JPS649128B2 - - Google Patents

Info

Publication number
JPS649128B2
JPS649128B2 JP13738482A JP13738482A JPS649128B2 JP S649128 B2 JPS649128 B2 JP S649128B2 JP 13738482 A JP13738482 A JP 13738482A JP 13738482 A JP13738482 A JP 13738482A JP S649128 B2 JPS649128 B2 JP S649128B2
Authority
JP
Japan
Prior art keywords
water glass
acid
die
defects
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13738482A
Other languages
Japanese (ja)
Other versions
JPS5930780A (en
Inventor
Hideaki Ko
Tatsuhiko Fukuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Original Assignee
Taiho Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd filed Critical Taiho Kogyo Co Ltd
Priority to JP13738482A priority Critical patent/JPS5930780A/en
Publication of JPS5930780A publication Critical patent/JPS5930780A/en
Publication of JPS649128B2 publication Critical patent/JPS649128B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明はアルミニりムダむカスト郚品の圧掩れ
の原因ずなる欠陥を含浞凊理によ぀お密封する方
法の改良に関するものである。 䞀般に、アルミニりムのダむカスト法は補品圢
状蚭蚈の自由床が倧であるずの特色を利甚しお各
皮機械郚品の補䜜に適甚されおいるが、耐圧を芁
求される機械郚品の堎合には鋳造欠陥䞊の問題が
ある。䞀般に鋳造欠陥は内郚欠陥ず倖郚欠陥に倧
別されるが、ひけ巣、ブロヌホヌル、ポロシテむ
などの内郚欠陥が䞻ずしおダむカスト郚品の耐圧
に悪圱響を䞎えるこずは蚀うたでもない。ずころ
で珟圚のダむカスト法の趚勢は高速高圧ダむカス
ト法に向か぀おおり、倧型のダむカスト郚品を高
胜率で生産するうえでは成果をあげおいるが、こ
れを耐圧ず流䜓の密封性が芁求される甚途に甚い
るず鋳造内郚欠陥による難点を免かれるこずがで
きなか぀た。そこで、ダむカスト鋳造技術䞊の工
倫によりかかる欠陥を少なくするための努力が皮
皮なされおいるが、ミクロンオヌダヌ乃至枬定困
難なほどの埮小内郚欠陥であ぀おも圧掩れの原因
ずなるので、ダむカスト鋳造技術だけで圧掩れ原
因を根絶するには至぀おいない。 䞊述のような耐圧を芁求されるダむカスト郚品
の䞀䟋を挙げるず、自動車空調甚カヌコンプレツ
サヌのハりゞングがあり、特にフロントハりゞン
グ郚にはリング溝及びオむル甚通し穎をダむカス
ト埌加工するず、これらの郚分で鋳造内郚欠陥が
露出しお、圧掩れの原因ずなり易い。すなわち、
䞊蚘ハりゞングにおいお、衚面に近い郚分あるい
は薄肉郚分では鋳造内郚欠陥は圢成され難いが、
その他の郚分では連続した穎状の欠陥を通぀おハ
りゞング内郚のオむル又は冷媒ガスが倖に掩出し
お、冷媒ガス等が、カヌコンプレツサヌの䜿甚䞭
に、倱なわれる。ここで、どの皋床の倧きさの鋳
造内郚欠陥によ぀お圧掩れが起こるか又は起こら
ないかに関しおは、その埄、長さによ぀お巊右さ
れ、しかも欠陥が衚面に近いずころで拡倧されお
いるかどうか、あるいは衚面欠陥の有無等によ぀
おも巊右されるので、䞀抂には決められない。そ
こで、埓来はダむカスト郚品党䜓に以䞋に述べる
含浞凊理を斜こしお来た。 埓来の含浞凊理法の䞀぀はケむ酞゜ヌダなどの
氎ガラスを甚いるものであり、ドブ挬法、内郚加
圧法又は真空−加圧法の䜕れかにより、ダむカス
ト郚品衚面に露出しおいる鋳造欠陥郚よりその内
郚に含浞させ、次に氎ガラスを加熱凊理により䞻
ずしおガラス化による硬化をさせ、密封化を図る
ものであ぀た。ここで、密封剀に芁求される性質
ずしおは密封性、耐油性、耐氎性、耐熱性、操䜜
性及びコストが優れおいるこずが挙げられる。密
封剀ずしおの氎ガラスは、硬化のために、80℃で
時間皋床の加熱凊理を行ない、その埌日皋床
の攟眮凊理を行なうこずが、䞍可欠であり、硬化
凊理時間が長いこずが操䜜性䞊の䞀぀の問題であ
぀た。さらに重倧な問題は、これらの硬化凊理䞭
にあるいはダむカスト郚品のナヌザヌで氎ガラス
が鋳造内郚欠陥の孔郚より䞀郚吹出しお、結果的
には䟋えばコンプレツサヌ内に混入しお、摺動郚
を疵぀け、あるいは堎合により密封性が劣化する
ずいう点にあ぀た。䞻ずしお、このような問題が
あるために、密封剀ずしおはプノヌル、ポリ゚
ステル又はアクリル等の暹脂を䞻成分ずする有機
系密封剀が珟われ、珟圚の䞻流にな぀おいる。ず
ころが有機系密封剀の最倧の欠点は無機系密封剀
に比范しお〜10倍皋床もコスト高ずなるこずで
あり、他にも無機系密封剀に比范しお耐熱性が䜎
いために、ダむカスト郚品を高枩にさらされる甚
途に䜿甚するず圧掩れが起こるずいう危険もあ
る。 本発明者は、無機系密封剀ずしおの氎ガラスが
埓来吹出しの問題のために耐圧及び流䜓の密封性
を芁求されるダむカスト郚品に察しおは䜿甚でき
なか぀たずいう事態を根本的に改善し、しかも埓
来硬化のために比范的長い時間を必芁ずしおいた
欠点も解消しお、有機系密封剀よりはコスト的に
有利な氎ガラスを耐圧ダむカスト郚品に䜿甚でき
る含浞密封方法の開発研究を行ない、埓来党く採
甚されおいなか぀た酞凊理によ぀お氎ガラスを硬
化させるず、埓来の氎ガラスの諞問題が根本的に
解決されるこずを芋出し、特蚱出願を行な぀た。
本発明者はさらに研究を進め、垞甚される氎ガラ
スよりはSiO2M2O䜆しはアルカリ金属の少
なくずも皮のモル比率が高くを越え5.1以
䞋の氎ガラスを甚いるず䞊蚘諞問題の解決がさら
に効果的になされ、密封性胜が栌段に改善される
こずが分か぀た。 以䞋、本発明の理解を容易にするために、図面
を参照ずし぀぀、本発明及び埓来法を詳しく説明
する。 第図及び第図は鋳造欠陥を有するアルミニ
りムダむカスト郚品の断面を暡匏的に瀺しおい
る。前述のように圧掩れの原因ずなる鋳造欠陥は
該郚品内倖面間で連続した欠陥であり、鋳造欠陥
の皮類は匕け巣、ブロヌホヌル等の内郚欠陥であ
り、衚面欠陥も圧掩れに関䞎しおいる。第図及
び第図には、最も圧掩れを起こし易いず考えら
れる鋳造欠陥ずしお、内郚に密封剀が溜たる倧き
な匕け巣もしくはブロヌホヌルがあり、これに小
さなブロヌホヌル又はポロシテむもしくは衚面割
れが連続しおいるものが瀺されおいる。以䞋、説
明の郜合䞊これをブロヌホヌルず称し、図面では
“”ずしお衚わしおある。なお図面においお、
“”は含浞された密封剀以䞋含浞液ず称する
である。かかる含浞液を埓来の氎ガラス法にお
80℃に加熱するず第図の劂く吹出し′が発生
する。この原因は含浞液䞭に小さな蒞気泡が発
生するこずにあるず考えられおいる。䞀方、有機
系密封剀の堎合は嫌気性暹脂の䜿甚により吹出し
′は防止されおいたが、密封性胜が劣りたたコ
スト高等の欠点があ぀た。 埓来の氎ガラス硬化法では、80℃にお〜時
間の加熱凊理埌日の攟眮が行なわれおいたこず
は䞊述のずおりであり、その硬化固化機構は
ガラス化反応に基づいおいる。なお、その硬化が
完党に終了するには数カ月を芁するず認識されお
おり、ガラス化反応進行䞭にはブロヌホヌルの
密封が䞍十分な状態であるずいえる。これに察し
お、本発明の酞凊理の堎合は、氎ガラスのゲル化
反応が起こりしかも反応速床が倧であるずいう特
色がある。たた本発明の特色は吹き出し′が起
こらないずいう点にあり、ゲル化反応により氎ガ
ラスを硬化させれば、埓来ガラス化反応の堎合の
ような吹出し′が実甚䞊ほが完党に解消するこ
ずができた。なお、本発明者の実隓を怜蚎した結
果では、氎ガラスがゲル化反応によ぀お完党に固
化しおいるのではなく、たた完党に固化させなく
ずも圧掩れ防止の目的䞊支障ないこずが分か぀
た。さらに、ゲル化反応はガラス化反応よりも反
応速床が倧であるから、本発明の酞凊理によ぀お
氎ガラスの硬化がブロヌホヌルの出口郚で急速
に進行し、酞凊理埌のダむカスト郚品の攟眮又
は䜿甚䞭にも吹出し′が有効に防止されおいる
ものず考えられる。 以䞊のような実隓結果を基瀎ずしおゲル化反応
促進条件を芋出すべく本発明者は氎ガラスの
SiO2M2Oモル比がゲル化反応に及がす圱響を
さらに調査した。がナトリりムの堎合、
SiO2Na2Oモル比が異なる氎ガラスを小埄詊隓
管に完党に充満させ、次に氎ガラスず酢酞を詊隓
管の入口で30分間又は時間接觊させ、ゲル化し
た氎ガラスの先端からの長さを枬定した。この長
さを反応長さずしお第図に瀺す。第図におい
お暪軞は氎ガラスのSiO2Na2Oモル比、瞊軞は
反応長さmm、黒䞞及び癜䞞は接觊時間がそれ
ぞれ時間及び30分を衚わしおいる。第図より
SiO2Na2Oモル比の増加ず共に反応長さが増加
し玄4.2以䞊で反応長さがほが䞀定ずなるこずが
分かる。 したが぀お、本発明においおはSiO2M2Oモ
ル比をを越える倀ずした。ここでSiO2M2O
モル比が以䞋であるず、ゲル化反応促進の効果
が少なく、䞀方5.1を越えるず氎ガラスが液䜓ず
しお䞍安定になるのでアルミニりムダむカスト郚
品の欠陥に含浞するこずが困難になる。したが぀
お、本発明においおはSiO2M2Oモル比を䞊述
のように限定した。䞀般に、氎ガラスにおいおは
SiO2Na2Oモル比が〜の範囲倖ずなるず氎
ガラスにならないず称されおいるが、コロむドシ
リカに氎ガラスを添加し、たたは氎ガラスにコロ
むドシリカを添加し、氎ずずもにコロむドシリカ
ず氎ガラスを十分に、䟋えば数時間から数十時間
撹拌混合するず、コロむドシリカを溶解させるこ
ずができる。 このように高濃床のSiO2含有氎ガラスに぀い
お本発明者はゲル化反応が促進されるこず、たた
埌述のようにアルミニりムダむカスト郚品極めお
高信頌性䞋の欠陥を含浞密封を実珟できるこずを
芋出しお本発明を完成した。たた、氎ガラスの
SiO2M2Oモル比がを越えるず氎ガラスの粘
床が増加しお䞊蚘欠陥ぞの浞透性が䜎䞋するの
で、氎ガラスの䞀成分である氎H2Oの量を
調節するか、あるいは埌述の充填剀の添加量を調
節するなどの方法を採甚するこずが望たしい。氎
分含有量を70たでにするこずによ぀お粘床を調
節するず殆んどの堎合、アルミニりムダむカスト
郚品の欠陥含浞密封甚ずしお十分䜎い粘床が埗ら
れる。この堎合、䞊蚘反応長さは、氎ガラスの
SiO2M2Oモル比、酞ずの接觊時間等により、
倉わ぀おくるが、十分の倀が埗られる。 本発明においおはアルミニりムダむカスト郚品
を含浞密封凊理察象ずしおいるから、氎ガラスず
反応させる酞によ぀おアルミニりムが浞食された
のでは奜たしくない。そこで、アルミニりムが䞍
動態化し易い性質を利甚しお、基本的には酞化性
酞を甚いるず、アルミニりムダむカスト郚品を実
甚䞊損傷するこずなく含浞密封の目的を達成する
こずができる。本発明者は塩酞、硝酞、ク゚ン
酞、ギ酞及び酢酞の濃床を2Nずし、たた蓚酞を
濃床1Nずしアルミニりムの腐食枛量を詊隓した
ずころ、塩酞を陀いお、殆んど腐食枛量がないこ
ずを確認した。特に有機酞が良奜な結果を瀺し
た。たた、塩酞以倖の䞊蚘酞を䜿甚しお氎ガラス
のゲル化を詊隓したずころ、含浞液グラムに察
しお0.5〜1.0mlの酞添加量にお十分なゲル化が起
こ぀た。基本的には、アルミニりムを浞食しない
酞であれば、本発明においおは䜿甚可胜であり、
䟋ずしおは、リン酞、塩玠酞、沃玠酞、セレン
酞、ヒ酞、ホり酞、排石酞、ベンれンスルホン酞
がある。䞊蚘酞を皮以䞊混合しお䜿甚しおもよ
い。酞添加量を定めるうえでは、氎ガラスは高分
子であり正確な酞モル濃床を芏定するのは珟実的
ではない。たた含浞液は氎ガラス以倖に氎分等を
含有しおいるから含浞液に察する酞添加重量比率
を定めるこずも珟実的ではない。以䞊の理由より
所定含浞液に察しお酞添加量を実隓的に定めるべ
きである。 次に、氎ガラスずしおは、基本的にはケむ酞ア
ルカリ塩を䞻成分ずするものであり、アルカリ成
分ずしおはナトリりム、リチりム及びカリりムの
少なくずも皮、特にアルカリ成分ずしおナトリ
りムが、たた酞性成分ずしおはSiO2が甚いられ
る公知の氎ガラスであれば䜕ら制限はない。さら
に、氎ガラスは広矩ではFe2O3、その他の金属酞
化物の充填剀を含むものであ぀おもよい。 たた、含浞密封凊理甚氎ガラスずしおは、䞊蚘
充填剀の他に収瞮防止剀等を含むものが垂販され
おおり、これを含むものであ぀おも䜕ら差支えな
い。 さらに、本発明の凊理察象であるアルミニりム
は、通垞ダむカスト甚ずしお甚いられおいるJIS
−−2212系合金を含むものであり、玔アルミニ
りムに限定されないこずはいうたでもない。 以䞋、本発明の実斜態様に぀いお説明する。 既に述べたように埓来の氎ガラスの加熱硬化法
の欠点は硬化時間が長いずころにあ぀たが、この
点は酞の䜜甚により抜本的に解決される。本発明
による酞凊理時間は酞枩床、酞濃床及び酞の皮類
によるが、工業的に汎甚される酞を垞枩で䜿甚す
る堎合は10〜30分皋床である。しかも、攟眮は必
芁でない。 酞凊理方法ずしおは、アルミニりムダむカスト
郚品を、酞氎溶液䞭アルコヌル溶液、その他の溶
液䞭に浞せきする方法、酞液を吹付ける方法等が
ある。なお、氎ガラスの含浞ず酞凊理は同じ容噚
又は別の容噚で行なうこずができる。たた酞液䞭
にアルミニりムダむカスト郚品を浞せきする堎合
は、酞液を加圧、加熱し硬化反応を促進させるこ
ずができる。たた、酞ず氎ガラスを予め混合させ
おおくず、氎ガラスが瞬時に硬化しおブロヌホヌ
ル䞭に含浞されないので、氎ガラスを公知の方法
でブロヌホヌル䞭に含浞させた埌に酞凊理を行な
うこずが必芁である。なお、酞を加熱する堎合
は、100℃になるず氎ガラス䞭の氎分結合氎
が䞀斉に攟出されるために、100℃に近い枩床は
絶察に避けなければならない。したが぀お、酞の
枩床は100℃よりできるだけ䜎い枩床、䟋えば80
℃以䞋、が望たしい。 本発明方法の前凊理ずしお、必芁ならば、アル
ミニりムダむカスト郚品の枅浄化、油萜し、バリ
取り、マスキング等を行な぀お、氎ガラスの含浞
及び酞凊理ぞの劚害原因を取陀くこずもできる。
さらに、アルミニりムダむカスト郚品の䞍働態化
凊理を先ず行な぀おから、氎ガラスの含浞凊理を
行ない、次に氎ガラスの硬化に最も望たしい酞で
酞凊理を行なうこずもできる。さらに、事埌凊理
ずしお、氎掗及び也燥を行な぀お、酞がアルミニ
りムダむカスト郚品衚面に残存しないようにす
る。なお、氎蒞気発生蚭備があれば、氎掗を蒞気
ゞ゚ツトにお行ない、その埌の也燥に芁する時間
を著しく短瞮するこずができる。以䞊の事埌凊理
の埌に、カヌコンプレツサヌ等の補品の圧掩れを
怜査し、䞇䞀䞍良品があれば再び本発明の含浞密
封凊理を斜こす。 以䞋、アルミニりムダむカスト郚品の圧掩れず
吹出し防止の実斜䟋を説明する。 第図に瀺す劂き孔郚を圢成したアルミニりム
補詊隓片を倚数䜜補した。図においお、
mm、mm、0.6mmの寞法を蚭定した。詊
隓片を第図の鋌補含浞甚高圧容噚に装入し
た。装入埌、容噚内圧力を10分間にわた぀おcm
Hg以䞋の圧力に枛圧し、次に30℃、比重1.29の
含浞液氎ガラスを容噚内にタンクか
ら泚入し、そしおKgcm2の圧力で15分間加圧し
た。5NのCH3COOH液で30分間氎ガラスを固化
した埌、60℃及び80℃で詊隓片を也燥した時の氎
ガラス吹出し個数を次衚に瀺す。
The present invention relates to an improvement in a method for sealing defects that cause pressure leakage in aluminum die-cast parts by impregnation treatment. In general, the aluminum die-casting method is applied to the production of various machine parts by taking advantage of the high degree of freedom in product shape design, but in the case of machine parts that require pressure resistance, casting defects may occur. There is a problem. Casting defects are generally classified into internal defects and external defects, and it goes without saying that internal defects such as shrinkage cavities, blowholes, and porosity mainly have a negative effect on the pressure resistance of die-cast parts. By the way, the current trend in die casting is toward high-speed, high-pressure die-casting, which has been successful in producing large die-cast parts with high efficiency, but it is not suitable for applications that require pressure resistance and fluid tightness. When used, it was not free from the drawbacks of internal casting defects. Therefore, various efforts have been made to reduce such defects by devising die-casting technology, but even minute internal defects on the micron order or difficult to measure can cause pressure leaks, so die-casting technology This alone has not been enough to eradicate the cause of pressure leaks. An example of a die-cast part that requires the above-mentioned pressure resistance is the housing of a car compressor for automobile air conditioning.Especially in the front housing part, if the ring groove and oil through hole are machined after die-casting, these parts will be damaged. Internal defects in the casting are likely to be exposed in some areas, causing pressure leaks. That is,
In the above-mentioned housing, internal casting defects are difficult to form in areas near the surface or in thin-walled areas;
In other parts, oil or refrigerant gas inside the housing leaks out through the continuous hole-like defects, and the refrigerant gas is lost during use of the car compressor. Here, the size of internal defects in casting that cause leakage or not depends on its diameter and length, and whether or not the defect is enlarged close to the surface. It also depends on the presence or absence of surface defects, etc., so it cannot be determined unconditionally. Therefore, conventionally, the entire die-cast part has been subjected to the impregnation treatment described below. One of the conventional impregnation treatment methods uses water glass such as sodium silicate to impregnate the exposed casting defects on the surface of the die-cast part using either the dip method, the internal pressure method, or the vacuum-pressure method. The water glass was then impregnated into the inside of the water glass, and then the water glass was heat-treated to harden it mainly by vitrification, thereby achieving sealing. Here, properties required of the sealant include excellent sealing performance, oil resistance, water resistance, heat resistance, operability, and cost. For water glass to be used as a sealant, it is essential to heat it at 80°C for about 2 hours and then leave it for about 1 day to harden it, and the longer the curing time, the easier it is to use. It was one of the problems above. An even more serious problem is that during the hardening process or by the user of the die-cast parts, some of the water glass may blow out from the holes in the internal defects in the casting, resulting in it getting into the compressor, for example, and damaging the sliding parts. The problem was that the sealing performance deteriorated in some cases. Mainly because of these problems, organic sealants whose main components are resins such as phenol, polyester, or acrylic have emerged and are now mainstream. However, the biggest drawback of organic sealants is that they are 5 to 10 times more expensive than inorganic sealants, and they also have lower heat resistance than inorganic sealants. There is also the risk of pressure leaks when die-cast parts are used in applications where they are exposed to high temperatures. The present inventor fundamentally improved the situation in which water glass as an inorganic sealant could not be used for die-cast parts that required pressure resistance and fluid tightness due to the problem of blowing out. In addition, we conducted research and development to develop an impregnating sealing method that eliminates the conventional disadvantage of requiring a relatively long time for curing and allows the use of water glass, which is more cost-effective than organic sealants, for pressure-resistant die-cast parts. He discovered that various problems with conventional water glass could be fundamentally solved by hardening water glass by acid treatment, which had not been used at all, and filed a patent application.
The present inventor conducted further research and found that using water glass with a molar ratio of SiO 2 /M 2 O (where M is at least one kind of alkali metal) higher than that of commonly used water glass, exceeding 4 and below 5.1, resulted in the above-mentioned results. It was found that the various problems were solved more effectively and the sealing performance was significantly improved. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to facilitate understanding of the present invention, the present invention and conventional methods will be described in detail below with reference to the drawings. 1 and 2 schematically show a cross section of an aluminum die-cast part 1 having casting defects. As mentioned above, the casting defects that cause pressure leaks are continuous defects between the inner and outer surfaces of the part, and the types of casting defects are internal defects such as shrinkage cavities and blowholes, and surface defects also contribute to pressure leaks. ing. Figures 1 and 2 show that the casting defects that are most likely to cause pressure leaks are large shrinkage cavities or blowholes in which sealant accumulates, and small blowholes, porosity, or surface cracks that are continuous to these. It shows what is going on. Hereinafter, for convenience of explanation, this will be referred to as a blowhole, and is indicated as "2" in the drawings. In addition, in the drawing,
“3” is impregnated sealant (hereinafter referred to as impregnation liquid)
It is. This impregnating solution 3 is applied using the conventional water glass method.
When heated to 80°C, a blowout 3' occurs as shown in Figure 2. It is believed that the cause of this is the generation of small vapor bubbles 4 in the impregnating liquid. On the other hand, in the case of an organic sealant, the blowout 3' can be prevented by using an anaerobic resin, but the sealing performance is poor and the cost is high. As mentioned above, in the conventional water glass curing method, heat treatment was performed at 80℃ for 2 to 3 hours and then left for 1 day.The curing (solidification) mechanism is based on the vitrification reaction. There is. Note that it is recognized that several months are required for the curing to be completely completed, and it can be said that the blowhole 2 is not sufficiently sealed while the vitrification reaction is progressing. On the other hand, the acid treatment of the present invention is characterized in that a water glass gelation reaction occurs and the reaction rate is high. Furthermore, the feature of the present invention is that the blowout 3' does not occur, and if the water glass is hardened by the gelation reaction, the blowout 3' that occurs in the conventional vitrification reaction can be practically completely eliminated. was completed. The results of the inventor's experiments indicate that the water glass is not completely solidified by the gelation reaction, and that there is no problem in preventing pressure leakage even if it is not completely solidified. Ta. Furthermore, since the gelation reaction has a higher reaction rate than the vitrification reaction, the acid treatment of the present invention causes the hardening of the water glass to proceed rapidly at the outlet of the blowhole 2, and the die-cast parts after the acid treatment It is considered that the blowout 3' is effectively prevented even when the device 1 is left unused or in use. Based on the above experimental results, the inventors of the present invention sought to find conditions for promoting the gelation reaction.
The influence of the SiO 2 /M 2 O molar ratio on the gelation reaction was further investigated. If M is sodium,
A small-diameter test tube is completely filled with water glasses with different SiO 2 /Na 2 O molar ratios, and then the water glass and acetic acid are brought into contact at the inlet of the test tube for 30 minutes or 2 hours, and water is released from the tip of the gelled water glass. The length was measured. This length is shown in FIG. 3 as the reaction length. In FIG. 3, the horizontal axis represents the SiO 2 /Na 2 O molar ratio of water glass, the vertical axis represents the reaction length (mm), and the black and white circles represent the contact times of 2 hours and 30 minutes, respectively. From Figure 3
It can be seen that the reaction length increases as the SiO 2 /Na 2 O molar ratio increases, and becomes almost constant above about 4.2. Therefore, in the present invention, the SiO 2 /M 2 O molar ratio is set to a value exceeding 4. Here, SiO 2 /M 2 O
If the molar ratio is less than 4, the effect of promoting the gelation reaction will be small, while if it exceeds 5.1, the water glass will become unstable as a liquid, making it difficult to impregnate defects in aluminum die-cast parts. Therefore, in the present invention, the SiO 2 /M 2 O molar ratio is limited as described above. Generally, in water glass
It is said that if the SiO 2 /Na 2 O molar ratio is outside the range of 2 to 4, it will not become water glass. When silica and water glass are sufficiently stirred and mixed for, for example, several hours to several tens of hours, colloidal silica can be dissolved. The present inventor discovered that water glass containing SiO 2 at a high concentration promotes the gelation reaction, and as described later, it is possible to impregnate and seal defects in aluminum die-cast parts with extremely high reliability. Completed the invention. Also, water glass
When the SiO 2 /M 2 O molar ratio exceeds 4, the viscosity of the water glass increases and the permeability to the defects described above decreases, so the amount of water (H 2 O), which is one component of the water glass, is adjusted. Alternatively, it is desirable to adopt a method such as adjusting the amount of filler added, which will be described later. Adjusting the viscosity by controlling the water content up to 70% provides in most cases a viscosity low enough for defect impregnation sealing of aluminum die-cast parts. In this case, the above reaction length is
Depending on the SiO 2 /M 2 O molar ratio, contact time with acid, etc.
It will change, but you will get enough value. In the present invention, aluminum die-cast parts are subjected to impregnation and sealing treatment, so it is undesirable if the aluminum is eroded by the acid reacted with water glass. Therefore, by taking advantage of the property of aluminum that is easily passivated and basically using an oxidizing acid, the purpose of impregnating and sealing can be achieved without practically damaging the aluminum die-cast parts. The inventor tested the corrosion loss of aluminum using hydrochloric acid, nitric acid, citric acid, formic acid, and acetic acid at a concentration of 2N, and oxalic acid at a concentration of 1N, and confirmed that there was almost no corrosion loss except for hydrochloric acid. did. In particular, organic acids showed good results. Furthermore, when the gelation of water glass was tested using the above-mentioned acids other than hydrochloric acid, sufficient gelation occurred when the amount of acid added was 0.5 to 1.0 ml per gram of the impregnating solution. Basically, any acid that does not corrode aluminum can be used in the present invention.
Examples are phosphoric acid, chloric acid, iodic acid, selenic acid, arsenic acid, boric acid, acetalic acid, benzenesulfonic acid. One or more of the above acids may be used in combination. In determining the amount of acid to be added, water glass is a polymer, and it is not realistic to define an accurate acid molar concentration. Furthermore, since the impregnating liquid contains water and the like in addition to water glass, it is not practical to determine the weight ratio of the acid added to the impregnating liquid. For the above reasons, the amount of acid added to a given impregnation liquid should be determined experimentally. Next, water glass basically has an alkali silicate salt as its main component, and the alkaline component is at least one of sodium, lithium, and potassium, particularly sodium as the alkaline component, and sodium as the acidic component. There is no restriction at all as long as it is a known water glass in which SiO 2 is used. Furthermore, the water glass may contain Fe 2 O 3 or other metal oxide fillers in a broad sense. Moreover, as water glass for impregnating and sealing treatment, there are commercially available water glasses containing shrinkage preventive agents and the like in addition to the above-mentioned fillers, and there is no problem even if the water glass contains this. Furthermore, the aluminum to be treated in the present invention is JIS standard, which is normally used for die casting.
-H-2212 series alloys are included, and it goes without saying that it is not limited to pure aluminum. Embodiments of the present invention will be described below. As already mentioned, the drawback of the conventional heat curing method for water glass is that the curing time is long, but this point can be fundamentally solved by the action of acid. The acid treatment time according to the present invention depends on the acid temperature, acid concentration, and type of acid, but is about 10 to 30 minutes when an industrially commonly used acid is used at room temperature. Moreover, there is no need to leave it alone. Examples of the acid treatment method include a method of immersing the aluminum die-cast part in an acid aqueous solution, an alcohol solution, or another solution, and a method of spraying an acid solution. Note that the impregnation of water glass and the acid treatment can be performed in the same container or in separate containers. Further, when immersing an aluminum die-cast part in an acid solution, the acid solution can be pressurized and heated to accelerate the curing reaction. In addition, if acid and water glass are mixed in advance, the water glass will harden instantly and will not be impregnated into the blowhole. Therefore, acid treatment should be performed after water glass is impregnated into the blowhole using a known method. is necessary. Note that when heating acid, the water in the water glass (bound water) will melt when the temperature reaches 100°C.
Temperatures close to 100°C must be avoided at all costs, as the gas is released all at once. Therefore, the temperature of the acid should be as low as possible below 100°C, e.g. 80°C.
℃ or less is desirable. As a pretreatment for the process of the invention, if necessary, the aluminum die-cast parts may be cleaned, degreased, deburred, masked, etc. to remove any sources of interference with water glass impregnation and acid treatment.
Additionally, the aluminum die-cast part can be first passivated and then impregnated with water glass, followed by acid treatment with the most desirable acid for hardening the water glass. Further, as a post-treatment, water washing and drying are performed to prevent acid from remaining on the surface of the aluminum die-cast part. If there is a steam generating facility, water washing can be performed using a steam jet, and the time required for subsequent drying can be significantly shortened. After the above-mentioned post-treatment, products such as car compressors are inspected for pressure leakage, and if any defective products are found, the impregnation and sealing treatment of the present invention is applied again. Hereinafter, an example of preventing pressure leakage and blow-out of aluminum die-cast parts will be described. A large number of aluminum test pieces with holes as shown in FIG. 4 were prepared. In the figure, D=4
The dimensions were set as mm, H=5 mm, and d=0.6 mm. The test piece was placed in a high-pressure steel impregnation container 10 shown in FIG. After charging, increase the pressure inside the container to 4 cm for 10 minutes.
The pressure was reduced to below Hg, and then an impregnating liquid (water glass) at 30° C. and a specific gravity of 1.29 was injected into the container 10 from the tank 11, and the pressure was increased to 6 kg/cm 2 for 15 minutes. The following table shows the number of water glasses blown out when the test pieces were dried at 60°C and 80°C after solidifying the water glass with 5N CH 3 COOH solution for 30 minutes.

【衚】 したが぀お、SiO2Na2Oモル比が4.2のものは
密封性胜が優れおいるこずが分か぀た。そこでこ
の含浞液を甚いお、゚ンゞンのフロントハりゞン
グのアルミニりムダむカスト郚品の欠陥密封凊理
を行な぀た。なお氎ガラスの氎分量は70、也燥
枩床は60℃であ぀た。䞊蚘凊理を行な぀た䞊蚘ダ
むカスト郚品凊理盎埌には吹出しは党くなし
を第衚に瀺す条件で耐久テストを行な぀た。こ
の結果本発明の方法は実機に適甚しうる耐久性及
び信頌性を有するこずが確認された。 なお、䞊蚘SiO2Na2Oモル比5.0の含浞液の代
りにSiO2M2Oモル比が5.0の含浞液をSiO2が22
重量、K2Oが0.5重量、Na2Oが4.22重量、
残り氎の組成により調補し同様の実隓䜆し也燥
枩床は60℃のみを行な぀たずころ、20個䞭の吹
出個数はれロであ぀た。
[Table] Therefore, it was found that those with a SiO 2 /Na 2 O molar ratio of 4.2 had excellent sealing performance. Therefore, this impregnation liquid was used to seal defects in aluminum die-cast parts of the front housing of an engine. The moisture content of the water glass was 70%, and the drying temperature was 60°C. The above die-cast part that has been subjected to the above treatment (no blowing out at all immediately after treatment)
A durability test was conducted under the conditions shown in Table 2. As a result, it was confirmed that the method of the present invention has durability and reliability that can be applied to actual equipment. In addition, instead of the above impregnating liquid with a SiO 2 /Na 2 O molar ratio of 5.0, an impregnating liquid with a SiO 2 /M 2 O molar ratio of 5.0 was used.
wt%, K2O 0.5wt%, Na2O 4.22wt%,
When a similar experiment was conducted using the composition of the remaining water (however, the drying temperature was only 60°C), the number of blowouts out of 20 was zero.

【衚】 なお衚䞭○印は吹出しなし、×印は吹
出しありを意味する。
埓来の氎ガラス系含浞液の熱凊理也燥法では条
件で80のアルミダむカスト郚品が×印ずな぀
おいた。䞀方、SiO2Na2Oモル比が3.4であるず
条件で同様に16が×印ずな぀た。 次に、条件で、SiO2Na2Oモル比が3.4であ
るず50が×印ずな぀た。 なお、本発明者は氎ガラスをCO2ガスず接觊さ
せおゲル状シリカを析出させる方法も詊みたが、
所期の含浞密封凊理を達成し埗なか぀た。したが
぀お、ゲル状シリカの析出であ぀おもCO2による
か酞によるかで、党く異な぀た結果が埗られるこ
ずが分か぀た。換蚀するず、ゲル状シリカの析出
のみでは本発明の優れた総合特性は説明できず、
高いSiO2M2Oのモル比反応速床ぞの圱響ある
いはその他の酞による圱響が決定的であるずいえ
る。理論的説明がどうなるにせよ、本発明による
ずダむカスト郚品の耐圧信頌性が倧巟に改善され
るので、工業的意矩が倧きい。
[Table] In the table, the mark ○ means there is no balloon, and the mark X means there is a balloon.
In the conventional heat treatment drying method using a water glass-based impregnating liquid, 80% of the aluminum die-cast parts were marked with an "X" under condition 1. On the other hand, when the SiO 2 /Na 2 O molar ratio was 3.4, under condition 1, 16% was similarly marked with an x mark. Next, under condition 2, when the SiO 2 /Na 2 O molar ratio was 3.4, 50% was marked with an x. The inventor also tried a method in which gel-like silica was precipitated by contacting water glass with CO 2 gas, but
The desired impregnation and sealing treatment could not be achieved. Therefore, it was found that even in the case of precipitation of gel-like silica, completely different results can be obtained depending on whether CO 2 or acid is used. In other words, the excellent overall properties of the present invention cannot be explained only by the precipitation of gel-like silica;
It can be said that the influence of high SiO 2 /M 2 O on the molar ratio reaction rate or the influence of other acids is decisive. Regardless of the theoretical explanation, the present invention has great industrial significance because the pressure resistance reliability of die-cast parts is greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第図及び第図はアルミニりムダむカスト郚
品の含浞密封凊理を説明するための該郚品の抂念
的断面図、第図は氎ガラスのSiO2Na2Oモル
比の反応長さぞの圱響を瀺すグラフ、第図は詊
隓片の断面図、第図は含浞凊理容噚の断面図で
ある。   アルミニりムダむカスト郚品、  ブ
ロヌホヌル、  含浞液、′  吹出し、
  蒞気泡。
Figures 1 and 2 are conceptual cross-sectional views of aluminum die-cast parts to explain the impregnation sealing treatment, and Figure 3 shows the influence of the SiO 2 /Na 2 O molar ratio of water glass on the reaction length. FIG. 4 is a cross-sectional view of the test piece, and FIG. 5 is a cross-sectional view of the impregnation treatment container. 1...Aluminum die-cast part, 2...Blow hole, 3...Impregnation liquid, 3'...Blowout, 4
...Steam bubbles.

Claims (1)

【特蚱請求の範囲】[Claims]  SiO2M2O−䜆しはアルカリ金属の少な
くずも皮−のモル比がを越え5.1以䞋の氎ガ
ラスをアルミニりムダむカスト郚品の欠陥郚に含
浞させた埌、該氎ガラスを酞液ず接觊させるこず
を特城ずするアルミニりムダむカスト郚品圧掩れ
欠陥の含浞密封方法。
1 After impregnating the defective parts of an aluminum die-cast part with water glass having a molar ratio of SiO 2 /M 2 O (where M is at least one alkali metal) of more than 4 and less than 5.1, the water glass is mixed with an acid solution. A method for impregnating and sealing a pressure leakage defect in an aluminum die-casting part, the method comprising contacting.
JP13738482A 1982-08-09 1982-08-09 Impregnation sealing method for aluminum die cast part pressure leak defect Granted JPS5930780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13738482A JPS5930780A (en) 1982-08-09 1982-08-09 Impregnation sealing method for aluminum die cast part pressure leak defect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13738482A JPS5930780A (en) 1982-08-09 1982-08-09 Impregnation sealing method for aluminum die cast part pressure leak defect

Publications (2)

Publication Number Publication Date
JPS5930780A JPS5930780A (en) 1984-02-18
JPS649128B2 true JPS649128B2 (en) 1989-02-16

Family

ID=15197423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13738482A Granted JPS5930780A (en) 1982-08-09 1982-08-09 Impregnation sealing method for aluminum die cast part pressure leak defect

Country Status (1)

Country Link
JP (1) JPS5930780A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141331U (en) * 1989-05-01 1990-11-28

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141331U (en) * 1989-05-01 1990-11-28

Also Published As

Publication number Publication date
JPS5930780A (en) 1984-02-18

Similar Documents

Publication Publication Date Title
US4828616A (en) Surface treatment chemical for forming a hydrophilic coating
EP0111398B1 (en) Alkali metal silicate binder compositions
JP5794921B2 (en) Casting sand mold and / or core manufacturing method and binder composition
US3222737A (en) Method of preparing ceramic molds
CN110769951A (en) Composition and method for casting cores in high pressure die casting
CN111777879A (en) Water-soluble high-temperature-resistant sealing agent and preparation method thereof
US4824712A (en) Treatment of glass to reduce venting during thermal treatment and a glass article made thereby
JPS649128B2 (en)
US4096293A (en) Mold and core wash
JP2689358B2 (en) Heat exchanger
US4078599A (en) Self-curing and water-soluble mold
JPS6411411B2 (en)
JPH0134737B2 (en)
US4908075A (en) Surface treatment chemical for forming a hydrophilic coating
US1187746A (en) Method of treating porous castings.
US3501320A (en) Die casting core
JPS62144846A (en) Casting mold for high melting point metal and its production
CN105256324A (en) Processing technology for castings
US4444804A (en) Flame sprayed coatings
US4685503A (en) Method of manufacturing a disintegratable core for casting
US4550761A (en) Mold coating
JPH0318530B2 (en)
JPS6240948A (en) Binder for molding sand
CN107974143B (en) Corrosion-resistant glass flake resin
CA1091515A (en) Impregnated castings chemically resistant to contact with halocarbon refrigerant