JPWO2002075177A1 - Connecting rod - Google Patents

Connecting rod Download PDF

Info

Publication number
JPWO2002075177A1
JPWO2002075177A1 JP2002555082A JP2002555082A JPWO2002075177A1 JP WO2002075177 A1 JPWO2002075177 A1 JP WO2002075177A1 JP 2002555082 A JP2002555082 A JP 2002555082A JP 2002555082 A JP2002555082 A JP 2002555082A JP WO2002075177 A1 JPWO2002075177 A1 JP WO2002075177A1
Authority
JP
Japan
Prior art keywords
rubber
vibration
inner cylinder
divided
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002555082A
Other languages
Japanese (ja)
Inventor
井原 芳雄
芳雄 井原
高岡 政嗣
政嗣 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Publication of JPWO2002075177A1 publication Critical patent/JPWO2002075177A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/387Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type comprising means for modifying the rigidity in particular directions
    • F16F1/3873Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type comprising means for modifying the rigidity in particular directions having holes or openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/3807Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type characterised by adaptations for particular modes of stressing
    • F16F1/3814Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type characterised by adaptations for particular modes of stressing characterised by adaptations to counter axial forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/08Functional characteristics, e.g. variability, frequency-dependence pre-stressed

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Springs (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

本発明は、例えば、エンジン側と車体側とを連結する連結ロッドであり、ロッド本体(1)の両端に連続して設けられた筒体(2)に内装される防振ブッシュ(9)を軸方向に分割したものである。各分割体(9a)の内筒部(10)の軸方向外端側に内筒フランジ(13)を形成して、この内筒フランジ(13)にゴム状弾性体(11)と連続するゴム状弾性部(15)を固着する。分割体(9a)同士の軸方向の間隔を調整することによって、防振ブッシュ(9)の軸直角方向の減衰特性を低下させることなく、軸方向及びこじり方向の減衰特性を高めることができる。The present invention relates to, for example, a connecting rod for connecting an engine side and a vehicle body side, wherein a vibration-isolating bush (9) provided inside a cylindrical body (2) provided continuously at both ends of a rod body (1) is provided. It is divided in the axial direction. An inner cylinder flange (13) is formed on the axially outer end side of the inner cylinder portion (10) of each of the divided bodies (9a), and the inner cylinder flange (13) has a rubber continuous with the rubber-like elastic body (11). The elastic part (15) is fixed. By adjusting the distance between the divided bodies (9a) in the axial direction, the attenuation characteristics in the axial direction and the prying direction can be increased without reducing the attenuation characteristics in the direction perpendicular to the axis of the vibration isolating bush (9).

Description

[技術分野]
本発明は、例えば自動車のエンジンユニットと車体側とを連結し、エンジンユニットのロール方向の動きや振動を制御するための連結ロッドに関するものである。
[背景技術]
一般に、乗用車等の自動車に搭載されるエンジンは、トランスミッション等と共に、エンジンユニットに組み込まれて車体に装備される。このエンジンユニットは、防振マウントで支持されると共に、横置き(クランク軸を左右方向に配置)する場合、車輌走行方向の反対側に延びるトルクロッドと称される連結ロッドにより、その一部と車体側とが連結され、ロール方向(トルクロール軸周り)の動きや振動が制御されている。
第8図に連結ロッドの一例を示す。この連結ロッドは、金属製のパイプからなるロッド本体101の両端に、筒体102が連続して設けられており、各筒体102に、防振ブッシュ103が内装されている。この防振ブッシュ103は、内筒104の周囲に固着されたゴム状弾性体105の周囲に、外筒106が配置されてなり、その外筒106が筒体102に内嵌圧入される。
この連結ロッドは、その内筒104に、エンジン側及び車体側の軸部材が挿通されて、エンジンユニットと車体側とを連結し、エンジンユニットのロール方向の動きを規制する。このとき、エンジンユニットのロール方向の振動は、防振ブッシュ103のゴム状弾性体105が適度に圧縮変形することによって減衰される。
ところが、エンジンユニットは、ロール方向だけでなく、ロール方向に直交する方向(防振ブッシュ103の軸方向)にも振動する。このとき、防振ブッシュ103には、内筒104と外筒106とを互いにこじる方向の振動(内外筒104、106の中心軸同士を相対的に傾斜させる振動)や、内外筒104、106の軸方向の振動(内外筒104、106の相対的な振動)が作用する。
これに対して、防振ブッシュ103のゴム状弾性体105が適度に変形しながら内外筒104、106の相対的な動きを制限することによって、こじり振動や軸方向振動が減衰される。しかし、第8図に示す連結ロッドの防振ブッシュで103は直管状の内外筒104、106間にゴム状弾性体105を介在させた態様であるため、こじり振動や軸方向振動に対するゴム状弾性体105の剛性が低く、内外筒104、106の動きを十分に制限することができず、これらの振動に対する減衰性能を高めることができない。
これを解決するために、防振ブッシュ103を軸方向に長くして、こじり振動や軸方向振動に対する剛性を高める手法も考えられるが、このような構成では逆に、ロール方向の振動に対する減衰性能(ゴム状弾性体105の圧縮変形量)を確保することができない。
[発明の開示]
本発明は、ロッド本体と、その両端に連続して設けられた筒体と、各筒体に内装された防振ブッシュとを備え、この防振ブッシュが、少なくとも、軸部材が挿通される内筒と、その周囲に固着されたゴム状弾性体とを備えた連結ロッドを前提として、ロール方向(防振ブッシュの中心軸と直角方向)の振動に対する減衰性能を低下させることなく、その防振ブッシュのこじり振動や軸方向振動に対する減衰性能を高めることができる連結ロッドを提供しようとするものである。
その具体的手段として、内筒及びゴム状弾性体を軸方向に2分割し、これらの各分割体の内筒部の軸方向外端側に、軸直角方向で外向きの内筒フランジを形成し、この内筒フランジの軸方向内側面にフランジ側ゴム状弾性部を固着し、筒体の軸方向端面とフランジ側ゴム状弾性部とを接圧させる。
そうすれば、内筒フランジと筒体とで、フランジ側ゴム状弾性部を軸方向に圧縮するため、防振ブッシュの軸方向の剛性が高くなり、軸方向振動に対する防振ブッシュの減衰性能が高くなる。
また、同じ防振ブッシュを使用しても筒体の軸長さを長くすれば、分割体の軸方向の間隔が広くなり、両分割体のゴム状弾性体の圧縮によるこじり方向のモーメントが大きくなるため、ロール方向の振動に対する減衰性能を低下させることなく、こじり振動に対する剛性を高くして、その減衰性能を高めることができる。
上記構成の防振ブッシュは、外筒の有無を問わず適用できる。外筒がない場合、防振ブッシュのゴム状弾性体を直接筒体の内周面に圧入する態様となり、外筒がある場合は、外筒を筒体の内周面に圧入する態様となる。
外筒がある場合、すなわち、内外筒及びその間に介在されたゴム状弾性体からなる防振ブッシュの場合、内筒、外筒及びゴム状弾性体を軸方向に2分割し、これらの各分割体の内筒部及び外筒部の軸方向外端側に、軸直角方向で外向きの内筒フランジ及び外筒フランジを夫々形成し、この内筒フランジ及び外筒フランジ間に、ゴム状弾性体と連続するフランジ側ゴム状弾性部を固着する構成を採用することができる。
このような構成においては、各分割体の外筒フランジの内側面を筒体の軸方向端面に接触するまで筒体に圧入する使用態様となるため、上記の作用効果に付加して、各分割体は容易に軸方向での位置決めが可能となる。
さらに、上記分割体のゴム状弾性体に、軸方向に凹設されたすぐり部を備えれば、2方向特性の防振ブッシュを3方向特性にすることができ、設計の自由度を高めることができる。つまり、軸直角方向のうち、すぐり部が凹設された方向の剛性を低くして、すぐり部が凹設されていない方向の剛性を高くすることができる。また、すぐり部にゴム状弾性体とは異なるバネ特性のゴム状弾性部を介入することにより、設計の自由度をさらに高めることができる。
上記構成においては、分割体の外筒部を筒体に圧入することにより、分割体を筒体に一体化する構成を示したが、さらに、分割体の内筒部同士を軸方向で接合する手段を設ければ、さらに筒体との一体化が強固となる。
内筒部の接合手段としては、少なくとも両分割体のうちの一方の内筒部を軸方向内端側に延長して、この延長部に他方の内筒部を嵌合圧入する構成や、各分割体の内筒部を外嵌圧入可能な外径を有し、内部に軸部材を内嵌可能な筒状体を用いて、この筒状体に各分割体の内筒部を外嵌圧入する構成が例示できる。
延長部を設ける前者の接合手段では、さらに延長部に、他方の内筒部の内端部を当接可能な段差を形成すれば、両分割体を軸方向に所定の間隔で接合することができる。
これらの接合手段による分割体の接合状態において、両分割体を互いに軸方向で接近した状態とすれば、内筒フランジと外筒フランジとの間に介在されたゴム状弾性部を軸方向に予備圧縮させることができ、ゴム状弾性体の耐久性を向上させることができる。
また、本発明に係る連結ロッドの別の態様として、3分割構成の防振ブッシュを用いた態様を例示できる。すなわち、ロッド本体と、その両端に連続して設けられた筒体と、各筒体に内装された防振ブッシュとを備え、この防振ブッシュが、少なくとも、軸部材が挿通される内筒と、その周囲に配置されて筒体に内嵌圧入されるゴム状弾性体とを備えた連結ロッドを前提とする。
内筒及びゴム状弾性体を軸方向に3分割して、3つの分割体を構成する。これらの分割体のうち、軸方向両端側の分割体の内筒部の軸方向外端側に、軸直角方向で外向きの内筒フランジを形成し、この内筒フランジの軸方向内側面にゴム状弾性部を固着する。また、中央の分割体は、筒状の中央内筒部の周囲に、ゴム状弾性体が固着された構造として、両側の分割体の内筒部を中央分割体の中央内筒部に嵌合圧入可能とする。
そうすれば、軸方向両端側のゴム状弾性部によって、こじり振動及び軸方向振動を減衰させ、軸方向中央のゴム状弾性体によって、ロール方向の振動を減衰させるように、その役割を分担させることができる。このとき、中央分割体のゴム状弾性体のバネ特性と、両側分割体のゴム状弾性部のバネ特性とが、互いに異なるようにすることによって、設計の自由度を高めることができる。
[発明を実施するための最良の形態]
以下、本発明を実施するための最良の形態について、図面に基づいて説明する。本実施形態の連結ロッドは、例えば金属製のパイプからなるロッド本体1の両端に、金属製の筒体2が連続して設けられ、この筒体2に各種の防振ブッシュ3、9、16、19、21、26、28が内装されている。
この連結ロッドは、これらの防振ブッシュ3、9、16、19、21、26、28の内筒に、例えば、エンジン側及び車体側の軸部材が挿通されることによって、エンジンユニットと車体側とを連結し、エンジンユニットの動きを規制すると共に、その振動を減衰する。
まず、第1図に示す第1実施形態の連結ロッドについて説明する。この連結ロッドの防振ブッシュ3は、その軸方向に分割された2つの分割体3aからなる。各分割体3aは、軸部材が挿通される内筒部4の周囲に、リング状のゴム状弾性体5が固着され、このゴム状弾性体5の周囲に配置された外筒部6がゴム状弾性体5に固着された構成とされている。
各内筒部4の軸方向外端側には、軸直角方向で外向きの内筒フランジ7が形成され、この内筒フランジ7の軸方向内側面には、フランジ側ゴム状弾性部8が固着されている。これらの分割体3aは、その外筒部6が筒体2の両端部に内嵌圧入され、筒体2の軸方向端面とフランジ側ゴム状弾性部8とが接圧されるように、防振ブッシュ3が筒体2に内装される。
上記構成によれば、軸方向振動時には、内筒フランジ7と筒体2とによって、ゴム状弾性部8が軸方向に圧縮され、内筒部4と外筒部6との相対的な軸方向変位を適度に制限する。そのため、軸方向振動に対する防振ブッシュの減衰性能が高くなる。一方、軸直角方向(ロール方向)の振動に対しては、ゴム状弾性体5の圧縮面積を小さくできるので、ゴム状弾性体5を適度に変形させて所定の減衰性能を確保することができる。
また、分割体3aは、筒体2の両端部に装着されるため、筒体2の内径が等しければ、あらゆる軸方向長さの筒体2に対して、同じ分割体3aを用いることができる。このとき、筒体2の軸長さを長くして分割体3a同士の軸方向における間隔を広くすることにより、両分割体3aのゴム状弾性体5の圧縮及びゴム状弾性部8のせん断によるこじり方向のモーメントが大きくなるため、こじり振動時の変位を小さくすることができる。すなわち、筒体2の軸長さを調整することによって、こじり振動時の変位を適度に制限して、その減衰性能を高めることができる。
なお、外筒部6を設けることなく、内筒部4及びゴム状弾性体5から構成した分割体3aを筒体2に内嵌圧入するようにしてもよい。
次に、第2図に示す第2実施形態の連結ロッドについて説明する。この連結ロッドの防振ブッシュ9は、第1実施形態と同様に、2つの分割体9aからなり、各分割体9aは、内筒部10の周囲に、リング状のゴム状弾性体11が固着され、その周囲に外筒部12が固着されて構成されている。
内筒部10及び外筒部12の軸方向外端側には、軸直角方向で外向きの内筒フランジ13及び外筒フランジ14が夫々形成されている。これらの内筒フランジ13と外筒フランジ14との間には、ゴム状弾性体11と連続するフランジ側ゴム状弾性部15が、両フランジ13、14によって軸方向に挟まれるように固着されている。また、これらの分割体9aは、両外筒フランジ14が筒体2の両端面に当接するように、その外筒部12が筒体2の両端部に内嵌圧入されて、防振ブッシュ9が筒体2に内装される。
上記構成によれば、両外筒フランジ14の内側面が筒体2の軸方向両端面に接触するまで、各分割体9aを筒体2に内嵌圧入するため、各分割体9aの筒体2に対する軸方向の位置決めが容易になる。
また、軸方向振動時及びこじり振動時には、両フランジ13、14によって、フランジ側ゴム状弾性部15が軸方向に圧縮されるため、内外筒部10、12の軸方向及びこじり方向における相対的な変位が適度に制限され、その減衰性能が高くなる。また、この連結ロッドは、これ以外にも、第1実施形態の連結ロッドと同じ効果を有する。
次に、第3図に示す第3実施形態の連結ロッドについて説明する。この連結ロッドの防振ブッシュ16は、第2実施形態の連結ロッドにおける各分割体9aのゴム状弾性体11に、すぐり部17を軸方向に凹設してゴム状弾性体18を形成し、分割体16aを構成したものである。
このすぐり部17は、各ゴム状弾性体18の内端側に、それぞれ2箇所ずつ設けられ、軸直角方向において、これらのすぐり部17が、内筒部10を中心にして互いに反対側に配置されている。
上記構成によれば、軸直角方向のうち、すぐり部17が設けられた方向と、すぐり部17が設けられていない方向とでは、ゴム状弾性体18の剛性が異なる。そのため、従来の防振ブッシュが、軸方向及び軸直角方向の2方向特性であるのに対して、この防振ブッシュ16は、軸方向及び2方向の軸直角方向の3方向特性であり、設計の自由度を高めることができる。
次に、第4図に示す第4実施形態の連結ロッドについて説明する。この連結ロッドの防振ブッシュ19は、第3実施形態の連結ロッドにおける各分割体16aのゴム状弾性体18のすぐり部17に、ゴム状弾性体18とは異なるバネ特性のゴム状弾性部20を介入して分割体19aを構成したものである。
上記構成によれば、第3実施形態の連結ロッドと同じ効果に加えて、ゴム状弾性部20のバネ特性を調整することによって、設計の自由度をさらに高めることができる。
次に、第5図に示す第5実施形態の連結ロッドについて説明する。この連結ロッドの防振ブッシュ21は、内筒部22a、22bを互いに嵌合させて、2つの分割体21a、21bを軸方向で接続したものである。このうち、分割体21aは、第2実施形態の連結ロッドの分割体9aにおいて、その内筒部10を軸方向内端側に延長したものである。また、分割体21bは、第2実施形態の連結ロッドの分割体9aと同じものであり、分割体21aの内筒部22aの延長部23に、内筒部22bを外嵌圧入することにより、分割体21aと軸方向で接続される。
内筒部22aにおいて、その延長部23の肉厚は本体部分24の肉厚よりも薄くされ、内筒部22aの外周側に段差25が形成されている。この段差25は、内筒部22bの肉厚と同じ大きさとされており、両分割体21a、21bで、ゴム状弾性体11が固着される部分の外径が等しくされ、ゴム状弾性体11の軸直角方向の厚さが等しくされている。
なお、筒体2に内嵌することなく両分割体21a、21bを接続し、内筒部22bの内端部を内筒部22aの段差25に当接させたときの、両外筒フランジ14同士の間隔は、筒体2の軸方向長さよりも短くされる。
上記構成によれば、両分割体21a、21bの内筒部22a、22b同士を接続することにより、筒体2との一体化をより強固にすることができる。このとき、段差25に内筒部22bの内端部を当接させることによって、内筒部22aに対する内筒部22bの軸方向の位置を所定の位置とすることができる。
また、筒体2の両端に内嵌圧入しながら両分割体21a、21bを接続するとき、外筒フランジ14が筒体2の両端面に当接した時点では、内筒部22bの内端部が段差25に当接しない。そのため、内筒部22bの内端部と段差25とを当接させることにより、内筒フランジ13及び外筒フランジ14によって、ゴム状弾性部15が予備圧縮され、ゴム状弾性部15の耐久性が向上する。
なお、段差25は、内筒部22aの外周側に設けるだけでなく、内周側に段差25設けて、延長部23に、分割体21bの内筒部22bを内嵌圧入するようにしてもよい。また、段差25を設けなくてもよく、ゴム状弾性部15を予備圧縮しなくてもよい。
次に、第6図に示す第6実施形態の連結ロッドについて説明する。この連結ロッドの防振ブッシュ26は、筒状体27に、第2実施形態の連結ロッドの内筒部10を外嵌圧入することにより、両分割体9aを軸方向で接続したものである。なお、筒状体27の内径は、エンジン側及び車体側の軸部材を内嵌可能な大きさとされる。
上記構成によれば、第5実施形態の連結ロッドと同様、両分割体9a同士を接続し、筒体2との一体化をより強固にすることができる。また、両分割体9aを互いに軸方向で接近した状態として、ゴム状弾性部15を予備圧縮することによって、ゴム状弾性部15の耐久性を向上させることができる。
次に、第7図に示す第7実施形態の連結ロッドについて説明する。この連結ロッドの防振ブッシュ28は、2つの両端側分割体28aと、1つの中央分割体28bとからなる。
このうち、両端側分割体28aは、両端側内筒部29aの軸方向外端側に、軸直角方向で外向きの内筒フランジ31が形成され、この内筒フランジ31の軸方向内側面に、フランジ側ゴム状弾性部32が固着された構成とされている。
中央分割体28bは、中央内筒部29bの軸方向で、中央付近の周囲に、リング状のゴム状弾性体30が固着された構成とされている。この中央分割体28bは筒体2に内装され、その中央内筒部29bの軸方向で両端部に、両端側内筒部29aが外嵌圧入されて、2つの両端側分割体28aと、1つの中央分割体28bとが軸方向に接続される。
このとき、フランジ側ゴム状弾性部32は、筒体2の軸方向端面に接圧されて、予備圧縮される。また、両端側分割体28aのフランジ側ゴム状弾性部32と、中央分割体28bのゴム状弾性体30とは、互いに異なるバネ特性とされる。
上記構成によれば、両端側分割体28aのフランジ側ゴム状弾性部32と、中央分割体28bのゴム状弾性体30とで、その役割を分担させることができる。すなわち、軸方向振動及びこじり振動は、フランジ側ゴム状弾性部32が減衰させ、軸直角方向の振動はゴム状弾性体30が減衰させる。このとき、フランジ側ゴム状弾性部32と、ゴム状弾性体30とを互いに異なるバネ特性にすることによって、設計の自由度を高めることができる。なお、フランジ側ゴム状弾性部32と、ゴム状弾性体30とは、同じバネ特性であってもよい。
[産業上の利用可能性]
以上の説明から明らかなように、本発明の連結ロッドは、防振ブッシュを軸方向に分割することにより、防振ブッシュの軸直角方向の振動に対する減衰特性を低下させることなく、防振ブッシュの軸方向やこじり方向の振動に対する減衰特性を高めることができるので、エンジン側と車体側とを連結するトルクロッドとして、この連結ロッドを用いれば、エンジンユニットのロール方向だけでなく、ロール方向に直交する方向の動きや振動を制御することができる。
【図面の簡単な説明】
第1図は、本発明の第1実施形態の連結ロッドにおける、防振ブッシュの軸方向断面図である。
第2図は、第2実施形態の連結ロッドにおける、防振ブッシュの軸方向断面図である。
第3図の内、(a)は第3実施形態の連結ロッドにおける、防振ブッシュの軸方向断面図であり、(b)はそのA−A断面図である。
第4図の内、(a)は第4実施形態の連結ロッドにおける、防振ブッシュの軸方向断面図であり、(b)はそのA−A断面図である。
第5図は、第5実施形態の連結ロッドにおける、防振ブッシュの軸方向断面図である。
第6図は、第6実施形態の連結ロッドにおける防振ブッシュの軸方向断面図である。
第7図は、第7実施形態の連結ロッドにおける防振ブッシュの軸方向断面図である。
第8図の内、(a)は従来の連結ロッドの側面図であり、(b)はそのA−A断面図である。
1 ロッド本体 21 防振ブッシュ
2 筒体 21a 分割体
3 防振ブッシュ 21b 分割体
3a 分割体 22a 内筒部
4 内筒部 22b 内筒部
5 ゴム状弾性体 23 延長部
6 外筒部 24 本体部分
7 内筒フランジ 25 段差
8 フランジ側ゴム状弾性部 26 防振ブッシュ
9 防振ブッシュ 27 筒状体
9a 分割体 28 防振ブッシュ
10 内筒部 28a 両端側内筒部
11 ゴム状弾性体 28b 中央分割体
12 外筒部 29a 両端側内筒部
13 内筒フランジ 29b 中央内筒部
14 外筒フランジ 30 ゴム状弾性体
15 フランジ側ゴム状弾性部 31 内筒フランジ
16 防振ブッシュ 32 フランジ側ゴム状弾性部
17 すぐり部
18 ゴム状弾性体
19 防振ブッシュ
20 ゴム状弾性部
[Technical field]
The present invention relates to a connecting rod for connecting, for example, an engine unit of an automobile to a vehicle body and controlling movement and vibration of the engine unit in a roll direction.
[Background Art]
Generally, an engine mounted on an automobile such as a passenger car is incorporated in an engine unit together with a transmission and mounted on a vehicle body. This engine unit is supported by an anti-vibration mount and, when placed horizontally (with the crankshaft arranged in the left-right direction), a part of the engine unit is connected by a connecting rod called a torque rod extending on the opposite side in the vehicle running direction. The body and the vehicle are connected, and movement and vibration in the roll direction (around the torque roll axis) are controlled.
FIG. 8 shows an example of the connecting rod. In this connecting rod, cylindrical bodies 102 are continuously provided at both ends of a rod body 101 made of a metal pipe, and a vibration-proof bush 103 is provided in each cylindrical body 102. The vibration-proof bush 103 has an outer cylinder 106 disposed around a rubber-like elastic body 105 fixed around the inner cylinder 104, and the outer cylinder 106 is press-fitted into the cylinder 102.
The connecting rod has shaft members on the engine side and the vehicle body side inserted through the inner cylinder 104 to connect the engine unit and the vehicle body side, thereby restricting the movement of the engine unit in the roll direction. At this time, the vibration in the roll direction of the engine unit is attenuated by the rubber-like elastic body 105 of the vibration-proof bush 103 being appropriately compressed and deformed.
However, the engine unit vibrates not only in the roll direction but also in a direction perpendicular to the roll direction (axial direction of the vibration-proof bush 103). At this time, the vibration isolating bush 103 includes vibration in the direction in which the inner cylinder 104 and the outer cylinder 106 are prying each other (vibration that causes the center axes of the inner and outer cylinders 104 and 106 to relatively tilt) and the vibration of the inner and outer cylinders 104 and 106. Axial vibration (relative vibration of the inner and outer cylinders 104 and 106) acts.
On the other hand, by restricting the relative movement of the inner and outer cylinders 104 and 106 while the rubber-like elastic body 105 of the vibration-proof bush 103 is appropriately deformed, the torsional vibration and the axial vibration are attenuated. However, in the vibration isolating bush 103 of the connecting rod shown in FIG. 8, since the rubber-like elastic body 105 is interposed between the straight tubular inner and outer cylinders 104 and 106, the rubber-like elasticity against twisting vibration and axial vibration is obtained. The rigidity of the body 105 is low, the movement of the inner and outer cylinders 104 and 106 cannot be sufficiently restricted, and the damping performance against these vibrations cannot be enhanced.
In order to solve this, it is conceivable to increase the rigidity against twisting vibration and axial vibration by lengthening the vibration isolating bush 103 in the axial direction. However, in such a configuration, on the contrary, the damping performance against the vibration in the roll direction is considered. (The amount of compressive deformation of the rubber-like elastic body 105) cannot be ensured.
[Disclosure of the Invention]
The present invention includes a rod body, a cylinder continuously provided at both ends thereof, and an anti-vibration bush provided in each of the cylinders. Assuming a connecting rod having a cylinder and a rubber-like elastic body fixed around the cylinder, without damping performance against vibration in the roll direction (perpendicular to the central axis of the vibration-isolating bush), the vibration-isolating function is achieved. An object of the present invention is to provide a connecting rod capable of improving the damping performance of the bush against torsional vibration and axial vibration.
As a specific means, the inner cylinder and the rubber-like elastic body are divided into two in the axial direction, and an inner cylinder flange outward in the direction perpendicular to the axis is formed at the axially outer end side of the inner cylinder part of each of these divided bodies. Then, a flange-side rubber-like elastic portion is fixed to the axially inner side surface of the inner cylinder flange, and the axial end surface of the cylindrical body and the flange-side rubber-like elastic portion are brought into pressure contact with each other.
Then, since the flange-side rubber-like elastic portion is axially compressed by the inner cylinder flange and the cylinder, the axial rigidity of the vibration-isolating bush is increased, and the damping performance of the vibration-isolating bush against the axial vibration is increased. Get higher.
Even if the same anti-vibration bush is used, if the axial length of the cylindrical body is increased, the axial distance between the divided bodies is increased, and the moment in the twisting direction due to the compression of the rubber-like elastic body of both divided bodies is increased. Therefore, it is possible to increase the rigidity against the prying vibration and reduce the damping performance without reducing the damping performance against the vibration in the roll direction.
The anti-vibration bush having the above configuration can be applied regardless of the presence or absence of the outer cylinder. When there is no outer cylinder, the rubber-like elastic body of the vibration isolating bush is directly pressed into the inner peripheral surface of the cylindrical body. When there is the outer cylinder, the outer cylinder is pressed into the inner peripheral surface of the cylindrical body. .
When there is an outer cylinder, that is, in the case of an anti-vibration bush made of an inner and outer cylinder and a rubber-like elastic body interposed therebetween, the inner cylinder, the outer cylinder and the rubber-like elastic body are divided into two parts in the axial direction, and each of these divisions is performed. An inner cylinder flange and an outer cylinder flange which are outwardly directed in the direction perpendicular to the axis are formed on the outer end side in the axial direction of the inner cylinder part and the outer cylinder part of the body, respectively, and rubber-like elasticity is provided between the inner cylinder flange and the outer cylinder flange. A configuration in which the flange-side rubber-like elastic portion continuous with the body is fixed can be adopted.
In such a configuration, since the inner side surface of the outer cylinder flange of each divided body is pressed into the cylindrical body until it comes into contact with the axial end surface of the cylindrical body, in addition to the above effects, each divided body The body can be easily positioned in the axial direction.
Furthermore, if the rubber-like elastic body of the above-mentioned divided body is provided with a threaded portion that is provided in the axial direction, the vibration-isolating bush having the two-way characteristics can be made the three-way characteristics, and the degree of freedom in design can be increased. Can be. That is, in the direction perpendicular to the axis, the rigidity in the direction in which the recess is recessed can be reduced, and the rigidity in the direction in which the recess is not recessed can be increased. Further, by interposing a rubber-like elastic portion having a spring characteristic different from that of the rubber-like elastic body in the hollow portion, the degree of freedom in design can be further increased.
In the above-described configuration, the configuration has been described in which the split body is integrated with the cylindrical body by press-fitting the outer cylindrical portion of the split body into the cylindrical body, but the inner cylindrical portions of the split bodies are further joined in the axial direction. If the means is provided, the integration with the cylindrical body is further strengthened.
As the joining means of the inner cylinder portion, at least one of the two divided bodies is extended toward the inner end side in the axial direction, and the other inner cylinder portion is fitted and press-fitted into the extended portion. Using a cylindrical body having an outer diameter capable of externally fitting and press-fitting the inner cylindrical portion of the divided body, the inner cylindrical portion of each divided body is externally press-fitted into this cylindrical body. The following configuration can be exemplified.
In the former joining means for providing the extension portion, if the extension portion is further formed with a step capable of contacting the inner end portion of the other inner cylindrical portion, the two divided bodies can be joined at a predetermined interval in the axial direction. it can.
If the divided bodies are brought close to each other in the axial direction in the joined state of the divided bodies by these joining means, the rubber-like elastic portion interposed between the inner cylinder flange and the outer cylinder flange is spared in the axial direction. It can be compressed, and the durability of the rubber-like elastic body can be improved.
Further, as another embodiment of the connecting rod according to the present invention, an embodiment using a vibration-isolating bush having a three-part configuration can be exemplified. That is, a rod body, a cylinder provided continuously at both ends thereof, and an anti-vibration bush provided in each cylinder, the anti-vibration bush is at least an inner cylinder through which a shaft member is inserted. The connecting rod is provided with a rubber-like elastic body which is disposed around the inner periphery and is press-fitted into the cylindrical body.
The inner cylinder and the rubber-like elastic body are divided into three in the axial direction to form three divided bodies. Of these divided bodies, on the axially outer end side of the inner cylindrical portion of the divided body at both ends in the axial direction, an outwardly directed inner cylindrical flange is formed in a direction perpendicular to the axis, and on the axially inner side surface of the inner cylindrical flange. The rubber-like elastic part is fixed. In addition, the center divided body has a structure in which a rubber-like elastic body is fixed around a cylindrical central inner cylinder part, and the inner cylinder parts of the divided bodies on both sides are fitted to the central inner cylinder part of the central divided body. Press fit is possible.
Then, the rubber-like elastic portions at both ends in the axial direction attenuate the torsional vibration and the axial vibration, and the rubber-like elastic body at the center in the axial direction shares the role of attenuating the vibration in the roll direction. be able to. At this time, the degree of freedom in design can be increased by making the spring characteristics of the rubber-like elastic body of the center divided body and the spring characteristics of the rubber-like elastic parts of the both-side divided bodies different from each other.
[Best Mode for Carrying Out the Invention]
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. In the connecting rod of the present embodiment, for example, a metal cylinder 2 is continuously provided on both ends of a rod body 1 made of a metal pipe, and various anti-vibration bushes 3, 9, 16 are provided on the cylinder 2. , 19, 21, 26, and 28 are provided.
The connecting rod is connected to the engine unit and the vehicle body by inserting shaft members on the engine side and the vehicle body side into the inner cylinders of the vibration isolating bushes 3, 9, 16, 19, 21, 26, and 28, for example. To regulate the movement of the engine unit and attenuate its vibration.
First, the connecting rod of the first embodiment shown in FIG. 1 will be described. The anti-vibration bush 3 of the connecting rod is composed of two divided bodies 3a divided in the axial direction. In each of the divided bodies 3a, a ring-shaped rubber-like elastic body 5 is fixed around an inner cylinder part 4 through which a shaft member is inserted, and an outer cylinder part 6 disposed around the rubber-like elastic body 5 is made of rubber. It is configured to be fixed to the elastic body 5.
On the outer end side in the axial direction of each of the inner cylinder portions 4, an inner cylinder flange 7 which is outward in the direction perpendicular to the axis is formed, and a flange-side rubber-like elastic portion 8 is formed on the inner surface of the inner cylinder flange 7 in the axial direction. It is fixed. These divided bodies 3a are prevented so that the outer cylinder part 6 is fitted and pressed into both ends of the cylinder body 2 so that the axial end face of the cylinder body 2 and the flange-side rubber-like elastic part 8 are brought into contact with each other. A vibration bush 3 is provided inside the cylindrical body 2.
According to the above configuration, at the time of vibration in the axial direction, the rubber-like elastic portion 8 is compressed in the axial direction by the inner cylinder flange 7 and the cylinder 2, and the relative axial direction of the inner cylinder 4 and the outer cylinder 6. Limit displacement moderately. Therefore, the damping performance of the vibration isolating bush against the axial vibration is improved. On the other hand, with respect to vibration in the direction perpendicular to the axis (roll direction), the compression area of the rubber-like elastic body 5 can be reduced, so that the rubber-like elastic body 5 can be appropriately deformed to secure a predetermined damping performance. .
Further, since the divided bodies 3a are attached to both ends of the cylindrical body 2, the same divided bodies 3a can be used for the cylindrical bodies 2 having any length in the axial direction as long as the inner diameters of the cylindrical bodies 2 are equal. . At this time, by increasing the axial length of the cylindrical body 2 and widening the interval between the divided bodies 3a in the axial direction, the compression of the rubber-like elastic body 5 and the shearing of the rubber-like elastic part 8 of both divided bodies 3a are caused. Since the moment in the twisting direction increases, the displacement during the twisting vibration can be reduced. That is, by adjusting the axial length of the cylindrical body 2, the displacement at the time of the prying vibration can be appropriately restricted, and the damping performance thereof can be enhanced.
Note that, without providing the outer cylinder 6, the divided body 3 a constituted by the inner cylinder 4 and the rubber-like elastic body 5 may be fitted into the cylinder 2 by press-fitting.
Next, the connecting rod of the second embodiment shown in FIG. 2 will be described. The anti-vibration bush 9 of this connecting rod is composed of two divided bodies 9a as in the first embodiment, and each of the divided bodies 9a has a ring-shaped rubber-like elastic body 11 fixed around the inner cylindrical portion 10. The outer cylindrical portion 12 is fixed to the periphery thereof.
An inner cylinder flange 13 and an outer cylinder flange 14 are formed on the axially outer end sides of the inner cylinder part 10 and the outer cylinder part 12, respectively, and extend outward in a direction perpendicular to the axis. Between the inner cylinder flange 13 and the outer cylinder flange 14, a flange-side rubber-like elastic portion 15 continuous with the rubber-like elastic body 11 is fixed so as to be sandwiched in the axial direction by the two flanges 13 and 14. I have. Further, these divided bodies 9a are fitted into the outer cylinder parts 12 at both ends of the cylinder body 2 so that the outer cylinder flanges 14 abut on both end faces of the cylinder body 2. Is installed in the cylindrical body 2.
According to the above configuration, each of the divided bodies 9a is press-fitted into the cylindrical body 2 until the inner side surfaces of the two outer cylindrical flanges 14 come into contact with both axial end surfaces of the cylindrical body 2. 2 can be easily positioned in the axial direction.
Further, at the time of the axial vibration and the twisting vibration, the flange-side rubber-like elastic portion 15 is compressed in the axial direction by the two flanges 13 and 14, so that the relative inner and outer cylindrical portions 10 and 12 in the axial direction and the twisting direction are formed. Displacement is moderately limited and its damping performance is enhanced. In addition, this connecting rod has the same effect as the connecting rod of the first embodiment in addition to the above.
Next, the connecting rod of the third embodiment shown in FIG. 3 will be described. The vibration-isolating bush 16 of the connecting rod is formed by forming a rubber-like elastic body 18 by forming a recess 17 in the axial direction in the rubber-like elastic body 11 of each divided body 9a in the connecting rod of the second embodiment. This constitutes a divided body 16a.
The bulges 17 are provided at two locations on the inner end side of each rubber-like elastic body 18, respectively. These bulges 17 are arranged on opposite sides of the inner cylinder 10 in the direction perpendicular to the axis. Have been.
According to the above configuration, the rigidity of the rubber-like elastic body 18 is different between the direction in which the straightening portion 17 is provided and the direction in which the straightening portion 17 is not provided among the directions perpendicular to the axis. Therefore, while the conventional anti-vibration bush has two-directional characteristics in the axial direction and the direction perpendicular to the axis, the anti-vibration bush 16 has three-directional characteristics in the axial direction and the two directions perpendicular to the axis. Degree of freedom can be increased.
Next, a connecting rod according to a fourth embodiment shown in FIG. 4 will be described. The anti-vibration bush 19 of the connecting rod is provided with a rubber-like elastic part 20 having a spring characteristic different from that of the rubber-like elastic body 18 on the bend 17 of the rubber-like elastic body 18 of each divided body 16a of the connecting rod of the third embodiment. To form the divided body 19a.
According to the above configuration, in addition to the same effects as the connecting rod of the third embodiment, the degree of freedom in design can be further increased by adjusting the spring characteristics of the rubber-like elastic portion 20.
Next, the connecting rod of the fifth embodiment shown in FIG. 5 will be described. The anti-vibration bush 21 of the connecting rod is formed by fitting the inner cylindrical portions 22a and 22b to each other and connecting the two divided bodies 21a and 21b in the axial direction. Among them, the divided body 21a is obtained by extending the inner cylindrical portion 10 of the divided body 9a of the connecting rod of the second embodiment toward the inner end in the axial direction. Further, the divided body 21b is the same as the divided body 9a of the connecting rod of the second embodiment, and the inner cylinder 22b is externally press-fitted into the extension 23 of the inner cylinder 22a of the divided body 21a. It is connected to the divided body 21a in the axial direction.
In the inner cylindrical portion 22a, the thickness of the extension portion 23 is made smaller than the thickness of the main body portion 24, and a step 25 is formed on the outer peripheral side of the inner cylindrical portion 22a. The step 25 has the same size as the thickness of the inner cylindrical portion 22b. The outer diameter of the portion where the rubber-like elastic body 11 is fixed is equal between the two divided bodies 21a and 21b. Are made equal in thickness in the direction perpendicular to the axis.
In addition, when the two divided bodies 21a and 21b are connected without being fitted inside the cylindrical body 2, the outer cylindrical flanges 14 when the inner end of the inner cylindrical part 22b is brought into contact with the step 25 of the inner cylindrical part 22a. The interval between them is shorter than the axial length of the cylinder 2.
According to the above configuration, by connecting the inner cylinder portions 22a and 22b of both the divided bodies 21a and 21b, the integration with the cylinder 2 can be further strengthened. At this time, by bringing the inner end of the inner cylindrical portion 22b into contact with the step 25, the axial position of the inner cylindrical portion 22b with respect to the inner cylindrical portion 22a can be set to a predetermined position.
Further, when connecting the two divided bodies 21a and 21b while press-fitting the inner ends of the cylindrical body 2 at the both ends, when the outer cylindrical flange 14 comes into contact with both end surfaces of the cylindrical body 2, the inner end of the inner cylindrical part 22b is formed. Does not contact the step 25. Therefore, by bringing the inner end portion of the inner cylindrical portion 22b into contact with the step 25, the rubber elastic portion 15 is pre-compressed by the inner cylindrical flange 13 and the outer cylindrical flange 14, and the durability of the rubber elastic portion 15 is improved. Is improved.
The step 25 may be provided not only on the outer peripheral side of the inner cylindrical portion 22a but also on the inner peripheral side so that the inner cylindrical portion 22b of the divided body 21b is press-fitted into the extension portion 23. Good. Further, the step 25 need not be provided, and the rubber-like elastic portion 15 does not need to be pre-compressed.
Next, a connecting rod of a sixth embodiment shown in FIG. 6 will be described. The anti-vibration bush 26 of the connecting rod is formed by connecting the two divided bodies 9a in the axial direction by press-fitting the inner cylindrical portion 10 of the connecting rod of the second embodiment into the cylindrical body 27. The inner diameter of the cylindrical body 27 is set to a size that allows the shaft members on the engine side and the vehicle body side to be fitted inside.
According to the configuration described above, similarly to the connecting rod of the fifth embodiment, the two divided bodies 9a can be connected to each other, and the integration with the cylindrical body 2 can be further strengthened. In addition, the durability of the rubber-like elastic portion 15 can be improved by pre-compressing the rubber-like elastic portion 15 with the two divided bodies 9a approaching each other in the axial direction.
Next, a connecting rod of a seventh embodiment shown in FIG. 7 will be described. The anti-vibration bush 28 of the connecting rod includes two end divided bodies 28a and one central divided body 28b.
Of these, the both-end split body 28a has an inner cylinder flange 31 that is outwardly directed in the direction perpendicular to the axis at the axially outer end side of the inner cylinder portion 29a at both ends, and is formed on the inner surface of the inner cylinder flange 31 in the axial direction. The flange-side rubber-like elastic portion 32 is fixed.
The central split body 28b is configured such that a ring-shaped rubber-like elastic body 30 is fixed around the center in the axial direction of the central inner cylindrical portion 29b. The center divided body 28b is housed in the cylindrical body 2, and the both end side inner cylindrical parts 29a are externally fitted and press fitted to both ends in the axial direction of the center inner cylindrical part 29b. The two center division bodies 28b are connected in the axial direction.
At this time, the flange-side rubber-like elastic portion 32 is pressed against the axial end surface of the cylindrical body 2 and is pre-compressed. The flange-side rubber-like elastic portion 32 of the both-end side split body 28a and the rubber-like elastic body 30 of the center split body 28b have different spring characteristics.
According to the above-described configuration, the role of the rubber elastic body 32 on the flange side of the divided body 28a on both ends and the elastic rubber body 30 of the divided body 28b can be shared. That is, the axial vibration and the prying vibration are attenuated by the rubber elastic portion 32 on the flange side, and the vibration in the direction perpendicular to the axis is attenuated by the rubber elastic body 30. At this time, the degree of freedom in design can be increased by setting the flange-side rubber-like elastic portion 32 and the rubber-like elastic body 30 to have different spring characteristics from each other. Note that the flange-side rubber-like elastic portion 32 and the rubber-like elastic body 30 may have the same spring characteristics.
[Industrial applicability]
As is clear from the above description, the connecting rod of the present invention divides the anti-vibration bush in the axial direction, thereby reducing the damping characteristics of the anti-vibration bush against vibration in the direction perpendicular to the axis. Since the damping characteristics against vibration in the axial direction and the twisting direction can be enhanced, if this connecting rod is used as a torque rod connecting the engine side and the vehicle body side, not only in the roll direction of the engine unit but also in a direction perpendicular to the roll direction. It can control the movement and vibration in the direction of movement.
[Brief description of the drawings]
FIG. 1 is an axial sectional view of an anti-vibration bush in a connecting rod according to a first embodiment of the present invention.
FIG. 2 is an axial sectional view of an anti-vibration bush in a connecting rod according to a second embodiment.
3A is an axial cross-sectional view of a vibration-isolating bush in the connecting rod of the third embodiment, and FIG. 3B is an A-A cross-sectional view thereof.
4A is an axial cross-sectional view of an anti-vibration bush in the connecting rod of the fourth embodiment, and FIG. 4B is an A-A cross-sectional view thereof.
FIG. 5 is an axial sectional view of an anti-vibration bush in a connecting rod according to a fifth embodiment.
FIG. 6 is an axial sectional view of an anti-vibration bush in a connecting rod according to a sixth embodiment.
FIG. 7 is an axial sectional view of an anti-vibration bush in a connecting rod according to a seventh embodiment.
8, (a) is a side view of a conventional connecting rod, and (b) is a cross-sectional view taken along line AA.
DESCRIPTION OF SYMBOLS 1 Rod main body 21 Vibration-proof bush 2 Cylindrical body 21a Divided body 3 Vibration-proof bush 21b Divided body 3a Divided body 22a Inner cylinder part 4 Inner cylinder part 22b Inner cylinder part 5 Rubbery elastic body 23 Extension part 6 Outer cylinder part 24 Body part 7 Internal cylinder flange 25 Step 8 Flange side rubber-like elastic part 26 Vibration-proof bush 9 Vibration-proof bush 27 Cylindrical body 9a Divided body 28 Vibration-proof bush 10 Inner cylindrical part 28a Both-end side inner cylindrical part 11 Rubber-like elastic body 28b Central division Body 12 Outer cylinder part 29a Both end side inner cylinder part 13 Inner cylinder flange 29b Central inner cylinder part 14 Outer cylinder flange 30 Rubber-like elastic body 15 Flange-side rubber-like elastic part 31 Inner cylinder flange 16 Vibration-proof bush 32 Flange-side rubber-like elasticity Part 17 part 18 rubber-like elastic body 19 vibration-proof bush 20 rubber-like elastic part

Claims (12)

ロッド本体と、その両端に連続して設けられた筒体と、各筒体に内装された防振ブッシュとを備え、前記防振ブッシュは、少なくとも、軸部材が挿通される内筒と、その周囲に固着されたゴム状弾性体とを備え、これら内筒及びゴム状弾性体が軸方向に2分割され、各分割体の内筒部の軸方向外端側に軸直角方向で外向きの内筒フランジが形成されると共に該内筒フランジの軸方向内側面にフランジ側ゴム状弾性部が固着されたことを特徴とする連結ロッド。A rod body, a cylinder provided continuously at both ends thereof, and a vibration-isolating bush provided in each cylinder, wherein the vibration-isolating bush includes at least an inner cylinder through which a shaft member is inserted, A rubber-like elastic body fixed to the periphery, the inner cylinder and the rubber-like elastic body are divided into two in the axial direction, and the inner cylinder and the rubber-like elastic body are directed outward in the direction perpendicular to the axis to the axially outer end side of the inner cylinder part of each divided body. A connecting rod having an inner cylinder flange formed thereon and a flange-side rubber-like elastic portion fixed to an axially inner side surface of the inner cylinder flange. 前記防振ブッシュは、前記ゴム状弾性体の周囲に前記筒体に内嵌圧入される外筒が配置された請求の範囲第1項記載の連結ロッド。The connecting rod according to claim 1, wherein the vibration-isolating bush is provided with an outer cylinder which is fitted and press-fitted into the cylindrical body around the rubber-like elastic body. ロッド本体と、その両端に連続して設けられた筒体と、各筒体に内装された防振ブッシュとを備え、前記防振ブッシュは、軸部材が挿通される内筒と、その周囲に配置され前記筒体に内嵌圧入される外筒と、該外筒と内筒との間に介在されて固着されたゴム状弾性体とを備え、これら内筒、外筒及びゴム状弾性体が軸方向に2分割され、各分割体の内筒部及び外筒部の軸方向外端側に軸直角方向で外向きの内筒フランジ及び外筒フランジが夫々形成されると共に内筒フランジ及び外筒フランジ間に前記ゴム状弾性体と連続するフランジ側ゴム状弾性部が固着されたことを特徴とする連結ロッド。A rod body, a cylinder provided continuously at both ends thereof, and an anti-vibration bush provided in each of the cylinders, wherein the anti-vibration bush includes an inner cylinder through which a shaft member is inserted, and a periphery thereof. An outer cylinder arranged and press-fitted into the cylindrical body, and a rubber-like elastic body interposed and fixed between the outer cylinder and the inner cylinder; these inner cylinder, outer cylinder, and rubber-like elastic body are provided. Is divided into two in the axial direction, and an inner cylinder flange and an outer cylinder flange which are outwardly directed in the direction perpendicular to the axis are formed on the axially outer ends of the inner cylinder part and the outer cylinder part of each divided body, respectively. A connecting rod, wherein a flange-side rubber-like elastic portion continuous with the rubber-like elastic body is fixed between outer cylinder flanges. 前記分割体のゴム状弾性体に軸方向に凹設されたすぐり部を備えている請求の範囲第3項記載の連結ロッド。4. The connecting rod according to claim 3, wherein the rubber-like elastic body of the divided body is provided with a bulging portion that is recessed in the axial direction. 前記すぐり部にゴム状弾性体とは異なるバネ特性のゴム状弾性部が介入された請求の範囲第4項記載の連結ロッド。5. The connecting rod according to claim 4, wherein a rubber-like elastic portion having a spring characteristic different from that of the rubber-like elastic body is interposed in the hollow portion. 前記分割体を軸方向で接合する手段が設けられた請求の範囲第3項記載の連結ロッド。4. The connecting rod according to claim 3, further comprising means for joining said divided members in the axial direction. 前記接合手段は、少なくとも両分割体のうちの一方の内筒部が軸方向内端側に延長されて他方の内筒部を嵌合圧入可能とする延長部が形成されてなる請求の範囲第6項記載の連結ロッド。The joining means, wherein at least one of the two divided bodies is extended to the inner end side in the axial direction, and an extension is formed to allow the other inner cylinder to be fitted and press-fitted. The connecting rod according to claim 6. 前記延長部に、他方の内筒部の内端部を当接可能な段差が形成された請求の範囲第7項記載の連結ロッド。8. The connecting rod according to claim 7, wherein a step is formed on the extension portion so that the inner end portion of the other inner cylindrical portion can abut. 前記接合手段は、各分割体の内筒部を外嵌圧入可能な外径を有し、内部に前記軸部材を内嵌可能な筒状体から構成された請求の範囲第6項記載の連結ロッド。7. The connection according to claim 6, wherein said joining means has an outer diameter capable of externally fitting and press-fitting an inner cylindrical portion of each divided body, and is constituted by a cylindrical body into which said shaft member can be internally fitted. rod. 前記接合手段による分割体の接合状態は、内筒フランジと外筒フランジとの間に介在されたゴム状弾性部を予備圧縮可能に両分割体を互いに接近した状態とされた請求の範囲第6項記載の連結ロッド。7. The joined state of the divided bodies by the joining means is such that the two divided bodies are brought close to each other so as to pre-compress the rubber-like elastic portion interposed between the inner cylinder flange and the outer cylinder flange. The connecting rod according to the item. ロッド本体と、その両端に連続して設けられた筒体と、各筒体に内装された防振ブッシュとを備え、前記防振ブッシュは、少なくとも、軸部材が挿通される内筒と、その周囲に配置され前記筒体に内嵌圧入されるゴム状弾性体とを備え、これら内筒及びゴム状弾性体が軸方向に3分割され、軸方向両端側の分割体はその内筒部の軸方向外端側に軸直角方向で外向きの内筒フランジが形成されると共に該内筒フランジの軸方向内側面にゴム状弾性部が固着され、中央の分割体は、筒状の中央内筒部の周囲に前記ゴム状弾性体が固着されてなり、両側の分割体は、その内筒部が前記中央分割体の中央内筒部に嵌合圧入可能とされたことを特徴とする連結ロッド。A rod body, a cylinder provided continuously at both ends thereof, and a vibration-isolating bush provided in each cylinder, wherein the vibration-isolating bush includes at least an inner cylinder through which a shaft member is inserted, A rubber-like elastic body which is disposed around and is press-fitted into the cylindrical body, and the inner cylinder and the rubber-like elastic body are divided into three parts in the axial direction, and the divided bodies at both ends in the axial direction are formed of the inner cylindrical part. An outwardly extending inner cylinder flange is formed on the outer end side in the axial direction, and a rubber-like elastic portion is fixed to an inner side surface in the axial direction of the inner cylinder flange. A connection characterized in that the rubber-like elastic body is fixed around a cylindrical portion, and the divided bodies on both sides can be fitted and press-fit into an inner cylindrical part of the central divided body. rod. 前記中央分割体のゴム状弾性体と、両側分割体のゴム状弾性部とは、互いに異なるバネ特性のものが使用された請求の範囲第11項記載の連結ロッド。12. The connecting rod according to claim 11, wherein the rubber-like elastic body of the center divided body and the rubber-like elastic portions of the both-side divided bodies have different spring characteristics from each other.
JP2002555082A 2001-03-15 2001-03-15 Connecting rod Pending JPWO2002075177A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/002062 WO2002075177A1 (en) 2001-03-15 2001-03-15 Connection rod

Publications (1)

Publication Number Publication Date
JPWO2002075177A1 true JPWO2002075177A1 (en) 2004-07-08

Family

ID=11737126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002555082A Pending JPWO2002075177A1 (en) 2001-03-15 2001-03-15 Connecting rod

Country Status (2)

Country Link
JP (1) JPWO2002075177A1 (en)
WO (1) WO2002075177A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112356425B (en) * 2020-09-25 2023-05-16 贵州红阳机械有限责任公司 Fluorine rubber cylinder tool and use method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750599Y2 (en) * 1978-09-04 1982-11-05
JPS6216841U (en) * 1985-07-16 1987-01-31
JPS6228537A (en) * 1985-07-30 1987-02-06 Mitsubishi Steel Mfg Co Ltd Vibration-proof rubber
JP3502975B2 (en) * 1997-02-28 2004-03-02 東洋ゴム工業株式会社 Elastic bush
JPH11182599A (en) * 1997-12-22 1999-07-06 Bridgestone Corp Vibration isolating device
JP2000035071A (en) * 1998-07-21 2000-02-02 Tokai Rubber Ind Ltd Rubber bush

Also Published As

Publication number Publication date
WO2002075177A1 (en) 2002-09-26

Similar Documents

Publication Publication Date Title
JP3899836B2 (en) Cylindrical rubber mount
WO2006090720A1 (en) Vibration isolating device
JPWO2007117013A1 (en) Anti-vibration support device
JP6783135B2 (en) Cylindrical anti-vibration device
JP2003226239A (en) Vibration controlling rubber bush for rolling stock and its manufacturing and assembling method
KR102341484B1 (en) powertrain mounting lower structure of motor vehicle
JP3712818B2 (en) Anti-vibration bushing and bushing assembly
WO2019131512A1 (en) Arrangement structure for vibration damping devices for electric automobiles
JP2000193003A (en) Engine roll mount for automobile
KR102341478B1 (en) powertrain mounting lower structure of motor vehicle
JPWO2002075177A1 (en) Connecting rod
JP3729003B2 (en) Anti-vibration bush and anti-vibration bush assembly
JP6182077B2 (en) Cylindrical vibration isolator
JP2009085315A (en) Cylindrical type antivibration device
JP2002276713A (en) Connecting rod
JP2012127441A (en) Vibration-proof bush and torque rod comprising the same
JPH04302725A (en) Cylindrical vibration isolation device
WO2012132105A1 (en) Vibration prevention device
JP4303297B2 (en) Anti-vibration bush
JP2017145863A (en) Vibration isolation device
KR100435272B1 (en) engin mount structure of vehicle
JP2018159455A (en) Cylindrical vibration damper
JPH0128356Y2 (en)
JP2545836Y2 (en) Roll insulator
JPH10339342A (en) Vibration isolating device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050114

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050607