JPS648628B2 - - Google Patents

Info

Publication number
JPS648628B2
JPS648628B2 JP56038305A JP3830581A JPS648628B2 JP S648628 B2 JPS648628 B2 JP S648628B2 JP 56038305 A JP56038305 A JP 56038305A JP 3830581 A JP3830581 A JP 3830581A JP S648628 B2 JPS648628 B2 JP S648628B2
Authority
JP
Japan
Prior art keywords
compound
hydroperoxide
acid
molybdenum
epoxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56038305A
Other languages
Japanese (ja)
Other versions
JPS57154176A (en
Inventor
Haruhisa Harada
Yasuhiko Too
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP56038305A priority Critical patent/JPS57154176A/en
Publication of JPS57154176A publication Critical patent/JPS57154176A/en
Publication of JPS648628B2 publication Critical patent/JPS648628B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は有機ヒドロパーオキシドを用いてオレ
フイン性二重結合を有する化合物をエポキシ化す
る方法に関するものである。 従来有機ヒドロパーオキシドとオレフイン性二
重結合を有する化合物とを接触させてエポキシ化
合物を製造する方法においてチタン、モリブデ
ン、タングステン、バナジウムの化合物を始めと
して、数多くの化合物が触媒として提唱されてい
る。しかしながらいずれの触媒を用いてもエポキ
シ化合物の収率は満足すべきものでなく、有機ヒ
ドロパーオキシドの転化率が高くなるとエポキシ
化合物生成の選択率が低下するという欠点を有し
ていた。 本発明者らは有機ヒドロパーオキシドを用いて
オレフイン性二重結合を有する化合物のエポキシ
化を行なう方法において有機ヒドロパーオキシド
の転化率が高くかつエポキシ化合物生成の選択率
が高いエポキシ化法について鋭意研究を行ない本
発明に到達したものである。 すなわちエポキシ化触媒の存在下有機ヒドロパ
ーオキシドとオレフイン性二重結合を有する化合
物とを接触させてエポキシ化合物を製造する方法
において、アミノポリカルボン酸又はそのアルカ
リ金属塩を共存させることにより、エポキシ化合
物が高収率で得られることを見出したものであ
る。 本発明に用いられるアミノポリカルボン酸とし
てはエチレンジアミン四酢酸(EDTA)、ジエチ
レントリアミン五酢酸、グリコールエーテルジア
ミン四酢酸、ニトリロ三酢酸、2―ヒドロキシエ
チルエチレンジアミン三酢酸、イミノジ酢酸等が
あり、好ましくはエチレンジアミン四酢酸
(EDTA)が用いられる。またアルカリ金属塩と
しては通常ナトリウム塩が用いられる。 アミノポリカルボン酸又はそのアルカリ金属塩
の添加量は特に限定されるものではないが通常は
有機ヒドロパーオキシドに対して0.001〜0.1重量
%添加され、好ましくは0.002〜0.02重量%添加
される。アミノポリカルボン酸又はそのアルカリ
金属塩は一種又は二種以上を組み合せて用いても
よい。 エポキシ化触媒としては通常はチタン、モリブ
デン、タングステン、バナジウムの化合物が用い
られる。好ましくはモリブデンの化合物が用いら
れ、さらに好ましくはモリブデン錯体有機酸のモ
リブデン塩のような反応系に可溶なモリブデン化
合物が用いられる。 反応系に可溶なモリブデン触媒としては例えば
モリブデンナフテネート、モリブデンアセチルア
セトナート等がある。エポキシ化触媒は有機ヒド
ロパーオキシドに対して0.005〜10重量%使用さ
れ、好ましくは0.01〜0.5重量%使用される。 有機ヒドロパーオキシドとしては第3級ブチル
ヒドロパーオキシド、エチルベンゼンヒドロパー
オキシド、クメンヒドロパーオキシド、シクロヘ
キセニルヒドロパーオキシド等が用いられるが、
これらに限定されるものではない。 オレフイン性二重結合を有する化合物としては
プロピレン、ユーブテン、シクロヘキセン等の炭
化水素類、アリルアルコール、メタアリルアルコ
ール、アリルクロリド等の置換オレフイン等が用
いられ、好ましくは炭素数が3ないし6のオレフ
インが用いられる。さらに好ましくはプロピレン
が使用される。 本反応は−10℃〜180℃の間の温度で実施され
るのがよい。好ましくは50〜150℃の間の温度で
実施される。 この新しい方法によると公知の方法と異なり、
有機ヒドロパーオキシドをほぼ完全に転化させる
ことができ、かつエポキシ化合物を高収率で得る
ことができる点で優れている。一般に有機ヒドロ
パーオキシドの転化率が高くなるにつれてエポキ
シ化合物の生成選択率が低下するといわれている
ことからみれば、本発明方法のようにアミノポリ
カルボン酸またはそのアルカリ塩を加えることに
より、有機ヒドロパーオキシドの転化率が高くな
り、かつエポキシ化合物の生成選択率が向上する
ことは驚くべきことであつた。 以下に実施例によつて本発明方法の説明を行な
うが本発明の範囲はこれらによつて制限を受ける
ものではない。 実施例 1 30重量%のエチルベンゼンヒドロパーオキシド
を含有するエチルベンゼン溶液65gにモリブデン
ナフテネート30mgとエチレンジアミン四酢酸10mg
を加えて、200mlオートクレーブに入れた。オー
トクレーブを窒素置換後プロピレン35gを加え、
この溶液を120℃に加熱し、1時間120℃で撹拌を
行なつた。この時の系内圧力は約30Kg/cm2Gであ
つた。その後反応混合物を室温にまで冷却し、未
反応プロピレンをパージした後反応液を取り出
し、未反応エチルベンゼンヒドロパーオキシドを
チオ硫酸ナトリウム滴定法で定量し、プロピレン
オキシドの生成量をガスクロマトグラフイー法で
定量し次の結果を得た。 なおプロピレンオキシドの生成選択率は下記の
式に従がつて求めた。 プロピレンオキシド生成選択率(%)=プロピレンオ
キシド生成モル数/エチルベンゼンヒドロパーオキシド
反応モル数×100 エチルベンゼンヒドロパーオキシド反応率
:98.2% プロピレンオキシド生成選択率 :89.3% 比較例 1 エチレンジアミン四酢酸を加えないこと以外は
実施例1と同じ方法で実験を行ない下記の結果を
得た。 エチルベンゼンヒドロパーオキシド反応率
:92.7% プロピレンオキシド生成選択率 :78.6% 実施例 2〜4 種々のアミノポリカルボン酸またはそのアルカ
リ金属塩を用いてエポキシ化反応を行なつた。ア
ミノポリカルボン酸またはそのアルカリ金属塩の
種類および使用量は第1表に示すとおりであり、
その他の条件は実施例1に記載した条件で反応を
行なつた。結果は第1表に示すとおりである。
The present invention relates to a method for epoxidizing a compound having an olefinic double bond using an organic hydroperoxide. Conventionally, a large number of compounds have been proposed as catalysts, including compounds of titanium, molybdenum, tungsten, and vanadium, in a method for producing epoxy compounds by bringing an organic hydroperoxide into contact with a compound having an olefinic double bond. However, no matter which catalyst is used, the yield of the epoxy compound is unsatisfactory, and the selectivity for producing the epoxy compound decreases as the conversion rate of organic hydroperoxide increases. The present inventors have made extensive efforts to develop an epoxidation method in which a compound having an olefinic double bond is epoxidized using an organic hydroperoxide, and the conversion rate of the organic hydroperoxide is high and the selectivity for producing an epoxy compound is high. The present invention was achieved through research. That is, in a method for producing an epoxy compound by bringing an organic hydroperoxide into contact with a compound having an olefinic double bond in the presence of an epoxidation catalyst, an epoxy compound can be produced by coexisting an aminopolycarboxylic acid or an alkali metal salt thereof. was found to be obtained in high yield. Examples of aminopolycarboxylic acids used in the present invention include ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid, glycol etherdiaminetetraacetic acid, nitrilotriacetic acid, 2-hydroxyethylethylenediaminetriacetic acid, iminodiacetic acid, etc., and preferably ethylenediaminetetraacetic acid. Acetic acid (EDTA) is used. Further, as the alkali metal salt, sodium salt is usually used. The amount of aminopolycarboxylic acid or its alkali metal salt added is not particularly limited, but it is usually added in an amount of 0.001 to 0.1% by weight, preferably 0.002 to 0.02% by weight, based on the organic hydroperoxide. Aminopolycarboxylic acids or alkali metal salts thereof may be used alone or in combination of two or more. Compounds of titanium, molybdenum, tungsten and vanadium are usually used as epoxidation catalysts. Preferably, a molybdenum compound is used, and more preferably a molybdenum compound soluble in the reaction system, such as a molybdenum salt of a molybdenum complex organic acid, is used. Examples of molybdenum catalysts soluble in the reaction system include molybdenum naphthenate and molybdenum acetylacetonate. The epoxidation catalyst is used in an amount of 0.005 to 10% by weight, preferably 0.01 to 0.5% by weight, based on the organic hydroperoxide. As organic hydroperoxides, tertiary butyl hydroperoxide, ethylbenzene hydroperoxide, cumene hydroperoxide, cyclohexenyl hydroperoxide, etc. are used.
It is not limited to these. As the compound having an olefinic double bond, hydrocarbons such as propylene, eubutene, and cyclohexene, substituted olefins such as allyl alcohol, methallyl alcohol, allyl chloride, etc. are used, and preferably olefins having 3 to 6 carbon atoms are used. used. More preferably propylene is used. This reaction is preferably carried out at a temperature between -10°C and 180°C. Preferably it is carried out at a temperature between 50 and 150°C. According to this new method, unlike the known method,
It is excellent in that organic hydroperoxide can be almost completely converted and epoxy compounds can be obtained in high yield. It is generally said that as the conversion rate of organic hydroperoxide increases, the selectivity for epoxy compound production decreases. It was surprising that the peroxide conversion rate was increased and the epoxy compound production selectivity was improved. The method of the present invention will be explained below with reference to Examples, but the scope of the present invention is not limited by these. Example 1 30 mg of molybdenum naphthenate and 10 mg of ethylenediaminetetraacetic acid in 65 g of an ethylbenzene solution containing 30% by weight of ethylbenzene hydroperoxide.
was added and placed in a 200ml autoclave. After replacing the autoclave with nitrogen, add 35g of propylene.
This solution was heated to 120°C and stirred at 120°C for 1 hour. The pressure inside the system at this time was approximately 30 kg/cm 2 G. Thereafter, the reaction mixture was cooled to room temperature, unreacted propylene was purged, the reaction solution was taken out, unreacted ethylbenzene hydroperoxide was determined by sodium thiosulfate titration, and the amount of propylene oxide produced was determined by gas chromatography. I obtained the following results. Note that the propylene oxide production selectivity was determined according to the following formula. Propylene oxide production selectivity (%) = Number of moles of propylene oxide produced/Number of moles of ethylbenzene hydroperoxide reaction x 100 Ethylbenzene hydroperoxide reaction rate
: 98.2% Propylene oxide production selectivity: 89.3% Comparative Example 1 An experiment was conducted in the same manner as in Example 1 except that ethylenediaminetetraacetic acid was not added, and the following results were obtained. Ethylbenzene hydroperoxide reaction rate
: 92.7% Propylene oxide production selectivity: 78.6% Examples 2 to 4 Epoxidation reactions were carried out using various aminopolycarboxylic acids or their alkali metal salts. The type and amount of aminopolycarboxylic acid or its alkali metal salt are shown in Table 1,
The reaction was carried out under the other conditions described in Example 1. The results are shown in Table 1.

【表】 実施例5〜6、比較例2〜3 モリブデンナフテネートのかわりに他のエポキ
シ化触媒を用いて、エチレンジアミン四酢酸共存
下あるいは非共存下にエポキシ化反応を行なつ
た。 エポキシ化触媒およびエチレンジアミン四酢酸
の使用量は第2表に示してあるが他の条件は実施
例1に記載した条件で反応を行ない第2表に示し
た結果を得た。
[Table] Examples 5-6, Comparative Examples 2-3 Using other epoxidation catalysts instead of molybdenaphthenate, epoxidation reactions were carried out in the presence or absence of ethylenediaminetetraacetic acid. The amounts of the epoxidation catalyst and ethylenediaminetetraacetic acid used are shown in Table 2, but the reaction was carried out under the other conditions described in Example 1, and the results shown in Table 2 were obtained.

【表】【table】

Claims (1)

【特許請求の範囲】 1 エポキシ化触媒の存在下有機ヒドロパーオキ
シドとオレフイン性二重結合を有する化合物とを
接触させてエポキシ化合物を製造する方法におい
て、アミノポリカルボン酸又はそのアルカリ金属
塩を共存させることを特徴とするエポキシ化法。 2 エポキシ化触媒がモリブデン化合物であるこ
とを特徴とする特許請求の範囲第1項記載の方
法。
[Scope of Claims] 1. A method for producing an epoxy compound by contacting an organic hydroperoxide with a compound having an olefinic double bond in the presence of an epoxidation catalyst, in which an aminopolycarboxylic acid or an alkali metal salt thereof coexists. An epoxidation method characterized by 2. The method according to claim 1, wherein the epoxidation catalyst is a molybdenum compound.
JP56038305A 1981-03-16 1981-03-16 Epoxydizing Granted JPS57154176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56038305A JPS57154176A (en) 1981-03-16 1981-03-16 Epoxydizing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56038305A JPS57154176A (en) 1981-03-16 1981-03-16 Epoxydizing

Publications (2)

Publication Number Publication Date
JPS57154176A JPS57154176A (en) 1982-09-22
JPS648628B2 true JPS648628B2 (en) 1989-02-14

Family

ID=12521580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56038305A Granted JPS57154176A (en) 1981-03-16 1981-03-16 Epoxydizing

Country Status (1)

Country Link
JP (1) JPS57154176A (en)

Also Published As

Publication number Publication date
JPS57154176A (en) 1982-09-22

Similar Documents

Publication Publication Date Title
US3350422A (en) Catalytic epoxidation of an olefinically unsaturated compound using an organic hydroperoxide as an epoxidizing agent
KR101131207B1 (en) An improved catalytic process for the preparation of epoxides from alkenes
US6300506B1 (en) Process for the preparation of epoxites
JP5778684B2 (en) Method for producing divinylarene dioxide
JPS5850990B2 (en) Olefin epoxidation method
US4157346A (en) Catalytic epoxidation of alkylene compounds
JP5894144B2 (en) Production process of divinylarene dioxide
US4891437A (en) Olefin epoxidation of olefins in a polar medium
US5723636A (en) Methyltrioxorhenium-urea hydrogen peroxide epoxidation of olefins
JPS648628B2 (en)
US7235676B2 (en) Catalytic process for the preparation of epoxides from alkenes
US4093636A (en) Epoxidation of olefinic compounds
Dawoodi et al. Epoxidation of ethylene catalysed by molybdenum complexes
US5760254A (en) Production of oxirane compounds
JP3522363B2 (en) Method for producing polyisoprene epoxide
US3625981A (en) Process for preparing glycidol
US5670674A (en) Production of oxirane compounds
JP2618478B2 (en) Method for producing epoxy compound
JPH0257547B2 (en)
Chen et al. Reaction-controlled phase-transfer catalytic oxidative cleavage of cyclopentene to glutaraldehyde over peroxy-niobic acid
JP3550716B2 (en) Epoxidation catalyst
JPS5839676A (en) Preparation of olefin oxide
US4579967A (en) Production of alkyl methacrylate
JPH0770097A (en) Production of chlorostyrene oxide
JP2003096079A (en) Method for producing alicyclic epoxy compound with oxetane ring