JPS649299B2 - - Google Patents

Info

Publication number
JPS649299B2
JPS649299B2 JP1682182A JP1682182A JPS649299B2 JP S649299 B2 JPS649299 B2 JP S649299B2 JP 1682182 A JP1682182 A JP 1682182A JP 1682182 A JP1682182 A JP 1682182A JP S649299 B2 JPS649299 B2 JP S649299B2
Authority
JP
Japan
Prior art keywords
reaction
butyrolactone
autoclave
trifluoroethanol
trifluoro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1682182A
Other languages
Japanese (ja)
Other versions
JPS58134043A (en
Inventor
Eiji Ogura
Kunihiro Mito
Shoji Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP1682182A priority Critical patent/JPS58134043A/en
Priority to US06/463,019 priority patent/US4489211A/en
Priority to GB08302930A priority patent/GB2117376B/en
Publication of JPS58134043A publication Critical patent/JPS58134043A/en
Publication of JPS649299B2 publication Critical patent/JPS649299B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は2,2,2―トリフルオロエタノール
の製造法に関し、さらに詳しくは1,1,1―ト
リフルオロ―2―ハロゲン化エタンをγ―ブチロ
ラクトンを溶媒として特定のヒドロキシルカルボ
ン酸塩と反応させて、2,2,2―トリフルオロ
エタノールを製造する方法に関するものである。 2,2,2―トリフルオロエタノールは、弱酸
性を示すOH基を持つ熱的にきわめて安定な含フ
ツ素アルコールである。このため耐熱性、低温時
の柔軟性、難燃性及び耐油性を有する無機高分子
フオスフアーゼンポリマーの修飾用として用いら
れる。また、近年省エネルギーを図るための研究
が進み、各種の生産設備より排出される中低温領
域(200〜500℃)の廃熱や、大型ジーゼルエンジ
ンの廃熱回収発電システムの作動媒体として2,
2,2―トリフルオロエタノールが使用される。 従来、このアルコールの製造方法として、トリ
フルオロ酢酸エステルのLiAlH4還元(J.Am.
Chem.Soc1968(1948)や、1,1,1―トリフ
ルオロ―2―クロロエタンより誘導する方法が知
られている。しかしながらLiAlH4は高価なため、
工業的にトリフルオロ酢酸エステルの還元法は実
際的ではない。 1,1,1―トリフルオロ―2―クロロエタン
から誘導する方法としては、酢酸ソーダとともに
溶融して反応する方法や、酢酸を溶媒として酢酸
ソーダと反応させる方法が知られている。しかし
これらの反応は収率が反応温度によつて左右され
収率の向上を計ろうとすると著しく長時間の反応
が避けられない。しかも得られる生成物は2,
2,2―トリフルオロエチルアセテートであるた
め、もう一度加水分解工程を経なければならない
というわずらわしさが生ずる。 米国特許2868846には、水酸基を有する溶媒、
例えばエチレングリコールを溶媒として、1,
1,1―トリフルオロ―2―クロロエタンをアル
カリ金属塩と反応させ、目的の生成物を得る方法
が記載されている。しかしこの反応は反応温度が
高いため溶媒となるグリコール類の熱的変質や、
反応容器材質の腐食が発生し、しかも生成に伴な
い副反応が生ずるなど工業的な製造方法として満
足できる方法とは言い難い。本発明者らは、2,
2,2―トリフルオロエタノールを製造する方法
に関し鋭意研究を実施した結果、一般式
CF3CH2X(XはCl又はBr)で表わされる1,1,
1―トリフルオロ―2―ハロゲン化エタンをγ―
ブチロラクトンを溶媒として、一般式RCOOM
(Rは炭素数5以下のヒドロキシルアルキル基、
MはNa又はK)で表わされるヒドロキシカルボ
ン酸の塩の一種または二種以上の混合物と反応さ
せることにより、容易にしかも一段の反応で2,
2,2―トリフルオロエタノールを合成しうるこ
とを見い出し本発明に至つた。 以下に本発明の詳細を説明する。 本発明の反応に使用する1,1,1―トリフル
オロ―2―ハロゲン化エタンは、前記一般式で示
すようにCF3CH2ClおよびCF3CH2Brである。ま
た、本発明に使用する前記一般式で示すヒドロキ
シカルボン酸塩は脱水によりラクトンを容易に形
成しうるものであり、その一例を挙げればHO
(CH23COONa(γ―ヒドロキシ酪酸ナトリウム)
HO(CH23COOK(γ―ヒドロキシ酪酸カリ)等
が使用しうるが、これらに限定されるものではな
い。また例示したこれらのヒドロキシルカルボン
酸塩は、例えばγ―ブチロラクトンとNaOH、
KOH等との反応により生成した塩をそのまま反
応に供してもよい。 溶媒として使用するγ―ブチロラクトンと1,
1,1―トリフルオロ―2―ハロゲン化エタンの
モル比(γ―ブチロラクトン/1,1,1―トリ
フルオロ―2―ハロゲン化エタン)は、0.5以上
から20以下(好ましくは0.8以上15以下)である。 このモル比が0.5より小では、γ―ブチロラク
トンの溶媒効果が十分でなく、20より大であれ
ば、γ―ブチロラクトンの回収量が著しく増加し
て経済的ではない。 またヒドロキシルカルボン酸塩/1,1,1―
トリフルオロ―2―ハロゲン化エタンのモル比
は、0.25以上10以下(好ましくは0.5以上5以下)
である。 反応温度は130℃以上250℃以下(好ましくは
140℃以上230℃以下)である。 反応温度が130℃より低い場合は著しく長時間
反応を行なわなければならない等の不利益を生じ
る。逆に反応温度が250℃より高い場合は、γ―
ブチロラクトンの熱による分解や、副反応の増加
などの不利益を生ずる。 反応圧力は、原料物質および生成物質により発
生する圧力(自圧)であつて良いが、窒素等反応
に悪影響を及ぼさない不活性気体により、反応開
始前の常温における圧力が40Kg/cm2G以下になる
ように加圧された圧力であつてもよい。 本発明にかかわる反応が、水を添加することな
く一段の反応によつて2,2,2―トリフルオロ
エタノールを生成する理由は、γ―ヒドロキシ酪
酸カリウムを例にとれば、次式により示される反
応を行なうものと考えられる。 本発明の理解を容易にするために、以下に実施
例を示すが、本発明の範囲はこれらの実施例に限
定されるものではない。 実施例 1 電磁撹拌機を備えた200mlオートクレーブ(材
質SUS304)にγ―ブチロラクトン及びγ―ヒド
ロキシ酪酸カリウムの所定量をとり密閉した。系
を真空にし予め耐圧ガラス容器に採取した
CF3CH2Clを導管を通してオートクレーブ内に導
入した。そのあとでオートクレーブ内を窒素で4
Kg/cm2Gに加圧し電気炉で200℃に加熱、撹拌し
4時間反応させた。反応終了後オートクレーブか
ら出るガス成分をドライアイスメタノールで冷却
したトラツプで補集した。次にオートクレーブの
蓋をあけ、内容物をグラスフイルタで手早く過
して、未反応γ―ヒドロキシ酪酸カリウムおよび
生成した塩化カリウムを反応液と分離した。補集
したγ―ヒドロキシ酪酸カリウムおよび塩化カリ
ウムは、γ―ブチロラクトンで繰返し洗浄し、洗
浄液と一緒にした。 これらの操作で回収したガス成分および反応液
をジオキサンを内部標準物質としてガスクロマト
グラフで定量した。 結果を表1に示した。 実施例 2 オートクレーブ中で、γ―ブチロラクトンと
KOHとの反応によりγ―ヒドロキシ酪酸カリウ
ムを生成させ、反応に供した。 即ち、所定量のγ―ブチロラクトン及び固形か
性カリ(水分13wt%)をオートクレーブにとり、
180℃に加熱、撹拌し1時間反応させ、引続き真
空下で脱水蒸留した。留出液はガスクロマトグラ
フ分析し留出したγ―ブチロラクトンを定量し、
オートクレーブを室温まで冷却後、補集した。オ
ートクレーブ中の液はHLC分析によりγ―ヒド
ロキシ酪酸カリウムを定量した。 次に実施例1と同様にしてCF3CH2Clをオート
クレーブに導入し反応させ分析した。但し、この
場合CF3CH2Cl導入後の窒素による加圧は行なわ
なかつた。 結果は表1に示した。 実施例 3 原料としてCF3CH2Brを用い、反応温度150℃
とした他は、実施例1と同様にした。 結果は表1に示した。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing 2,2,2-trifluoroethanol, and more specifically, the present invention relates to a method for producing 2,2,2-trifluoroethanol, and more specifically, the present invention relates to a method for producing 2,2,2-trifluoroethanol. The present invention relates to a method for producing 2,2,2-trifluoroethanol by reacting it with a hydroxyl carboxylate. 2,2,2-trifluoroethanol is a thermally extremely stable fluorine-containing alcohol with a weakly acidic OH group. Therefore, it is used to modify inorganic polymer phosphazene polymers that have heat resistance, flexibility at low temperatures, flame retardancy, and oil resistance. In addition, research has progressed in recent years to save energy, and waste heat in the medium and low temperature range (200 to 500°C) discharged from various production facilities can be used as a working medium for waste heat recovery power generation systems of large diesel engines.
2,2-trifluoroethanol is used. Traditionally, this alcohol has been produced by LiAlH4 reduction of trifluoroacetic ester (J.Am.
Chem.Soc1968 (1948) and a method of deriving from 1,1,1-trifluoro-2-chloroethane are known. However, since LiAlH 4 is expensive,
Industrially, the reduction method of trifluoroacetic acid ester is not practical. Known methods for deriving from 1,1,1-trifluoro-2-chloroethane include a method of melting and reacting with sodium acetate, and a method of reacting with sodium acetate using acetic acid as a solvent. However, the yield of these reactions depends on the reaction temperature, and in order to improve the yield, it is unavoidable that the reaction takes an extremely long time. Moreover, the obtained products are 2,
Since it is 2,2-trifluoroethyl acetate, there is the hassle of having to undergo another hydrolysis step. U.S. Patent No. 2,868,846 describes a solvent having a hydroxyl group,
For example, using ethylene glycol as a solvent, 1,
A method is described for reacting 1,1-trifluoro-2-chloroethane with an alkali metal salt to obtain the desired product. However, this reaction has a high reaction temperature, resulting in thermal deterioration of the glycols used as the solvent,
It is difficult to say that this method is satisfactory as an industrial manufacturing method, as corrosion of the reaction vessel material occurs and side reactions occur as the product is produced. The present inventors 2,
As a result of extensive research into methods for producing 2,2-trifluoroethanol, the general formula
1,1, represented by CF 3 CH 2 X (X is Cl or Br)
γ- 1-trifluoro-2-halogenated ethane
With butyrolactone as the solvent, the general formula RCOOM
(R is a hydroxylalkyl group having 5 or less carbon atoms,
By reacting with one or a mixture of two or more hydroxycarboxylic acid salts (M is Na or K), 2,
We have discovered that 2,2-trifluoroethanol can be synthesized, leading to the present invention. The details of the present invention will be explained below. The 1,1,1-trifluoro-2-halogenated ethane used in the reaction of the present invention is CF 3 CH 2 Cl and CF 3 CH 2 Br as shown in the above general formula. Furthermore, the hydroxycarboxylate salt represented by the general formula used in the present invention can easily form a lactone upon dehydration; one example is HO.
(CH 2 ) 3 COONa (sodium γ-hydroxybutyrate)
HO(CH 2 ) 3 COOK (gamma-hydroxybutyric acid potassium) and the like can be used, but are not limited to these. In addition, these hydroxyl carboxylates illustrated include, for example, γ-butyrolactone and NaOH,
The salt produced by reaction with KOH etc. may be directly subjected to the reaction. γ-butyrolactone used as a solvent and 1,
The molar ratio of 1,1-trifluoro-2-halogenated ethane (γ-butyrolactone/1,1,1-trifluoro-2-halogenated ethane) is 0.5 or more and 20 or less (preferably 0.8 or more and 15 or less). It is. If this molar ratio is smaller than 0.5, the solvent effect of γ-butyrolactone is not sufficient, and if it is larger than 20, the amount of γ-butyrolactone recovered increases significantly, making it uneconomical. Also, hydroxyl carboxylate/1,1,1-
The molar ratio of trifluoro-2-halogenated ethane is 0.25 or more and 10 or less (preferably 0.5 or more and 5 or less)
It is. The reaction temperature is 130℃ or higher and 250℃ or lower (preferably
(140℃ or higher and 230℃ or lower). If the reaction temperature is lower than 130°C, there will be disadvantages such as having to carry out the reaction for an extremely long time. Conversely, if the reaction temperature is higher than 250℃, γ-
This causes disadvantages such as thermal decomposition of butyrolactone and an increase in side reactions. The reaction pressure may be the pressure (self-pressure) generated by the raw material and product material, but the pressure at room temperature before the start of the reaction must be 40 Kg/cm 2 G or less by using an inert gas such as nitrogen that does not adversely affect the reaction. The pressure may be increased so that The reason why the reaction according to the present invention produces 2,2,2-trifluoroethanol in one step without adding water is shown by the following formula, taking potassium γ-hydroxybutyrate as an example. It is thought that a reaction takes place. EXAMPLES In order to facilitate understanding of the present invention, Examples are shown below, but the scope of the present invention is not limited to these Examples. Example 1 Predetermined amounts of γ-butyrolactone and potassium γ-hydroxybutyrate were placed in a 200 ml autoclave (material: SUS304) equipped with a magnetic stirrer, and the autoclave was sealed. The system was evacuated and sampled in a pressure-resistant glass container in advance.
CF 3 CH 2 Cl was introduced into the autoclave through a conduit. After that, the inside of the autoclave was flushed with nitrogen for 4 hours.
The mixture was pressurized to Kg/cm 2 G, heated to 200°C in an electric furnace, stirred, and reacted for 4 hours. After the reaction was completed, gas components coming out of the autoclave were collected in a trap cooled with dry ice methanol. Next, the lid of the autoclave was opened, and the contents were quickly passed through a glass filter to separate unreacted potassium γ-hydroxybutyrate and produced potassium chloride from the reaction solution. The collected potassium γ-hydroxybutyrate and potassium chloride were washed repeatedly with γ-butyrolactone and combined with the washing solution. The gas components and reaction solution recovered through these operations were quantified using a gas chromatograph using dioxane as an internal standard. The results are shown in Table 1. Example 2 In an autoclave, γ-butyrolactone and
Potassium γ-hydroxybutyrate was produced by reaction with KOH and subjected to the reaction. That is, a predetermined amount of γ-butyrolactone and solid caustic potassium (moisture 13 wt%) were placed in an autoclave,
The reaction mixture was heated to 180°C and stirred for 1 hour, followed by dehydration and distillation under vacuum. The distillate was analyzed by gas chromatography to quantify the distilled γ-butyrolactone.
After cooling the autoclave to room temperature, it was collected. Potassium γ-hydroxybutyrate in the liquid in the autoclave was determined by HLC analysis. Next, in the same manner as in Example 1, CF 3 CH 2 Cl was introduced into the autoclave, reacted, and analyzed. However, in this case, pressurization with nitrogen was not performed after introducing CF 3 CH 2 Cl. The results are shown in Table 1. Example 3 Using CF 3 CH 2 Br as a raw material, reaction temperature 150°C
The procedure was the same as in Example 1 except that. The results are shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 一般式CF3CH2X(XはCl又はBr)で表わさ
れる1,1,1―トリフルオロ―2―ハロゲン化
エタンをγ―ブチロラクトンを溶媒として、一般
式RCOOM(Rは炭素数5以下のヒドロキシアル
キル基、Mは、Na又はK)で表わされるヒドロ
キシカルボン酸の塩の一種又は二種以上の混合物
と反応させることを特徴とする2,2,2―トリ
フルオロエタノールの製造法。
1 1,1,1-trifluoro- 2 -halogenated ethane represented by the general formula CF 3 CH 2 A method for producing 2,2,2-trifluoroethanol, which comprises reacting with one or a mixture of two or more salts of a hydroxycarboxylic acid represented by a hydroxyalkyl group, M is Na or K.
JP1682182A 1982-02-04 1982-02-04 Preparation of 2,2,2-trifluoroethanol Granted JPS58134043A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1682182A JPS58134043A (en) 1982-02-04 1982-02-04 Preparation of 2,2,2-trifluoroethanol
US06/463,019 US4489211A (en) 1982-02-04 1983-02-01 Process for producing 2,2,2-trifluoroethanol
GB08302930A GB2117376B (en) 1982-02-04 1983-02-03 Process for producing 2,2,2-trifluoroethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1682182A JPS58134043A (en) 1982-02-04 1982-02-04 Preparation of 2,2,2-trifluoroethanol

Publications (2)

Publication Number Publication Date
JPS58134043A JPS58134043A (en) 1983-08-10
JPS649299B2 true JPS649299B2 (en) 1989-02-16

Family

ID=11926832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1682182A Granted JPS58134043A (en) 1982-02-04 1982-02-04 Preparation of 2,2,2-trifluoroethanol

Country Status (1)

Country Link
JP (1) JPS58134043A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4590310A (en) * 1984-08-02 1986-05-20 The Boc Group, Inc. Process for the preparation of 2,2,2-trifluoroethanol
JP4698812B2 (en) * 2000-10-13 2011-06-08 東ソ−・エフテック株式会社 Method for recovering aprotic polar solvent in the production of trifluoroethyl (meth) acrylate
WO2003004446A1 (en) 2001-07-02 2003-01-16 Tosoh F-Tech, Inc. Process for producing fluorinated alcohol
CN1286788C (en) * 2001-09-14 2006-11-29 东曹氟技术株式会社 Process for preparation of 2,2,2-trifluoroethanol
CN1315775C (en) * 2001-09-14 2007-05-16 东曹氟技术株式会社 Method for producing 2,2,2-trifluoroethanol
CN103687831B (en) * 2011-07-19 2015-11-25 拜耳知识产权有限责任公司 The method of preparation 2,2-difluoroethanol
CN108069821A (en) * 2017-12-19 2018-05-25 西安近代化学研究所 A kind of difluoroethanol synthesis technology

Also Published As

Publication number Publication date
JPS58134043A (en) 1983-08-10

Similar Documents

Publication Publication Date Title
US4489211A (en) Process for producing 2,2,2-trifluoroethanol
KR830002199B1 (en) Process for preparation fluor vinyl ethers
JP2526661B2 (en) Method for producing fluoroalkyl vinyl compound
JPH0625031A (en) Method of synthesizing oxygenated acetyl compound
CN102803191B (en) Method for producing fluorine-containing ether with high purity
JPS649299B2 (en)
US3431298A (en) Process for the preparation of oxadicarboxylic acids
WO2003002506A1 (en) Process for producing fluorinated vinyl ether
US2768976A (en) Process of producing tetraacetals of
EP0270724B1 (en) Preparation of alkyl trifluoroacetoacetate
CN109485541B (en) Method for preparing 1H,1H, 2H-perfluoro-1-octene
US4602107A (en) Process for producing trycyclo[5.2.1.02,6 ]decane-2-carboxylic acid
JPS6345655B2 (en)
US4532366A (en) Perfluorinated vinyl ethers containing a secondary hydrogen atom, polymers formed therefrom and a process for the preparation of the monomers
JP7194947B2 (en) Method for producing cyclopentenone derivative
US2253525A (en) Olefin reactions with boron fluoride catalyst
JPS649300B2 (en)
JP3106476B2 (en) Method for producing phenolic compounds
JP4200971B2 (en) Production method of allyl ethers
KR830002563B1 (en) Process for preparing tetrahydrofuran
CN117720409B (en) Synthesis method of difluoroacetic acid
JPS58982A (en) Manufacture of d(+)-biotin
US2135448A (en) Organic acid synthesis
CN116143594A (en) Synthesis method of bis (heptafluoroisopropyl) ketone
JP4610801B2 (en) Monoglyceride production method