JPS649607B2 - - Google Patents

Info

Publication number
JPS649607B2
JPS649607B2 JP13336980A JP13336980A JPS649607B2 JP S649607 B2 JPS649607 B2 JP S649607B2 JP 13336980 A JP13336980 A JP 13336980A JP 13336980 A JP13336980 A JP 13336980A JP S649607 B2 JPS649607 B2 JP S649607B2
Authority
JP
Japan
Prior art keywords
fiber
vibration
modes
phase modulation
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13336980A
Other languages
Japanese (ja)
Other versions
JPS5758102A (en
Inventor
Yoshinori Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP13336980A priority Critical patent/JPS5758102A/en
Publication of JPS5758102A publication Critical patent/JPS5758102A/en
Publication of JPS649607B2 publication Critical patent/JPS649607B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0128Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects
    • G02F1/0131Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects based on photo-elastic effects, e.g. mechanically induced birefringence
    • G02F1/0134Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects based on photo-elastic effects, e.g. mechanically induced birefringence in optical waveguides

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【発明の詳細な説明】 本発明は光フアイバーを使つた信号伝送装置の
ひとつの方式であるフアイバーテレメトリー信号
伝送装置の光伝送路に信号を結合するフアイバー
光位相変調方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fiber optical phase modulation method for coupling signals to an optical transmission path of a fiber telemetry signal transmission device, which is one type of signal transmission device using optical fibers.

光フアイバーを用いた信号伝送系は、電磁誘導
雑音に強い、絶縁がとれる、軽量である、伝送帯
域が広いなどの特長を有し、公衆通信のみならず
工業プラント、発電変電所構内、あるいは船舶、
航空機内などのデータ伝送装置などにも用いられ
ようとしている。このような信号伝送系では、多
く中央の監視装置処理装置と多数の端末とを結び
データのやりとりが行なわれている。このためこ
れらの間の配線を少くするために、しばしば中央
の監視装置処理装置から発し、再び元にもどるル
ープ状の幹線の信号線を設置し、ループの途
中々々から各端末とを結ぶ枝の信号線を設ける、
いわゆるループ状のデータハイウエイないしデー
タバスシステムの方式がとられている。光フアイ
バーを使つてこのようなデータハイウエイシステ
ムを構成する方式にはいくつかの方法がある。
Signal transmission systems using optical fibers have features such as resistance to electromagnetic induction noise, good insulation, light weight, and wide transmission band, and are useful not only for public communications but also for industrial plants, power generation substations, and ships. ,
It is also expected to be used in data transmission equipment such as in aircraft. In many such signal transmission systems, data is exchanged between a central monitoring device processing unit and a large number of terminals. Therefore, in order to reduce the amount of wiring between them, a loop-shaped trunk signal line is often installed that originates from the central monitoring equipment processing unit and returns again, and branches connecting each terminal from various points in the loop. Provide a signal line for
A so-called loop data highway or data bus system is used. There are several ways to construct such a data highway system using fiber optics.

光フアイバーを切断しカプラを挿入することな
く、任意の点から光フアイバーに信号を入力させ
て信号伝送を行う方法がある。よく知られている
例は、二本のシングルモードフアイバーを使い、
一つの光源から発した光を音響光学素子によつ
て、波長を音響光学素子中の音波の周波数分だけ
増加させた光と、増加させずに元の波長の光とに
2分し、それぞれ異なるシングルモードフアイバ
ーに注入し、波長を増加させた光が透過するフア
イバーの外側より、フアイバー中の光に位相変調
を与え、このフアイバーを出射した光と、前述の
波長を変化させずに、別なるシングルモードフア
イバーを伝わつてきた光とをフアイバー出射端で
合波させて、2乗特性を有する受光器で受光し、
いわゆるヘテロダイン検出とすると、電気出力
は、前記音響光学素子中の音波の周波数をキヤリ
アとし、この振幅が前記フアイバー外側より与え
た位相変化量によつて変化する振幅変調信号とな
つて得られる。フアイバー外側より与える位相変
調の周波数を、各入力点で異なる周波数を用いる
ことによつて、多数の信号を任意の点から挿入で
きまた受信端でこれらを弁別することができるも
のである。
There is a method for signal transmission by inputting a signal into an optical fiber from an arbitrary point without cutting the optical fiber and inserting a coupler. A well-known example uses two single-mode fibers,
The light emitted from one light source is divided into two by an acousto-optic device, into light whose wavelength is increased by the frequency of the sound wave in the acousto-optic device, and light with the original wavelength without increasing the wavelength. Injected into a single mode fiber, the light with increased wavelength is transmitted from the outside of the fiber, giving phase modulation to the light in the fiber, and making it different from the light emitted from this fiber without changing the wavelength described above. The light transmitted through the single mode fiber is multiplexed at the fiber output end, and the light is received by a light receiver with square-law characteristics.
In so-called heterodyne detection, the electrical output is obtained as an amplitude modulation signal using the frequency of the sound wave in the acousto-optic element as a carrier, the amplitude of which changes depending on the amount of phase change applied from the outside of the fiber. By using different frequencies for phase modulation applied from the outside of the fiber at each input point, a large number of signals can be inserted from arbitrary points and these can be discriminated at the receiving end.

フアイバー中を伝わる光波に位相変化を与える
方法で、従来から知られている例は、圧電板で被
覆の上から光フアイバーをはさみ、圧電板の両面
に電界を印加して、圧電板に圧縮振動を起こし、
この振動を、化学樹脂でできている被覆を介して
フアイバーに伝えてフアイバー中の屈折率を変化
させ、透過光に位相変化を与えるものである。こ
の方法では能率が悪くまたは帯域幅も狭い。すな
わち、圧電体の機械インピーダンスは30〜40×
106Kg/s・m2程度あるのにたいして、樹脂では
3×106Kg/s・m2とはるかに小さい。このため
弾性エネルギは樹脂中にはほとんど透過しない。
また圧電セラミツクはほとんど自由振動に近く、
共振の尖鋭度が高いために帯域幅が狭い。
A conventionally known method of applying a phase change to light waves traveling through a fiber is to sandwich an optical fiber from above covered with a piezoelectric plate, apply an electric field to both sides of the piezoelectric plate, and generate compressive vibrations in the piezoelectric plate. wake up,
This vibration is transmitted to the fiber through a coating made of chemical resin, changing the refractive index in the fiber and imparting a phase change to the transmitted light. This method is inefficient or has low bandwidth. In other words, the mechanical impedance of the piezoelectric body is 30 to 40×
While it is around 10 6 Kg/s・m 2 , it is much smaller at 3×10 6 Kg/s・m 2 for resin. Therefore, almost no elastic energy permeates into the resin.
In addition, piezoelectric ceramics are close to free vibration,
The bandwidth is narrow due to the high resonance sharpness.

また圧電セラミツクの円にフアイバーを巻き
付け、円の往方向の拡がりによるフアイバーの
伸び変化を利用する方法がある。フアイバーの伸
び変化にたいする位相変化の受けかたは敏感であ
り、また圧電体の径方向への共振を利用するた
め、僅かな印加電界で大きな位相変化を得ること
ができる特長をもつているが、従来のこの方法
は、圧電円の径方向軸対称の拡がり共振振動の
みを用いており、共振の尖鋭度が高いためにやは
り帯域幅が非常に狭い。
Another method is to wrap a fiber around a piezoelectric ceramic circle and utilize changes in the fiber's elongation as the circle expands in the forward direction. It is sensitive to changes in phase due to changes in fiber elongation, and because it utilizes resonance in the piezoelectric body's radial direction, it has the advantage of being able to obtain a large phase change with a small applied electric field. This method uses only the radially axially symmetric spreading resonance vibration of the piezoelectric circle, and the bandwidth is also very narrow due to the high sharpness of the resonance.

このように従来の光フアイバ中の光波に位相変
化を与える方法はいずれも、能率と帯域幅の両方
を得ることが困難である。
All of these conventional methods of imparting phase changes to light waves in optical fibers have difficulty achieving both efficiency and bandwidth.

本発明の目的は、上記難点を除去ししかも簡単
な構成のフアイバー光位相変調の方法を提供する
ものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a fiber optical phase modulation method that eliminates the above-mentioned difficulties and has a simple configuration.

本発明によれば、多重モードで振動する圧電体
に光フアイバーを巻き付け固定することによつ
て、能率の高い、帯域幅の広い、フアイバー光位
相変調の方法を得ることができる。
According to the present invention, by winding and fixing an optical fiber around a piezoelectric body that vibrates in multiple modes, it is possible to obtain a highly efficient fiber optical phase modulation method with a wide bandwidth.

本発明の詳細を、実施例にもとづき図面の用い
て、更に説明する。第1図は圧電セラミツク円筒
に光フアイバーを巻き付けて、フアイバ透過光に
位相変調を与える方法の一般的な構成であつて、
1は光フアイバ素線、2はこのフアイバ素線を保
護する被覆、3は円筒圧電セラミツクである。従
来この素子の駆動の方法は、円筒の上面及び下面
一様に電極を設け、この間に交番電界を印加する
か、または、外側円筒面と内側円筒面それぞれに
全面に電極を塗布し、この間に電界を印加して用
いている。このような電界印加の方法で、圧電円
筒セラミツクに励起される径方向の振動は、円筒
の外側が一様に脹らむ対称拡がり振動のみであ
る。この振動の尖鋭度は極めて高いため、ほぼ単
一の周波数でしか素子を駆動できない。
The details of the present invention will be further explained based on examples and with reference to the drawings. Figure 1 shows a general configuration of a method of winding an optical fiber around a piezoelectric ceramic cylinder to impart phase modulation to the light transmitted through the fiber.
1 is an optical fiber wire, 2 is a coating that protects this fiber wire, and 3 is a cylindrical piezoelectric ceramic. Conventionally, the method of driving this element is to provide electrodes uniformly on the upper and lower surfaces of the cylinder and apply an alternating electric field between them, or to apply electrodes to the entire surface of the outer and inner cylindrical surfaces, respectively, and to apply an alternating electric field between them. It is used by applying an electric field. With this method of applying an electric field, the only radial vibration excited in the piezoelectric ceramic cylinder is a symmetrical spreading vibration in which the outside of the cylinder swells uniformly. Since the sharpness of this vibration is extremely high, the element can only be driven at almost a single frequency.

軸対称の形状を有する弾性振動体に存在する径
方向の振動モードは前述の軸対称モード以外に非
軸対称振動モードも存在する。多重モード振動理
論については、電気学会刊行の単行本「エレクト
ロ・メカニカル機能部品」に詳しい。第2図はそ
の振動分布を示す図で、第2図aは軸対称モード
の最低次のモードの外側輪郭の変位の様子を示
す。破線は変位したときの状態、実線は変位しな
いときの状態である。第2図bは非軸対称振動モ
ードの一番低いモードにたいする変位分布を示す
図である。この振動モードは、前に述べたように
従来の上下面一様の電極や内外円筒面一様の電極
では励起されない。最低次の軸対称モードと非軸
対称モードこれら2つの振動モードは、それぞれ
独立の系に属しており、一般には振動周波数はだ
いぶ異なつている。これらの振動周波数を近づ
け、一組の駆動電極で両方のモードが駆動できる
ようにすれば、光フアイバーに与える位相変調の
周波数特性を拡げ、しかもその帯域内の特性を平
坦にすることができる。これは次のようにすれば
可能である。上述の2つのモードの振動周波数
は、中空円筒の外径と内径との比を特定の値に設
定すると一致する。例えば圧電セラミツクのポア
ソン比を0.3とするとこの内径/外径比を0.3近く
に設定すると、2つの周波数は一致する。この値
を変えることにより共振周波数間隔を任意にする
ことができる。また両方の振動が同相となる領域
のみに電極を設け、駆動すれば2つの振動モード
が励起される。第3図は円筒の上下面に電極を設
ける場合の片方の面の電極の形状を示す図で斜線
部が電極である。第2図に示すように双方の振動
モードの振動の位相が同相となる円筒断面の上半
分のみに電極を設ければよい。第3図aのように
上半面全体に設けても励起されるが、この場合に
は2つの振動モードの励振能率は同一とはなら
ず、軸対称モードの方が能率が高い。これを同一
とするためには、第3図bのように電極を外径部
に寄せて設けることで実現される。
In addition to the above-mentioned axially symmetrical mode, non-axisymmetrical vibrational modes also exist in the radial vibration mode that exists in an elastic vibrating body having an axially symmetrical shape. For more information on multimode vibration theory, read the book ``Electro-Mechanical Functional Components'' published by the Institute of Electrical Engineers of Japan. FIG. 2 shows the vibration distribution, and FIG. 2a shows the displacement of the outer contour of the lowest order mode of the axisymmetric mode. The dashed line shows the state when there is displacement, and the solid line shows the state when there is no displacement. FIG. 2b is a diagram showing the displacement distribution for the lowest non-axisymmetric vibration mode. As mentioned above, this vibration mode is not excited by conventional electrodes having uniform upper and lower surfaces or electrodes having uniform inner and outer cylindrical surfaces. These two vibration modes, the lowest-order axisymmetric mode and the non-axisymmetric mode, each belong to an independent system, and generally have considerably different vibration frequencies. By bringing these vibration frequencies close together so that both modes can be driven with a single set of drive electrodes, it is possible to expand the frequency characteristics of the phase modulation applied to the optical fiber and flatten the characteristics within that band. This can be done as follows. The vibration frequencies of the two modes described above match when the ratio of the outer diameter to the inner diameter of the hollow cylinder is set to a specific value. For example, if the Poisson's ratio of piezoelectric ceramic is 0.3, and the inner diameter/outer diameter ratio is set close to 0.3, the two frequencies will match. By changing this value, the resonance frequency interval can be set arbitrarily. Further, if an electrode is provided only in the region where both vibrations are in the same phase and driven, two vibration modes will be excited. FIG. 3 is a diagram showing the shape of the electrodes on one side when electrodes are provided on the upper and lower surfaces of the cylinder, and the shaded portions are the electrodes. As shown in FIG. 2, it is sufficient to provide electrodes only in the upper half of the cylindrical cross section where the phases of vibration in both vibration modes are in the same phase. Although it can be excited even if it is provided over the entire upper half as shown in FIG. 3a, in this case, the excitation efficiency of the two vibration modes is not the same, and the efficiency of the axially symmetric mode is higher. In order to make this the same, it is realized by providing the electrode closer to the outer diameter part as shown in FIG. 3b.

このように構成され駆動される振動子に第1図
のように光フアイバーを巻き付けることによつて
フアイバ中を導波される光に位相変調を与える。
第4図、第5図は位相変調強度の周波数特性を従
来の方法と本実施例の方法とで比較したもので、
第4図は従来の方法によるものであり、前述の如
く極めて周波数帯域幅が狭い。これに較べて第5
図に示す本実施例の方法によると、広い帯域幅が
得られる。
By winding an optical fiber around the vibrator configured and driven in this manner as shown in FIG. 1, phase modulation is imparted to the light guided through the fiber.
Figures 4 and 5 compare the frequency characteristics of phase modulation intensity between the conventional method and the method of this embodiment.
FIG. 4 shows a conventional method, and as mentioned above, the frequency bandwidth is extremely narrow. Compared to this, the fifth
According to the method of this embodiment shown in the figure, a wide bandwidth can be obtained.

第3図では中空円筒の上下面に電極を設ける場
合について述べたが、円筒の外内筒面と内円筒面
に設ける場合も、円筒面の合体360゜にわたつて電
極を設けるのではなく、180゜またはそれより少め
に内外面対向して設ければよい。
In Fig. 3, we have described the case where electrodes are provided on the upper and lower surfaces of the hollow cylinder, but when electrodes are provided on the outer and inner cylinder surfaces and the inner cylinder surface of the cylinder, instead of providing electrodes over the combined 360° of the cylinder surfaces, The inner and outer surfaces may be opposed to each other by 180 degrees or less.

回転対称の形状を有する弾性振動体では、直交
する複数の振動モードが共振周波数を同一にもつ
ている。いわゆる同形縮退をしている。これらの
振動モードの縮退を解き、周波数間隔を適当に定
めることによつて、帯域幅の広いフアイバー光位
相変調素子を実現することができる。第6図a,
bは円の2つの直交する非軸対称振動の振動変
位分布を点線で示したものである。振動体の対称
性を、僅かくずすことによつて縮退をとき、両方
のモードが同時に駆動できるように電極を設けれ
ばよい。第7図に示すように、円の側面を一部
欠いて対称性をくずし、両方のモードが同相とな
る部分に電極を設けることで実現される。2つの
モードの周波数間隔は側面を欠く程度によつて調
整できる。
In an elastic vibrating body having a rotationally symmetrical shape, a plurality of orthogonal vibration modes have the same resonance frequency. This is called isomorphic degeneracy. By solving the degeneracy of these vibrational modes and appropriately determining the frequency interval, a fiber optical phase modulation element with a wide bandwidth can be realized. Figure 6a,
b shows the vibration displacement distribution of two orthogonal non-axisymmetric vibrations of the circle with dotted lines. Degeneracy can be achieved by slightly breaking the symmetry of the vibrating body, and electrodes can be provided so that both modes can be driven simultaneously. As shown in FIG. 7, this is achieved by cutting out a part of the side of the circle to break the symmetry and providing an electrode in the part where both modes are in phase. The frequency spacing between the two modes can be adjusted depending on the degree of lateral missing.

本実施例でも、変調強度の帯域特性は第5図に
示した先述の実施例の場合と同じように広帯域な
特性を示す。
In this embodiment as well, the band characteristic of the modulation intensity exhibits a wide band characteristic as in the case of the above-mentioned embodiment shown in FIG.

この同形縮退モードを利用する方法は、中空円
筒の場合も利用できる。またこれらのモードと更
に、軸対称モードの3つを利用した3重モードを
も利用することもできる。
This method of using the isomorphic degenerate mode can also be used in the case of a hollow cylinder. Further, in addition to these modes, a triple mode using three axially symmetrical modes can also be used.

以上のように多重モードで振動する圧電振動体
に、光フアイバーを巻き付けることによつて、能
率の高い、しかも帯域幅の広いフアイバー光位相
変調方法が得られる。
By winding an optical fiber around a piezoelectric vibrator that vibrates in multiple modes as described above, a highly efficient fiber optical phase modulation method with a wide bandwidth can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はフアイバー光位相変調方法の一般的な
構成を示す図で1は光フアイバー素線、2はフア
イバー被覆、3は円筒圧電セラミツクである。第
2図は円筒振動体の径方向振動変位分布を示す。
第3図は圧電セラミツクの駆動電極の形状を示す
図。第4図は従来の方法の変調強度の帯域特性
を、第5図は本発明の方法の変調強度の帯域特性
を示す。第6図は円の非軸対称振動モードの変
化分布を示す。第7図は2つの非軸対称振動モー
ドを励振する電極構造の一例を示す図である。
FIG. 1 shows a general configuration of a fiber optical phase modulation method, in which numeral 1 is an optical fiber wire, 2 is a fiber coating, and 3 is a cylindrical piezoelectric ceramic. FIG. 2 shows the radial vibration displacement distribution of the cylindrical vibrator.
FIG. 3 is a diagram showing the shape of a piezoelectric ceramic drive electrode. FIG. 4 shows the modulation intensity band characteristics of the conventional method, and FIG. 5 shows the modulation intensity band characteristics of the method of the present invention. FIG. 6 shows the variation distribution of the circular non-axisymmetric vibration mode. FIG. 7 is a diagram showing an example of an electrode structure that excites two non-axisymmetric vibration modes.

Claims (1)

【特許請求の範囲】[Claims] 1 円筒形を有する圧電振動体の円筒面に光フア
イバーを巻き付けて、該フアイバーを透過する光
に位相変調を与える方法において、前記圧電振動
体の主に径方向に振動変位を有する複数の振動モ
ードが同相に変位する部位に電圧をかけて前記圧
電振動体に前記複数の振動モードを励起すること
を特徴とするフアイバー光位相変調方法。
1. In a method of winding an optical fiber around the cylindrical surface of a piezoelectric vibrating body having a cylindrical shape and imparting phase modulation to light transmitted through the fiber, a plurality of vibration modes having vibration displacement mainly in the radial direction of the piezoelectric vibrating body are provided. A fiber optical phase modulation method characterized in that the plurality of vibration modes are excited in the piezoelectric vibrating body by applying a voltage to a portion where the vibration modes are displaced in the same phase.
JP13336980A 1980-09-25 1980-09-25 Fiber optical phase modulating method Granted JPS5758102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13336980A JPS5758102A (en) 1980-09-25 1980-09-25 Fiber optical phase modulating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13336980A JPS5758102A (en) 1980-09-25 1980-09-25 Fiber optical phase modulating method

Publications (2)

Publication Number Publication Date
JPS5758102A JPS5758102A (en) 1982-04-07
JPS649607B2 true JPS649607B2 (en) 1989-02-17

Family

ID=15103109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13336980A Granted JPS5758102A (en) 1980-09-25 1980-09-25 Fiber optical phase modulating method

Country Status (1)

Country Link
JP (1) JPS5758102A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188609U (en) * 1982-06-09 1983-12-15 日本電気株式会社 optical delay element
US5101449A (en) * 1990-06-05 1992-03-31 Matsushita Electric Industrial Co., Ltd. Optical phase modulator with asymmetric piezoelectric vibrator

Also Published As

Publication number Publication date
JPS5758102A (en) 1982-04-07

Similar Documents

Publication Publication Date Title
CA1258292A (en) Optical communications systems and process for signal amplification using stimulated brillouis scattering(sbs) and laser utilized in the system
KR920006589B1 (en) Single mode fiber optic single sideband modulator and method of frequency
US4632551A (en) Passive sampling interferometric sensor arrays
US5915050A (en) Optical device
US6151427A (en) Tunable optic fiber bandpass filter using flexural acoustic waves
CA1171147A (en) Communications tuning construction
US6266462B1 (en) Acousto-optic filter
US4818064A (en) Sensor array and method of selective interferometric sensing by use of coherence synthesis
KR870008199A (en) Optical Fiber Devices and Methods for Spectral Analysis and Filtering
US2596460A (en) Multichannel filter
JPS62115413A (en) Optical fiber network
KR930015319A (en) Surface acoustic wave filter
US4792207A (en) Single mode fiber optic single sideband modulator and method of frequency shifting using same
US6343165B1 (en) Optical add drop multiplexer
US2423459A (en) Frequency selective apparatus
RU96115310A (en) ACOUSTOPTIC WAVEGUIDE DEVICE AND METHOD FOR ACOUSTIC SWITCHING OF OPTICAL SIGNAL
US10461720B2 (en) Acoustic filter
US6909823B1 (en) Acousto-optic tunable apparatus having a fiber bragg grating and an offset core
US4546458A (en) Frequency modulated laser diode
US6357913B1 (en) Add/drop acousto-optic filter
KR860006718A (en) Acousto-optic frequency shifter using multi-line fiber
JPS649607B2 (en)
JPH0131168B2 (en)
JPS6134494Y2 (en)
US6647159B1 (en) Tension-tuned acousto-optic bandpass filter