JPS648654B2 - - Google Patents
Info
- Publication number
- JPS648654B2 JPS648654B2 JP58068403A JP6840383A JPS648654B2 JP S648654 B2 JPS648654 B2 JP S648654B2 JP 58068403 A JP58068403 A JP 58068403A JP 6840383 A JP6840383 A JP 6840383A JP S648654 B2 JPS648654 B2 JP S648654B2
- Authority
- JP
- Japan
- Prior art keywords
- coating
- weight
- viscosity
- emulsion
- coating liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000576 coating method Methods 0.000 claims description 143
- 239000011248 coating agent Substances 0.000 claims description 140
- 239000000839 emulsion Substances 0.000 claims description 54
- 229920005989 resin Polymers 0.000 claims description 18
- 239000011347 resin Substances 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 12
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 11
- 239000005977 Ethylene Substances 0.000 claims description 11
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 11
- 229920001567 vinyl ester resin Polymers 0.000 claims description 11
- 125000004432 carbon atom Chemical group C* 0.000 claims description 8
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 8
- 239000000194 fatty acid Substances 0.000 claims description 8
- 229930195729 fatty acid Natural products 0.000 claims description 8
- 150000004665 fatty acids Chemical class 0.000 claims description 8
- 239000012530 fluid Substances 0.000 claims description 8
- 239000000945 filler Substances 0.000 claims description 7
- 239000000049 pigment Substances 0.000 claims description 7
- 230000036571 hydration Effects 0.000 claims description 6
- 238000006703 hydration reaction Methods 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- 238000007720 emulsion polymerization reaction Methods 0.000 claims description 3
- 239000007788 liquid Substances 0.000 description 50
- 239000004567 concrete Substances 0.000 description 33
- 239000000243 solution Substances 0.000 description 22
- 239000011378 shotcrete Substances 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 238000010276 construction Methods 0.000 description 14
- 239000000084 colloidal system Substances 0.000 description 13
- 230000001681 protective effect Effects 0.000 description 13
- 239000010426 asphalt Substances 0.000 description 12
- 239000004094 surface-active agent Substances 0.000 description 11
- -1 hydroxyethylpropyl Chemical group 0.000 description 10
- 239000000178 monomer Substances 0.000 description 9
- 239000004372 Polyvinyl alcohol Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000003513 alkali Substances 0.000 description 8
- 229920002451 polyvinyl alcohol Polymers 0.000 description 8
- 238000005507 spraying Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 238000010422 painting Methods 0.000 description 6
- 239000002562 thickening agent Substances 0.000 description 6
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 6
- VTYYLEPIZMXCLO-UHFFFAOYSA-L calcium carbonate Substances [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 5
- 239000004568 cement Substances 0.000 description 5
- 239000005038 ethylene vinyl acetate Substances 0.000 description 5
- 230000007774 longterm Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 238000000889 atomisation Methods 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000004606 Fillers/Extenders Substances 0.000 description 3
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 3
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000003945 anionic surfactant Substances 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 3
- 239000002736 nonionic surfactant Substances 0.000 description 3
- 238000007591 painting process Methods 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 238000007665 sagging Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 230000008961 swelling Effects 0.000 description 3
- 229920001897 terpolymer Polymers 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- CNCOEDDPFOAUMB-UHFFFAOYSA-N N-Methylolacrylamide Chemical compound OCNC(=O)C=C CNCOEDDPFOAUMB-UHFFFAOYSA-N 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000010425 asbestos Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 235000010216 calcium carbonate Nutrition 0.000 description 2
- 239000005018 casein Substances 0.000 description 2
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 2
- 235000021240 caseins Nutrition 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000008119 colloidal silica Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000009415 formwork Methods 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 229910052895 riebeckite Inorganic materials 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 238000007127 saponification reaction Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- DZSVIVLGBJKQAP-UHFFFAOYSA-N 1-(2-methyl-5-propan-2-ylcyclohex-2-en-1-yl)propan-1-one Chemical compound CCC(=O)C1CC(C(C)C)CC=C1C DZSVIVLGBJKQAP-UHFFFAOYSA-N 0.000 description 1
- WURBVZBTWMNKQT-UHFFFAOYSA-N 1-(4-chlorophenoxy)-3,3-dimethyl-1-(1,2,4-triazol-1-yl)butan-2-one Chemical compound C1=NC=NN1C(C(=O)C(C)(C)C)OC1=CC=C(Cl)C=C1 WURBVZBTWMNKQT-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- BJELTSYBAHKXRW-UHFFFAOYSA-N 2,4,6-triallyloxy-1,3,5-triazine Chemical compound C=CCOC1=NC(OCC=C)=NC(OCC=C)=N1 BJELTSYBAHKXRW-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- OAOABCKPVCUNKO-UHFFFAOYSA-N 8-methyl Nonanoic acid Chemical compound CC(C)CCCCCCC(O)=O OAOABCKPVCUNKO-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 108010073771 Soybean Proteins Proteins 0.000 description 1
- VBIIFPGSPJYLRR-UHFFFAOYSA-M Stearyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)C VBIIFPGSPJYLRR-UHFFFAOYSA-M 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920006222 acrylic ester polymer Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- REZZEXDLIUJMMS-UHFFFAOYSA-M dimethyldioctadecylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC REZZEXDLIUJMMS-UHFFFAOYSA-M 0.000 description 1
- 239000004664 distearyldimethylammonium chloride (DHTDMAC) Substances 0.000 description 1
- DDXLVDQZPFLQMZ-UHFFFAOYSA-M dodecyl(trimethyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)C DDXLVDQZPFLQMZ-UHFFFAOYSA-M 0.000 description 1
- HBRNMIYLJIXXEE-UHFFFAOYSA-N dodecylazanium;acetate Chemical compound CC(O)=O.CCCCCCCCCCCCN HBRNMIYLJIXXEE-UHFFFAOYSA-N 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- LRMHFDNWKCSEQU-UHFFFAOYSA-N ethoxyethane;phenol Chemical compound CCOCC.OC1=CC=CC=C1 LRMHFDNWKCSEQU-UHFFFAOYSA-N 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000013521 mastic Substances 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- DNTMQTKDNSEIFO-UHFFFAOYSA-N n-(hydroxymethyl)-2-methylprop-2-enamide Chemical compound CC(=C)C(=O)NCO DNTMQTKDNSEIFO-UHFFFAOYSA-N 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- UPHWVVKYDQHTCF-UHFFFAOYSA-N octadecylazanium;acetate Chemical compound CC(O)=O.CCCCCCCCCCCCCCCCCCN UPHWVVKYDQHTCF-UHFFFAOYSA-N 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- BWYYYTVSBPRQCN-UHFFFAOYSA-M sodium;ethenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C=C BWYYYTVSBPRQCN-UHFFFAOYSA-M 0.000 description 1
- 229940035044 sorbitan monolaurate Drugs 0.000 description 1
- 235000019710 soybean protein Nutrition 0.000 description 1
- 238000004901 spalling Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- DJXRIQMCROIRCZ-XOEOCAAJSA-N vibegron Chemical compound C1([C@H]([C@@H]2N[C@H](CC=3C=CC(NC(=O)[C@H]4N5C(=O)C=CN=C5CC4)=CC=3)CC2)O)=CC=CC=C1 DJXRIQMCROIRCZ-XOEOCAAJSA-N 0.000 description 1
- 229920003170 water-soluble synthetic polymer Polymers 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Lining And Supports For Tunnels (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Paints Or Removers (AREA)
Description
本発明の分野
本発明はトンネル内壁形成において、吹付コン
クリートと覆工コンクリート間の絶縁緩衝層を形
成するために用いられる改質された塗工液に関す
る。
さらに詳しくは本発明は最近のトンネル施工法
として地山を掘削した後、該掘削面に吹付コンク
リートを施工し、ロツクボルト、鋼アーチ支保工
によつて地山掘削面を安定化させ、その後覆工コ
ンクリートを打込むにあたつて覆工コンクリート
のひび割れによる外観の悪化、ならびに漏水剥落
による保安上の問題からその解決の一手段として
吹付コンクリートと覆工コンクリート間の絶縁緩
衝層を形成するために一部用いられているゴムア
スフアルトエマルジヨンに由来する欠陥の改善を
目的とした塗工液に関する。
先行技術
山岳トンネルの施工は地山を掘削後、該掘削面
に先ず一次覆工として吹付けコンクリートを施工
し、これに場合によりロツクボルト、鋼アーチ支
保工を組合せ地山を安定化させたうえで二次覆工
としての覆工コンクリートを移動式の鋼製型枠を
組上げた後、吹付コンクリートと型枠との間の空
気に打ち込むという工法が多く採られている。し
かし、この工法では覆工コンクリートが硬化の充
分進んだ吹付けコンクリートに密着しているため
覆工コンクリートに生ずるゲル化時の膨張、硬化
時の収縮という体積変化は硬化後の覆工コンクリ
ートとひび割れを発生させる。また覆工コンクリ
ートの硬化後にも、トンネル内における吹付けコ
ンクリートと覆工コンクリートに起る温度差は、
吹付けコンクリートと覆工コンクリートの熱膨
張、熱収縮量の差となつてあらわれ、これが覆工
コンクリートにひび割れを発生させる。ひび割れ
はトンネルの外観をそこなうだけでなく、漏水の
原因となり、場合によつては覆工コンクリートの
脱落を招く。覆工コンクリートのひび割れの原因
は上述のごとく種々あるが、これを解決する最上
の手段は吹付けコンクリートと覆工コンクリート
の密着をなくし、両者が互いに他の拘束を受ける
ことなしに自由に伸縮できるようにすることであ
る。かくしてこの対策としてゴムアスフアルトエ
マルジヨンを吹付けコンクリートと覆工コンクリ
ート施工の中間段階で塗布し両者を絶縁する中間
層を形成する工法がとられている。
このような意味で本発明では、この中間層を絶
縁緩衝層と表現する。上述の説明からも明らかな
ように絶縁緩衝層は一次覆工としての吹付けコン
クリートに密着することは塗装作業上からも必然
であるが二次覆工として、該絶縁緩衝層と型枠と
の空間に打込まれる覆工コンクリートとの密着の
如何は問うところではない。いずれの場合でも覆
工コンクリートに発生するひび割れを防止するこ
とができるが、むしろ覆工コンクリートに密着せ
ず、空隙を残す方が望ましい。その理由は空隙を
残す方が絶縁緩衝層に要求される応力緩和能、そ
れを受持つ伸縮自在性が軽減されるからである。
そうは言うものの空隙を残すということは自由に
できることではないのでいきおい絶縁緩衝層には
覆工コンクリートが密着した場合にも対応できる
ような伸縮性とその永続性、耐久性が要求される
ことになる。従来行われてきたゴムアスフアルト
エマルジヨンの使用は以上の点をある程度まで満
足するものではあるがいまだに性能は充分でな
く、さらに作業現場での施工という過程をとりあ
げるとき幾つかの改善課題を拘えている。すなわ
ちゴムアスフアルトを主成分とする従来一般の塗
工液を用いた場合には、吹付け時に悪臭が発生
し、空気の流通の悪い狭いトンネル坑内では作業
員の衛生に少からざる悪影響を与え、また吹付け
コンクリートに吹付けたゴムアスフアルトエマル
ジヨンの塗装面からの脱落により作業場の地面は
活染を受ける。またゴムアスフアルトエマルジヨ
ンは黒色のためトンネル内の薄暗い所で使用した
場合、塗布した箇所と未塗布の箇所との区別がつ
きにくく、施工欠陥の原因となり易い。またアス
ベスト繊維等に水和硬化性の各種セメントを配合
したもの或いはこれらにアクリルエマルジヨンを
併配合したものも試用され、塗膜強度の向上、経
済性の向上、一度塗りでの厚膜コートが可能など
の特徴が得られているがセメント配合液は保存性
に欠けるため配合は作業現場で行わざるを得ずわ
ずらわしい上に可使時間の制約もある。またかつ
てはポリ酢酸ビニルエマルジヨンに可塑剤を添加
して造膜性と柔軟性を与えたものの検討もなされ
たが、吹付けコンクリートから発生する強いアル
カリ性の水分に耐アルカリ性の弱さから耐えられ
ず脆弱化して耐久性を保持しえなかつた。
発明の目的
本発明は上述の現状技術、なかんずくゴムアス
フアルトエマルジヨン或いは水和硬化性のセメン
トを配合した塗工液を上記の絶縁緩衝層形成に使
用する場合の改善課題の解決を目的としたもので
ある。
発明の概要
本発明は分散相の組成がエチレン40〜5重量部
と、酢酸ビニル60〜95重量部と、炭素数が9〜11
の分岐脂肪酸のビニルエステル60〜0重量部とか
らなるエマルジヨン重合によつて得られる水性エ
マルジヨン(A)、顔料及び/または水和硬化性をも
たない充填材(B)、粘性付与剤(C)とからなる塗工液
であつて該塗工液がBH型回転粘度計を用いて測
定した30℃、10rpmにおける粘度20000〜150000
センチポイズ(cps)の範囲にあり、且つBH型
回転粘度計を用いて測定した30℃、2rpmにおけ
る粘度を同じく30℃、20rpmにおける粘度で除し
た値が3.0〜8.0の範囲にあつて、しかも塗工液乾
燥塗膜における水性エマルジヨン(A)の樹脂固形分
の容積分率が40%以上であることを特徴とするト
ンネル内壁絶縁緩衝層形成用塗工液に存する。
発明の好適な実施態様の記載
本発明の塗工液を調製するために用いられる上
記水性エマルジヨン(A)としては(1)エチレンが40〜
5重量部と酢酸ビニルが60〜95重量部のエチレン
―酢酸ビニル共重合体エマルジヨン、好ましくは
エチレン30〜10重量部と酢酸ビニル70〜90重量部
の範囲のエチレン―酢酸ビニル共重合体エマルジ
ヨンがあげられる。上記範囲を外れてエチレン含
量が多いと塗膜が柔軟過ぎて表面がベタつき、し
かも塗膜強度が小さ過ぎて絶縁層として好ましく
なく、またエチレン含量が少いと塗膜の造膜性が
不良でしかも柔軟性を吹き、さらに吹付けコンク
リートおよび覆工コンクリートからにじみ出るア
ルカリに耐ええない材料となり、しかも塗膜は抗
張力が大きい割に伸度が小さく長期間にわたるコ
ンクリート材料の伸縮には耐ええず絶縁緩衝層と
してコンクリートのひび割れ、剥落防止の役割を
果さず不適である。
また上記水性エマルジヨン(A)としては、(2)エチ
レン40〜5重量部と酢酸ビニル60〜95重量部と炭
素数が9〜11の分岐脂肪酸のビニルエステル60〜
0重量部、例えば60〜0.5重量部よりなる三元共
重合体エマルジヨン、好ましくはエチレン30〜10
重量部、酢酸ビニル70〜90重量部、炭素数が9〜
11の分岐脂肪酸のビニルエステル50〜10重量部の
共重合体エマルジヨンがあげられる。
上記範囲を外れてエチレン含量が多いと塗膜が
ベタつき、抗張力が小さく、伸度が大き過ぎて弱
い塗膜となる。また逆に酢酸ビニルが多過ぎると
硬くてもろく耐アルカル性の弱い塗膜を与え不適
である。また炭素数が9〜11の分岐脂肪酸のビニ
ルエステルは60〜0重量部、例えば60〜0.5重量
部、好ましくは50〜10重量部の範囲が良く、多い
と塗膜は軟か過ぎて不適である。
炭素数が9〜11の分岐脂肪酸のビニルエステル
としては、バーサチツク酸のビニルエステルであ
るベオバ10(シエル化学(株)の商品名)やノナンビ
ニルエステルがある。ここでいうベオバ10とは炭
素数9〜11個(平均10個)の合成脂肪酸のビニル
エステルでその化学構造式は次の通りである:
(上記式中でR1,R2およびR3は直鎖状のアル
キル基で、そのうちひとつはメチル基である)。
第3級ノナンビニルエステルもベオバ10と同じよ
うな化学構造式で表すことができる。
これらの炭素数9〜11の分岐脂肪酸のビニルエ
ステルは炭素数が多く構造がバルキーであるため
エチレン―酢酸ビニル等と共重合することにより
上記絶縁層に一層の耐水性、耐アルカリ性を付与
する点で好ましい原料である。
これら共重合体エマルジヨン(A)は保護コロイド
系、界面活性剤系、保護コロイドと界面活性剤の
両者併用系、ソープフリー系等当業者に公知の形
で製造される。
保護コロイド系エマルジヨンは前記組成範囲の
単量体を水性媒体中で重合開始剤、保護コロイド
存在下に乳化重合することによつて得られるもの
である。保護コロイドの使用量はエマルジヨン共
重合体樹脂(固型分)に対して1〜10重量部の範
囲でよく、特にポリビニルアルコールならびにヒ
ドロキシエチルセルロースを保護コロイドとして
使用する場合には2〜5重量部が好ましい。
界面活性剤系エマルジヨンは上記保護コロイド
系エマルジヨンと同様にして得られる。界面活性
剤の使用量は単量体に対して1〜10重量部の範囲
でよい。
これら保護コロイド系エマルジヨン、および界
面活性剤系エマルジヨンのほかに、保護コロイド
と界面活性剤の併用系エマルジヨンも同様に使用
される。さらには保護コロイド系エマルジヨンへ
界面活性剤の後添加されたものも同様である。
これらエマルジヨンに使用可能な保護コロイド
としては完全けん化ポリビニルアルコール、部分
けん化ポリビニルアルコール、ポリビニルアルコ
ールのその他の誘導体、ポリアクリルアミドおよ
びその変性物、ポリビニルピロリドン、その他の
水溶性合成重合体、メチルセルロース、ヒドロキ
シエチルプロピルセルロース、ヒドロキシエチル
セルロース等セルロース誘導体、でん粉またはそ
の誘導体、ゼラチン、カゼイン、大豆蛋白等の水
溶性天然物があげられ、なかでもポリビニルアル
コール、ヒドロキシエチルセルロースが好まし
く、これらはポリマーにグラフト、あるいはエマ
ルジヨン粒子に吸着し、エマルジヨンを安定化さ
せ強靭な皮膜を形成する。
界面活性剤としてはアニオン系、ノニオン系、
カチオン系があげられ、アニオン系としては高級
アルコール硫酸エステル塩類、アルキルベンゼン
スルホン酸塩類、ポリオキシエチレンアルキルフ
エノールサルフエート塩類、ジアルキルスルホコ
ハク酸塩類等であり、ノニオン系としてはポリオ
キシエチレンアルキルエーテル、ポリオキシエチ
レンアルキルフエノールエーテル、オキシエチレ
ン―オキシプロピレンブロツクコポリマー、オキ
シエチレンソルビタンモノラウレート等があげら
れる。またカチオン系としてはラウリルアミンア
セテート、ステアリルアミンアセテート、ラウリ
ルトリメチルアンモニウムクロライド、ステアリ
ルトリメチルアンモニウムクロライド、ジステア
リルジメチルアンモニウムクロライド、アルキル
ベンジルジメチルアンモニウムクロライド等があ
げられる。
また界面活性剤や保護コロイドを全く使用せ
ず、ビニルスルホン酸ソーダ、メタアリルスルホ
ン酸ソーダ、2―アクリルアミド2―メチルプロ
パンスルホン酸、アクリルアミド、メタアクリル
アミド、N―メチロールアクリルアミド、N―メ
チロールメタアクリルアミド等ビニルモノマーと
共重合性を示す、いわゆる反応性界面活性剤を使
用、もしくは親水性のオリゴマーを使用して造ら
れたソープフリー系のエマルジヨンについても同
様に可能である。
上記水性エマルジヨン(A)の調製に際し、塗膜す
なわち絶縁緩衝層の強靭性を向上させるため自己
架橋性を有するモノマーを少量共重合することも
好ましい。自己架橋性を有するモノマーとして
は、例えばN―メチロールアクリルアミド、グリ
シジルアクリレート、グリシジルメタアクリレー
ト、ジビニルベンゼン、トリアリルシアヌレー
ト、リン酸ジアリル、2―ヒドロキシエチルアク
リレート、2―ヒドロキシエチルメタアクリレー
ト等がある。
またさらに上記水性エマルジヨン(A)に各種架橋
性樹脂、例えば尿素樹脂、メラミン樹脂、ポリア
ミドアミンエピクロロヒドリン樹脂、エポキシ樹
脂等の少量の添加も塗膜に3次元の架橋構造を付
与し、塗膜の強靭性を増すとともに塗膜に耐水
性、耐アルカリ性を与え、絶縁緩衝層として望ま
しい物性を付与させるために有効である。
本発明に使用される顔料、ならびに水和硬化性
をもたない充てん材(B)としては酸化チタンをはじ
めとする各種着色顔料、カオリン、クレー、各種
炭酸カルシウム、硫酸バリウム等の体質顔料等々
当業者に公知の顔料なら何んでもよく、また硅石
粉、硅石等の砂、骨材類等の充てん材も混合使用
しうる。これら比重の大きな充てん材により塗工
液のタレが生じる場合には軽量の充てん材として
プラスチツク繊維、ガラス繊維、硅灰石、硅藻
土、木粉、モミガラ粉、コルク粉、マイクロバル
ーン、シラスバルーン、樹脂粉末、アスベスト粉
末、その他鉱さい類等水和硬化性をもたない充て
ん材の併用、または単独使用が可能である。
また本発明における粘性付与剤(C)は塗工液への
平滑性付与、タレ防止のための必須成分である。
使用可能なものとしては天然高分子系増粘剤、例
えばゼラチン、カゼイン、半合成高分子系増粘
剤、例えば酸化、メチル化、カルボキシメチル
化、ヒドロキシエチル化、ヒドロキシプロピル
化、リン酸化、カチオン化等の処理を施されたで
ん粉またはセルロース;アルギン酸;あるいはア
ルギン酸ソーダ(アンモニウム);合成高分子系
増粘剤、例えばポリビニルアルコール、ポリビニ
ルピロリドン、ポリアクリル酸ソーダ、ポリアク
リルアミド、界面活性剤系増粘剤としてポリエチ
レンオキサイド、ポリエチレングリコールエーテ
ル、無機系増粘剤、例えばコロイダルシリカ、ベ
ントナイト、アタゲル(エンジエルハード・ミネ
ラルズ・アンド・ケミカルズ製、硅酸アルミ系)
等があげられる。
これら増粘剤を使用して塗工液をBH型回転粘
度計を用いて測定した30℃、10rpmにおける粘度
が20000センチポイズ(cps)〜150000cps:、か
つBH型回転粘度計を用いて測定した30℃、
2rpmにおける粘度を同じく30℃、20rpmにおけ
る粘度で除した値(以下揺変度指数という)が
3.0〜8.0の範囲になるように調整するのがよい。
塗工液の粘度が上記範囲を外れて高過ぎるとスプ
レー等による塗装作業性が悪く、塗装表面の状態
も凹凸が激しく絶縁緩衝層としての均一性に欠け
る。また逆に塗工液の粘度が上記範囲を外れて低
過ぎると塗装作業性は良いが塗工液のタレが生
じ、特に濡れ面ではその傾向が著しく強く絶縁緩
衝層としての役割を果さない。揺変度指数が上記
範囲を外れて低過ぎる場合は塗工液のスプレー作
業時の霧化特性が不良で塗装面は不均一な状態と
なり、しかもタレを生じ絶縁緩衝層としての機能
を著しく阻害し不適である。また逆にこの値が上
記範囲を外れて高過ぎると塗工液の揺変性が強過
ぎて現場作業時の塗工液のスプレーのホツパ等へ
の移行作業が面倒であるのと刷毛やローラーによ
る塗装の場合は塗膜の肉もちに欠け、しかも塗装
面にすじ目がたち絶縁緩衝層としての塗膜の均一
性に欠け不適である。
本発明の塗工液の乾燥塗膜、すなわち絶縁緩衝
層中の前記水性エマルジヨン(A)の樹脂固型分の容
積分率(以下RVCという)は40%以上であるこ
とが必要である。
RVCが40%より低い場合には塗膜の伸度が低
く、長期間にわたるコンクリートの膨張、収縮に
対する追従性に欠け、したがつて覆工コンクリー
トのクラツク防止の役割を充分果しえない。
また顔料の添加は塗工液に適度な粘稠性を付与
し、塗装作業性を向上させると同時に塗料の固型
分を増加させ乾燥時の体積収縮によるクラツクを
防止するのに役立つ。
塗工液の濃度については任意でよいが常識的に
は50〜85%の範囲内であることが望ましい。塗工
液の濃度が低い場合には乾燥時の体積収縮による
ヤセ、ならびにクラツクが生じやすく、また逆に
高過ぎる場合にはスプレー等による吹付け作業性
が不良で、しかも塗装表面も平滑性に欠け、また
吹付けコンクリートへの接着強度の低下も認めら
れ、何れも絶縁緩衝層としての役割を果さず不適
である。
本発明における上記水性エマルジヨン(A)、なら
びに塗工液中には通常の合成樹脂エマルジヨン、
および同エマルジヨン塗料に配合される消泡剤、
造膜助剤、可塑剤、分散剤、凍結安定剤、防腐
剤、防カビ剤等の添加が必要に応じて行われる。
本発明の塗工液の吹付けコンクリートへの塗装
はスプレーや各種ローラー何れでも可能である。
スプレーはリシンガン、マスチツクガン、モルタ
ルガン等が使用可能であるがエアースプレー、エ
アレススプレー、あるいはエアー、エアレス両者
併用型スプレーが使用可能であり、なかでもエア
ー・エアレス両者併用型スプレーが霧化が良く、
塗面が平滑となり、かつ吐出量も大きく能率的で
ある。
本発明の塗工液は吹付け等の作業性が極めて良
好で、臭気についても問題なく塗装面の仕上りは
平滑であり、その塗膜は伸度が大きく耐水、耐ア
ルカリ性、耐久性等にも優れているため、トンネ
ル工事の際の吹付けコンクリートと覆工コンクリ
ート間の絶縁緩衝層として覆工コンクリートのク
ラツク防止、したがつて漏水と剥落の防止に対し
て極めて有効なものである。また本発明の塗工液
は半年ないしは1年の長期の貯蔵においてもその
状態ならびに粘度の変化は極めて少く、製造直後
と同様に塗装作業性が極めて良好で臭気について
も問題なく、塗装面の仕上りは平滑で塗膜の伸
度、耐水、耐アルカリ性も優れている。したがつ
て可使時間が極めて長いため塗工液の現地調合の
手間が省略できる。
発明の効果
本発明の塗工液は次のような各種の特長をそな
えている。
(1) 施工現場での塗装作業時に発生する臭気が少
い。これは塗工液に配合する水性エマルジヨン
を製造するに当り、低臭気性でかつ良好な共重
合性を有する重合性単量体を種々検討し選択使
用したことに起因している。この結果、ゴムア
スフアルトエマルジヨンの悪臭に悩まされてい
た現場作業員にとつては実に好ましいものとな
る。
(2) 施工現場での塗装作業性が良い。すなわち刷
毛、ローラーすべりが軽く、スプレー使用時に
はノズルのつまりがなく、霧化が良好でありそ
の結果、作業者は定められた時間内により多く
の量の塗工液を塗布することができ、塗装工数
の低減にもつながる上、平滑な塗面を得やすい
ので、塗膜の厚みを全面にわたり均一に保つこ
とが容易となる。これは塗工液の粘性挙動を特
定範囲に設定したことに由来している。
(3) 施工面からの塗工液のタレがない。また天井
面に厚塗りをした場合にも塗膜が脱落しない。
これは塗工液の特定範囲に設定された粘性挙動
によるものであるが、その結果塗装作業がはか
どるだけでなく、タレ落ち、あるいは脱落した
塗工液によつて作業現場が汚染されず、後の清
掃、除去作業を必要としないなど塗装工程の能
率化につながる。
(4) 塗布した塗工液の乾燥固化がはやい。これは
塗工液の水分含量が低くおさえられているため
と思われるが、塗工液の粘性挙動も影響してい
る模様である。このため塗装工程の短縮と、二
次覆工としての覆工コンクリート打ち込みまで
の時間が短縮される。
(5) 塗工液は貯蔵安定性が良く、長期の保存に耐
える。このため原液を用いて現場施工でき、現
場での作業工数の削減に寄与する。
(6) 塗工液は塗装箇所が水で湿潤された状態にあ
つても、塗布ができ、ゴムアスフアルトエマル
ジヨンの場合にみられるような脱落を起さな
い。
(7) 塗工液は水性エマルジヨン特有の乳白色を基
調としているので、トンネル内の薄暗い照明下
にあつても、黒色のゴムアスフアルトエマルジ
ヨンに起りがちな未施工箇所を残すことはな
い。
(8) 塗工液が乾燥固化して得られた塗膜は、本工
法における一次覆工としての吹付けコンクリー
トと二次覆工としての覆工コンクリートとの中
間に介在して、前述した絶縁緩衝層として発揮
すべき性能、すなわちバランスのとれた強度と
伸度ならびに耐アルカリ性を加味した耐水性を
具備している。
以上のごとく、本発明塗工液は前述したトンネ
ルの施工過程で一次覆工吹付けコンクリートと二
次覆工コンクリートの間にはさむ絶縁緩衝層形成
用材料として現状で改善課題とされているゴムア
スフアルトエマルジヨン、あるいは各種水和硬化
性のセメントを配合した塗工液の欠点を全て解決
したものである。
次に実施例によつて本発明を具体的に説明す
る。
なお、以下の例中にある皮膜、ならびに塗膜の
強度、および破断伸度は20℃、65%RHの条件下
(チヤツク間隔20mm、引張速度200mm/分)で測定
した値である。
実施例 1
重合度1400、けん化度88モル%の部分けん化ポ
リビニルアルコールを保護コロイド(樹脂分の
2.5重量%使用)とするエチレン―酢酸ビニル共
重合体エマルジヨン(以下EVAと記す)(酢酸ビ
ニル85重量%、エチレン15重量%、エマルジヨン
濃度55重量%、粘度3000cps(BH型回転粘度計30
℃、10rpm))をビヒクルとして、以下のような
配合で塗工液を調整した。
ビヒクル 100重量部
分散剤:10重量%濃度のヘキサメタリン酸ソー
ダ水溶液 4重量部
体質顔料:炭酸カルシウムNS―100(日東粉化
(株)製) 50重量部
粘性付与剤:コロイダルシリカ(エロジール:
西独デクサ社製) 2重量部
塗工液濃度69重量%、塗工液粘度 100000cps
(BH型回転粘度計30℃、10rpm)
揺変度指数=5.8
RVC=73%
上記塗工液をガラス板上に20℃、65%RHで4
日間乾燥した塗膜の抗張力は37.4Kg/cm2、破断伸
度は300%であつた。
また同じ塗膜の20℃の水、および2%の苛性ソ
ーダ水溶液に4日間浸漬した後の膨潤率(膨潤率
=W2―W1/W1×100(%)W1:浸漬前塗膜重量、
W2:浸漬後塗膜重量)はそれぞれ12.7%および
8.6%で、溶出率(溶出率=W1―W3/W1×100(%)、
W3:膨潤率測定後60℃、3時間乾燥後塗膜重量)
はそれぞれ3.2%、および3.7%であつた。
次に上記塗工液を水平面と45゜の角度で傾斜載
置した吹付けコンクリートと同等の塗装特性をも
つコンクリートブロツク(縦30cm×横30cm×厚さ
15cm)上にマイテイ・スプレーヤー(伊藤産業(株)
製)を用いノズル口径7mm、吐出圧2Kg/cm2、コ
ンプレツサー圧8Kg/cm2にて湿潤膜厚が4mmにな
るように吹付けた。
その結果、塗装作業性、霧化状態は非常に良
く、塗膜の表面状態は平滑で、塗装時の臭気も問
題なく、塗工液のタレもなく、周囲環境の汚染も
極めて少なつた。
また本発明の塗工液は半年、ないしは1年の長
期の貯蔵においてもその状態、ならびに粘度の変
化は極めて少なく、製造直後と同様塗装作業性は
良好で、塗膜の表面状態は平滑であり、臭気も問
題なく、タレず、環境汚染も極めて少なかつた。
実施例 2
ノニオン界面活性剤(花王石鹸(株)製、エマルゲ
ン950、樹脂分の3重量%使用)とアニオン系界
面活性剤(花王石鹸(株)製、レベノールWZ、樹脂
分の0.2重量%使用)と重合度1700、鹸化度88モ
ル%の部分鹸化ポリビニルアルコール(クラレポ
バール217、樹脂分の0.2重量%使用)を用いて下
記表1のようなモノマー組成のEVA(エマルジヨ
ン濃度58重量%、粘度1500cps(BH型回転粘度計
30℃、10rpm))をビヒクルとして、下記表1の
ような配合で実施例1と同様に塗工液を調整し
た。
塗工液の性状、ならびに塗膜諸性能を実施例1
と全く同様に求めた。また塗工液の塗装について
も実施例1と全く同様に行つた。
これらの結果は表1に示した通りである。
実施例 3〜8
ノニオン系界面活性剤(花王石鹸(株)製エマルゲ
ン950、樹脂分の1.2重量%使用)とアニオン系界
面活性剤〔花王石鹸(株)製レベソールWZ、樹脂分
の0.5重量%使用〕を用いて表1の実施例3〜8
のようなモノマー組成の酢酸ビニル―エチレン―
ベオバ10三元共重合体エマルジヨン(エマルジヨ
ン濃度55重量%、粘度3000cps(BH型回転粘度計
30℃、10rpm)を作製し、これをビヒクルとして
表1のような配合で実施例1と同様に塗工液を調
整した。これらの塗工液の性状、ならびに塗膜諸
性能を実施例1と全く同様に求めた。
また塗工液の塗装についても実施例1と全く同
様に行つた。
これらの結果は表1に示した通りである。
比較例 1
実施例2と同様ノニオン界面活性剤〔花王石鹸
(株)製、エマルゲン950、樹脂分の3重量%使用〕
とアニオン界面活性剤〔花王石鹸(株)製レベソール
WZ、樹脂分の0.2重量%使用〕と重合度1700、鹸
化度88モル%の部分鹸化ポリビニルアルコール
(クラレポバール217、樹脂分の0.2重量%使用)
を用いて表1の比較例1のようにモノマーとして
酢酸ビニル単独の重合体エマルジヨン(エマルジ
ヨン濃度55重量%、粘度3300cps(BH型回転粘度
計30℃、10rpm)を作製し、これをビヒクルとし
て、これに可塑剤としてフタル酸ジブチルを2重
量%添加し、実施例1と同じ配合で塗工液を調整
した。
塗工液の性状、ならびに塗膜諸性能を実施例1
と全く同様に求めた。また塗工液の塗装について
も実施例1と全く同様に行つた。
これらの結果は表1に示した通りである。
比較例 2
ゴムアスフアルトエマルジヨンを実施例1と同
様に吹付けを行つた。その結果は表1に示した通
りである。
比較例 3
実施例1と同じ樹脂をビヒクルとし、塗工液の
RVCを35%にした以外は全く実施例1と同じ塗
工液を調製した。
塗工液の性状、ならびに塗膜諸性能を実施例1
と全く同様に求めた。また塗工液の塗装について
も実施例1と全く同様に行つた。
これらの結果は表1に示した通りである。
比較例 4
市販のアクリル酸エステル系重合体エマルジヨ
ン(樹脂固型分50重量%)を用いてこれに表1の
ように白色ポルトランドセメントを配合した塗工
液を調整した。塗工液の性状、ならびに塗膜諸性
能を実施例1と全く同様に求めた。また塗工液の
塗装についても実施例1と全く同様に行つた。
これらの結果は表1に示した通りである。
比較例 5〜12
実施例1と同じ樹脂をビヒクルとして、表1の
ように塗工液配合の分散剤、体質顔料、粘性付与
剤、ならびに粘度調整水の量をそれぞれ変化さ
せ、塗工液の粘度、および揺変度指数を変化させ
た塗工液を調整した。これらについてもそれぞれ
の塗工液の性状、ならびに塗膜諸性能を実施例1
と全く同様に求めた。
また塗工液の塗装についても実施例1と全く同
様に行つた。
これらの結果は表1に示した通りである。これ
らの結果から、本発明のEVM、および酢酸ビニ
ル―エチレン―ベオバ10三元共重合体エマルジヨ
ンをビヒクルとして本特許請求範囲に特定したよ
うな粘度、揺変度指数、ならびにRVCを有する
塗工液は非常に優れた塗膜性能と塗装作業性、な
らびに貯蔵安定性を示したのに反し、酢酸ビニル
系重合体エマルジヨンをビヒクルとする塗工液は
塗膜の強度が大きい割に伸度が小さく、さらに耐
水性、耐アルカリ性が極めて劣り、またビヒクル
の組成が本特許請求範囲内にあつても塗工液の
RVCが本特許請求範囲の下限以下の場合は上記
酢酸ビニルをビヒクルとする塗工液の塗膜と同様
な欠点があり、また塗工液の粘度、および/また
は揺変度指数の何れか一方、または両方が本特許
請求範囲から外れる場合は塗装作業性、塗工液の
タレ、塗膜の表面状態等の塗装性能が劣り、何れ
もトンネル内壁の覆工コンクリートのひび割れ防
止を長期間にわたつて持続するには不適なもので
あつた。
一方ゴムアスフアルトエマルジヨンについては
塗装作業性が極めて悪く、塗装時の臭気がきつ
く、塗膜の表面状態も凹凸が激しく、黒色のため
環境汚染も著しかつた。
またアクリル酸エステル系重合体エマルジヨン
に水和硬化性のセメント材料を配合したものにつ
いては塗装作業性が不良で、刺激臭が強く、塗膜
の表面状態が不均一である等の塗装性能が劣る上
に塗工液が調液後数時間でゲル化するというよう
に可使時間が極めて短く現場調合の手間とともに
作業面でも極めて窮屈な工事用材料としては致命
的な欠陥を有していた。
FIELD OF THE INVENTION The present invention relates to a modified coating fluid used to form an insulating buffer layer between shotcrete and lining concrete in tunnel inner wall formation. More specifically, the present invention is a recent tunnel construction method in which, after excavating the ground, shotcrete is applied to the excavated surface, the surface of the excavated ground is stabilized with rock bolts and steel arch support, and then lining is applied. When pouring concrete, cracks in the lining concrete cause deterioration in appearance, as well as safety issues caused by water leakage and peeling. As a way to solve these problems, a method is used to form an insulating buffer layer between the shotcrete and lining concrete. This invention relates to a coating liquid for the purpose of improving defects originating from the rubber asphalt emulsion used in the present invention. Prior art In the construction of mountain tunnels, after excavating the ground, shotcrete is first applied to the excavated surface as a primary lining, and if necessary, rock bolts and steel arch supports are combined to stabilize the ground. A commonly used construction method is to assemble movable steel formwork and then pour concrete lining into the air between the shotcrete and the formwork. However, in this construction method, the lining concrete is in close contact with the sufficiently hardened shotcrete, so the volume changes that occur in the lining concrete, such as expansion during gelation and contraction during hardening, cause cracks in the lining concrete after hardening. to occur. In addition, even after the lining concrete has hardened, the temperature difference between the shotcrete and lining concrete inside the tunnel is
This appears as a difference in the amount of thermal expansion and contraction between the shotcrete and lining concrete, and this causes cracks in the lining concrete. Cracks not only spoil the appearance of the tunnel, but also cause water leakage and, in some cases, the concrete lining falling off. As mentioned above, there are various causes of cracks in concrete lining, but the best way to solve this problem is to eliminate the close contact between shotcrete and concrete lining, so that both can expand and contract freely without being constrained by others. It is to do so. As a countermeasure to this problem, a construction method has been adopted in which a rubber asphalt emulsion is applied at an intermediate stage between the construction of shotcrete concrete and lining concrete to form an intermediate layer that insulates the two. In this sense, in the present invention, this intermediate layer is expressed as an insulating buffer layer. As is clear from the above explanation, it is inevitable from the perspective of painting that the insulating buffer layer adheres closely to the shotcrete as the primary lining, but as a secondary lining, it is necessary to adhere the insulating buffer layer to the shotcrete as a secondary lining. There is no question of whether or not it will adhere to the lining concrete that will be poured into the space. In either case, it is possible to prevent cracks from occurring in the lining concrete, but it is rather preferable that the lining not be in close contact with the lining concrete and that voids be left. The reason for this is that leaving voids reduces the stress relaxation ability required of the insulating buffer layer and the elasticity required for it.
However, leaving voids is not something that can be done freely, so the insulating buffer layer must have elasticity, permanence, and durability to cope with the situation where the lining concrete comes into close contact with the layer. Become. Although the conventional use of rubber asphalt emulsion satisfies the above points to some extent, its performance is still insufficient, and there are still several issues to be solved when considering the process of construction at work sites. There is. In other words, when conventional coating liquids containing rubber asphalt as the main component are used, a bad odor is generated during spraying, which has a considerable negative impact on the hygiene of workers in narrow tunnels with poor air circulation. In addition, the ground of the workshop is dyed with live stains due to the rubber asphalt emulsion sprayed on the shotcrete falling off the painted surface. Furthermore, since rubber asphalt emulsion is black, when used in a dimly lit area inside a tunnel, it is difficult to distinguish between coated areas and uncoated areas, which can easily cause construction defects. In addition, asbestos fibers mixed with various types of hydration hardening cements, or these mixed with acrylic emulsions, have been trialled to improve the strength of the coating, improve economic efficiency, and provide thick coatings with one coat. However, cement mixtures lack preservability, so mixing must be done at the work site, which is cumbersome and has a limited pot life. In the past, it was considered that plasticizers were added to polyvinyl acetate emulsion to give it film-forming properties and flexibility. It became brittle and could not maintain its durability. Purpose of the Invention The present invention aims to solve the problems of the above-mentioned current state of the art, particularly when a coating liquid containing rubber asphalt emulsion or hydration-hardening cement is used to form the above-mentioned insulating buffer layer. It is. Summary of the Invention The present invention is characterized in that the composition of the dispersed phase is 40 to 5 parts by weight of ethylene, 60 to 95 parts by weight of vinyl acetate, and the number of carbon atoms is 9 to 11.
an aqueous emulsion obtained by emulsion polymerization consisting of 60 to 0 parts by weight of a branched fatty acid vinyl ester (A), a pigment and/or a filler that does not have hydration curability (B), and a viscosity imparting agent (C). ), the coating liquid has a viscosity of 20,000 to 150,000 at 30°C and 10 rpm as measured using a BH type rotational viscometer.
centipoise (cps), and the value obtained by dividing the viscosity at 30°C and 2 rpm measured using a BH type rotational viscometer by the viscosity at 30°C and 20 rpm is in the range of 3.0 to 8.0. A coating solution for forming an insulating buffer layer on an inner wall of a tunnel, characterized in that the volume fraction of the resin solid content of the aqueous emulsion (A) in the dry coating film of the coating solution is 40% or more. Description of preferred embodiments of the invention The aqueous emulsion (A) used for preparing the coating solution of the present invention includes (1) ethylene content of 40 to 40%
5 parts by weight of ethylene-vinyl acetate copolymer and 60 to 95 parts by weight of vinyl acetate, preferably 30 to 10 parts by weight of ethylene and 70 to 90 parts by weight of vinyl acetate. can give. If the ethylene content is outside the above range, the coating film will be too flexible and the surface will be sticky, and the coating strength will be too low, making it undesirable as an insulating layer.If the ethylene content is too low, the film forming properties of the coating film will be poor. The material is flexible and cannot withstand the alkali that oozes out from shotcrete and lining concrete.Also, the coating film has a high tensile strength but has low elongation and cannot withstand the long-term expansion and contraction of concrete materials, so insulation buffering is required. It is unsuitable as a layer that does not play the role of preventing concrete from cracking or peeling. The aqueous emulsion (A) includes (2) 40 to 5 parts by weight of ethylene, 60 to 95 parts by weight of vinyl acetate, and 60 to 60 parts of vinyl ester of branched fatty acid having 9 to 11 carbon atoms.
0 parts by weight, for example 60 to 0.5 parts by weight of a terpolymer emulsion, preferably 30 to 10 parts by weight of ethylene.
Parts by weight, vinyl acetate 70-90 parts by weight, carbon number 9-9
Examples include copolymer emulsions containing 50 to 10 parts by weight of vinyl esters of 11 branched fatty acids. If the ethylene content is higher than the above range, the coating film will be sticky, have low tensile strength, and have too high elongation, resulting in a weak coating film. On the other hand, if the amount of vinyl acetate is too large, the coating film will be hard, brittle, and have poor alkali resistance, which is unsuitable. The vinyl ester of a branched fatty acid having 9 to 11 carbon atoms should be used in an amount of 60 to 0 parts by weight, for example, 60 to 0.5 parts by weight, preferably 50 to 10 parts by weight; if it is too large, the coating film will be too soft and unsuitable. be. Vinyl esters of branched fatty acids having 9 to 11 carbon atoms include Beoba 10 (trade name of Ciel Chemical Co., Ltd.), which is a vinyl ester of versatic acid, and nonane vinyl ester. Beoba 10 referred to here is a vinyl ester of a synthetic fatty acid with 9 to 11 carbon atoms (10 on average), and its chemical structural formula is as follows: (In the above formula, R 1 , R 2 and R 3 are linear alkyl groups, one of which is a methyl group).
Tertiary nonane vinyl ester can also be represented by a chemical structural formula similar to Beoba 10. Since these vinyl esters of branched fatty acids having 9 to 11 carbon atoms have a large number of carbon atoms and a bulky structure, they can be copolymerized with ethylene-vinyl acetate, etc. to impart further water resistance and alkali resistance to the above-mentioned insulating layer. It is a preferred raw material. These copolymer emulsions (A) are produced in forms known to those skilled in the art, such as a protective colloid system, a surfactant system, a combination system of both a protective colloid and a surfactant, and a soap-free system. The protective colloid emulsion is obtained by emulsion polymerization of monomers having the above composition range in an aqueous medium in the presence of a polymerization initiator and a protective colloid. The amount of protective colloid used may range from 1 to 10 parts by weight based on the emulsion copolymer resin (solid content), and in particular, 2 to 5 parts by weight when polyvinyl alcohol and hydroxyethyl cellulose are used as the protective colloid. preferable. The surfactant emulsion can be obtained in the same manner as the protective colloid emulsion described above. The amount of surfactant used may range from 1 to 10 parts by weight based on the monomer. In addition to these protective colloid-based emulsions and surfactant-based emulsions, emulsions based on a combination of a protective colloid and a surfactant are also used. Furthermore, the same applies to those in which a surfactant is subsequently added to a protective colloid emulsion. Protective colloids that can be used in these emulsions include fully saponified polyvinyl alcohol, partially saponified polyvinyl alcohol, other derivatives of polyvinyl alcohol, polyacrylamide and its modified products, polyvinylpyrrolidone, other water-soluble synthetic polymers, methylcellulose, hydroxyethylpropyl. Water-soluble natural products such as cellulose, cellulose derivatives such as hydroxyethylcellulose, starch or its derivatives, gelatin, casein, and soybean protein are preferred, and among these, polyvinyl alcohol and hydroxyethylcellulose are preferred, and these can be grafted onto polymers or adsorbed onto emulsion particles. It stabilizes the emulsion and forms a tough film. Surfactants include anionic, nonionic,
Cationic types include higher alcohol sulfate ester salts, alkylbenzene sulfonates, polyoxyethylene alkylphenol sulfate salts, dialkyl sulfosuccinates, etc., and nonionic types include polyoxyethylene alkyl ether, polyoxy Examples include ethylene alkyl phenol ether, oxyethylene-oxypropylene block copolymer, and oxyethylene sorbitan monolaurate. Examples of cationic compounds include laurylamine acetate, stearylamine acetate, lauryltrimethylammonium chloride, stearyltrimethylammonium chloride, distearyldimethylammonium chloride, and alkylbenzyldimethylammonium chloride. In addition, without using any surfactants or protective colloids, sodium vinylsulfonate, sodium methalylsulfonate, 2-acrylamide 2-methylpropanesulfonic acid, acrylamide, methacrylamide, N-methylolacrylamide, N-methylolmethacrylamide, etc. The same is possible with soap-free emulsions made using so-called reactive surfactants that are copolymerizable with vinyl monomers, or using hydrophilic oligomers. In preparing the aqueous emulsion (A), it is also preferable to copolymerize a small amount of a monomer having self-crosslinking properties in order to improve the toughness of the coating film, that is, the insulating buffer layer. Examples of monomers having self-crosslinking properties include N-methylol acrylamide, glycidyl acrylate, glycidyl methacrylate, divinylbenzene, triallyl cyanurate, diallyl phosphate, 2-hydroxyethyl acrylate, and 2-hydroxyethyl methacrylate. Furthermore, addition of a small amount of various crosslinkable resins such as urea resin, melamine resin, polyamide amine epichlorohydrin resin, epoxy resin, etc. to the above water-based emulsion (A) can also impart a three-dimensional crosslinked structure to the coating film. It is effective in increasing the toughness of the film, imparting water resistance and alkali resistance to the coating film, and imparting physical properties desirable as an insulating buffer layer. Pigments used in the present invention and fillers (B) that do not have hydration hardening properties include various colored pigments such as titanium oxide, extender pigments such as kaolin, clay, various calcium carbonates, and barium sulfate. Any pigment known to those skilled in the art may be used, and fillers such as silica powder, sand such as silica stone, and aggregates may also be used in combination. If the coating liquid sag due to these high specific gravity fillers, use plastic fibers, glass fibers, wollastonite, diatomaceous earth, wood flour, rice hull powder, cork powder, micro balloons, and shirasu balloons as lightweight fillers. , resin powder, asbestos powder, and other fillers that do not have hydration hardening properties, such as mineral slag, can be used in combination or alone. Further, the viscosity imparting agent (C) in the present invention is an essential component for imparting smoothness to the coating liquid and preventing sagging.
Those that can be used include natural polymeric thickeners such as gelatin, casein, semi-synthetic polymeric thickeners such as oxidized, methylated, carboxymethylated, hydroxyethylated, hydroxypropylated, phosphorylated, and cationic. starch or cellulose that has been treated with chemical treatment; alginic acid; or sodium alginate (ammonium); synthetic polymer thickeners such as polyvinyl alcohol, polyvinylpyrrolidone, sodium polyacrylate, polyacrylamide, and surfactant thickeners. Agents include polyethylene oxide, polyethylene glycol ether, inorganic thickeners such as colloidal silica, bentonite, Atagel (manufactured by Engelhard Minerals and Chemicals, aluminum silicate type)
etc. can be mentioned. The viscosity of coating liquids using these thickeners at 30°C and 10 rpm measured using a BH-type rotational viscometer is 20,000 centipoise (cps) to 150,000 cps: and the viscosity is 30% as measured using a BH-type rotational viscometer °C,
The value obtained by dividing the viscosity at 2 rpm by the viscosity at 20 rpm at 30°C (hereinafter referred to as the thixotropic index) is
It is best to adjust it to be in the range of 3.0 to 8.0.
If the viscosity of the coating liquid is too high outside the above range, the coating workability by spraying etc. will be poor and the coating surface will be highly uneven and lack uniformity as an insulating buffer layer. On the other hand, if the viscosity of the coating liquid is too low outside the above range, the coating workability is good, but the coating liquid tends to sag, and this tendency is particularly strong on wet surfaces, and it does not function as an insulating buffer layer. . If the thixotropy index is too low outside the above range, the atomization properties of the coating liquid during spraying will be poor, resulting in an uneven painted surface and sagging, which will significantly impede the function of the insulating buffer layer. It is inappropriate to do so. On the other hand, if this value is too high outside the above range, the thixotropy of the coating liquid will be too strong, making it troublesome to transfer the coating liquid to a hopper during on-site work, and when using a brush or roller. In the case of painting, the paint film lacks durability, and the painted surface has streaks, making it unsuitable for use as an insulating buffer layer due to lack of uniformity. The volume fraction of resin solids (hereinafter referred to as RVC) of the aqueous emulsion (A) in the dried coating film of the coating solution of the present invention, that is, the insulating buffer layer, is required to be 40% or more. When the RVC is lower than 40%, the elongation of the coating film is low, and it lacks the ability to follow the expansion and contraction of concrete over a long period of time, and therefore cannot sufficiently fulfill its role in preventing cracks in the lining concrete. Furthermore, the addition of pigments imparts appropriate viscosity to the coating solution, improves coating workability, and at the same time increases the solid content of the coating material, which is useful for preventing cracks due to volume shrinkage during drying. The concentration of the coating liquid may be arbitrary, but common sense suggests that it is preferably within the range of 50 to 85%. If the concentration of the coating liquid is low, fading and cracks are likely to occur due to volumetric shrinkage during drying, and conversely, if it is too high, the workability of spraying etc. will be poor and the painted surface will not be smooth. Chips and a decrease in adhesion strength to shotcrete were also observed, and both were unsuitable as they did not play the role of an insulating buffer layer. In the present invention, the aqueous emulsion (A) and the coating liquid include a common synthetic resin emulsion,
and antifoaming agents added to the same emulsion paints,
Coating aids, plasticizers, dispersants, freeze stabilizers, preservatives, antifungal agents, and the like are added as necessary. The coating solution of the present invention can be applied to shotcrete by either spraying or various rollers.
For spraying, you can use a ricing gun, mastic gun, mortar gun, etc., but you can also use air spray, airless spray, or a combination of air and airless sprays.Among these, the combination of air and airless sprays have the best atomization.
The coated surface is smooth and the discharge amount is large and efficient. The coating fluid of the present invention has extremely good workability in spraying, etc., has no problems with odor, and has a smooth finish on the painted surface.The coating film has high elongation and is also water resistant, alkali resistant, durable, etc. Because of its excellent properties, it is extremely effective as an insulating buffer layer between shotcrete and lining concrete during tunnel construction to prevent cracking of lining concrete, and therefore to prevent water leakage and spalling. In addition, the coating fluid of the present invention shows very little change in its condition and viscosity even after long-term storage of 6 months to 1 year, has extremely good coating workability just like it did immediately after production, has no odor problems, and has a good finish on painted surfaces. is smooth and has excellent coating film elongation, water resistance, and alkali resistance. Therefore, since the pot life is extremely long, the trouble of preparing the coating liquid on-site can be omitted. Effects of the Invention The coating liquid of the present invention has the following various features. (1) Less odor is generated during painting work at the construction site. This is due to the fact that various polymerizable monomers having low odor and good copolymerizability were selected and used in producing the aqueous emulsion to be incorporated into the coating solution. As a result, it is very favorable for field workers who have been bothered by the foul odor of rubber asphalt emulsions. (2) Good painting workability at the construction site. In other words, the brush and roller slide easily, the nozzle does not get clogged when spraying, and atomization is good.As a result, the operator can apply a larger amount of coating liquid within the specified time, and the coating process is easier. In addition to reducing the number of man-hours, it also makes it easier to obtain a smooth coated surface, making it easier to keep the thickness of the coated film uniform over the entire surface. This is due to the fact that the viscosity behavior of the coating liquid is set within a specific range. (3) No dripping of coating fluid from the construction surface. Furthermore, even if a thick coating is applied to the ceiling surface, the coating will not fall off.
This is due to the viscosity behavior of the coating fluid set in a specific range, and as a result, it not only speeds up the painting process, but also prevents the work site from being contaminated by dripping or fallen coating fluid, making it easier to use afterwards. This makes the painting process more efficient, as there is no need for cleaning or removal work. (4) The applied coating liquid dries and solidifies quickly. This is probably because the water content of the coating liquid is kept low, but it also appears that the viscosity behavior of the coating liquid has an effect. This shortens the painting process and the time required to pour concrete for the secondary lining. (5) The coating liquid has good storage stability and can withstand long-term storage. Therefore, it can be applied on-site using the undiluted solution, contributing to a reduction in on-site work hours. (6) The coating solution can be applied even when the area to be coated is wet with water, and does not come off as seen in the case of rubber asphalt emulsions. (7) The coating liquid has a milky white color characteristic of water-based emulsions, so even under dim lighting in a tunnel, it will not leave unfinished areas that tend to occur with black rubber asphalt emulsions. (8) The coating film obtained by drying and solidifying the coating liquid is interposed between the shotcrete as the primary lining and the lining concrete as the secondary lining in this construction method, and is used to provide the above-mentioned insulation. It has the performance required for a buffer layer, that is, well-balanced strength and elongation, as well as water resistance combined with alkali resistance. As described above, the coating liquid of the present invention can be used as a material for forming an insulating buffer layer between the primary lining shotcrete and the secondary lining concrete in the tunnel construction process, which is currently an issue of improvement. This solution solves all the drawbacks of coating fluids containing emulsions or various hydration hardening cements. Next, the present invention will be specifically explained with reference to Examples. The strength and elongation at break of the films and coatings in the following examples are values measured at 20°C and 65% RH (chuck spacing 20mm, tensile speed 200mm/min). Example 1 Protective colloid (resin content
Ethylene-vinyl acetate copolymer emulsion (hereinafter referred to as EVA) (vinyl acetate 85% by weight, ethylene 15% by weight, emulsion concentration 55% by weight, viscosity 3000 cps (BH type rotational viscometer 30)
℃, 10 rpm)) as a vehicle, a coating solution was prepared with the following formulation. Vehicle: 100 parts by weight Dispersant: 10% by weight aqueous sodium hexametaphosphate aqueous solution 4 parts by weight Extender: Calcium carbonate NS-100 (Nitto Funka
Co., Ltd.) 50 parts by weight Viscosifier: Colloidal silica (Erosil:
(manufactured by Dexa, West Germany) 2 parts by weight Coating liquid concentration 69% by weight, coating liquid viscosity 100000cps
(BH type rotational viscometer 30℃, 10rpm) Thixotropy index = 5.8 RVC = 73% Apply the above coating solution on a glass plate at 20℃ and 65%RH.
The tensile strength of the coating film dried for one day was 37.4 Kg/cm 2 and the elongation at break was 300%. In addition, the swelling rate of the same coating film after being immersed in 20℃ water and 2% caustic soda aqueous solution for 4 days (swelling rate = W 2 - W 1 /W 1 × 100 (%) W 1 : Weight of coating film before immersion , W2 : coating weight after immersion) is 12.7% and
At 8.6%, the elution rate (elution rate = W 1 - W 3 / W 1 × 100 (%), W 3 : coating weight after drying at 60°C for 3 hours after measuring the swelling rate)
were 3.2% and 3.7%, respectively. Next, a concrete block (30 cm long x 30 cm wide x thick) with coating characteristics equivalent to shotcrete was coated with the above coating solution and placed at an angle of 45° with respect to the horizontal surface.
15cm) Mighty Sprayer (Ito Sangyo Co., Ltd.)
The composition was sprayed using a nozzle diameter of 7 mm, a discharge pressure of 2 kg/cm 2 , and a compressor pressure of 8 kg/cm 2 to give a wet film thickness of 4 mm. As a result, the coating workability and atomization state were very good, the surface condition of the coating film was smooth, there was no problem with odor during coating, there was no dripping of the coating solution, and there was extremely little pollution of the surrounding environment. In addition, the coating liquid of the present invention shows very little change in its condition and viscosity even after long-term storage for six months or one year, and the coating workability is as good as immediately after production, and the surface condition of the coating film is smooth. There was no problem with odor, no dripping, and there was very little environmental pollution. Example 2 Nonionic surfactant (manufactured by Kao Soap Co., Ltd., Emulgen 950, using 3% by weight of resin content) and anionic surfactant (manufactured by Kao Soap Co., Ltd., Lebenol WZ, using 0.2% by weight of resin content) ) and partially saponified polyvinyl alcohol with a degree of polymerization of 1700 and a degree of saponification of 88 mol% (Kuraray Poval 217, resin content of 0.2% by weight) was used to produce EVA with a monomer composition as shown in Table 1 below (emulsion concentration 58% by weight, viscosity 1500cps (BH type rotational viscometer
A coating solution was prepared in the same manner as in Example 1 using the following formulation as shown in Table 1 using 30° C., 10 rpm) as a vehicle. The properties of the coating liquid and various coating film performances are shown in Example 1.
I asked for exactly the same thing. Furthermore, coating with the coating liquid was carried out in exactly the same manner as in Example 1. These results are shown in Table 1. Examples 3 to 8 Nonionic surfactant (Emulgen 950 manufactured by Kao Soap Co., Ltd., resin content 1.2% by weight) and anionic surfactant [Levesol WZ manufactured by Kao Soap Co., Ltd., resin content 0.5% by weight] Examples 3 to 8 in Table 1 using
Vinyl acetate-ethylene- with a monomer composition such as
Beova 10 terpolymer emulsion (emulsion concentration 55% by weight, viscosity 3000 cps (BH type rotational viscometer)
Using this as a vehicle, a coating solution was prepared in the same manner as in Example 1 with the formulation shown in Table 1. The properties of these coating solutions and various coating film performances were determined in exactly the same manner as in Example 1. Furthermore, coating with the coating liquid was carried out in exactly the same manner as in Example 1. These results are shown in Table 1. Comparative Example 1 Same as Example 2 Nonionic surfactant [Kao Soap
Made by Co., Ltd., Emulgen 950, using 3% resin by weight]
and anionic surfactant [Levesol manufactured by Kao Soap Co., Ltd.]
WZ, using 0.2% by weight of resin content] and partially saponified polyvinyl alcohol with a degree of polymerization of 1700 and a degree of saponification of 88 mol% (using Kuraray Poval 217, 0.2% by weight of resin content)
A polymer emulsion containing vinyl acetate alone as a monomer (emulsion concentration 55% by weight, viscosity 3300 cps (BH type rotational viscometer, 30°C, 10 rpm) was prepared using the same method as in Comparative Example 1 in Table 1, and this was used as a vehicle. 2% by weight of dibutyl phthalate as a plasticizer was added to this to prepare a coating solution with the same formulation as in Example 1.The properties of the coating solution and various coating film performances were evaluated in Example 1.
I asked for exactly the same thing. Furthermore, coating with the coating liquid was carried out in exactly the same manner as in Example 1. These results are shown in Table 1. Comparative Example 2 A rubber asphalt emulsion was sprayed in the same manner as in Example 1. The results are shown in Table 1. Comparative Example 3 Using the same resin as in Example 1 as a vehicle, the coating liquid was
A coating solution was prepared that was exactly the same as in Example 1 except that the RVC was changed to 35%. The properties of the coating liquid and various coating film performances are shown in Example 1.
I asked for exactly the same thing. Furthermore, coating with the coating liquid was carried out in exactly the same manner as in Example 1. These results are shown in Table 1. Comparative Example 4 Using a commercially available acrylic ester polymer emulsion (resin solid content: 50% by weight), a coating liquid was prepared by blending white Portland cement as shown in Table 1. The properties of the coating liquid and various coating film performances were determined in exactly the same manner as in Example 1. Furthermore, coating with the coating liquid was carried out in exactly the same manner as in Example 1. These results are shown in Table 1. Comparative Examples 5 to 12 Using the same resin as in Example 1 as a vehicle, the amounts of the dispersant, extender, viscosity imparting agent, and viscosity adjusting water in the coating liquid were varied as shown in Table 1, and the amounts of the coating liquid were changed. Coating liquids with varying viscosity and thixotropy index were prepared. Regarding these, the properties of each coating liquid and various coating film performances were also evaluated in Example 1.
I asked for exactly the same thing. Further, the coating with the coating liquid was carried out in exactly the same manner as in Example 1. These results are shown in Table 1. From these results, a coating liquid having the viscosity, thixotropy index, and RVC as specified in the claims of this patent using the EVM of the present invention and the vinyl acetate-ethylene-Beova 10 terpolymer emulsion as a vehicle can be obtained. showed very excellent coating performance, coating workability, and storage stability.However, the coating solution using vinyl acetate polymer emulsion as a vehicle had low elongation despite its high coating strength. Furthermore, the water resistance and alkali resistance are extremely poor, and even if the vehicle composition is within the scope of this patent claim, the coating liquid
If the RVC is below the lower limit of the claimed scope, there will be the same drawbacks as the coating film of the coating liquid using vinyl acetate as the vehicle, and the viscosity and/or thixotropy index of the coating liquid will be affected. , or both outside the scope of this patent claim, the coating performance such as coating workability, sagging of the coating liquid, and surface condition of the coating film will be poor, and all of these will prevent cracking of the concrete lining of the tunnel inner wall for a long period of time. It was not suitable for long-term use. On the other hand, rubber asphalt emulsion had extremely poor painting workability, had a strong odor during painting, had a highly uneven coating film surface, and was black, causing significant environmental pollution. Furthermore, acrylic acid ester polymer emulsion mixed with hydration-hardening cement material has poor coating workability, strong pungent odor, and poor coating performance such as uneven coating surface condition. It had a fatal flaw as a construction material, as the coating solution gelled within a few hours after preparation, which meant that it had an extremely short pot life, was laborious to prepare on-site, and was extremely difficult to work with.
【表】【table】
【表】【table】
【表】【table】
Claims (1)
ビニル60〜95重量部と炭素数が9〜11の分岐脂肪
酸のビニルエステル60〜0重量部とからなるエマ
ルジヨン重合によつて得られる水性エマルジヨン
(A)、顔料、および/または水和硬化性をもたない
充てん材(B)、粘性付与剤(C)とからなる塗工液であ
つて、該塗工液がBH型回転粘度計を用いて測定
した30℃、10rpmにおける粘度20000〜150000セ
ンチポイズの範囲にあり、かつBH型回転粘度計
を用いて測定した30℃、2rpmにおける粘度を同
じく30℃、20rpmにおける粘度で除した値が3.0
〜8.0の範囲にあつて、しかも塗工液乾燥塗膜に
おける水性エマルジヨン(A)の樹脂固型分の容積分
率が40%以上であることを特徴とする、トンネル
内壁絶縁緩衝層形成用塗工液。1. An aqueous emulsion obtained by emulsion polymerization in which the composition of the dispersed phase is 40 to 5 parts by weight of ethylene, 60 to 95 parts by weight of vinyl acetate, and 60 to 0 parts by weight of vinyl ester of a branched fatty acid having 9 to 11 carbon atoms.
(A), a pigment and/or a filler that does not have hydration curability (B), and a viscosity imparting agent (C); The viscosity at 30°C and 10 rpm measured using a BH-type rotational viscometer is in the range of 20,000 to 150,000 centipoise, and the value obtained by dividing the viscosity at 30°C and 2 rpm measured using a BH type rotational viscometer by the viscosity at 30°C and 20 rpm is 3.0.
~8.0, and furthermore, the volume fraction of the solid resin content of the aqueous emulsion (A) in the dry coating film of the coating solution is 40% or more. Industrial fluid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58068403A JPS59193948A (en) | 1983-04-20 | 1983-04-20 | Coating liquid for forming insulation buffering layer on inner wall of tunnel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58068403A JPS59193948A (en) | 1983-04-20 | 1983-04-20 | Coating liquid for forming insulation buffering layer on inner wall of tunnel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59193948A JPS59193948A (en) | 1984-11-02 |
JPS648654B2 true JPS648654B2 (en) | 1989-02-14 |
Family
ID=13372681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58068403A Granted JPS59193948A (en) | 1983-04-20 | 1983-04-20 | Coating liquid for forming insulation buffering layer on inner wall of tunnel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59193948A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6314998A (en) * | 1986-07-07 | 1988-01-22 | 三井建設株式会社 | Method of constructing secondary lining in method of shield construction |
JPH0625332B2 (en) * | 1988-12-19 | 1994-04-06 | 第一工業製薬株式会社 | Thickener for aqueous silica formulations |
JP6341698B2 (en) * | 2014-03-11 | 2018-06-13 | 五洋建設株式会社 | Sealing material |
CN108003449A (en) * | 2017-12-27 | 2018-05-08 | 宁波秦鼎材料科技有限公司 | A kind of elastic reactance yielding elastomeric material and preparation method thereof |
JP2020051027A (en) * | 2018-09-21 | 2020-04-02 | 日本ペイント株式会社 | Concrete piece exfoliation prevention structure body |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54130630A (en) * | 1978-04-01 | 1979-10-11 | Nippon Synthetic Chem Ind Co Ltd:The | Coating compound |
JPS5686970A (en) * | 1979-12-18 | 1981-07-15 | Kokudo Doro Kk | Pigment for coating compound, its preparation, and waterproofing coating compound of aqueous emulsion |
-
1983
- 1983-04-20 JP JP58068403A patent/JPS59193948A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59193948A (en) | 1984-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3196122A (en) | Cementitious compositions containing acrylic ester polymers | |
US4607066A (en) | Mine stopping sealant | |
JPH1095922A (en) | Aqueous emulsion composition and its production | |
CN112638841A (en) | Dry powder composition, putty composition obtainable from such composition and substrate coated with such putty composition | |
JP2012507467A (en) | Method of applying polymer-modified wet concrete mixture | |
US9522845B2 (en) | Coating agents for producing permanently flexible coatings | |
US4710526A (en) | Alkaline curing emulsions for use in cement admixtures | |
JPS648654B2 (en) | ||
AU674876B2 (en) | Aqueous composition | |
RU2460709C2 (en) | Method of depositing hard coatings based on hydraulically setting coating materials | |
JP4345511B2 (en) | Polymer cement composition for waterproofing | |
US4363836A (en) | Priming compositions for a base of cement mortar or concrete | |
CN107250079B (en) | Levelling compounds, their use and manufacture | |
JP2004123401A (en) | Integral-type cement-based mortar composition containing powdery admixture | |
CN113652127B (en) | Composite primer applied to renovation of old ceramic tile outer wall, preparation method and construction method | |
CA2108492A1 (en) | Quick-set exterior coatings | |
CN115929037A (en) | Construction method of high-efficiency building waterproof material | |
JP6171060B1 (en) | Polymer cement composition | |
JPH08157282A (en) | Thickly applied rock style decorating method of concrete surface | |
JP3930122B2 (en) | Method for forming a coating film of a coating material for forming a lightweight thick film | |
US3677988A (en) | Texture coating composition of polyvinyl acetate emulsion,asbestos and portland cement | |
JPS63162770A (en) | Water-base covering composition for cement base plate | |
US20240101479A1 (en) | Method of making a sprayable setting type compound | |
JPS5915945B2 (en) | Thick coating composition | |
JPH0711177A (en) | Coating material |