JPS649364B2 - - Google Patents

Info

Publication number
JPS649364B2
JPS649364B2 JP13919581A JP13919581A JPS649364B2 JP S649364 B2 JPS649364 B2 JP S649364B2 JP 13919581 A JP13919581 A JP 13919581A JP 13919581 A JP13919581 A JP 13919581A JP S649364 B2 JPS649364 B2 JP S649364B2
Authority
JP
Japan
Prior art keywords
preform
mold
powder
zinc phosphate
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13919581A
Other languages
Japanese (ja)
Other versions
JPS5839705A (en
Inventor
Ryosuke Sagara
Sadataka Oobuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON FUNMATSU GOKIN KK
Original Assignee
NIPPON FUNMATSU GOKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON FUNMATSU GOKIN KK filed Critical NIPPON FUNMATSU GOKIN KK
Priority to JP13919581A priority Critical patent/JPS5839705A/en
Publication of JPS5839705A publication Critical patent/JPS5839705A/en
Publication of JPS649364B2 publication Critical patent/JPS649364B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、緻密な焼結鉄部材の製造方法に関す
る。 従来、緻密化焼結鉄部材の製造方法としては、
再圧縮法、即ち二回成形し二回焼結する方法が一
般に行なわれている。この方法は、一回の成形及
び焼結後に、金型との潤滑性能を向上させる為に
成形体表面に潤滑油、二硫化モリブデン、黒鉛、
せつけん等の潤滑剤を塗布した後、成形体を密閉
成形金型に入れて再度圧縮成形し、焼成すること
により焼結鉄部材の緻密化を図るものである。し
かしながら、上述の潤滑剤を使用する場合には、
圧縮成形時に潤滑被膜切れを生じ易い為、成形体
表面と金型面が直接接触することが多い。この傾
向は、圧縮成形圧力が8ton/cm2を上回ると特に顕
著となり、成形体表面及び金型表面の損傷を生じ
たり、或いは成形体と金型間の摩擦力上昇に伴う
圧力損失の増大により成形体の密度上昇が不十分
となり、又密度が不均一となる等の問題点を生ず
る。 本発明者は、上記の如き問題点を解決すべく
種々研究を重ねた結果、焼なまし処理した予備成
形体をリン酸亜塩及びステアリン酸ソーダにより
順次処理してリン酸亜鉛及びステアリン酸亜鉛か
らなる極く薄い複層被膜を形成させ、この複層被
覆を有する予備成形体を密閉成形金型内で圧縮成
形した後、焼結する場合には、その目的を十分に
達成し得ることを見出した。本発明は、この様な
新知見に基いて完成されたものである。 以下、本発明方法を工程順に詳細に説明する。 (i) 先ず、鉄粉末又は鉄或いは鉄合金の粉末を主
体とする混合粉末を4〜8ton/cm2程度の圧力で
予備成形する。混合粉末を使用する場合の鉄含
有量は、リン酸亜鉛被膜を良好に形成せしめる
為に70重量%以上とすることが好ましい。合金
成分及び/又は混合成分としては、製品の用途
及び目的に応じてマンガン、クロム、モリブデ
ン、黒鉛、ニツケル、銅等を適宜選択して使用
する。粉末の粒度は、通常焼結合金の原料とし
て使用されている粉末のそれと同様であれば良
く、又常法通りステアリン酸亜鉛粉末の如き金
型潤滑剤を配合しても良い。予備成形時の圧力
が4ton/cm2未満の場合には、成形体の強度が不
十分で成形後の移送途中で破損し易く、一方
8ton/cm2を上回る場合には、成形体と金型表面
との摩擦力が高まり、金型表面を傷付け易くな
る。 (ii) 次いで、得られた予備成形体を非酸化性雰囲
気中500〜1000℃で加熱した後、炉冷すること
により、該成形体の歪取り及び軟化を行なう。
この焼なまし工程時の雰囲気は、中性又は還元
性のいずれであつても良く、水素ガス、アンモ
ニアガス、炭化水素変成ガス等の還元性ガス及
び窒素、アルゴン等の不活性ガスが雰囲気ガス
として使用される。加熱温度が500℃末満では、
予備成形体の歪取り及び軟化が充分に行なわれ
ない為、後の圧縮成形時に充分な緻密化が行な
われ得ない。一方、加熱温度が1000℃を上回る
場合には、予備成形体中に含まれていたり或い
は雰囲気ガス中に含まれていたりする炭素成分
が鉄と合金を形成した予備成形体の硬度を高め
る傾向が大となり、やはり後の圧縮成形時に充
分な緻密化が行なわれ難い。 加熱後の予備成形体の冷却は、3000℃/hr以
下、より好ましくは300〜3000℃/hr程度の速
度で炉冷するのが良い。冷却速度が300℃/hr
未満の場合には、物性的に焼なまし効果が大き
いので好ましいが、冷却に長時間を要するので
経済的に不利である。一方、冷却速度が3000
℃/hrを上回ると、冷却作用によつて鉄素地が
硬化しやすく、後述の圧縮成形時に充分な緻密
化が行なわれ難い。 (iii) 焼なさしを終えた予備成形体は、次いでリン
酸亜鉛処理されて、その表面にリン酸亜鉛の皮
膜を形成される。このリン酸亜鉛皮膜と引続く
工程で形成されるステアリン酸亜鉛皮膜とによ
り、圧縮成形時に成形体と金型間の摩擦が著る
しく低下するので、成形体の密度が増大し且つ
成形体表面と金型表面の摩擦による傷発生が防
止される。リン酸亜鉛皮膜の膜厚は、次工程に
おいてステアリン酸亜鉛皮膜が成形体表面全面
に均一に付着するとともにリン酸亜鉛皮膜が焼
結後の鉄部材特性に悪影響を及ぼさない範囲
内、即ち0.5〜2μm程度とするのが良い。因み
に、この厚みは、冷間鍛造用材料のリン酸亜鉛
皮膜厚さの僅か1/5〜1/2程度である。リン酸亜 鉛処理は、処理液組成及び処理条件ともに冷間
鍛造用材料の場合とほぼ同様にして行なわれる
が、その一例を示せば、以下の通りである。例
えば、リン酸亜鉛〔Zn(PO42・4H2O〕80g、
硝酸亜鉛〔Zn(NO32・6H2O〕10g及びリン酸
(H3PO4)80c.c.を水に加えて1000c.c.となる様に
調整した液に予備成形体を90℃程度で浸漬す
る。焼なまし処理後の予備成形体表面には、通
常脂分やサビ等は付着していないので、脱脂、
酸洗等を行なう必要はない。但し、リン酸亜鉛
処理液が予備成形体の空孔内に侵入しない様
に、シヨツトブラスト等の封孔処理を行なつた
り、或いは予備成形体を水に浸して空孔を水で
満たしておく等の手段をとることにより、更に
改善された材質特性が得られる。リン酸亜鉛処
理後、処理液除去の為、水洗を行なう。 (iv) リン酸亜鉛皮膜を形成された予備成形体は、
次いでステアリン酸ソーダによる処理に供され
る。ステアリン酸ソーダによる処理は、70〜90
℃程度に加熱した濃度4〜8%程度のステアリ
ン酸ソーダ水溶液にリン酸亜鉛皮膜を形成され
た予備成形体を浸漬することにより、行なわれ
る。かくして、予備成形体上のリン酸亜鉛とス
テアリン酸ソーダとが反応して、リン酸亜鉛皮
膜上に更にステアリン酸亜鉛皮膜が形成され
る。ステアリン酸亜鉛皮膜は、全体に満遍なく
形成させれば良く、この結果、予備成形体表面
にはリン酸亜鉛皮膜とステアリン酸亜鉛皮膜と
が合計厚0.5〜2μm程度となる様に順次形成さ
れることとなる。ステアリン酸ソーダ処理終了
後、湯洗を行ない、成形体空孔及び表面から処
理剤を除去し、乾燥させる。処理剤が残留する
場合には、圧縮成形時に成形体の密度上昇を阻
害したり、焼結鉄部材の特性を低下させたりす
る。 (v) 次いで、リン酸亜鉛皮膜及びステアリン酸亜
鉛皮膜を形成された予備成形体は、密開成形型
内で8〜18ton/cm2の圧力で圧縮成形される。
圧縮成形に先立つて、予備成形体を密開金型内
に装入するに際し、予備成形体が金型に接触し
て歪んだり、加工硬化することのない様に留意
する必要がある。加工硬化を生じた予備成形体
は、圧縮性に劣り、密度上昇が不十分となる。
しかるに、予備成形体と金型との接触を完全に
防止すべく、金型寸法を成形体寸法に比して著
るしく大きくすれば、圧縮成形時の加工率が大
きくなつて、リン酸亜鉛皮膜が破壊されて成形
体及び金型表面が傷付いたり、或いは加工歪が
増加して焼結時の寸法のバラツキを助長する傾
向が顕著となる。従つて金型寸法は、予備成形
体を金型内に装入する際に該成形体が歪みを生
じない程度に該成形体よりも若干大きく且つ成
形体の加工率が出来るだけ小さくなる様な程度
とするのが良い。具体的には、金型壁面と予備
成形体との間のクリアランスが、0.005〜0.10
mm程度となる様にすることが好ましい。 圧縮成形圧力が8ton/cm2未満の場合には、成
形体の緻密化が充分でなく、一方18ton/cm2
上回る場合には、圧縮成形金型が破壊される危
険性がある。 (vi) 上記で圧縮成形された成形体は、常法に従い
非酸化性雰囲気中で焼結される。雰囲気ガスと
しては、前述の焼なまし工程で使用したと同様
のガスが使用される。焼結温度は、原料の種
類、成形体の寸法、製品に対し要求される性能
等により異なるが、通常1000〜1300℃程度の範
囲内にある。 本発明方法によれば、圧縮成形時に成形体表面
及び金型表面の損傷が防止され、且つ高密度にし
て寸法精度に優れた焼結鉄部材が得られるのが大
きな利点である。 以下実施例を示し、本発明の特徴とするところ
をより一層明らかにする。 実施例 1 市販の水噴霧鉄粉(粒度…100メツシユ通過)
に金型潤滑剤としてステアリン酸粉末1%を配合
した混合粉末を5ton/cm2の圧力で外径16mm、内径
10mm、高さ10mmの円筒形状に成形し、これを水素
ガス雰囲気中で900℃で45分間加熱後、約1000
℃/hrの速度で徐冷する。得られた予備成形体を
水に浸して該成形体内部空孔に水を浸透させた
後、温度約80℃のリン酸亜鉛処理液(リン酸亜鉛
80g/及びリン酸80c.c./及び硝酸亜鉛10g/
を含む水溶液)に浸漬して厚さ1μmのリン酸亜
鉛皮膜を形成させる。水洗により処理液を除去し
た後、該予備成形体を温度約90℃のステアリン酸
ソーダ飽和水溶液に30分間浸漬して全面に均一な
ステアリン酸亜鉛皮膜を形成させた後、十分に湯
洗し、乾燥する。二層の皮膜を形成させた予備成
形体を、該成形体よりやや大き目(クリアランス
0.01〜0.05mm)の金型に入れ、8ton/cm2の加圧力
で圧縮成形した後、分解アンモニアガス雰囲気中
1150℃で45分間焼結する。 得られた円筒状焼結部材に関し、予備成形体密
度、圧縮成形後の成形体を金型から取り出す際の
抜出し力、圧縮成形体表面の傷付きの有無、並び
に焼結部材の密度、硬さ及び圧環強さを求めたと
ころ、第1表に示す通りの結果が得られた。 比較例 1〜3 リン酸亜鉛とステアリン酸亜鉛とによる成形体
の潤滑処理に代えて以下の潤滑処理を行なう以外
は、実施例1と同様にして得られる焼結部材につ
いての結果は、第1表に示す通りである。
The present invention relates to a method for manufacturing a dense sintered iron member. Conventionally, the manufacturing method for densified sintered iron parts is as follows:
A recompression method, ie, a twice-molding and twice-sintering method, is commonly used. In this method, after one-time molding and sintering, lubricating oil, molybdenum disulfide, graphite,
After applying a lubricant such as soap, the compact is put into a closed mold, compression molded again, and fired to make the sintered iron member denser. However, when using the above-mentioned lubricants,
During compression molding, the lubricant coating is likely to break, so the surface of the molded product often comes into direct contact with the mold surface. This tendency becomes particularly noticeable when the compression molding pressure exceeds 8 ton/cm 2 , causing damage to the surface of the molded product and the mold, or due to an increase in pressure loss due to increased frictional force between the molded product and the mold. This causes problems such as insufficient increase in the density of the molded body and non-uniform density. As a result of various studies to solve the above-mentioned problems, the inventors of the present invention succeeded in treating an annealed preform with subsalt phosphate and sodium stearate to produce zinc phosphate and zinc stearate. It has been shown that the purpose can be fully achieved if an extremely thin multi-layer coating is formed, and the preform with this multi-layer coating is compression-molded in a closed mold and then sintered. I found it. The present invention was completed based on such new knowledge. Hereinafter, the method of the present invention will be explained in detail in the order of steps. (i) First, a mixed powder mainly composed of iron powder or iron or iron alloy powder is preformed under a pressure of about 4 to 8 tons/cm 2 . When using a mixed powder, the iron content is preferably 70% by weight or more in order to form a zinc phosphate film well. As the alloy component and/or mixed component, manganese, chromium, molybdenum, graphite, nickel, copper, etc. are appropriately selected and used depending on the use and purpose of the product. The particle size of the powder may be similar to that of the powder normally used as a raw material for sintered alloys, and a mold lubricant such as zinc stearate powder may be added in a conventional manner. If the pressure during preforming is less than 4ton/ cm2 , the strength of the molded product will be insufficient and it will easily break during transportation after molding.
If it exceeds 8 ton/cm 2 , the frictional force between the molded body and the mold surface increases, making it easy to damage the mold surface. (ii) Next, the obtained preform is heated at 500 to 1000° C. in a non-oxidizing atmosphere and then cooled in a furnace to remove distortion and soften the mold.
The atmosphere during this annealing process may be either neutral or reducing, and the atmospheric gas is a reducing gas such as hydrogen gas, ammonia gas, or hydrocarbon modified gas, and an inert gas such as nitrogen or argon. used as. When the heating temperature is less than 500℃,
Since the preform is not sufficiently smoothed and softened, sufficient densification cannot be achieved during subsequent compression molding. On the other hand, when the heating temperature exceeds 1000°C, carbon components contained in the preform or in the atmospheric gas tend to increase the hardness of the preform as it forms an alloy with iron. This makes it difficult to achieve sufficient densification during subsequent compression molding. After heating, the preform is preferably cooled in a furnace at a rate of 3000° C./hr or less, more preferably about 300 to 3000° C./hr. Cooling rate is 300℃/hr
If it is less than 1, it is preferable because the annealing effect is large in terms of physical properties, but it is economically disadvantageous because it takes a long time to cool down. On the other hand, the cooling rate is 3000
When the temperature exceeds °C/hr, the iron base tends to harden due to the cooling effect, making it difficult to achieve sufficient densification during compression molding as described below. (iii) The annealed preform is then treated with zinc phosphate to form a zinc phosphate film on its surface. This zinc phosphate film and the zinc stearate film formed in the subsequent process significantly reduce the friction between the molded body and the mold during compression molding, increasing the density of the molded body and improving the surface of the molded body. This prevents scratches from occurring due to friction on the mold surface. The thickness of the zinc phosphate film should be within a range that allows the zinc stearate film to adhere uniformly to the entire surface of the molded product in the next step and that the zinc phosphate film does not adversely affect the properties of the iron member after sintering, that is, 0.5~ It is preferable to set the thickness to about 2 μm. Incidentally, this thickness is only about 1/5 to 1/2 of the thickness of the zinc phosphate film of the cold forging material. The zinc phosphate treatment is carried out in substantially the same manner as in the case of cold forging materials, both in terms of treatment liquid composition and treatment conditions, and an example thereof is as follows. For example, zinc phosphate [Zn(PO 4 ) 2 4H 2 O] 80g,
Add 10 g of zinc nitrate [Zn(NO 3 ) 2 6H 2 O] and 80 c.c. of phosphoric acid (H 3 PO 4 ) to water and add the preform to a solution of 1000 c.c. Soak at about ℃. After annealing, the surface of the preform is usually free of fat, rust, etc., so degreasing and
There is no need to perform pickling or the like. However, in order to prevent the zinc phosphate treatment solution from entering the pores of the preform, a sealing process such as shot blasting should be performed, or the preform should be immersed in water to fill the pores with water. Further improved material properties can be obtained by taking measures such as keeping the material in place. After the zinc phosphate treatment, wash with water to remove the treatment solution. (iv) The preform on which the zinc phosphate film is formed is
It is then subjected to treatment with sodium stearate. Treatment with sodium stearate is 70-90
This is carried out by immersing the preform on which the zinc phosphate film has been formed into a sodium stearate aqueous solution having a concentration of about 4 to 8% heated to about .degree. Thus, the zinc phosphate and sodium stearate on the preform react to form a further zinc stearate film on the zinc phosphate film. The zinc stearate film may be formed evenly over the entire surface, and as a result, the zinc phosphate film and the zinc stearate film are sequentially formed on the surface of the preform so that the total thickness is about 0.5 to 2 μm. becomes. After the sodium stearate treatment is completed, the molded body is washed with hot water to remove the treatment agent from the pores and surface of the molded body, and then dried. If the treatment agent remains, it may inhibit the increase in the density of the compact during compression molding or may deteriorate the properties of the sintered iron member. (v) Next, the preform on which the zinc phosphate film and the zinc stearate film have been formed is compression molded in a closed mold at a pressure of 8 to 18 tons/cm 2 .
When charging the preform into a closed mold prior to compression molding, care must be taken to ensure that the preform does not come into contact with the mold and become distorted or work hardened. A preform that has undergone work hardening has poor compressibility and an insufficient increase in density.
However, if the dimensions of the die are made significantly larger than the dimensions of the compact in order to completely prevent contact between the preform and the die, the processing rate during compression molding will increase and the zinc phosphate There is a noticeable tendency for the film to be destroyed and the surfaces of the molded body and mold to be damaged, or for processing strain to increase and to promote dimensional variation during sintering. Therefore, the mold dimensions should be slightly larger than the preform to the extent that the mold does not cause distortion when the preform is inserted into the mold, and such that the processing rate of the mold is as small as possible. It is better to set it as a degree. Specifically, the clearance between the mold wall and the preform is 0.005 to 0.10.
It is preferable to make it about mm. If the compression molding pressure is less than 8 ton/cm 2 , the compact will not be sufficiently densified, while if it exceeds 18 ton/cm 2 , there is a risk that the compression molding mold will be destroyed. (vi) The compact formed by compression molding above is sintered in a non-oxidizing atmosphere according to a conventional method. As the atmospheric gas, the same gas as used in the annealing process described above is used. The sintering temperature varies depending on the type of raw material, the dimensions of the compact, the performance required for the product, etc., but is usually within a range of about 1000 to 1300°C. According to the method of the present invention, the major advantage is that damage to the surface of the compact and the mold during compression molding can be prevented, and a sintered iron member with high density and excellent dimensional accuracy can be obtained. Examples will be shown below to further clarify the features of the present invention. Example 1 Commercially available water spray iron powder (particle size...100 mesh passed)
A mixed powder containing 1% stearic acid powder as a mold lubricant was applied at a pressure of 5 tons/cm 2 to a mold with an outer diameter of 16 mm and an inner diameter.
It was molded into a cylindrical shape of 10 mm and 10 mm in height, and after heating it at 900℃ for 45 minutes in a hydrogen gas atmosphere, it was heated to about 1000℃.
Cool slowly at a rate of °C/hr. After soaking the obtained preform in water to allow water to penetrate into the internal pores of the preform, a zinc phosphate treatment solution (zinc phosphate) at a temperature of about 80°C was added.
80g/and phosphoric acid 80c.c./and zinc nitrate 10g/
(containing aqueous solution) to form a 1 μm thick zinc phosphate film. After removing the treatment liquid by washing with water, the preform is immersed in a saturated sodium stearate aqueous solution at a temperature of about 90°C for 30 minutes to form a uniform zinc stearate film on the entire surface, and then thoroughly washed with hot water, dry. The preformed body on which the two-layer film is formed is slightly larger (clearance) than the preformed body.
0.01~0.05mm) and compression molded with a pressure of 8ton/ cm2 , then in a decomposed ammonia gas atmosphere.
Sinter at 1150°C for 45 minutes. Regarding the obtained cylindrical sintered member, the density of the preform, the extraction force when taking out the compact after compression molding from the mold, the presence or absence of scratches on the surface of the compression molded product, and the density and hardness of the sintered member. When the radial crushing strength and the radial crushing strength were determined, the results shown in Table 1 were obtained. Comparative Examples 1 to 3 The results for sintered members obtained in the same manner as in Example 1, except that the following lubrication treatment was performed instead of the lubrication treatment of the molded body with zinc phosphate and zinc stearate, were as follows. As shown in the table.

【表】【table】

【表】 かつた。
第1表に示す結果から、本発明による皮膜は潤
滑性に優れ、成形体を損傷させず、且つ焼結部材
の硬度を高めることが明らかである。 実施例 2 市販のAISI規格4100系合金粉(マンガン0.6%、
クロム1.1%、モリブデン0.25%、残余鉄;粒度
…100メツシユ通過)に黒鉛粉(粒度44μm以下)
0.5%及びステアリン酸亜鉛粉末1%を配合した
混合粉末を6ton/cm2の圧力で外径16mm、内径10
mm、高さ10mmの円筒形状に成形し、これを水素ガ
ス雰囲気中850℃で45分間加熱後、約1000℃/hr
の冷却速度で徐冷する。得られた予備成形体を以
下実施例1と同様に処理してリン酸亜鉛及びステ
アリン酸亜鉛の皮膜を形成させ、該成形体よりや
や大き目(クリアランス0.01〜0.05mm)の金型に
入れ、14ton/cm2の加圧力で圧縮成形した後、分
解アンモニアガス雰囲気中1150℃で45分間焼結す
る。 得られた焼結体につき、実施例1と同様の測定
を行なつたところ、第2表に示す結果が得られ
た。 実施例 3 市販のミルスケール還元鉄粉(粒度…100メツ
シユ通過)にニツケル粉(粒径10μm以下)4%、
モリブデン粉(粒径10μm以下)2%、銅粉(粒
径44μm以下)3%、黒鉛粉(粒径44μm以下)
0.2%及びステアリン酸亜鉛粉末1%を配合した
粉末を実施例2と同様にして予備成形し、焼なま
しを行ない、皮膜を形成し、圧縮成形した後、分
解アンモニアガス雰囲気中1180℃で45分間焼結す
る。 得られた焼結体につき、実施例1と同様の測定
を行なつたところ、第2表に示す結果が得られ
た。 比較例 4 実施例2と同様にして予備成形体を得た後、焼
なましを行ない、リン酸亜鉛及びステアリン酸ソ
ーダ処理並びに圧縮成形を行なうことなく、実施
例2と同様にして焼結する。 得られた焼結体につき、実施例1と同様の測定
を行なつたところ、第2表に示す結果が得られ
た。 比較例 5 実施例3と同様にして予備成形体を得た後、焼
なましを行ない、リン酸亜鉛及びステアリン酸ソ
ーダ処理並びに圧縮成形を行なうことなく、実施
例3と同様にして焼結する。 得られた焼結体につき、実施例1と同様の測定
を行なつたところ、第2表に示す結果が得られ
た。
[Table] Katsuta.
From the results shown in Table 1, it is clear that the coating according to the present invention has excellent lubricity, does not damage the compact, and increases the hardness of the sintered member. Example 2 Commercially available AISI standard 4100 series alloy powder (manganese 0.6%,
Chromium 1.1%, molybdenum 0.25%, residual iron; particle size...passed 100 meshes) and graphite powder (particle size 44 μm or less)
A mixed powder containing 0.5% zinc stearate powder and 1% zinc stearate powder was heated to a pressure of 6 tons/cm 2 with an outer diameter of 16 mm and an inner diameter of 10 mm.
mm, height 10 mm, and heated at 850°C for 45 minutes in a hydrogen gas atmosphere, then heated at approximately 1000°C/hr.
Cool slowly at a cooling rate of . The obtained preform was then treated in the same manner as in Example 1 to form a film of zinc phosphate and zinc stearate, placed in a mold slightly larger (clearance 0.01 to 0.05 mm) than the preform, and heated to 14 tons. After compression molding with a pressure of /cm 2 , sintering was performed at 1150°C for 45 minutes in a decomposed ammonia gas atmosphere. The obtained sintered body was subjected to the same measurements as in Example 1, and the results shown in Table 2 were obtained. Example 3 Commercially available mill scale reduced iron powder (particle size...passed 100 meshes) was mixed with 4% nickel powder (particle size 10 μm or less).
Molybdenum powder (particle size 10μm or less) 2%, copper powder (particle size 44μm or less) 3%, graphite powder (particle size 44μm or less)
A powder containing 0.2% zinc stearate powder and 1% zinc stearate powder was preformed in the same manner as in Example 2, annealed, a film was formed, and compression molded. Sinter for minutes. The obtained sintered body was subjected to the same measurements as in Example 1, and the results shown in Table 2 were obtained. Comparative Example 4 After obtaining a preform in the same manner as in Example 2, it is annealed and sintered in the same manner as in Example 2 without performing zinc phosphate and sodium stearate treatment and compression molding. . The obtained sintered body was subjected to the same measurements as in Example 1, and the results shown in Table 2 were obtained. Comparative Example 5 After obtaining a preform in the same manner as in Example 3, it is annealed and sintered in the same manner as in Example 3 without performing zinc phosphate and sodium stearate treatment and compression molding. . The obtained sintered body was subjected to the same measurements as in Example 1, and the results shown in Table 2 were obtained.

【表】【table】

【表】 第2表に示す結果から、本発明方法によれば、
成形体表面を傷付けることなく高硬度且つ高強度
の焼結鉄部材が得られることが明らかである。
[Table] From the results shown in Table 2, according to the method of the present invention,
It is clear that a sintered iron member with high hardness and high strength can be obtained without damaging the surface of the compact.

Claims (1)

【特許請求の範囲】 1 (i) 鉄粉末又は鉄或いは鉄合金の粉末を主体
とする混合粉末を4〜8ton/cm2の圧力で予備成
形する工程、 (ii) 該予備成形体を非酸化性雰囲気中500〜1000
℃で加熱後冷却する工程、 (iii) 該予備成形体をリン酸亜鉛処理する工程、 (iv) 該予備成形体をステアリン酸ソーダ処理する
工程、 (v) 該予備成形体を密閉成形型内で8〜18ton/
cm2の圧力で圧縮成形する工程、及び。 (vi) 得られた成形体を非酸化性雰囲気中で焼結す
る工程。 を備えたことを特徴とする緻密化焼結鉄部材の製
造方法。
[Claims] 1 (i) A step of preforming a mixed powder mainly composed of iron powder or iron or iron alloy powder at a pressure of 4 to 8 tons/cm 2 , (ii) Non-oxidizing the preform 500-1000 in sexual atmosphere
(iii) treating the preform with zinc phosphate; (iv) treating the preform with sodium stearate; (v) placing the preform in a closed mold. 8~18ton/
compression molding at a pressure of cm 2 ; (vi) A step of sintering the obtained compact in a non-oxidizing atmosphere. A method for manufacturing a densified sintered iron member, comprising:
JP13919581A 1981-09-02 1981-09-02 Production of sintered iron member having higher density Granted JPS5839705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13919581A JPS5839705A (en) 1981-09-02 1981-09-02 Production of sintered iron member having higher density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13919581A JPS5839705A (en) 1981-09-02 1981-09-02 Production of sintered iron member having higher density

Publications (2)

Publication Number Publication Date
JPS5839705A JPS5839705A (en) 1983-03-08
JPS649364B2 true JPS649364B2 (en) 1989-02-17

Family

ID=15239764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13919581A Granted JPS5839705A (en) 1981-09-02 1981-09-02 Production of sintered iron member having higher density

Country Status (1)

Country Link
JP (1) JPS5839705A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314477C (en) * 2004-01-13 2007-05-09 中南大学 Method for preparing titanium-aluminum intermetallic compound filter membrane by reacting and synthesizing titanium and aluminum element powder

Also Published As

Publication number Publication date
JPS5839705A (en) 1983-03-08

Similar Documents

Publication Publication Date Title
JP4304245B2 (en) Powder metallurgy object with a molded surface
US5613180A (en) High density ferrous power metal alloy
US4006016A (en) Production of high density powdered metal parts
US2206395A (en) Process for obtaining pure chromium, titanium, and certain other metals and alloys thereof
US4681629A (en) Powder metallurgical process for manufacturing copper-nickel-tin spinodal alloy articles
US3859086A (en) Method of enhancing powder compactibility
US4738730A (en) Steam sealing for nitrogen treated ferrous part
CN117600466A (en) Manufacturing process of encapsulated sprocket
JPS649364B2 (en)
CA1288620C (en) Process and composition for improved corrosion resistance
US3902892A (en) Porous ferrous metal impregnated with magnesium metal
US3549357A (en) Dry impact coating of powder metal parts
JPS5826402B2 (en) Manufacturing method for iron-based sintered parts
US3007822A (en) Process for treating porous metallic parts
US3804600A (en) Sintered porous iron article impregnated with oleic acid and an inhibitor for forming matching surfaces by friction
US2489838A (en) Powder metallurgy process for producing steel parts
US3142894A (en) Sintered metal article and method of making same
GB1590953A (en) Making articles from metallic powder
US2763583A (en) Process for manufacturing porous cast iron
US2979810A (en) Rotating bands for projectiles and methods for making the same
US2495823A (en) Pressing of articles from metal powder
US3265541A (en) Elimination of enamel fishscaling in iron and steel sheets
US3973061A (en) Method for the preparation of porous ferrous metal impregnated with magnesium metal
JP2018127650A (en) Ferrous powder metallurgical member and method for producing the same
US4086087A (en) Process for the preparation of powdered metal parts