JPS649569B2 - - Google Patents

Info

Publication number
JPS649569B2
JPS649569B2 JP21444383A JP21444383A JPS649569B2 JP S649569 B2 JPS649569 B2 JP S649569B2 JP 21444383 A JP21444383 A JP 21444383A JP 21444383 A JP21444383 A JP 21444383A JP S649569 B2 JPS649569 B2 JP S649569B2
Authority
JP
Japan
Prior art keywords
gas
infrared
measurement
filter
gas analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21444383A
Other languages
Japanese (ja)
Other versions
JPS60105947A (en
Inventor
Kunio Sukigara
Harutaka Taniguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Co Ltd
Priority to JP58214443A priority Critical patent/JPS60105947A/en
Publication of JPS60105947A publication Critical patent/JPS60105947A/en
Publication of JPS649569B2 publication Critical patent/JPS649569B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は赤外線領域に吸収帯を有する測定ガス
の濃度を赤外線の吸収量により測定する赤外線ガ
ス分析計、特に煙道中のガス濃度測定などのダス
ト、ミスト及び水分を含む測定ガスについて直接
連続測定する赤外線ガス分析計に関するものであ
る。
[Detailed Description of the Invention] [Technical Field to which the Invention Pertains] The present invention relates to an infrared gas analyzer that measures the concentration of a gas to be measured having an absorption band in the infrared region based on the amount of infrared absorption, and particularly to an infrared gas analyzer for measuring gas concentration in a flue. This invention relates to an infrared gas analyzer that directly and continuously measures measurement gases containing dust, mist, and moisture.

〔従来技術とその問題点〕[Prior art and its problems]

一般に赤外線ガス分析計は、基本光学系とし
て、シングルビーム方式とダブルビーム方式に分
類される。両方式とも主要部分は光源部、測定セ
ル部および検出部である。
Generally, infrared gas analyzers are classified into single beam type and double beam type based on their basic optical systems. The main parts of both types are a light source section, a measurement cell section, and a detection section.

以下に本発明の理解を容易にするために、第1
図を用いてシングルビーム方式赤外線ガス分析計
の動作原理を簡単に説明する。第1図において、
光源部1内の赤外線光源2より放射された光束
IMは、セクター3により断続された後測定セル
4内に入射する。測定セル4は両側面に赤外線透
過窓10,11を配置し、測定ガスの導入口15
と排出口16を持つた構造をしており、通常測定
ガスが導入口15から連続的に供給される。赤外
線光束IMは、測定セル4内で測定セルによりそ
の一部が吸収された後ガス封入検出器5に達す
る。この検出器5は、赤外線光束IMの光路方向
に直列に配置されている、測定成分ガスを封入し
た第1検出室6と、第2検出室7と、通路とから
構成され、検出器に入射した光束IMは第1検出
室6で一部吸収された後、第2検出室7でさらに
吸収される。この第1及び第2検出室6,7内に
測定成分ガスによる光束IMの吸収により生じた
圧力上昇の差が、通路8に設置された差圧検出素
子9により検出され、電気信号に変換される。
Below, in order to facilitate understanding of the present invention, the first
The operating principle of a single-beam infrared gas analyzer will be briefly explained using figures. In Figure 1,
Luminous flux emitted from the infrared light source 2 in the light source section 1
The IM enters the measurement cell 4 after being interrupted by the sector 3 . The measurement cell 4 has infrared transmitting windows 10 and 11 arranged on both sides, and a measurement gas inlet 15.
It has a structure with an exhaust port 16 and a gas to be measured is normally continuously supplied from the inlet 15. The infrared light flux IM reaches the gas-filled detector 5 after being partially absorbed in the measuring cell 4 . This detector 5 is composed of a first detection chamber 6 filled with measurement component gas, a second detection chamber 7, and a passage, which are arranged in series in the optical path direction of the infrared light beam IM, and are arranged in series in the optical path direction of the infrared light beam IM. The luminous flux IM is partially absorbed in the first detection chamber 6 and then further absorbed in the second detection chamber 7. The difference in pressure increase that occurs in the first and second detection chambers 6 and 7 due to the absorption of the luminous flux IM by the measurement component gas is detected by the differential pressure detection element 9 installed in the passage 8 and converted into an electrical signal. Ru.

今、燃焼排ガスのようにダスト、ミストおよび
水分を含む測定ガスを測定セル4に導入した場合
について考える。第1、第2検出室の光路長をそ
れぞれl1,l2、体積をv1,v2、検出器封入ガス濃
度をCo、測定セル入射光量をIM(λ)、測定セル
長をl、測定ガスに含まれる測定成分ガス濃度、
ダスト濃度をそれぞれCM,CD、ミストおよび水
分の露結による赤外線光束の減衰係数をKcとす
ると、検出器出力はおよそ次式で表わされる。
Now, consider a case where a measurement gas containing dust, mist, and moisture, such as combustion exhaust gas, is introduced into the measurement cell 4. The optical path lengths of the first and second detection chambers are respectively l 1 and l 2 , the volumes are v 1 and v 2 , the gas concentration in the detector is Co, the amount of light incident on the measurement cell is IM (λ), the measurement cell length is l, Concentration of measurement component gas contained in measurement gas,
Assuming that the dust concentrations are C M and C D , and the attenuation coefficient of infrared light flux due to mist and water condensation is Kc, the detector output is approximately expressed by the following equation.

S∝(△P1−△P2)∝KcIM(λ1)e-(MCM+MCD)l∝K
cIM(λ1){1−(αMCM+βMCD)l}……(1) (1)式より明らかなように、測定成分ガス濃度と
ダスト濃度あるいはミスト、水分の露結による赤
外線強度の減衰量に応じた電気信号が得られ、こ
のままでは他の手段でダスト濃度および赤外線強
度の減衰量を測定しない限り正確な測定成分ガス
の濃度を測定することができない。ここでIM
(λ1)は赤外線光束の中の測定成分ガスの吸収帯
の中心波長における光強度、αM、βMは中心波長
λ1における測定成分ガス、ダストの吸光係数であ
る。
S∝(△P 1 −△P 2 )∝KcI M1 )e -(MCM+MCD)l ∝K
cI M1 ) {1-(α M C M + β M C D )l}...(1) As is clear from equation (1), the measured component gas concentration and dust concentration or mist and moisture dew condensation An electrical signal corresponding to the amount of attenuation of the infrared intensity is obtained, and as it is, it is not possible to accurately measure the concentration of the component gas to be measured unless the dust concentration and the amount of attenuation of the infrared intensity are measured by other means. IM here
1 ) is the light intensity at the center wavelength of the absorption band of the measurement component gas in the infrared light flux, and α M and β M are the extinction coefficients of the measurement component gas and dust at the center wavelength λ 1 .

したがつて、赤外線ガス分析計を煙道排ガスの
ように多量のダスト、ミストおよび水分を含む測
定ガスに適用する場合には、測定セル4に測定ガ
スを導入する前処理として、ダスト、ミストおよ
び水分を除く処理を含むガスサンプリング系を必
要とする。第2図は典型的なガスサンプリング系
の系統図を示したものである。図において、測定
ガス採集器21の中には測定ガス中に含まれるダ
ストを除去する第1段目の粗フイルタが収容され
ており、さらにドレインポツト22による露結水
の除去、フイルタ23によるミスト除去などの工
程を得て清浄化し、さらにガス乾燥器26により
測定ガス中の水分を除去し、最終段階として赤外
線ガス分析計29に導入される直前において第2
段目のミクロフイルタ27により完全に測定ガス
中のダストを除去する。このようなダスト、ミス
トおよび水分除去をすれば(1)式より明らかなよう
に赤外線ガス分析計の出力信号へのダスト、ミス
トおよび水分の影響は無くなり、正確に測定成分
ガス濃度を測定できる。
Therefore, when the infrared gas analyzer is applied to a measurement gas containing a large amount of dust, mist, and moisture, such as flue gas, dust, mist, and Requires a gas sampling system that includes water removal treatment. FIG. 2 shows a diagram of a typical gas sampling system. In the figure, a first-stage coarse filter for removing dust contained in the measurement gas is housed in the measurement gas collector 21, and a drain pot 22 removes dew water, and a filter 23 removes mist. The gas to be measured is cleaned by a process such as removal, and then the moisture in the measurement gas is removed by a gas dryer 26, and as a final step, a second
The microfilter 27 in the third stage completely removes dust from the measurement gas. If dust, mist, and moisture are removed in this manner, as is clear from equation (1), the influence of dust, mist, and moisture on the output signal of the infrared gas analyzer will be eliminated, and the concentration of the gas component to be measured can be accurately measured.

しかし近年赤外線ガス分析計を単なるガス成分
モニタに用いるのみでなく、燃焼制御のように赤
外線ガス分析計の信号をシステムの制御信号とし
て用いることが色々な分野で進められている。こ
のような場合には、赤外線ガス分析計の信号の精
度が要求されるのみでなく、高速応答性が大きな
要求特性となる。赤外線ガス分析計本体は制御に
適用するに十分な早い応答性を持つているが、前
記のとおりダスト、ミストおよび水分を含む測定
ガスに対してはガスサンプリング系を絶対に必要
とするので、測定系全体としての応答速度は数10
秒から分のオーダとなり、制御のような早い応答
性が要求される用途に対しては適用が困難である
という欠点を持つている。
However, in recent years, the use of infrared gas analyzers not only to simply monitor gas components, but also the use of signals from infrared gas analyzers as system control signals, such as combustion control, has been promoted in various fields. In such a case, not only is the signal accuracy of the infrared gas analyzer required, but also high-speed response is a major requirement. The infrared gas analyzer itself has a fast enough response to be used for control, but as mentioned above, a gas sampling system is absolutely required for measurement gases containing dust, mist, and moisture. The response speed of the entire system is several 10
It has the disadvantage that it is difficult to apply to applications that require quick response, such as control, because it is on the order of seconds to minutes.

〔本発明の目的〕[Object of the present invention]

本発明の目的は、従来のダスト、ミストおよび
水分除去などのサンプリング処理系を含む赤外線
ガス分析計の持つている欠点を除き、直接ダス
ト、ミストおよび水分を含む測定ガスを赤外線ガ
ス分析計に導入して、ダスト、ミストおよび水分
の影響を受けない高精度の測定を可能とし、しか
も高速応答性を可能にした赤外線ガス分析計を提
供することである。
The purpose of the present invention is to eliminate the drawbacks of conventional infrared gas analyzers that include sampling processing systems such as dust, mist, and moisture removal, and directly introduce measurement gas containing dust, mist, and moisture into an infrared gas analyzer. An object of the present invention is to provide an infrared gas analyzer that enables highly accurate measurement unaffected by dust, mist, and moisture, and also enables high-speed response.

〔発明の要点〕[Key points of the invention]

本発明は、赤外線光源部、測定セル部および赤
外線検出部より構成される赤外線ガス分析計にお
いて、測定セルを基本的には筒状ガスフイルタ
と、これを加熱するフイルタおよび両側面に赤外
線透過窓を持ち、前記フイルタと内面が同軸の筒
状外筐体とで構成し、ヒータで所定の温度に加熱
されたガスフイルタと前記外筐体の間隙に測定ガ
スを流すことによりダストを除去し、測定セルに
おけるミストおよび水分の露結を防止して測定セ
ル内ガスの拡散、対流による置換速度を早くして
高速応答を可能にしたダスト、ミストおよび水分
除去などの前処理を必要としない赤外線ガス分析
計を提供するものである。
The present invention provides an infrared gas analyzer consisting of an infrared light source section, a measurement cell section, and an infrared detection section. The filter is configured with a cylindrical outer casing whose inner surface is coaxial, and the measurement gas is removed by flowing the measurement gas through the gap between the gas filter heated to a predetermined temperature by a heater and the outer casing, and the measurement cell is An infrared gas analyzer that does not require pretreatment such as removing dust, mist, and moisture, and enables high-speed response by preventing condensation of mist and moisture in the measurement cell and increasing the rate of gas diffusion and convection. It provides:

〔発明の実施例〕[Embodiments of the invention]

第3図aに本発明を実施した測定セルの具体例
の一つを示す。この測定セルは、基本的には赤外
線透過窓30,31、円筒状ガスフイルタ33、
加熱ヒータ37、円筒状外筐体34から成る。図
において、ガスフイルタ材、例えば石英繊維ある
いはセラミツク多孔性焼結体から成る円筒状フイ
ルタ33は、外部筐体34に、取りはずし可能
に、しかもフイルタ部を通じてのみ測定ガスが入
るように固定されている。赤外線透過窓30,3
1は赤外線透過性の窓材、例えば単結晶弗化カル
シウムとその固定具から成り、ガスシール可能な
構造で外部筐体34に固定されている。外部筐体
34は、例えば金属、合金あるいはセラミツクか
ら成り、対向して配置された測定ガスの導入口1
5と排出口16を持ち、さらに円筒状フイルタ3
3の長さ方向に同フイルタとの間に拡散空間32
を持つ構造となつている。フイルタ部はヒータ3
7、例えばコイル状ヒータにより表面部から加熱
される構造となつており、電力は外部より端子3
8,39より供給される。フイルタ部の温度が大
巾に変動すると測定精度に影響が生ずるので、測
温体40がフイルタ33の表面あるいは内部に配
置してあり、その出力を端子41,42でとり出
すことによつて、外部の温度調節器でフイルタ部
温度を一定に保持したり、赤外線ガス分析計の出
力に対する温度補正をしたりすることが出来る。
FIG. 3a shows one specific example of a measuring cell in which the present invention is implemented. This measurement cell basically consists of infrared transmission windows 30, 31, a cylindrical gas filter 33,
It consists of a heater 37 and a cylindrical outer casing 34. In the figure, a cylindrical filter 33 made of gas filter material, for example quartz fiber or porous sintered ceramic, is removably fixed to an external housing 34 in such a way that the gas to be measured can enter only through the filter section. Infrared transmitting window 30, 3
The window 1 is made of an infrared-transparent window material, such as a single crystal calcium fluoride, and its fixture, and is fixed to the external housing 34 with a gas-sealable structure. The external casing 34 is made of metal, alloy, or ceramic, for example, and has a measurement gas inlet 1 arranged opposite to it.
5 and a discharge port 16, and further includes a cylindrical filter 3.
A diffusion space 32 is provided between the same filter in the length direction of 3.
It has a structure with The filter part is heater 3
7. For example, the structure is such that the surface is heated by a coil heater, and power is supplied from the outside to terminal 3.
Supplied from 8,39. If the temperature of the filter part fluctuates widely, it will affect the measurement accuracy, so by disposing the temperature measuring element 40 on the surface or inside of the filter 33 and taking out its output at terminals 41 and 42, It is possible to keep the filter temperature constant using an external temperature controller, or to make temperature corrections for the output of the infrared gas analyzer.

第3図bは測定ガス断面方向の測定ガスの流れ
を示したもので、測定ガス流は本実施例の場合に
は主に導入口15において2つに分割され、加熱
された円筒状ガスフイルタ33の円周方向にそつ
て流れた後排出口16で再び一体となつて排出さ
れる。この構造は測定セル長が短い場合に特に有
効である。
FIG. 3b shows the flow of the measuring gas in the cross-sectional direction of the measuring gas. In this embodiment, the measuring gas flow is mainly divided into two at the inlet 15, and the heated cylindrical gas filter 33 After flowing along the circumferential direction, the liquid is discharged as one body again at the discharge port 16. This structure is particularly effective when the measurement cell length is short.

第4図aは第2の実施例に基づく測定セルの外
形を示したもので、基本的には第3図の具体例と
構成は同じであるが、本実施例では測定ガスの導
入口15と排出口16が測定セルの長さ方向に位
置を異にして配置されている。第4図bは測定セ
ル断面方向のガス流を示す。この場合には導入口
15から導入された測定ガスは、加熱された円筒
状フイルタ33の円周方向にそつてしかも長さ方
向に流れるので測定ガスが長い場合特に有効であ
る。
FIG. 4a shows the external shape of a measurement cell based on the second embodiment, and the configuration is basically the same as the specific example in FIG. and discharge ports 16 are arranged at different positions in the length direction of the measurement cell. FIG. 4b shows the gas flow in the cross-sectional direction of the measuring cell. In this case, the measurement gas introduced from the inlet 15 flows along the circumferential direction of the heated cylindrical filter 33 and also in the longitudinal direction, which is particularly effective when the measurement gas is long.

第5図aは第3の実施例に基づく測定セル断面
を示したもので、基本構成は第3図の具体例と同
じであるが、本実施例では測定ガスの導入口15
と排出口16が一体化された構造となつている。
したがつて、この実施例の場合には第5図bに示
したように、測定ガスは加熱された円筒状ガスフ
イルタ33の円周を一回転することになり、測定
ガス流に対して導入方向と排出方向を明確に区分
し、より応答性の改良をほどこすためにしきり板
35が挿入されている。この実施例に示した測定
セル構成を持つ赤外線ガス分析計は、有害ガス、
例えば一酸化炭素を測定成分ガスとするときのよ
うに、測定ガスを外気に放出しないで発生源に戻
す必要があるようなときに有効である。
FIG. 5a shows a cross section of the measurement cell based on the third embodiment, and the basic configuration is the same as the specific example in FIG. 3, but in this embodiment, the measurement gas inlet 15
It has a structure in which the discharge port 16 and the discharge port 16 are integrated.
Therefore, in the case of this embodiment, as shown in FIG. A partition plate 35 is inserted to clearly separate the discharge direction and the discharge direction, and to further improve responsiveness. The infrared gas analyzer with the measurement cell configuration shown in this example can
This is effective when, for example, carbon monoxide is used as the component gas to be measured, and the gas to be measured needs to be returned to the source without being released to the outside air.

第6図aは第4の実施例に基づいた測定セルの
断面構造を示す。本実施例においては、第1層フ
イルタとしての繊維あるいは焼結体から成る円筒
フイルタ33の外側表面に、第2層フイルタとし
て金網あるいは第1層フイルタよりも目の粗いフ
イルタ、例えばセラミツク焼結体から成る円筒フ
イルタ36を積層した構造になつており、その表
面部にヒータ37を配置してフイルタ部全体を加
熱している。この構成により測定ガス中に含まれ
る色々な粒径のダストに対してフイルタ層が分級
作用を持つているので、フイルタ部の目づまりの
性能低下を防止し、長寿命化をはかることができ
る。なお導入口15、排出口16の取付位置につ
いては、第3図と同じ構成を示したが、第4,5
図の配置も当然可能である。
FIG. 6a shows the cross-sectional structure of a measuring cell based on the fourth embodiment. In this embodiment, on the outer surface of the cylindrical filter 33 made of fibers or a sintered body as the first layer filter, a wire mesh or a filter coarser than the first layer filter, such as a ceramic sintered body, is used as the second layer filter. It has a structure in which cylindrical filters 36 are stacked, and a heater 37 is placed on the surface of the filter to heat the entire filter section. With this configuration, the filter layer has a classification effect on dust particles of various particle sizes contained in the measurement gas, so that performance degradation due to clogging of the filter section can be prevented and the service life can be extended. The mounting positions of the inlet 15 and the outlet 16 are shown in the same configuration as in FIG.
Of course, the arrangement of figures is also possible.

以上各種の本発明に基づいた実施例を示した
が、本発明の内容は実施例に限定されるものでは
なく、発明の精神の範囲で多くの他の改良をなし
えるものであり、例えばフイルタ層を3層以上に
積層したり、セラミツクフイルタの代りに焼結金
属フイルタを使用してり、ヒータを円筒状フイル
タの内側に配置しあるいは円筒以外の形状にした
りすることも可能であり、またシングルビーム方
式のみでなくダブルビーム方式の赤外線ガス分析
計にも本発明に基づく測定セルは適用可能であ
る。
Although various embodiments based on the present invention have been shown above, the content of the present invention is not limited to the embodiments, and many other improvements can be made within the spirit of the invention. It is also possible to laminate three or more layers, to use a sintered metal filter instead of a ceramic filter, to place the heater inside a cylindrical filter, or to have a shape other than a cylinder. The measurement cell based on the present invention is applicable not only to single-beam type infrared gas analyzers but also to double-beam type infrared gas analyzers.

〔発明の効果〕 本発明によれば光源部、測定セル部、検出部か
ら成る赤外線ガス分析計において、測定セルとし
て基本的には筒状ガスフイルタ、加熱ヒータ、外
部筐体、赤外線透過窓で構成し、筒状ガスフイル
タと内面が同軸な筒状外部筐体との空間にガスフ
イルタの円周にそつてダストを含む測定ガスを流
すことにより、測定ガス中に含まれるダストを効
果的に除去し、測定セル内部におけるミストおよ
び水分の露結を防止して、従来の赤外線ガス分析
計を利用するに際して必要とした、ダスト除去、
ミスト、水分除去を含むサンプリング系を必要と
しないで直接測定を可能にした赤外線ガス分析計
を提供するもので、高精度、高速応答性を要求す
る分野への適用に際してトータルコストとして低
価格の赤外線分析計となる。
[Effects of the Invention] According to the present invention, in an infrared gas analyzer consisting of a light source section, a measurement cell section, and a detection section, the measurement cell basically consists of a cylindrical gas filter, a heater, an external casing, and an infrared transmission window. By flowing the measurement gas containing dust along the circumference of the gas filter into the space between the cylindrical gas filter and the cylindrical outer housing whose inner surface is coaxial, the dust contained in the measurement gas is effectively removed. Prevents mist and moisture condensation inside the measurement cell, and removes dust required when using conventional infrared gas analyzers.
This product provides an infrared gas analyzer that enables direct measurement without the need for a sampling system that includes mist and water removal. Becomes an analyzer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のシングルビーム方式赤外線ガス
分析計の構成図、第2図は従来の赤外線ガス分析
計に用いられるサンプリング系の系統図、第3図
a、第3図bは本発明に基づく赤外線ガス分析計
に適用される測定セルの一実施例を示す断面図、
第4図a、第4図b、第5図a、第5図bおよび
第6図a、第6図bは本発明に基づく赤外線ガス
分析計に適用される測定セルの他の実施例を示す
断面図もしくは正面図である。 1……赤外線光源部、2……赤外線光源、4…
…測定セル、5……検出部、30,31……赤外
線透過窓部、33……円筒状ガスフイルタ、34
……円筒状外筐体、35……仕切板、36……金
網状フイルタ、37……ヒータ、38,39……
ヒータ端子、40……測温体、41,42……測
温体端子。
Figure 1 is a configuration diagram of a conventional single-beam infrared gas analyzer, Figure 2 is a system diagram of a sampling system used in a conventional infrared gas analyzer, and Figures 3a and 3b are based on the present invention. A sectional view showing an example of a measurement cell applied to an infrared gas analyzer,
4a, 4b, 5a, 5b and 6a, 6b show other embodiments of the measuring cell applied to the infrared gas analyzer according to the present invention. It is a sectional view or a front view shown. 1... Infrared light source section, 2... Infrared light source, 4...
...Measurement cell, 5...Detection section, 30, 31...Infrared transmission window section, 33...Cylindrical gas filter, 34
... Cylindrical outer casing, 35 ... Partition plate, 36 ... Wire mesh filter, 37 ... Heater, 38, 39 ...
Heater terminal, 40...Temperature sensor, 41, 42...Temperature sensor terminal.

Claims (1)

【特許請求の範囲】 1 赤外線光源部、測定セル部および赤外線検出
部より構成され、測定ガスによる赤外線吸収量か
ら測定成分ガスの濃度を測定する赤外線ガス分析
計において、測定セル部を、測定ガスの出入口を
持ち、かつ長手方向の両側面が赤外線透過窓で気
密に封じられた筒状外筐体と、ヒータにより所定
の温度に加熱されるようになつており、前記外筐
体内に収容される筒状フイルタとから構成し、該
フイルタの両端を外筐体に固定し、フイルタの外
側にガス入口から外筐体との隙間を通つてガス出
口に至る測定ガス流路を形成し、フイルタの内側
に上記透過窓を経由する赤外線の光路を形成した
ことを特徴とする赤外線ガス分析計。 2 特許請求の範囲第1項記載の赤外線ガス分析
計において、測定セルのフイルタは筒状の繊維質
あるいは多孔質焼結体からなる第1層と、その外
表面を覆う筒状の金網あるいは第1層よりも目の
粗い焼結体からなる第2層との積層構造を持ち、
その表面にヒータを巻回してなることを特徴とす
る赤外線ガス分析計。 3 特許請求の範囲第1または第2項記載の赤外
線ガス分析計において、前記加熱ヒータによりフ
イルタ部温度が一定に制御されることを特徴とす
る赤外線ガス分析計。
[Scope of Claims] 1. In an infrared gas analyzer that is composed of an infrared light source section, a measurement cell section, and an infrared detection section and measures the concentration of a component gas to be measured from the amount of infrared absorption by the measurement gas, the measurement cell section is connected to the measurement gas. The cylindrical outer casing has an entrance and an exit, and both longitudinal sides are hermetically sealed with infrared transmitting windows, and the cylindrical outer casing is heated to a predetermined temperature by a heater, and is housed within the outer casing. Both ends of the filter are fixed to the outer casing, and a measurement gas flow path is formed on the outside of the filter from the gas inlet to the gas outlet through the gap with the outer casing. An infrared gas analyzer characterized in that an infrared light path passing through the transmission window is formed inside the infrared gas analyzer. 2. In the infrared gas analyzer according to claim 1, the filter of the measurement cell includes a first layer made of a cylindrical fibrous or porous sintered body, and a cylindrical wire mesh or a first layer covering the outer surface of the first layer. It has a laminated structure with a second layer made of a sintered body that is coarser than the first layer,
An infrared gas analyzer characterized by having a heater wound around its surface. 3. The infrared gas analyzer according to claim 1 or 2, wherein the temperature of the filter section is controlled to be constant by the heater.
JP58214443A 1983-11-15 1983-11-15 Infrared gas analyzer Granted JPS60105947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58214443A JPS60105947A (en) 1983-11-15 1983-11-15 Infrared gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58214443A JPS60105947A (en) 1983-11-15 1983-11-15 Infrared gas analyzer

Publications (2)

Publication Number Publication Date
JPS60105947A JPS60105947A (en) 1985-06-11
JPS649569B2 true JPS649569B2 (en) 1989-02-17

Family

ID=16655855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58214443A Granted JPS60105947A (en) 1983-11-15 1983-11-15 Infrared gas analyzer

Country Status (1)

Country Link
JP (1) JPS60105947A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8918956D0 (en) * 1989-08-19 1989-10-04 Engine Test Tech Ltd Gas analyser
US5060508A (en) * 1990-04-02 1991-10-29 Gaztech Corporation Gas sample chamber
US5222389A (en) * 1990-04-02 1993-06-29 Gaztech International Corporation Multi-channel gas sample chamber
CN103245616B (en) * 2012-02-14 2015-05-13 利得仪器股份有限公司 Optical path measuration reflection unit for environmental monitoring

Also Published As

Publication number Publication date
JPS60105947A (en) 1985-06-11

Similar Documents

Publication Publication Date Title
JPS649568B2 (en)
US5341214A (en) NDIR gas analysis using spectral ratioing technique
US3628028A (en) Window cleaning apparatus for photometric instruments
US5222389A (en) Multi-channel gas sample chamber
US3539804A (en) Fluid analysis by infrared absorption
US4560875A (en) Infrared absorption gas detector
US3793525A (en) Dual cell non-dispersive gas analyzer
US5170064A (en) Infrared-based gas detector using a cavity having elliptical reflecting surface
US7656532B2 (en) Cavity ring-down spectrometer having mirror isolation
EP1332346B1 (en) Respiratory gas analyzer
JPS61258147A (en) Method and device for detecting gas
CA1257980A (en) Process and device for determining the cloud point of a diesel oil
CA2199336A1 (en) A gas analyser
US4281248A (en) Nondispersive infrared gas analyzer
US6191421B1 (en) Gas analyzer using infrared radiation to determine the concentration of a target gas in a gaseous mixture
US5429805A (en) Non-dispersive infrared gas analyzer including gas-filled radiation source
CA2307782C (en) Diffusion-type ndir gas analyzer with convection flow
JPS649569B2 (en)
WO1996001418A1 (en) Ndir gas analysis using spectral ratioing technique
JPH05500112A (en) Shutterless optically stabilized capnograph
JP4727444B2 (en) Gas analyzer and semiconductor manufacturing apparatus
JP3126759B2 (en) Optical analyzer
JPS61108947A (en) Optical gas analyzer
JP3347264B2 (en) Concentration analyzer
JPS59171836A (en) Light absorbing cell