absorbing member which has several through-holes attached to the lower end part of the said supply cylinder.
Moreover, it is preferable that the said impact buffer member is attached so that the lower end part of the said supply cylinder may be covered.
The shock absorbing member preferably includes a shock absorbing net formed in a mesh shape.
The shock buffering member preferably includes, as the plurality of through holes, a shock buffer plate having a central opening, a plurality of circular through holes, and a plurality of inclined through holes that are inclined radially from the center. .
In addition, the shock absorbing member includes a shock absorbing net formed in a mesh shape, and a plurality of through holes as a plurality of through holes, a central opening, a plurality of circular through holes, and a plurality of inclined through lengths inclined radially from the center. It is preferable that the shock absorbing plate is disposed below the shock absorbing net.
Moreover, it is preferable that the said shock absorbing plate is located in the said distribution cylinder.
Further, when a plurality of notches are formed in the upper end portion of the distribution cylinder in the circumferential direction, the shock absorbing plate is positioned between the upper end portion of the distribution cylinder and the lower end portions of the plurality of notches. It is preferable that it is arrange | positioned.
Moreover, it is preferable that each said granular material distribution apparatus is further provided with the slit provided over the perimeter of the lower end part of the said distribution cylinder between the lower end part of the said distribution cylinder and the said distribution stand.
Moreover, it is preferable that the dimension of the said slit between the lower end part of the said distribution cylinder and the said distribution stand is 4-30 mm.
Moreover, it is preferable that each said granular material distribution apparatus is further provided with the vibration generation means to vibrate the said granular material distribution apparatus.
The present invention also provides a shifter body for simultaneously sieving powder particles distributed to a plurality of groups, vibration generating means for vibrating the shifter body, and an upper surface portion of the shifter body. The powder distribution device according to any one of claims 1 to 20, wherein the shifter main body is vibrated at the same time and is vibrated simultaneously to distribute the powder into the plurality of groups and supply the powder to the shifter main body. The present invention provides a shifter characterized by being provided.
The term “vibration” as used in the present invention includes not only vertical (vertical) and horizontal vibrations but also a rotational motion that draws a substantially circular shape.
Moreover, in this invention, a distribution cylinder means what functions as a dam plate.
BEST MODE FOR CARRYING OUT THE INVENTION
The powder distribution device and the shifter according to the present invention will be described below in detail based on preferred embodiments shown in the accompanying drawings.
FIG. 1 is a side sectional view of an embodiment of the shifter of the present invention. FIG. 2 is a top cross-sectional view of an embodiment of the powder distribution device of the present invention used in the shifter shown in FIG. In addition, the granular material distribution apparatus shown in FIG. 1 shows the sectional side view in the AA line of the granular material distribution apparatus shown in FIG.
The shifter 10 shown in these drawings equally distributes the granular material such as wheat flour, for example, in the case of the present embodiment, distributes the granular material equally into three groups, and is distributed to these three groups. Sifter body 12 for sieving, vibration generating means (not shown) for vibrating the shifter body, and the sifter body by evenly distributing the powder particles into three groups 12 is provided with a powder and particle distribution device 14 to be supplied to 12.
In the shifter 10 shown in the figure, first, in the example shown in the figure, the powder distribution device 14 is vibrated simultaneously when the shifter body 12 is vibrated by the vibration generating means, and distributes the powder particles to three groups. It supplies to the supply port of the granular material of each section of the shifter main body 12, and an installation base 16 is disposed on the upper surface of the shifter main body 12, and is installed on the installation base 16. The installation table 16 may be configured separately from the powder distribution device 14 or may be integrated.
The powder distribution device 14 is basically arranged in a conical distribution table 18 and the center of the distribution table 18, that is, coaxially arranged on the upper part of the distribution table 18. The hollow cylindrical distribution cylinder 22 that functions as a barrier plate and the center of the distribution table 18, that is, coaxially disposed on the upper part of the distribution table 18, and stores the granular material in the storage chamber A hollow cylindrical supply cylinder 24 for introduction into the inside 20, and a hollow cylindrical outer peripheral wall 26 that covers the distribution table 18, the distribution cylinder 22, and the outer periphery of the supply cylinder 24.
Here, the distribution base 18 has a conical shape in the illustrated example, but may have a disk shape. In addition, it can be said that a cone-shaped distribution base is more preferable than a disk-shaped distribution base because the granular material is urged toward the outer peripheral wall 26 and discharged quickly.
The hollow cylindrical outer peripheral wall 26 is attached with a ceiling portion 27a having a circular opening at the upper central portion, and the outer peripheral wall 26 and the ceiling portion 27a constitute a bottomed cylindrical casing 27. A conical distribution table 18 is coaxially installed on the bottom surface of the bottomed cylindrical casing 27, and a hollow cylindrical distribution cylinder 22 is coaxially disposed above the distribution table 18. Above the distribution table 18, a supply cylinder 24 for introducing the granular material into the storage chamber 20 is arranged in the circular opening of the ceiling portion 27 a of the casing 27 so as to be arranged coaxially with the distribution cylinder 22. It is inserted and preferably attached to the ceiling portion 27a so as to be movable up and down.
The upper end portion of the supply cylinder 24 extends outside the casing 27, that is, above the ceiling portion 27a attached to the outer peripheral wall 26, and through a flexible hollow member that absorbs vibration due to vibration, For example, it is connected to a discharge port of a granular material such as a hopper or a screw feeder. The granular material stored in these hoppers and the granular material conveyed by the screw feeder are introduced into the storage chamber 20 of the granular material distributing apparatus 14 through the supply cylinder 24. In addition, the storage chamber 20 is a space for temporarily storing powder particles, and the upper surface of the distribution table 18 is used as the bottom surface, and the inner wall of the distribution cylinder 22 functioning as a weir is used as the inner wall.
Further, the outer diameter of the supply cylinder 24 is smaller than the inner diameter of the distribution cylinder 22, and the lower end portion of the supply cylinder 24 is higher than the distribution table 18 and at a position below the upper end portion of the distribution cylinder 22 (distribution cylinder). The position of the upper end portion of 22 or a position lower than that). In other words, the lower end portion of the supply cylinder 24 is disposed in the distribution cylinder 22. Thereby, the granular material which fell in the storage chamber 20 will contact the lower end part of the supply cylinder 24, and if the granular material distribution apparatus 14 is vibrated in this state, the granular material will be stored. It becomes possible to level out more effectively in the chamber 20. In other words, even when the granular material is decentered and dropped at a large mass flow rate, the phenomenon that a large amount of the granular material flows in a specific direction with the momentum is suppressed, and the uniformity of all-round discharge is maintained. For this reason, in the granular material distribution apparatus 14 of the present invention, a plurality of annular slats such as the granular material distributor disclosed in JP-A-11-208856 is not necessary.
In the case of the illustrated example, an adjustment means 28 for adjusting the height of the lower end portion of the supply tube 24 is provided as a preferred embodiment. By providing this adjusting means 28 on the ceiling portion 27a of the casing 27, the height of the lower end portion of the supply tube 24 is appropriately adjusted according to the type and flow rate of the powder and the powder distribution accuracy is optimized. There is an advantage that you can. Of course, without providing this adjusting means 28, the supply tube 24 is attached to the ceiling 27a of the casing 27, and the height of the lower end portion of the supply tube 24 is fixed to a predetermined position within the above range. Good.
The upper end portion of the distribution cylinder 22 is preferably formed into a corrugated shape, and a plurality of corrugated notches are preferably formed uniformly. Here, it is preferable that the lower end portion of the supply tube 24 is located above the lower end portion of the corrugated cutout at the upper end portion of the distribution tube 22, that is, the upper end portion (the upper end portion of the cutout) It is preferable to locate between the lower end of the notch. By carrying out like this, the granular material stored by the storage chamber can be discharged | emitted equally from the notch of the some waveform formed in the upper end part of the distribution cylinder 22. FIG.
Further, as shown in the example, the lower end portion of the distribution cylinder 22 is separated from the distribution table 18 by a predetermined distance, and a slit 30 is provided between the distribution table 18 and the entire circumference of the lower end portion of the distribution cylinder 22. Is preferred.
The shape of the upper end portion of the distribution cylinder 22 is not limited to the waveform in the illustrated example, and may be any shape and may be a flat shape without a slit-like notch, but a plurality of notches may be present. Preferably it is formed. As the notch, for example, it is more preferable that a plurality of notches that are wider toward the upper side are provided, such as a waveform notch and a V-shaped notch in the illustrated example. In this way, by providing a plurality of notches that are wider toward the upper end of the distribution cylinder 22 toward the upper side, the powder surface height between the supply cylinder 24 and the distribution cylinder 22 is increased at a large mass flow rate. Even if it exists, the substantial opening area for a granular material outflow increases, and the total mass discharge | emission speed can be increased, ensuring the uniformity of all-round discharge | emission.
Moreover, although the predetermined space | interval of the slit between the distribution stand 18 and the distribution cylinder 22 should just be determined suitably according to the kind of granular material, it is preferable that it is normally about 4-30 mm. Thus, by providing a slit over the entire circumference between the distribution base 18 and the lower end portion of the distribution cylinder 22, it is possible to prevent the granular material from staying at the bottom of the storage chamber 20 during distribution of the granular material. At the same time, there is an advantage that the entire amount can be quickly discharged from the apparatus after the supply of the granular material at a large mass rate.
The side wall of the outer peripheral wall 26 is provided with three powder outlets 32 respectively corresponding to the three groups that are equally distributed. A hollow arm 34 having a predetermined inclination angle for conveying the granular material to the granular material supply port of the shifter body 12 is connected. The openings of the arms 34 and the supply port of the shifter body 12 are connected by a flexible hollow member 36.
Here, between the outer wall of the side surface portion of the distribution cylinder 22 and the inner wall of the side surface portion of the outer peripheral wall 26, partition plates 38 are provided between the discharge ports 32 adjacent to each other, as shown in FIG. Yes. By these partition plates 38, the space between the distribution cylinder 22 and the outer peripheral wall 26 is divided into three spaces corresponding to the three discharge ports 32. In these three spaces, the waveform shape of the upper end portion of the distribution cylinder 22 is formed to be the same shape. The same applies to the case of forming a shape other than a waveform.
The distribution cylinder 22 is fixed to the inner wall of the side surface portion of the outer peripheral wall 26 except for the position of the discharge port 32 by three fixing members 40 provided between the partition plates 38 adjacent to each other.
Further, the ceiling portion 27a (the upper surface portion of the casing 27) attached to the outer peripheral wall 26 is inspected for the state inside the granular material distributor 14 covered with the outer peripheral wall 26 and the ceiling portion 27a (casing 27). For this purpose, three transparent inspection windows 42 are provided corresponding to the three discharge ports 32, respectively.
In the illustrated example of the shifter 10, the shifter main body 12 includes, for example, three sieving sections configured by stacking sieving frames having a plurality of sieving meshes having different meshes in the present embodiment. . The shifter body 12 is vibrated by the vibration generating means, and sifts the three groups of powder particles supplied from the powder particle distributor 14 simultaneously by the three sieving sections. The granular material discharged | emitted from the shifter main body 12 is supplied to next processes, such as bagging, for example.
In addition, the structure of the shifter main body 12 is not limited at all, and any conventionally known shifter main body can be applied.
In the illustrated shifter 10, the powder is introduced into the storage chamber 20 of the powder distribution device 14 via the supply cylinder 24. The powder distribution device 14 is vibrated simultaneously when the shifter body 12 is vibrated by the vibration generating means, and this vibration causes the granular material stored in the storage chamber 20 to cut the waveform at the upper end of the distribution cylinder 22. From the notch and the slit 30 between the distribution cylinder 22 and the distribution table 18, it spills almost equally into the three spaces defined by the partition plate 38.
The vibration generated by the vibration generating means is preferably a horizontal rotational vibration in order to efficiently distribute a large mass velocity granular material.
The three groups of powder particles spilled into the three spaces partitioned by the partition plate 38 are transferred from the three outlets 32 provided in the outer peripheral wall 26 via the arm 34 and the hollow member 36 to the shifter body 12. Each is supplied to the supply port. Then, the shifter body 12 is vibrated by the vibration generating means, and the three groups of powder particles supplied from the powder particle distributor 14 are simultaneously screened by the three sieving sections.
In addition, although the said Example has shown the case where a granular material is equally distributed to three groups, and sifting simultaneously, this invention is not limited to this, If it is two or more groups, a granular material will be shown. The body may be distributed to any number of groups.
Moreover, although the example of the shifter 10 which combined the shifter main body 12 and the granular material distribution apparatus 14 is mentioned and demonstrated, this invention is not limited to this, The granular material distribution apparatus 14 is used alone. Alternatively, it may be used in combination with another device other than the shifter body 12. In this case, when the vibration generating means is not provided like the shifter main body 12, it is necessary to separately provide a vibration generating means for vibrating the granular material distribution device 14.
Here, the results of actually distributing the powder particles into four groups using the powder particle distribution device of the present invention are shown in Table 1.
Figure 2003031294
In addition, the space | interval of the slit between a distribution stand and a distribution cylinder was about 10 mm, and the position of the lower end part of a supply cylinder was 45 mm downward from the upper end part of the distribution cylinder. Moreover, the powder and granule was made into the mixed powder of Yuki: Otion: Flower (all made by Nisshin Flour Milling Co., Ltd.) = 3: 1: 1. Then, from the state in which the granular material has been introduced into the storage chamber in advance, the supply of the granular material to the shifter and the operation of the shifter are stopped at the same time. The weight of the distributed granular material was measured.
As shown in Table 1, when the supply speed of the granular material is 4.4 tons / hour (t / h) and the supply time is 60 seconds (s), the weight for each of the intakes A, B, C and D It can be seen that the ratio is within ± 1% and that the distribution can be made even with very high accuracy.
On the other hand, when the supply rate of the granular material is increased, as in the case where the supply rate is 27.0 tons / hour and the supply time is 10 seconds, each of the intakes A, B, C, D The weight ratio varies to around ± 2%. This is because by increasing the supply speed, the granular material introduced into the storage chamber of the granular material distribution device from the upper part through the supply cylinder is eccentric, and the impact closer to the drop position is more due to the impact. It can be inferred that the powder particles were distributed.
In any case, the distribution weight ratio of the granular material is about 2% or less, and when the granular material is distributed using the granular material distribution device of the present invention, the granular material is evenly distributed with extremely high accuracy. You can see that it can be distributed.
In the powder and particle distribution device and shifter of the present invention described above, the lower end position of the supply cylinder 24 is positioned below the upper end portion of the distribution cylinder 22, that is, inside the distribution cylinder 22, A plurality of corrugated cutouts are formed at the upper end portion to uniformly distribute the granular material supplied from the supply cylinder 24 into the storage chamber 20, but the present invention is not limited to this embodiment. By attaching an impact buffering member to the lower end portion of the supply cylinder, the powder particles supplied from the supply cylinder to the storage chamber may be evenly distributed.
FIG. 4 shows an embodiment of a powder and particle distributor provided with such an impact buffer plate.
In addition, the granular material distribution apparatus 50 shown in FIG. 4 includes the granular material distribution apparatus 14 shown in FIG. 1, the configuration (shape) of the supply cylinder 57, and an impact buffering member (attached to the lower end of the supply cylinder 57 ( Except for the shock buffering net 55 and the shock buffering plate 56), the basic device configuration has the same configuration, detailed description of the same configuration is omitted, and mainly the details of the different parts are omitted. Explained.
As shown in the figure, in the powder distribution device 50, a bottom surface in a bottomed cylindrical casing 51 having a ceiling portion 51c having an opening opening in a circular shape in an upper central portion and a hollow cylindrical outer peripheral wall 51d. A conical distribution table 52 is coaxially installed above, and a hollow cylindrical distribution cylinder 53 is coaxially disposed above the distribution table 52, and the granular material is formed by the distribution table 52 and the distribution cylinder 53. A storage chamber 54 to be introduced is formed. Further, the upper end portion of the distribution cylinder 53 is formed in a corrugated shape, that is, a plurality of corrugated notches are formed in the upper end portion, and the granular material is formed between the entire lower end portion of the distribution cylinder 53 and the distribution table 52. The slit 60 which discharges is provided.
Above the distribution table 52, a supply cylinder 57 for introducing the granular material into the storage chamber 54 is arranged in the circular opening of the ceiling 51 c of the casing 51 so as to be arranged coaxially with the distribution cylinder 53. Inserted and attached to its edge or fixed. The supply cylinder 57 is formed by a cylindrical guide cylinder 58 at the upper part of the circular opening of the ceiling part 51c and a reduced diameter part 51e at the lower part.
An impact buffer plate 56 that is one of the impact buffer members of the present invention is horizontally attached to the lower end of the supply cylinder 57. In the illustrated example, the ceiling portion 51c of the casing 51, the reduced diameter portion 51e below the supply cylinder 57, and the shock absorbing plate 56 are integrally formed, but the present invention is not limited to this.
Here, the lower end portion of the supply cylinder 57, and hence the shock absorbing plate 56 attached thereto, is located in the distribution cylinder 53 as in the case of the supply cylinder 24 and the distribution cylinder 22 shown in FIG. , Located at the upper end of the distribution cylinder 53 or below it. In other words, the supply cylinder 57 and the distribution cylinder 53 are arranged such that the lower end portion (impact buffer plate 56) of the supply cylinder 57 is located between the upper and lower end portions of the waveform of the distribution cylinder 53. The
As described above, the shock-absorbing plate 56 is horizontally disposed at the lower end of the supply cylinder 57, and the shock-absorbing net 55 is further separated from the shock-absorbing plate 56 by a predetermined distance. It is arranged in parallel with the buffer plate 56.
Here, the shock buffering net 55 and the shock buffering plate 56 may be disposed anywhere on the lower end portion of the supply tube 57 as long as it is between the supply tube and the storage chamber composed of the distribution tube and the distribution table. In any case, it is preferably arranged between the upper end portion (the upper end portion of the corrugated cutout) and the lower end portion of the cutout portion, but only one of the corrugated portions has a corrugated shape. You may make it arrange | position between the upper end part of a notch, and a lower end part.
In the illustrated example, two shock-absorbing nets 55 and shock-absorbing plates 56 are attached as shock-absorbing members. However, the present invention is not limited to this, and only one of them may be attached. good. Also in this case, it is preferable that the shock absorbing member is disposed between the upper end portion and the lower end portion of the corrugated notch at the upper end portion of the distribution cylinder 53.
Further, as the shock absorbing member of the present invention, the shock absorbing net 55 and the shock absorbing plate 56 are preferable, but not limited thereto.
Here, as shown in FIG. 5, the shock buffering net 55 has a net 55b stretched in an annular frame 55a, and the outer periphery of the frame 55a is inside the central opening of the ceiling 51c of the casing 51. It is fastened and fixed by a screw 59 in a state of being sandwiched between a flange 51b projecting with a reduced diameter on the peripheral portion and the presser flange 51a. The size (outer diameter) of the mesh portion 55b of the shock buffering net 55 is larger so that all powder particles from the guide cylinder 58 of the supply cylinder 57 are put into the net portion 55b of the impact buffering net 55. Although it is good, it is preferably smaller than the inner diameter of the distribution cylinder 53. When only the shock buffering net 55 is attached to the lower end portion of the supply cylinder 57, the size of the net part 55b of the shock buffering net 55 needs to be smaller than the inner diameter of the distribution cylinder 53. It is necessary to be positioned inside the distribution cylinder 53.
In addition, in the figure, 55c shows the screw hole used when attaching the shock-absorbing net | network 55. FIG.
In addition, the shock-absorbing mesh shown in the illustrated example is preferable, but the present invention is not limited to this, and various types may be used according to the type, processing amount, processing speed, device configuration, etc. of the granular material. .
Further, as shown in FIG. 6, the shock absorbing plate 56 is formed with a large-diameter hole 56a penetrating the front and back at the center, and the outer peripheral portion penetrates the front and back, and the radial direction about the large-diameter hole 56a. A large number of elongated holes 56b inclined to each other are formed, and a large number of small-diameter holes 56c penetrating the front and back surfaces are formed between the large-diameter holes 56a and the elongated holes 56b. Here, the size of the shock buffer plate 56, that is, the diameter of the outer envelope circle of the long hole 56b is such that all powder particles from the guide tube 58 of the supply tube 57 are large diameter holes 56a of the shock buffer plate 56 and a large number of long holes. A larger size is preferable so that the holes 56b and a large number of small-diameter holes 56c are formed, but it is preferably smaller than the inner diameter of the distribution cylinder 53. It should be noted that, as shown in the example, the shock absorbing plate 56 is horizontally attached to the lower end portion of the supply cylinder 57, and the shock absorbing net 55 and the shock absorbing plate 56 are vertically stacked in parallel. In the case where only the lower end of the supply cylinder 57 is mounted horizontally, the size of the shock buffer plate 56 needs to be smaller than the inner diameter of the distribution cylinder 53, and the shock buffer plate 56 is positioned inside the distribution cylinder 53. There is a need. However, when the shock buffering net 55 and the shock buffering plate 56 are arranged so as to overlap each other, the shock buffering net 55 is preferably located inside the distribution cylinder 53, but is not limited thereto.
It should be noted that the inclination direction of the long hole 56b is preferably matched with the rotation direction when the distribution cylinder 53 is rotated and vibrated.
Although the shock absorbing plate 56 is omitted in FIG. 6, as shown in FIG. 4, the shock absorbing plate 56 is integrally formed with the ceiling 51 c of the casing 51 and the reduced diameter portion 51 e of the lower portion of the supply tube 57. However, each of these parts may be configured separately and fixed with a fixing tool such as a screw.
Moreover, although the thing of the example of illustration is preferable, although an impact buffer plate is not limited to this in this invention, you may use various things according to the kind of granular material, a processing amount, a processing speed, an apparatus structure, etc. .
The outer peripheral wall 51d of the casing 51 is provided with four powder outlets 61 respectively corresponding to the four groups that are evenly distributed. A hollow arm 62 having a predetermined inclination angle is connected to the supply port of the granular material of the shifter main body 65 via the hollow member 63. In addition, in the figure, 64 shows the installation stand of the granular material distribution apparatus 50. FIG.
Since the powder distribution device 50 is configured as described above, when the powder is introduced into the storage chamber 54 from the supply cylinder 57, the powder first collides with the impact buffering net 55, After rubbing through the mesh, it collides with the shock absorbing plate 56, passes through the large diameter hole 56 a, the long hole 56 b and the small diameter hole 56 c and is introduced into the storage chamber 54.
In other words, even when the granular material is introduced into the storage chamber 54 at a large mass velocity, the granular material collides with the impact buffering net 55 and the impact buffering plate 56, thereby suppressing the mass velocity. In addition, since the powder particles are finely dispersed when passing through the mesh and the holes 56a to 56c, the fluidity is promoted without causing lumps in the powder material in the storage chamber 54, and the uniform distribution is effective. And it comes to be performed with high precision. As described above, such an effect can be expected even when only one of the shock buffering net 55 and the shock buffering plate 56 is used as the shock buffering member.
For example, FIG. 7 shows the result of distributing powder particles into four groups using the powder particle distributor 50.
In FIG. 7, the supply rate of the granular material is plotted on the horizontal axis and the distribution rate to the four groups is plotted on the vertical axis. Further, ◯ indicates the case where only the shock absorbing plate 56 is provided, Δ indicates the case where only the shock absorbing net 55 is provided, and □ indicates the case where there is no shock absorbing member. As can be seen from FIG. 7, when the shock absorbing member is provided, the variation with respect to the 25% line of the uniform distribution ratio is smaller than when the shock absorbing member is not provided, and the uniform distribution ratio is improved. I understand.
As mentioned above, although the granular material distribution apparatus and shifter of this invention were demonstrated in detail, this invention is not limited to the said Example, You may make a various improvement and change in the range which does not deviate from the main point of this invention. Of course.
Industrial applicability
As described above in detail, according to the present invention, the lower end portion of the supply tube is set to be equal to or lower than the upper end portion of the distribution tube, and preferably, a plurality of corrugated notches are equally provided at the upper end portion of the distribution tube. Or in addition, an impact buffer member is provided between the supply cylinder and the storage chamber composed of the distribution cylinder and the distribution table (lower end of the supply cylinder), so that the powder supplied at a large mass speed Even when the mass velocity of the particles varies greatly, the particles can be equally distributed with high accuracy.
In addition, the structure of the powder distribution device of the present invention is simple. In particular, in the case of the shifter of the present invention in which the powder distribution device is installed on the upper surface of the shifter body, vibration generation of the powder distribution device is generated. Since the means and the vibration generating means of the shifter body can be shared, there is an advantage that the cost is low.
[Brief description of the drawings]
FIG. 1 is a side sectional view of an embodiment of the shifter of the present invention.
FIG. 2 is a top cross-sectional view of an embodiment of the powder distribution device of the present invention used in the shifter shown in FIG.
FIG. 3 is a schematic perspective view of an embodiment showing the positional relationship between the distribution cylinder and the partition plate in the powder and particle distribution device shown in FIG.
FIG. 4 is a side sectional view of another embodiment of the shifter of the present invention.
FIG. 5 is a plan view of an embodiment of the shock buffering net shown in FIG.
FIG. 6 is a plan view of an embodiment of the shock absorbing plate shown in FIG.
FIG. 7 is a characteristic diagram of another example showing a result of distributing powder particles into four groups using the powder particle distributor of the present invention.

Claims (17)

円盤状または円錐状の分配台と、
この分配台の上部に同軸状に配置され、前記分配台とともに粉粒体の貯留室を形成する分配筒と、
その外径が前記分配筒の内径よりも小さく設定され、その下端部が前記分配筒内に位置するように前記分配筒と同軸状に配置され、前記粉粒体を前記貯留室内に導入する供給筒と、
前記貯留室から前記分配筒を通り抜けた前記粉粒体を前記分配台より外部へ個別に排出する複数の排出口が形成され、前記分配台および前記分配筒の外周を覆う外周壁とを備えることを特徴とする粉粒体分配装置。
A disc-shaped or conical distribution stand;
A distribution cylinder that is coaxially disposed on the upper side of the distribution table and forms a storage chamber for powder particles together with the distribution table;
Supply the outer diameter of which is set smaller than the inner diameter of the distribution cylinder, the lower end portion of which is coaxial with the distribution cylinder so as to be located in the distribution cylinder, and introduces the granular material into the storage chamber A tube,
A plurality of outlets for individually discharging the powder particles passing through the distribution cylinder from the storage chamber to the outside from the distribution base are formed, and provided with an outer peripheral wall covering the outer periphery of the distribution base and the distribution cylinder. A powder distribution apparatus characterized by the above.
前記分配筒の上端部に、周方向において複数の切り欠きが形成されたことを特徴とする請求項1に記載の粉粒体分配装置。The granular material distribution apparatus according to claim 1, wherein a plurality of notches are formed in an upper end portion of the distribution cylinder in the circumferential direction. 複数の切り欠きの各々が、上方にいくに従って幅広に形成されたことを特徴とする請求項2に記載の粉粒体分配装置。The granular material distribution device according to claim 2, wherein each of the plurality of cutouts is formed wider as it goes upward. 前記供給筒の下端部は、前記分配筒の上端部と前記複数の切り欠きの下端部との間の位置に配置されるものであることを特徴とする請求項2または3に記載の粉粒体分配装置。4. The powder according to claim 2, wherein the lower end portion of the supply tube is disposed at a position between an upper end portion of the distribution tube and lower end portions of the plurality of notches. Body dispensing device. 請求項1〜4のいずれかに記載の粉粒体分配装置であって、
さらに、前記外周壁の上端部に設けられる、中心に円形開口部を持つ円板状の天井部を有し、
前記供給筒は、前記外周壁の天井部に前記円形開口部を貫通するように取り付けられたことを特徴とする粉粒体分配装置。
It is a granular material distribution apparatus in any one of Claims 1-4,
Furthermore, it has a disk-like ceiling part having a circular opening at the center, provided at the upper end of the outer peripheral wall,
The powder distribution device, wherein the supply cylinder is attached to a ceiling portion of the outer peripheral wall so as to penetrate the circular opening.
請求項1〜5のいずれかに記載の粉粒体分配装置であって、
さらに、前記供給筒の下端部を前記分配筒内に位置させ、しかも、前記供給筒の下端部の高さを調整する高さ調整手段を備えることを特徴とする粉粒体分配装置。
It is a granular material distribution apparatus in any one of Claims 1-5,
Furthermore, the granular material distribution apparatus is provided with a height adjusting means for positioning a lower end portion of the supply tube in the distribution tube and adjusting a height of the lower end portion of the supply tube.
請求項1〜6のいずれかに記載の粉粒体分配装置であって、
さらに、前記供給筒の下端部に取り付けられた複数の貫通孔を有する衝撃緩衝部材を備えることを特徴とする粉粒体分配装置。
It is a granular material distribution apparatus in any one of Claims 1-6,
Furthermore, the granular material distribution apparatus provided with the shock-absorbing member which has several through-holes attached to the lower end part of the said supply cylinder.
前記衝撃緩衝部材は、前記供給筒の下端部を覆うように取り付けられたことを特徴とする請求項7に記載の粉粒体分配装置。The powder distribution device according to claim 7, wherein the shock absorbing member is attached so as to cover a lower end portion of the supply cylinder. 前記衝撃緩衝部材は、網目状に形成された衝撃緩衝網を含むことを特徴とする請求項7または8に記載の粉粒体分配装置。The powder distribution device according to claim 7 or 8, wherein the shock absorbing member includes a shock absorbing net formed in a mesh shape. 前記衝撃緩衝部材は、前記複数の貫通孔として、中心開口部、複数の円状貫通孔およびその中心から放射方向に傾斜する複数の傾斜貫通長孔を有する衝撃緩衝板を含むことを特徴とする請求項7または8に記載の粉粒体分配装置。The shock absorbing member includes a shock absorbing plate having a center opening, a plurality of circular through holes, and a plurality of inclined through long holes inclined radially from the center as the plurality of through holes. The powder particle distribution device according to claim 7 or 8. 前記衝撃緩衝部材は、網目状に形成された衝撃緩衝網と、前記複数の貫通孔として、中心開口部、複数の円状貫通孔およびその中心から放射方向に傾斜する複数の傾斜貫通長孔を有する衝撃緩衝板とを含み、
前記衝撃緩衝板は、前記衝撃緩衝網より下方に配置されることを特徴とする請求項7または8に記載の粉粒体分配装置。
The shock-absorbing member includes a shock-absorbing net formed in a mesh shape, and a plurality of through-holes including a central opening, a plurality of circular through-holes, and a plurality of inclined through-holes that are inclined radially from the center. Including an impact buffer plate,
The powder distribution device according to claim 7 or 8, wherein the shock absorbing plate is disposed below the shock absorbing net.
前記衝撃緩衝板は、前記分配筒内に位置することを特徴とする請求項11に記載の粉粒体分配装置。The powder distribution device according to claim 11, wherein the shock absorbing plate is located in the distribution cylinder. 前記分配筒の上端部に、周方向において複数の切り欠きが形成されている時、前記衝撃緩衝板は、前記分配筒の上端部と前記複数の切り欠きの下端部との間の位置に配置されるものであることを特徴とする請求項11または12に記載の粉粒体分配装置。When a plurality of notches are formed in the upper end portion of the distribution cylinder in the circumferential direction, the shock absorbing plate is disposed at a position between the upper end portion of the distribution cylinder and the lower end portions of the plurality of notches. The granular material distribution device according to claim 11 or 12, wherein 請求項1〜13のいずれかに記載の粉粒体分配装置であって、
さらに、前記分配筒の下端部と前記分配台との間に、前記分配筒の下端部全周に亘って設けられたスリットを備えることを特徴とする粉粒体分配装置。
It is a granular material distribution apparatus in any one of Claims 1-13,
Furthermore, the granular material distribution apparatus provided with the slit provided over the perimeter of the lower end part of the said distribution cylinder between the lower end part of the said distribution cylinder and the said distribution stand.
前記分配筒の下端部と前記分配台との間の前記スリットの寸法は、4〜30mmであることを特徴とする請求項14に記載の粉粒体分配装置。The granular material distribution apparatus according to claim 14, wherein a size of the slit between a lower end portion of the distribution cylinder and the distribution table is 4 to 30 mm. 請求項1〜15のいずれかに記載の粉粒体分配装置であって、
さらに、当該粉粒体分配装置を振動させる振動発生手段を備えることを特徴とする粉粒体分配装置。
It is a granular material distribution apparatus in any one of Claims 1-15,
Furthermore, the granular material distribution apparatus provided with the vibration generation means which vibrates the said granular material distribution apparatus.
複数のグループに分配された粉粒体を同時に篩分けするシフター本体と、
このシフター本体を振動させる振動発生手段と、
前記シフター本体の上面部に設置され、前記振動発生手段によって前記シフター本体が振動されると同時に振動され、前記粉粒体を前記複数のグループに分配して前記シフター本体に供給する請求項1〜16のいずれかに記載の粉粒体分配装置とを具備したことを特徴とするシフター。
A shifter body for simultaneously sieving powder particles distributed to a plurality of groups;
Vibration generating means for vibrating the shifter body;
It is installed in the upper surface part of the shifter main body, and the shifter main body is vibrated simultaneously with the vibration generating means, and the powder particles are distributed to the plurality of groups and supplied to the shifter main body. A shifter comprising the powder particle distribution device according to any one of 16 above.
JP2003534287A 2001-10-03 2002-10-03 Powder distribution device Expired - Lifetime JP4219272B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001307483 2001-10-03
JP2001307483 2001-10-03
PCT/JP2002/010339 WO2003031294A1 (en) 2001-10-03 2002-10-03 Powder particle distribution device and shifter

Publications (2)

Publication Number Publication Date
JPWO2003031294A1 true JPWO2003031294A1 (en) 2005-01-20
JP4219272B2 JP4219272B2 (en) 2009-02-04

Family

ID=19126935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003534287A Expired - Lifetime JP4219272B2 (en) 2001-10-03 2002-10-03 Powder distribution device

Country Status (2)

Country Link
JP (1) JP4219272B2 (en)
WO (1) WO2003031294A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102491617B1 (en) * 2018-09-21 2023-01-20 주식회사 엘지화학 Particle distributor
KR102487734B1 (en) * 2018-09-21 2023-01-12 주식회사 엘지화학 Particle distributor
KR102491618B1 (en) * 2018-09-21 2023-01-20 주식회사 엘지화학 Particle distributor
KR102491149B1 (en) * 2018-09-21 2023-01-19 주식회사 엘지화학 Particle distributor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496104Y1 (en) * 1967-10-14 1974-02-13
JPS574814A (en) * 1980-06-11 1982-01-11 Nisshin Flour Milling Co Ltd Distributor for grain, etc.
JPH0616830B2 (en) * 1986-10-28 1994-03-09 日清製粉株式会社 Powder disperser
JP2546628Y2 (en) * 1991-06-26 1997-09-03 アンリツ株式会社 Distributed feeder
JP2533202Y2 (en) * 1991-06-26 1997-04-23 アンリツ株式会社 Distributed feeder

Also Published As

Publication number Publication date
WO2003031294A1 (en) 2003-04-17
JP4219272B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
CA1195815A (en) Bin activator apparatus
US9688467B2 (en) Gyrator feeder
US4276157A (en) Combination feeder and sifter
US20070170207A1 (en) Bin activator apparatus
US20140023466A1 (en) Gyrator feeder
US3819050A (en) Feed distributor for screening machine
US3752315A (en) Combination scalper cleaner
US3563420A (en) Vibratory evacuator
JP4219272B2 (en) Powder distribution device
US3254766A (en) Apparatus and method for sifting particulate bulk material
US3680697A (en) Vibratory grain cleaner with feed and discharge means
US4105143A (en) Device for discharging bulk material
JP4343937B2 (en) Combination weighing device
CN107379320A (en) Crosslinked with silicane material screen screening device
US3826367A (en) Grain cleaner
CN110479633B (en) Garlic grading and weighing mechanism
US3478406A (en) Screening separator
JPH0137189B2 (en)
JPS6314937Y2 (en)
US2702635A (en) Material handling
CN216297074U (en) Closed grading vibrating screen
JPH06298375A (en) Powder/grain material feeder
CN216606049U (en) Vibrating screen for powder
JPH1147692A (en) Vibrating separator
RU58392U1 (en) VIBRATION Sieve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4219272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term