JPS649520B2 - - Google Patents

Info

Publication number
JPS649520B2
JPS649520B2 JP6066882A JP6066882A JPS649520B2 JP S649520 B2 JPS649520 B2 JP S649520B2 JP 6066882 A JP6066882 A JP 6066882A JP 6066882 A JP6066882 A JP 6066882A JP S649520 B2 JPS649520 B2 JP S649520B2
Authority
JP
Japan
Prior art keywords
pipe
heat insulating
insulation
heat
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6066882A
Other languages
Japanese (ja)
Other versions
JPS58178091A (en
Inventor
Masahiko Shiraishi
Masayuki Yamaguchi
Suekichi Oochi
Takehiro Horio
Hiroshi Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6066882A priority Critical patent/JPS58178091A/en
Publication of JPS58178091A publication Critical patent/JPS58178091A/en
Publication of JPS649520B2 publication Critical patent/JPS649520B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Exhaust Silencers (AREA)
  • Thermal Insulation (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、自動車用排気管などに使用される耐
久性の高い断熱複層金属管に関する。 自動車排気管には、火災発生を避ける等の目的
が管外周面が高温にならないこと従つて断熱性が
よいこと、また排気ガス浄化に触媒を使用するこ
とを考慮して排気ガスを高温に保つこと即ち保温
性がよいことなどが要求され、これらの要求を満
たすには排気管を内、外管からなる2重管とし、
間に耐熱性断熱材を詰めた複層管とすることが有
効である。また排気管はエンジンから障害物回避
等の目的で適宜折曲しながら車体尾部等排出端ま
で配設されるが、複層管を折曲するとき曲る部分
で断熱材に強い圧縮力が働き、断熱材層の厚みが
薄くなれば当然断熱性、保温性が悪くなるので断
熱性、保温性を保つために圧縮力が働いても断熱
材層が圧縮されにくいことが要求され、この要求
を満たすには本発明者達の研究によるとクロスに
編んだ断熱材層とすることが有効であることが解
つている。 〔従来の技術〕 かゝる断熱複層管の要部を第1図と第2図に示
し、折曲したときの断面を第3図(中間断熱材層
として粉粒体やシートを詰めたとき)と第4図
(中間断熱材層としてクロス状に編んだものを詰
めたとき)に示し、第5図は折曲部の断熱中間材
層の厚み変化をグラフで示す。10は内管、12
は中間断熱材層、14は外管、d1とd2は粉粒体や
シートの中間断熱材層の複合管を折曲したときの
内側と外側の中間断熱材層の厚み、d3とd4はクロ
スに編んだ中間断熱材層の複合管を折曲したとき
の内側と外側の中間断熱材層の厚みを示す。自動
車用排気管の場合内管10はステンレス鋼鋼管、
外管14は普通鋼鋼管で厚みは各々約1〜2mm、
断熱材は例えば石綿などで厚みは約1〜4mm、長
さは数m程度のものが使用される。この複層管の
製造法としては内管用ストリツプ、帯状断熱材、
および外管用ストツプを重ねて丸め、両側縁突合
せ部を電縫溶接して造管する、あるいは内、外管
を用い、内管に断熱材層を被覆し、断熱材被覆内
管を外管に挿入し、縮径して一体化する。その他
適宜の方法が採用できる。 〔発明が解決しようとする課題〕 ところで自動車の排気管は管内を高温の排気ガ
スが流れ、複層管の内管は高温排気ガスに接触し
ているため高温になるが、遮熱性、保温性が高い
ほど外管の温度は低く、内、外管の温度差は大き
い。そのため内、外管の温度差による内、外管の
膨張差は大きく(当然内外管の材質がちがうとき
も、膨張係数の差による内外管の膨張差が生じ
る)、外管を普通鋼、内管をステンレス、断熱用
中間層材の厚みを2.0mm、長さ1.0mの複層管を
700℃の排気ガスを流して実験したところ外管に
比べ内管が約8mm長く管軸方向に伸びた。 自動車の走行状態により排気管内の温度は低温
から高温(最高約900℃)まで変化する。このた
めに複層管の内管の伸縮量は大きくかつ繰返さ
れ、排気管の折曲部分の断熱中間層材は特に強い
圧縮力を受けながらこすられる。また排気管を折
曲するときにも、曲る部分の断熱中間層材に強い
圧縮力を受ける、また排気管が振動する(エンジ
ンの振動が伝達される、脈動圧力の排気ガスが流
れることなどが原因である)ことによつて、断熱
中間層が摩耗、粉化し断熱材の厚みが小さくなつ
たり外部に流出する。断熱材層の厚みが小さくな
つたり流出すると当然断熱性、保温性が悪くなり
所望の特性を満たすことができなくなる。 本発明は、かゝる温度変化、折曲、振動による
断熱中間層材の粉化の問題を改善することを目的
とするものである。 〔課題を解決するための手段〕 本発明では、内管と外管との間に、金属線と断
熱材をより合せたヤーンをクロスに編んだ断熱用
中間層材を介在させる。 また本発明では、内管と外管との間に、金属線
と断熱材をより合せたヤーンをクロスに編んだ断
熱用中間層材と金属箔との複層で形成された中間
層材を介在させる。 〔作 用〕 この金属管は、内管、断熱用中間層材、外管の
3層構造であるから管外周面が高温にならない、
保温性がよいことは勿論、断熱用中間層材が、金
属線と断熱材をより合せたヤーンをクロスに編ん
だものであるから、折曲部においても粉化が少な
い。 また断熱用中間層材として該クロスと金属箔の
複層とすると、該クロスと金属箔が密着して一体
になり、温度変化、振動などによるこすれは金属
箔と内、外管の間で生じるため、粉化が一層減少
する。 〔実施例〕 第6図は本発明に係る断熱複層金属管に介在さ
せる断熱用中間層材の金属線15bと断熱材15
aをより合せたヤーンの構造を示し、第7図はこ
のヤーンをクロスに編んだ構造を示す。第8図、
第9図、第10図、第11図は本発明に係る断熱
複層金属管の構造を示す。 第6図に示すヤーンは金属線15bとして約
0.1mmの太さ、断熱材15aとしてシリカ(SiO2
とアルミナ(Al2O3)を主成分としたセラミツク
繊維であり、第7図に示す断熱層材15のクロス
の厚さは1〜4mmである。第8図は内管10と外
管14の間にクロスに編んだ断熱層材15のみを
介在させた断熱複層管の構造、第9図は内管10
と外管14の間にクロスに編んだ断熱層材15と
厚さ0.05mm以下の金属箔16を張合せたもの(内
管と断熱層材の中に介入)を介在させた断熱複層
管の構造、第10図は断熱層材15の両面に金層
箔16,17を張付けて内管10と外管14の間
に介在させた断熱複層管の構造を示すもので、第
11図は可燃物18と金属箔16と断熱層材15
を三層にしたものを内管10と外管14の間に介
在した断熱複層管の構造を示し、可燃物は燃焼し
たとき炭化物を残留する厚さ約0.1mm以下のもの
で内管と金属箔の間に介在したものである。 第2図に示す従来の断熱複層管では断熱材とし
て石綿クロス、ガラスクロス、セラミツククロス
などであり、これらは全て金属線を含まないもの
で、これらの断熱材を介在した複層管を折曲して
冷熱試験(排気管内に700℃のエンジン排気ガス
を10分流し昇温したのち、エンジンを停止して排
気管を冷却する、この動作を数百〜数千回繰返す
試験)したところ、特に折曲部の断熱材が著しく
粉化して、遮熱および保温性が低下した。そこで
断熱中間層材として他の種々の形状、構造のもの
を用いて試験したところ、第1表に示すように断
熱材としてシリカとアルミナを主成分としたセラ
ミツク繊維と金属線(ステンレス線、ニツケルク
ロム線など)をより合せたヤーンをクロス状に編
んだものが有効であることが分つた。 即ちこの場合は第1表に示すように90゜に折曲
して冷熱サイクル試験しても従来の断熱材は重量
比で20〜40%も粉化したのに比べ、数%しか粉化
しない(断熱材の粉化は外管に接する表面より内
管に接する表面の方が著しい)。さらに断熱材の
表面に金属箔を張り付けると粉化が減少する。こ
れは断熱材と金属箔が密着し、金属箔と内、外管
の間でこすれるためである。一方金属箔は内、外
管に密着することもあるので、金属箔と内、外管
の間に燃焼すると炭化物の残る可燃物を介在させ
ると内、外管に密着せず、かつ炭化物が潤滑剤の
働きをして、粉化を防止出来ることも分つた。
[Industrial Field of Application] The present invention relates to a highly durable heat-insulating multilayer metal pipe used for automobile exhaust pipes and the like. Automobile exhaust pipes are designed to keep the exhaust gas at a high temperature in order to prevent fires, etc., so that the outer circumferential surface of the pipe does not become hot, so it has good insulation, and also to use a catalyst to purify the exhaust gas. In other words, good heat retention is required, and to meet these requirements, the exhaust pipe is made of a double pipe consisting of an inner and outer pipe.
It is effective to use multi-layer pipes with heat-resistant heat insulating material between them. In addition, the exhaust pipe is installed from the engine to the exhaust end such as the tail of the vehicle while being bent appropriately for the purpose of avoiding obstacles, etc., but when the multilayer pipe is bent, a strong compressive force is applied to the insulation material at the bent part. If the thickness of the insulation material layer becomes thinner, the insulation and heat retention properties will naturally deteriorate, so in order to maintain insulation and heat retention properties, the insulation material layer is required to be difficult to compress even when compressive force is applied. According to research conducted by the present inventors, it has been found that it is effective to use a cross-woven insulation layer to meet the requirements. [Prior art] The main parts of such a multilayer insulation pipe are shown in Figures 1 and 2, and the cross section when bent is shown in Figure 3. Fig. 4 shows the thickness change of the heat insulating intermediate layer at the bending part. 10 is the inner tube, 12
is the intermediate insulation layer, 14 is the outer pipe, d 1 and d 2 are the thicknesses of the inner and outer intermediate insulation layers when the composite pipe of the intermediate insulation layer of powder or sheet is bent, and d 3 and d 4 indicates the thickness of the inner and outer intermediate insulation layers when a composite pipe with cross-woven intermediate insulation layers is bent. In the case of an automobile exhaust pipe, the inner pipe 10 is a stainless steel pipe,
The outer tubes 14 are ordinary steel tubes each having a thickness of approximately 1 to 2 mm.
The heat insulating material used is, for example, asbestos, and has a thickness of about 1 to 4 mm and a length of about several meters. The manufacturing method for this multilayer pipe includes strips for inner pipes, band-shaped insulation materials,
The stop for the outer pipe is overlapped and rolled, and the butt parts of both sides are welded by electric resistance welding to form a pipe. Alternatively, by using an inner and outer pipe, the inner pipe is coated with a layer of insulation material, and the inner pipe coated with insulation material is attached to the outer pipe. Insert, reduce diameter, and integrate. Other appropriate methods can be adopted. [Problem to be solved by the invention] By the way, high-temperature exhaust gas flows through the exhaust pipe of an automobile, and the inner pipe of the multilayer pipe becomes hot because it is in contact with the high-temperature exhaust gas, but it has poor heat shielding and heat retention properties. The higher the value, the lower the temperature of the outer tube, and the greater the temperature difference between the inner and outer tubes. Therefore, the difference in expansion between the inner and outer tubes due to the temperature difference between the inner and outer tubes is large (of course, even when the materials of the inner and outer tubes are different, there will be a difference in expansion between the inner and outer tubes due to the difference in expansion coefficients). The pipe is made of stainless steel, the thickness of the insulation intermediate layer is 2.0 mm, and the length is 1.0 m.
When we conducted an experiment by flowing exhaust gas at 700°C, the inner tube was approximately 8 mm longer in the axial direction than the outer tube. The temperature inside the exhaust pipe changes from low to high (up to about 900°C) depending on the driving conditions of the car. For this reason, the amount of expansion and contraction of the inner pipe of the multilayer pipe is large and repeated, and the heat insulating intermediate layer material at the bent portion of the exhaust pipe is rubbed while being subjected to a particularly strong compressive force. Also, when bending the exhaust pipe, the heat insulating interlayer material at the bent part is subjected to strong compressive force, and the exhaust pipe vibrates (engine vibration is transmitted, exhaust gas flows at pulsating pressure, etc.) As a result, the heat insulating intermediate layer is worn out and powdered, reducing the thickness of the heat insulating material and causing it to leak outside. If the thickness of the heat insulating material layer decreases or flows out, the heat insulating properties and heat retaining properties will naturally deteriorate, making it impossible to satisfy the desired characteristics. The object of the present invention is to improve the problem of pulverization of the heat insulating intermediate layer material due to temperature changes, bending, and vibration. [Means for Solving the Problems] In the present invention, a heat insulating intermediate layer material made of a cross-knit yarn made of twisted metal wires and a heat insulating material is interposed between the inner tube and the outer tube. In addition, in the present invention, an intermediate layer material formed of a multilayer of a heat insulating intermediate layer material made of a cross-woven yarn made of twisted metal wire and a heat insulating material and a metal foil is provided between the inner tube and the outer tube. intervene. [Function] This metal tube has a three-layer structure: the inner tube, the insulation intermediate layer material, and the outer tube, so the outer circumferential surface of the tube does not become hot.
Not only does it have good heat retention properties, but since the heat insulating intermediate layer material is made of a cross-knit yarn made of twisted metal wire and heat insulating material, there is little pulverization at the bends. In addition, if the cloth and metal foil are used as a multi-layer insulation intermediate layer material, the cloth and metal foil will be in close contact with each other and become one body, and friction due to temperature changes, vibrations, etc. will occur between the metal foil and the inner and outer tubes. Therefore, powdering is further reduced. [Example] Fig. 6 shows a metal wire 15b and a heat insulating material 15 of a heat insulating intermediate layer material interposed in a heat insulating multi-layer metal pipe according to the present invention.
Fig. 7 shows the structure of twisted yarns, and Fig. 7 shows the structure of cross-knitted yarns. Figure 8,
9, 10, and 11 show the structure of a heat-insulating multilayer metal pipe according to the present invention. The yarn shown in FIG. 6 is approximately
Thickness of 0.1mm, silica (SiO 2 ) as insulation material 15a
The thickness of the cloth of the heat insulating layer material 15 shown in FIG. 7 is 1 to 4 mm. Fig. 8 shows the structure of a heat insulating multilayer pipe in which only a cross-woven heat insulating layer material 15 is interposed between the inner pipe 10 and the outer pipe 14, and Fig. 9 shows the structure of the inner pipe 10.
A heat-insulating multi-layer pipe in which a cross-woven heat-insulating layer material 15 and a metal foil 16 with a thickness of 0.05 mm or less are interposed between the inner tube and the heat-insulating layer material 14. Figure 10 shows the structure of a heat insulating multilayer pipe in which gold foils 16 and 17 are pasted on both sides of the heat insulating layer material 15 and interposed between the inner pipe 10 and the outer pipe 14. combustible material 18, metal foil 16, and heat insulation layer material 15
This shows the structure of a heat-insulating multi-layered pipe in which three layers are interposed between the inner pipe 10 and the outer pipe 14, and the combustible material is a material with a thickness of about 0.1 mm or less that leaves carbide when burned. It is interposed between metal foils. In the conventional heat-insulating double-layer pipe shown in Figure 2, the heat insulating material is asbestos cloth, glass cloth, ceramic cloth, etc. All of these do not contain metal wires, and the multi-layer pipe with these heat-insulating materials interposed cannot be folded. When we conducted a cold heat test (a test in which engine exhaust gas at 700℃ is flowed into the exhaust pipe for 10 minutes to raise the temperature, the engine is stopped and the exhaust pipe is cooled, this operation is repeated hundreds to thousands of times), In particular, the insulation material at the bent portions was significantly powdered, resulting in a decrease in heat shielding and heat retention. Therefore, we tested various other shapes and structures as insulation intermediate layer materials, and as shown in Table 1, ceramic fibers and metal wires (stainless steel wire, nickel wire, etc.) mainly composed of silica and alumina were used as insulation materials. It was found that a cross-knitted yarn made by twisting chrome wire, etc.) is effective. In other words, in this case, as shown in Table 1, even if the material is bent at 90 degrees and subjected to a thermal cycle test, only a few percent by weight of the conventional insulation material is powdered, compared to 20 to 40% by weight. (The pulverization of the insulation material is more pronounced on the surface in contact with the inner pipe than on the surface in contact with the outer pipe.) Furthermore, applying metal foil to the surface of the insulation material reduces powdering. This is because the heat insulating material and the metal foil are in close contact with each other, and there is friction between the metal foil and the inner and outer tubes. On the other hand, since the metal foil may come into close contact with the inner and outer tubes, if there is a combustible substance that remains in the form of carbide when burned between the metal foil and the inner and outer tubes, it will not come into close contact with the inner and outer tubes, and the carbide will provide lubrication. It was also found that it acts as an agent and can prevent powdering.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば断熱中間層
材としてシリカとアルミナを主成分としたセラミ
ツク繊維と金属線をより合せたヤーンをクロス状
に編んだもの、さらに断熱中間層材の表面に炭化
物のできる可燃物と金属箔を張り合わせたものを
用いるという簡単な手段により粉化しにくい耐久
性能の高い断熱複層金属管が得られ、甚だ有効で
ある。
As explained above, according to the present invention, a heat insulating intermediate layer material is made by knitting yarns made of ceramic fibers mainly composed of silica and alumina and metal wires in a cross shape, and furthermore, carbide is added to the surface of the heat insulating intermediate layer material. By the simple means of using a combustible material laminated with metal foil, it is possible to obtain a heat-insulating multi-layer metal pipe that is resistant to pulverization and has high durability, which is extremely effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜5図は従来の断熱複層管を示し、第1図
は端面図、第2図は斜視図、第3図および第4図
は曲げたときの厚みの変化を示す断面図、第5図
は厚みの変化を示すグラフである。第6〜11図
は本発明の断熱複層金属管を示し、第6図は断熱
材のヤーンの斜視図、第7図は断熱材のクロスの
斜視図、第8図、第9図、第10図および第11
図は断熱複層管の実施例を示す斜視図である。 図面で10は内管、12,15は断熱中間層
材、16,17は金属箔、18は可燃物、14は
外管である。
Figures 1 to 5 show a conventional heat insulating multi-layer pipe, with Figure 1 being an end view, Figure 2 being a perspective view, Figures 3 and 4 being cross-sectional views showing changes in thickness when bent. Figure 5 is a graph showing changes in thickness. 6 to 11 show the insulating multilayer metal pipe of the present invention, FIG. 6 is a perspective view of the insulation yarn, FIG. 7 is a perspective view of the insulation cloth, and FIGS. Figures 10 and 11
The figure is a perspective view showing an example of a heat insulating multilayer pipe. In the drawing, 10 is an inner tube, 12 and 15 are insulating intermediate layer materials, 16 and 17 are metal foils, 18 is a combustible material, and 14 is an outer tube.

Claims (1)

【特許請求の範囲】 1 内管と外管との間に、金属線と断熱材をより
合せたヤーンをクロスに編んだ断熱用中間層材を
介在させたことを特徴とする耐久性能の優れた断
熱複層金属管。 2 内管と外管との間に、金属線と断熱材をより
合せたヤーンをクロスに編んだ断熱用中間層材と
金属箔との複層で形成された中間層材を介在させ
たことを特徴とする耐久性能の優れた断熱複層金
属管。
[Claims] 1. Excellent durability characterized by interposing a heat insulating intermediate layer material made of a cross-knit yarn made of twisted metal wire and heat insulating material between the inner tube and the outer tube. Insulated multi-layer metal pipe. 2. Interposed between the inner tube and the outer tube is an intermediate layer material formed of a multi-layered insulation intermediate layer material made of a cross-woven yarn made of twisted metal wire and insulation material, and metal foil. A heat insulating multi-layer metal pipe with excellent durability.
JP6066882A 1982-04-12 1982-04-12 Heat-insulating double layer pipe having excellent durability Granted JPS58178091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6066882A JPS58178091A (en) 1982-04-12 1982-04-12 Heat-insulating double layer pipe having excellent durability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6066882A JPS58178091A (en) 1982-04-12 1982-04-12 Heat-insulating double layer pipe having excellent durability

Publications (2)

Publication Number Publication Date
JPS58178091A JPS58178091A (en) 1983-10-18
JPS649520B2 true JPS649520B2 (en) 1989-02-17

Family

ID=13148930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6066882A Granted JPS58178091A (en) 1982-04-12 1982-04-12 Heat-insulating double layer pipe having excellent durability

Country Status (1)

Country Link
JP (1) JPS58178091A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535593A (en) * 2006-05-01 2009-10-01 フェデラル−モーグル コーポレイション Basalt continuous filament insulation and refractory material and sleeve and method of construction thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4814656U (en) * 1971-06-24 1973-02-19

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535593A (en) * 2006-05-01 2009-10-01 フェデラル−モーグル コーポレイション Basalt continuous filament insulation and refractory material and sleeve and method of construction thereof

Also Published As

Publication number Publication date
JPS58178091A (en) 1983-10-18

Similar Documents

Publication Publication Date Title
EP0047527B1 (en) Composite dual tubing
US4413657A (en) Exhaust pipe with vibration damping
EP2314840B1 (en) Heat insulator for a vehicle exhaust pipe, vehicle pipe and methods for manufacturing the same
US5092122A (en) Means and method for insulating automotive exhaust pipe
US20050208851A1 (en) Thermal blanket including a radiation layer
US6334981B1 (en) Double-walled housing, in particular for exhaust gas catalytic converters of motor vehicles and method of producing a double-walled housing
US5163289A (en) Automotive exhaust system
KR100414137B1 (en) Honeycomb arrangement with an intermediate layer containing at least one metal foil
JPS5821144B2 (en) exhaust seal
RU2000120921A (en) CELLULAR DESIGN WITH INTERMEDIATE LAYER CONTAINING AT LEAST ONE METAL FOIL SHEET
US6647715B2 (en) Heat shield for an exhaust system of an internal combustion engine
US9446439B2 (en) Process for manufacturing a wound hose, particularly a spiral wound metallic hose, as well as wound hose and flexible conduction element with a wound hose
US5177960A (en) Metal-made carrier body for exhaust gas
US20110041945A1 (en) Automotive Exhaust Pipe
US3337939A (en) Muffler body and method of manufacture
JPS649520B2 (en)
JP4505288B2 (en) Engine exhaust system
CN1327141A (en) Fire resistant heat insulation path
JPS5939632B2 (en) Vibration damping double steel pipe
JPH04309410A (en) Heat insulating composite metallic pipe having excellent bendability
JPS5821096A (en) Heat insulating double layer pipe proper to bending
WO2013159531A1 (en) Spherical expansion joint for dual-mental composite pipe and fabrication method
JPH08294632A (en) Metal carrier for exhaust gas purifying catalyst
JPS60139996A (en) Heat-insulating double pipe and intermediate material thereof
JP2529352Y2 (en) 3-layer tube