JPS649358B2 - - Google Patents

Info

Publication number
JPS649358B2
JPS649358B2 JP13770280A JP13770280A JPS649358B2 JP S649358 B2 JPS649358 B2 JP S649358B2 JP 13770280 A JP13770280 A JP 13770280A JP 13770280 A JP13770280 A JP 13770280A JP S649358 B2 JPS649358 B2 JP S649358B2
Authority
JP
Japan
Prior art keywords
gas
steam
reaction
catalytic combustion
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13770280A
Other languages
Japanese (ja)
Other versions
JPS5763387A (en
Inventor
Hiroshi Kawagoe
Shinpei Matsuda
Masahito Takeuchi
Hideo Okada
Fumito Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13770280A priority Critical patent/JPS5763387A/en
Publication of JPS5763387A publication Critical patent/JPS5763387A/en
Publication of JPS649358B2 publication Critical patent/JPS649358B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は炭化水素類及び/又は酸素含有炭化水
素化合物と水蒸気とを反応させてメタンを主成分
とする燃料ガスを製造する方法に関し、更に詳細
には接触燃焼工程と水蒸気改質工程とを組合せた
燃料ガスの製造方法に関する。 従来から都市ガス用として発熱量約5000Kcal
程度の燃料ガスを製造する方法としてサイクリツ
ク接触分解方式が知られている。この方式は炭化
水素を原料油とした場合、装置も簡単で、他に格
別の付加設備を要しないので、ガス事業では多用
され、特に地方の中小ガス事業に普及している。
サイクリツク方式は原料油とスチームとの吸熱ガ
ス化反応による原料油の改質化を利用する方法で
あるが、加熱期と製造期を交互に繰り返す方式で
ある。加熱期においては原料油と空気のバーナー
燃焼によりチエツカレンガ、改質用ニツケル系触
媒層を加熱すると同時に触媒上に析出した炭素を
焼却し、その蓄熱量により次の製造期において前
記の吸熱ガス化反応を進行させる。反応の主体を
なす反応器(改質反応器)は一般にニツケル触媒
を収納した耐火レンガ内張り円筒容器で、通常こ
れに原料油及び空気供給手段、燃焼用バーナー、
空気予熱器、蒸気予熱器等の機器が附属してい
る。反応器内の温度は炉内々蔵のバーナーにより
原料油(加熱油)を空気により部分燃焼させ、反
応温度800〜900℃に昇温される。反応器の形式は
多種多様であるが、反応器温度が高いため反応器
材料及び構造上の制約から反応は低圧で行なわ
れ、したがつて燃料ガスタンクに貯留するために
加圧が必要となる。特に根本的な問題として、加
熱期と製造期を交互に行うため、触媒層を通過す
る流れの分布が不均一になり易く、又バーナー燃
焼のため加熱油の完全燃焼、局部的加熱が起り、
触媒層温度分布に異常をきたし、ガス化成績の低
下を招くことになる。更に加熱期と製造期の交互
の繰返し、触媒層温度分布の変動により燃料ガス
の組成も一定とならない等の問題がある。 本発明は前記現状に鑑みてなされたもので、そ
の目的はサイクリツク方式と同様の発熱量を有す
る燃料ガスを定常的に中高圧の圧力下、低温での
燃焼反応及び水蒸気改質反応により製造する方法
を提供することである。 前記の目的を達成する本発明の燃料ガスの製造
方法は炭化水素類及び/又は含酸素炭化水素化合
物より成る原料油と水蒸気とを反応させてメタン
を主成分とする燃料ガスを製造する方法におい
て、貴金属触媒層を有する接触燃焼帯に原料油、
酸素含有ガス及び水蒸気並びに改質帯からのリサ
イクルガスを導通して原料油及び水蒸気を昇温
し、次に接触燃焼帯処理ガスを改質触媒層を有す
る改質帯に導通することを特徴とする。 本発明は接触燃焼工程と水蒸気改質工程とを、
改質帯からのリサイクルガスを接触燃焼帯に導通
することにより組合せ、これにより2気圧以上の
加圧下、500℃以下の温度で燃焼反応、水蒸気改
質反応を定常的に行なうことを可能にしたもので
ある。すなわち燃焼反応の一部はリサイクルガス
中の水素ガスと供給される酸素含有ガス例えば空
気中の酸素ガスとの反応であり、この反応により
昇温された貴金属触媒層を有する接触燃焼帯域の
状態下に他の燃焼反応である原料油と酸素との燃
焼反応により水蒸気改質反応に必要な原料油及び
水蒸気の予熱、昇温が行なわれ、これにより接触
燃焼及び水蒸気改質反応の定常化が図られる。そ
してこの方式により原料油としてはサイクリツク
方式で使用される炭化水素類の外、含酸素炭化水
素化合物、例えばアルコール類等の使用が可能と
なる。これらの原料油は特に限定されないが、そ
の沸点が250℃以下であることが望ましく、一般
には沸点120℃以下の石油留分、例えば液化石油
ガス(LPG)、軽質ナフサが使用される。 本発明を更に添付図面を参照して説明すると、
添付図面は本発明を実施する一具体例のフロー、
シートであり、1は空気供給系、2は原料油供給
系、3は水供給系、4は接触燃焼塔、5は水蒸気
改質塔、6は熱交換器、7は水蒸気除去のための
ノツクアウトドラム、8は生成ガスホルダー、9
は燃料ガス供給系、10はリサイクルガス循環
系、11はコンプレツサー、12,13は水蒸気
供給系である。H2,CO,CO2,CH4を含有する
燃料ガスを製造するため、定常的には、スタート
アツプに当り生成ガスホルダー8からの燃料ガス
の一部をリサイクルガスとして、その循環系10
を介してコンプレツサー11で圧縮して空気及び
熱交換器6により予熱された水蒸気と共に接触燃
焼塔4に導入する。接触燃焼塔4には、アルミ
ナ、シリカ等の耐熱性酸化物担体に貴金属を担持
した触媒が充填されている。接触燃焼塔4では主
にH2−O2反応により昇温される。昇温されたリ
サイクルガス及び水蒸気の混合ガスは次に水蒸気
改質塔に導入され、該塔は昇温される。水蒸気改
質塔5には改質触媒としてニツケル及び/又はコ
バルト触媒が充填され、昇温時に該触媒の還元を
行なつてもよい。水蒸気改質塔5からの昇温され
た混合ガスは熱交換器6に導入されて水供給系3
からの水と熱交換して水蒸気を発生させる。次い
で混合ガスはノツクアウトドラム7に導入され、
水蒸気は除去され、生成ガスホルダーに貯蔵され
る。なお初期のスタートアツプは生成ガスがリサ
イクルできないので、ボンベ詰等の水素含有ガス
を、リサイクルガスの代りに使用する。 前記のように接触燃焼塔4及び水蒸気改質塔5
の昇温が行なわれた後、原料油を接触燃焼塔に導
入して昇温した後水蒸気改質塔5に導通すると共
に、水蒸気供給系13より水蒸気を導入して水蒸
気改質塔5における反応に適する水蒸気量を調節
する。水蒸気改質塔5の反応に必要な入口温度を
設定するため、接触燃焼塔で、原料油と空気及び
リサイクルガス中の水素ガスと酸素のそれぞれの
燃焼反応に伴う発熱量を調節する。したがつて、
定常運転においては、接触燃焼塔においては空気
量を調節して原料油の一部と空気との部分燃焼反
応を主とし、リサイクルガスの導入を制限するこ
とができる。 水蒸気改質塔5では、原料油と水蒸気との反応
により、後記の実施例に示すようにCH4を主成分
とし、H2,CO,CO2,H2Oを含む生成ガスが得
られる。 生成ガスは熱交換器6を径由して熱交換し、次
いでノツクアウトドラム7でH2Oが除去された
後、燃料ガスとして生成ガスホルダーに貯留さ
れ、一部はリサイクルガスとして循環される。 接触燃焼帯で使用される貴金属触媒は通常使用
されている貴金属触媒でよく、例えばアルミナ、
シリカ等の耐熱性酸化物に担持された例えば0.1
〜0.5重量%の低比率の白金族金属触媒であり、
使用前には還元操作の必要はない。一方水蒸気改
質帯に使用される改質触媒は通常のニツケル及
び/又はコバルト系触媒であり、ニツケル及び/
又はコバルト含量は40〜80重量%である。この種
の触媒としてはNi−Al2O3(特公昭44−17737号公
報)、Ni−MgO(特開昭49−76902号公報)、Ni−
La2O3−Al2O3(特開昭53−31590号公報)が知ら
れている。 接触燃焼帯の温度条件は300℃〜500℃が適当で
あり、圧力は2〜100気圧でよいが特に限定され
ない。リサイクルガス及び原料油の供給速度は
SV(空間速度)で5000〜100000h-1である。リサ
イクルガスに添加する空気量はリサイクルガス中
のO2濃度に換算して4〜10容量%であり、リサ
イクルガス中のH2濃度と当量であることが望ま
しい。水蒸気改質帯における反応温度は350〜500
℃である。 本発明によれば、CH4を40容量%以上含有する
燃料ガスを得ることができ、スタートアツプ時の
加熱期を除いて、定常状態では加熱期と製造期と
をサイクルする必要がなく、定常状態で燃料ガス
が製造できるため、燃料ガスタンクを含めて装置
を小型できる。 次に本発明を実施例について説明するが本発明
はこれによりなんら限定されるものではない。 実施例 本実施例では装置を高圧流通式とし、接触燃焼
帯は内径15mm、長さ400mmの反応管の中央部に、
アルミナにpd0.3重量%を担持した径3mm、長さ
3mmの触媒(還元状態)を充填した。 水蒸気改質帯は内径4.6mm、長さ600mmの反応管
であり、その中央部に、3段沈澱法により製造し
たNiO−La2O3−Al2O3触媒を0.5〜1.0mmに破砕し
て長さ約30cmに充填した。(触媒量約5ml)。触媒
は使用に先立ち500℃で4時間還元した。接触燃
焼反応管中央部に設けた熱電対挿入管内を、熱電
対をスライドさせて触媒層内の温度を測定し、反
応管前後のガス組成の変化をみるためにTCD
(Thermal Condnctivity Detector)及びFID
(Flame Ionization Detector)を設けた。同じ
く水蒸気改質反応管の触媒層の温度分布を測定
し、温度分布より反応終了点を求め、その径時変
化により触媒の劣化速度を求めた。 この実験は接触燃焼帯圧力9.0〜8.0Kg/cm2G、
水蒸気改質帯圧力7.0Kg/cm2Gの加圧下に行なわ
れた。測定位置及び測定値は次の表に示すとおり
であつた。測定位置は次のとおりであり、測定量
はモル(相対量)及び組成%で示した。 A ブタン供給 B 空気供給 C 水供給 D サイクルガス供給 E 接触燃焼帯域入口 F 接触燃焼帯出口 G 水蒸気改質帯出口
The present invention relates to a method for producing a fuel gas containing methane as a main component by reacting hydrocarbons and/or oxygen-containing hydrocarbon compounds with steam, and more specifically, a method that combines a catalytic combustion process and a steam reforming process. The present invention relates to a method for producing fuel gas. Conventionally, the calorific value is approximately 5000Kcal for city gas.
A cyclic catalytic cracking method is known as a method for producing fuel gas of about 100%. When hydrocarbons are used as feedstock, this method is simple in equipment and does not require any special additional equipment, so it is widely used in gas businesses, and is particularly popular in small and medium-sized gas businesses in rural areas.
The cyclic method is a method that utilizes the reforming of feedstock oil through an endothermic gasification reaction between the feedstock oil and steam, and is a method in which heating periods and production periods are alternately repeated. During the heating period, the feedstock oil and air are burned in a burner to heat the Chetsuka brick and the reforming nickel-based catalyst layer, and at the same time, the carbon deposited on the catalyst is incinerated, and the amount of heat stored therein is used to carry out the endothermic gasification reaction described above in the next production period. proceed. The reactor (reforming reactor) that is the main body of the reaction is generally a fireproof brick lined cylindrical container containing a nickel catalyst, and is usually equipped with feed oil and air supply means, a combustion burner,
Equipment such as an air preheater and steam preheater is attached. The temperature inside the reactor is raised to a reaction temperature of 800 to 900°C by partially burning raw material oil (heated oil) with air using a burner built into the furnace. Although there are various types of reactors, the reaction is carried out at low pressure due to the high reactor temperature and constraints on the reactor material and structure, and therefore pressurization is required to store the fuel in the gas tank. Particularly fundamental problems are that because the heating period and the manufacturing period are performed alternately, the distribution of the flow passing through the catalyst layer tends to be uneven, and due to burner combustion, the heating oil is completely combusted and local heating occurs.
This will cause an abnormality in the temperature distribution of the catalyst layer, leading to a decrease in gasification performance. Further, there are problems such as the composition of the fuel gas not being constant due to alternating repetition of the heating period and the manufacturing period and fluctuations in the temperature distribution of the catalyst layer. The present invention has been made in view of the above-mentioned current situation, and its purpose is to constantly produce fuel gas having a calorific value similar to that of the cyclic method by a combustion reaction and a steam reforming reaction at a low temperature under medium-high pressure. The purpose is to provide a method. The method for producing fuel gas of the present invention which achieves the above object is a method for producing a fuel gas containing methane as a main component by reacting a raw material oil consisting of hydrocarbons and/or an oxygen-containing hydrocarbon compound with steam. , raw oil in a catalytic combustion zone with a noble metal catalyst layer,
Feedstock oil and steam are heated by passing oxygen-containing gas, water vapor, and recycled gas from the reforming zone, and then passing the catalytic combustion zone treated gas to a reforming zone having a reforming catalyst layer. do. The present invention includes a catalytic combustion process and a steam reforming process,
Combining the recycled gas from the reforming zone by passing it through the catalytic combustion zone, this makes it possible to regularly carry out combustion reactions and steam reforming reactions at temperatures below 500°C under a pressure of 2 atmospheres or more. It is something. In other words, part of the combustion reaction is a reaction between hydrogen gas in the recycled gas and a supplied oxygen-containing gas, such as oxygen gas in the air. In addition, another combustion reaction, the combustion reaction between the feedstock oil and oxygen, preheats and raises the temperature of the feedstock oil and steam necessary for the steam reforming reaction, thereby stabilizing the catalytic combustion and steam reforming reactions. It will be done. This method allows the use of oxygen-containing hydrocarbon compounds such as alcohols, in addition to the hydrocarbons used in the cyclic method, as the feedstock oil. These feedstock oils are not particularly limited, but desirably have a boiling point of 250°C or lower, and petroleum fractions with a boiling point of 120°C or lower, such as liquefied petroleum gas (LPG) or light naphtha, are generally used. The present invention will be further described with reference to the accompanying drawings:
The attached drawings show a flowchart of a specific example of carrying out the present invention.
1 is an air supply system, 2 is a feedstock oil supply system, 3 is a water supply system, 4 is a catalytic combustion tower, 5 is a steam reforming tower, 6 is a heat exchanger, and 7 is a notch for removing steam. Out drum, 8 is generated gas holder, 9
1 is a fuel gas supply system, 10 is a recycled gas circulation system, 11 is a compressor, and 12 and 13 are steam supply systems. In order to produce fuel gas containing H 2 , CO, CO 2 , and CH 4 , a part of the fuel gas from the generated gas holder 8 is used as recycled gas at startup, and the circulating system 10
The air is compressed by a compressor 11 and introduced into the catalytic combustion tower 4 along with air and steam preheated by a heat exchanger 6. The catalytic combustion tower 4 is filled with a catalyst in which a noble metal is supported on a heat-resistant oxide carrier such as alumina or silica. In the catalytic combustion tower 4, the temperature is increased mainly by the H2 - O2 reaction. The heated mixed gas of recycle gas and steam is then introduced into a steam reforming tower, where the temperature of the tower is raised. The steam reforming tower 5 may be filled with a nickel and/or cobalt catalyst as a reforming catalyst, and the catalyst may be reduced when the temperature is raised. The heated mixed gas from the steam reforming tower 5 is introduced into the heat exchanger 6 and the water supply system 3
generates steam by exchanging heat with water from the The mixed gas is then introduced into the knockout drum 7.
Water vapor is removed and stored in a product gas holder. In addition, since the generated gas cannot be recycled during initial startup, hydrogen-containing gas such as bottled gas is used instead of recycled gas. As mentioned above, the catalytic combustion tower 4 and the steam reforming tower 5
After the temperature has been raised, the feedstock oil is introduced into the catalytic combustion tower, heated, and then connected to the steam reforming tower 5, and steam is introduced from the steam supply system 13 to start the reaction in the steam reforming tower 5. Adjust the amount of water vapor to suit. In order to set the inlet temperature required for the reaction in the steam reforming tower 5, the catalytic combustion tower adjusts the amount of heat generated by the combustion reactions of the raw oil and air, and the hydrogen gas and oxygen in the recycled gas. Therefore,
In steady-state operation, the amount of air in the catalytic combustion tower is adjusted to allow a partial combustion reaction between part of the feedstock oil and air to take place, and the introduction of recycled gas can be restricted. In the steam reforming tower 5, a product gas containing CH 4 as a main component and containing H 2 , CO, CO 2 and H 2 O is obtained by the reaction of the raw material oil and steam, as shown in Examples below. The generated gas undergoes heat exchange through a heat exchanger 6, and then H 2 O is removed in a knockout drum 7, and then stored in a generated gas holder as fuel gas, and a portion is circulated as recycled gas. . The noble metal catalyst used in the catalytic combustion zone may be any commonly used noble metal catalyst, such as alumina,
For example, 0.1
A low proportion of platinum group metal catalyst of ~0.5% by weight,
No reduction operation is required before use. On the other hand, the reforming catalyst used in the steam reforming zone is a normal nickel and/or cobalt catalyst.
Or the cobalt content is 40-80% by weight. Examples of this type of catalyst include Ni-Al 2 O 3 (Japanese Patent Publication No. 44-17737), Ni-MgO (Japanese Patent Application Laid-open No. 76902-1983), Ni-
La 2 O 3 -Al 2 O 3 (Japanese Unexamined Patent Publication No. 53-31590) is known. The appropriate temperature conditions for the catalytic combustion zone are 300°C to 500°C, and the pressure may be 2 to 100 atmospheres, but is not particularly limited. The supply speed of recycled gas and feedstock oil is
The SV (space velocity) is 5000 to 100000h -1 . The amount of air added to the recycled gas is 4 to 10% by volume in terms of the O 2 concentration in the recycled gas, and is preferably equivalent to the H 2 concentration in the recycled gas. The reaction temperature in the steam reforming zone is 350-500
It is ℃. According to the present invention, it is possible to obtain a fuel gas containing 40% by volume or more of CH 4 , and there is no need to cycle between the heating period and the production period in a steady state, except for the heating period at startup. Because fuel gas can be produced in the same state, the equipment, including the fuel gas tank, can be made smaller. Next, the present invention will be explained with reference to examples, but the present invention is not limited thereto. Example In this example, the apparatus is of a high-pressure flow type, and the catalytic combustion zone is located in the center of the reaction tube with an inner diameter of 15 mm and a length of 400 mm.
A catalyst (reduced state) having a diameter of 3 mm and a length of 3 mm and carrying 0.3% by weight of PD was packed in alumina. The steam reforming zone is a reaction tube with an inner diameter of 4.6 mm and a length of 600 mm, and a NiO−La 2 O 3 −Al 2 O 3 catalyst produced by a three-stage precipitation method is crushed into 0.5 to 1.0 mm in the center of the zone. It was filled to a length of about 30 cm. (Catalyst amount: approx. 5 ml). The catalyst was reduced at 500° C. for 4 hours prior to use. A thermocouple is slid inside the thermocouple insertion tube installed in the center of the catalytic combustion reaction tube to measure the temperature inside the catalyst layer, and the TCD is used to observe changes in the gas composition before and after the reaction tube.
(Thermal Conductivity Detector) and FID
(Flame Ionization Detector) was installed. Similarly, the temperature distribution of the catalyst layer of the steam reforming reaction tube was measured, the reaction end point was determined from the temperature distribution, and the deterioration rate of the catalyst was determined from the time change. This experiment was conducted at a catalytic combustion zone pressure of 9.0 to 8.0 Kg/cm 2 G,
The steam reforming was carried out under pressure at a zone pressure of 7.0 Kg/cm 2 G. The measurement positions and measured values were as shown in the table below. The measurement positions were as follows, and the measured amounts were expressed in moles (relative amounts) and composition %. A Butane supply B Air supply C Water supply D Cycle gas supply E Catalytic combustion zone inlet F Catalytic combustion zone outlet G Steam reforming zone outlet

【表】 前実験から燃焼反応は、反応開始温度25℃で、
1時間以内に約470℃に達し、定常的に進行し、
又水蒸気改質反応は480℃で進行し、劣化速度は
最高0.78mm/hrであつた。 前記の説明から明らかなように本発明は加熱期
と製造期とを交互に行なうことなく、定常的に反
応を実施でき、燃料ガス供給量に合せて運転を調
整することが容易である。
[Table] From the previous experiment, the combustion reaction was performed at a reaction initiation temperature of 25°C.
It reaches about 470℃ within 1 hour and progresses steadily.
The steam reforming reaction proceeded at 480°C, and the maximum deterioration rate was 0.78 mm/hr. As is clear from the above description, the present invention allows the reaction to be carried out constantly without alternating the heating period and the manufacturing period, and it is easy to adjust the operation according to the amount of fuel gas supplied.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明を実施する一具体例のフロ
ー、シートを示す。 1…空気供給系、2…原料油供給、3…水供給
系、4…接触燃焼塔、5…水蒸気改質塔、7…ノ
ツクアウトドラム、8…生成ガスホルダー、9…
燃料ガス供給系、10…リサイクルガス循環系、
12,13…水蒸気供給系。
The accompanying drawings show a flow chart of one embodiment of the present invention. 1... Air supply system, 2... Raw material oil supply, 3... Water supply system, 4... Catalytic combustion tower, 5... Steam reforming tower, 7... Knockout drum, 8... Produced gas holder, 9...
Fuel gas supply system, 10...recycled gas circulation system,
12, 13...Steam supply system.

Claims (1)

【特許請求の範囲】[Claims] 1 炭化水素類及び/又は含酸素炭化水素化合物
より成る原料油と水蒸気とを反応させてメタンを
主成分とする燃料ガスを製造する方法において、
貴金属触媒層を有する接触燃焼帯に原料油、酸素
含有ガス及び水蒸気並びに改質帯からのリサイク
ルガスを導通して原料油及び水蒸気を昇温し、次
に接触燃焼帯処理ガスを改質触媒層を有する改質
帯に導通することを特徴とする燃料ガスの製造方
法。
1. In a method for producing a fuel gas containing methane as a main component by reacting a feedstock oil consisting of hydrocarbons and/or an oxygen-containing hydrocarbon compound with steam,
Feedstock oil, oxygen-containing gas, steam, and recycle gas from the reforming zone are passed through a catalytic combustion zone having a precious metal catalyst layer to raise the temperature of the feedstock oil and steam, and then the treated gas in the catalytic combustion zone is passed through the reforming catalyst layer. 1. A method for producing fuel gas, the method comprising: conducting the fuel gas through a reforming zone having a reforming zone.
JP13770280A 1980-10-03 1980-10-03 Preparation of fuel gas Granted JPS5763387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13770280A JPS5763387A (en) 1980-10-03 1980-10-03 Preparation of fuel gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13770280A JPS5763387A (en) 1980-10-03 1980-10-03 Preparation of fuel gas

Publications (2)

Publication Number Publication Date
JPS5763387A JPS5763387A (en) 1982-04-16
JPS649358B2 true JPS649358B2 (en) 1989-02-17

Family

ID=15204813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13770280A Granted JPS5763387A (en) 1980-10-03 1980-10-03 Preparation of fuel gas

Country Status (1)

Country Link
JP (1) JPS5763387A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8623482D0 (en) * 1986-09-30 1986-11-05 Johnson Matthey Plc Catalytic generation of hydrogen
JPS649801A (en) * 1987-07-03 1989-01-13 Jgc Corp Production device for town gas
EP1188713A3 (en) * 2000-09-18 2003-06-25 Haldor Topsoe A/S Production of hydrogen and carbon monoxide containing synthesis gas by partial oxidation
JP4826185B2 (en) * 2005-09-20 2011-11-30 カシオ計算機株式会社 Reactor and power generator
KR101385101B1 (en) * 2008-06-27 2014-04-15 동부대우전자 주식회사 Valve control method of gas type dryer
JP6701778B2 (en) * 2015-02-13 2020-05-27 日本製鉄株式会社 Method for producing hydrogen by reforming hydrocarbons, apparatus for producing hydrogen, operating method for fuel cell, and operating apparatus for fuel cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023675A (en) * 1973-06-30 1975-03-13
JPS5817791B2 (en) * 1974-08-29 1983-04-09 トウホウガス カブシキガイシヤ Abra gas seizouhouhou

Also Published As

Publication number Publication date
JPS5763387A (en) 1982-04-16

Similar Documents

Publication Publication Date Title
US4981676A (en) Catalytic ceramic membrane steam/hydrocarbon reformer
US5229102A (en) Catalytic ceramic membrane steam-hydrocarbon reformer
CA1084433A (en) Steam reforming process and apparatus therefor
KR0170398B1 (en) Endothermic reaction apparatus
KR100401369B1 (en) Synthesis gas production by steam reforming
Palm et al. Small-scale testing of a precious metal catalyst in the autothermal reforming of various hydrocarbon feeds
JP5094420B2 (en) Gas turbine fuel preparation and introduction method
JP2000185904A (en) Self-heating type reformation of supplied hydrocarbon material containing higher hydrocarbon
JP2002510272A (en) Method and apparatus for autothermal reforming of hydrocarbons
CN107298430A (en) Catalyst system and catalyzing for the process for catalystic partial oxidation with short contacting time
EA000777B1 (en) Process and process unit for the preparation of ammonia synthesis gas
KR20230004843A (en) Reverse water gas transfer catalytic reactor system
CA1334247C (en) Internal gas generator for heat treating furnace
JPH02160603A (en) Reforming of fuel for fuel cell
AU5312400A (en) Catalytic partial oxidation with ignition system
JPS649358B2 (en)
EP0272282B1 (en) Steam reformer with internal heat recovery
US3795485A (en) Synthesis gas generation apparatus
US3441395A (en) Production of combustible gases
EP2694434A1 (en) Multi-tubular steam reformer and process for catalytic steam reforming of a hydrocarbonaceous feedstock
US3468641A (en) Conversion of liquid hydrocarbons into fuel gas or water gas by a thermal or catalytic splitting
JPS5826002A (en) Steam reforming method and reaction tube for steam reforming
JP2012082131A (en) In-situ coke removal
US4854943A (en) Process of producing a gas which is rich in carbon monoxide by a cracking of hydrocarbons
WO2012112065A1 (en) Method and device for generating synthesis gas