JPS648305B2 - - Google Patents

Info

Publication number
JPS648305B2
JPS648305B2 JP7330883A JP7330883A JPS648305B2 JP S648305 B2 JPS648305 B2 JP S648305B2 JP 7330883 A JP7330883 A JP 7330883A JP 7330883 A JP7330883 A JP 7330883A JP S648305 B2 JPS648305 B2 JP S648305B2
Authority
JP
Japan
Prior art keywords
acid
bile acids
internal standard
column
standard substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7330883A
Other languages
Japanese (ja)
Other versions
JPS59197858A (en
Inventor
Masaharu Iwakawa
Minoru Tsubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP7330883A priority Critical patent/JPS59197858A/en
Publication of JPS59197858A publication Critical patent/JPS59197858A/en
Publication of JPS648305B2 publication Critical patent/JPS648305B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】 本発明は胆汁酸の定量法に関する。[Detailed description of the invention] The present invention relates to a method for quantifying bile acids.

従来より肝機能の検査の一つとして血液中に微
量に含まれる胆汁酸の定量が行なわれている。血
液中には、胆汁酸としてコール酸、デオキシコー
ル酸、ケノデオキシコール酸、ウルソデオキシコ
ール酸、リトコール酸が夫々遊離体、グリシン抱
合体、タウリン抱合体の形で含まれており、これ
らの15種類の各胆汁酸を分離定量することが、肝
胆道系疾患の病態解析並びに鑑別診断に有用であ
る。
BACKGROUND ART Conventionally, one of the tests for liver function has been the determination of trace amounts of bile acids contained in blood. Blood contains cholic acid, deoxycholic acid, chenodeoxycholic acid, ursodeoxycholic acid, and lithocholic acid as free forms, glycine conjugates, and taurine conjugates as bile acids. Separating and quantifying each bile acid is useful for pathological analysis and differential diagnosis of hepatobiliary diseases.

このため従来、高速液体クロマトグラフイーを
用いて分離カラム内に溶離液と混合された血清等
の生体試料を注入して胆汁酸を分離し、次いでニ
コチン酸アミドアデニンジヌクレオチド(以下
NAD+と略す)を加えた反応液を供給し、酵素
3α―ヒドロキシステロイドデヒドロゲナーゼ
(以下3α―HSDと略す)が固定された担体が充填
された固定化酵素カラムに通して、分離された胆
汁酸とNAD+とを反応させ、螢光物質を生成させ
て螢光検出器より検出し、得られた結果に基づい
て生体試料中の15種類の各胆汁酸の定量を行つて
いる。
Conventionally, high-performance liquid chromatography was used to separate bile acids by injecting a biological sample such as serum mixed with an eluent into a separation column, and then separating bile acids from nicotinamide adenine dinucleotide (hereinafter referred to as nicotinamide adenine dinucleotide).
Supply the reaction solution containing NAD + (abbreviated as NAD +), and
The separated bile acids are passed through an immobilized enzyme column packed with a carrier on which 3α-hydroxysteroid dehydrogenase (hereinafter abbreviated as 3α-HSD) is immobilized, and the separated bile acids are reacted with NAD + to generate a fluorescent substance. Each of the 15 types of bile acids in biological samples is quantified based on the results obtained using a fluorescence detector.

しかしながら生体試料は液体クロマトグラフイ
ーにかける前に分離阻害物質を除去する目的で前
処理操作にかけられるので、この際に試料中の胆
汁酸が損失を受けるおそれがあり、検出結果に影
響を及ぼすので、既知の第3成分を内部標準物質
として加えておくことが行なわれている。
However, since biological samples are subjected to pretreatment to remove separation-inhibiting substances before being subjected to liquid chromatography, bile acids in the sample may be lost during this process, which may affect the detection results. , a known third component is added as an internal standard substance.

かゝる内部標準物質として従来はプレグナント
リオールが使用されてきた。しかしながらプレグ
ナントリオールは分離用カラムでの保持時間が全
ての胆汁酸より長時間で分析に時間を要し、又検
出時のピークも幅が広くなり、これを基準ピーク
とした場合に誤差が大きくなる欠点があつた。
Conventionally, pregnanetriol has been used as such an internal standard substance. However, the retention time of pregnanetriol in a separation column is longer than that of all bile acids, so it takes time to analyze, and the detection peak also has a broad width, which has the disadvantage of increasing errors when used as a reference peak. It was hot.

本発明はかゝる欠点を解消することを目的とし
てなされたものであり、内部標準物質としてすべ
ての胆汁酸よりも短かい保持時間を有するが、溶
媒その他の混在物よりは遅く溶出される性質を有
し、又検出に当つて鋭いピークを現出しうるもの
を見出すことによつてなし得た発明であり、短時
間での胆汁酸の定量が可能でしかも誤差の少な
い、胆汁酸の定量法を提供するものである。
The present invention was made with the aim of eliminating such drawbacks, and uses bile acids as an internal standard substance that has a retention time shorter than that of all bile acids, but has the property of eluting more slowly than solvents and other contaminants. This invention was achieved by finding a method that has a sharp peak during detection, and is a method for quantifying bile acids that allows bile acids to be quantified in a short time and with less error. It provides:

すなわち、本発明の要旨は、液体クロマトグラ
フイーによつて生体試料中の胆汁酸を分離し、固
定化酵素を入れたカラムに導入し、カラム内で固
定化酵素と接触させて胆汁酸とこれと反応しうる
物質との反応を生じさせ、反応生成物を検出器で
測定することにより胆汁酸を定量する方法におい
て、内部標準物質としてデオキシコール酸又はケ
ノデオキシコール酸の酸性アミノ酸抱合体を用い
ることを特徴とする胆汁酸の定量法に存する。
That is, the gist of the present invention is to separate bile acids in a biological sample by liquid chromatography, introduce the bile acids into a column containing an immobilized enzyme, and bring the bile acids into contact with the immobilized enzyme within the column to separate the bile acids and the bile acids. In a method for quantifying bile acids by causing a reaction with a substance that can react with the bile acid and measuring the reaction product with a detector, it is recommended to use an acidic amino acid conjugate of deoxycholic acid or chenodeoxycholic acid as an internal standard substance. The method consists in the quantitative determination of bile acids.

本発明において内部標準物質を設計するに当
り、逆相系分離用カラム内での保持時間を短かく
するためにイオン性基を導入し親水性を高めるこ
ととし、また酵素に対する反応性を胆汁酸に近い
ものとするために、胆汁酸の誘導体を用いること
を検討した。そしてこれに適合する内部標準物質
としてデオキシコール酸又はケノデオキシコール
酸の酸性アミノ酸抱合体を見出した。デオキシコ
ール酸又はケノデオキシコール酸の酸性アミノ酸
抱合体は希アルカリ性での加水分解に抵抗性のあ
るアミド結合により化学結合されているものであ
り、イオン性基としてはカルボキシル基が用いら
れる。又、酸性アミノ酸としては、グルタミン
酸、アスパラギン酸のように、カルボキシル基が
アミノ基よりも多いものが使用される。
In designing the internal standard substance in the present invention, an ionic group was introduced to increase hydrophilicity in order to shorten the retention time in the column for reversed-phase separation, and the reactivity to enzymes was reduced by bile acid. In order to achieve a similar result, we considered using bile acid derivatives. We have also discovered an acidic amino acid conjugate of deoxycholic acid or chenodeoxycholic acid as an internal standard substance that meets this requirement. The acidic amino acid conjugate of deoxycholic acid or chenodeoxycholic acid is chemically bonded by an amide bond that is resistant to hydrolysis in dilute alkaline conditions, and a carboxyl group is used as the ionic group. Further, as the acidic amino acid, those having more carboxyl groups than amino groups, such as glutamic acid and aspartic acid, are used.

デオキシコール酸又はケノデオキシコール酸の
酸性アミノ酸抱合体を合成するには、例えばデオ
キシコール酸又はケノデオキシコール酸と酸性ア
ミノ酸エステルの塩酸塩を塩酸1―エチル―3―
(3―ジメチルアミノプロピル)カルボジイミド
の存在下に撹拌して反応させ、更に水酸化カリウ
ム溶液により加水分解を行えばよい。上記の内部
標準物質を用いて胆汁酸の定量を行う場合は、例
えば第1図に示すような装置を用いる。
To synthesize an acidic amino acid conjugate of deoxycholic acid or chenodeoxycholic acid, for example, the hydrochloride of deoxycholic acid or chenodeoxycholic acid and an acidic amino acid ester is mixed with 1-ethyl-3-hydrochloride.
The reaction may be carried out by stirring in the presence of (3-dimethylaminopropyl)carbodiimide, and further hydrolysis may be carried out using a potassium hydroxide solution. When quantifying bile acids using the above-mentioned internal standard substance, for example, an apparatus as shown in FIG. 1 is used.

1,2は溶離液槽であり、溶離液槽1における
溶離液としては例えば炭酸アンモニウム―アセト
ニトリル混合液が使用され、溶離液2としてはア
セトニトリルが使用され、アセトニトリルの添加
にはグラジエントがかけられ、徐々にアセトニト
リルの含有量が増加するものとされる。4はこの
ためのグラジエントプログラマーである。
Reference numerals 1 and 2 are eluent tanks, and the eluent in eluent tank 1 is, for example, an ammonium carbonate-acetonitrile mixture, and the eluent 2 is acetonitrile, and a gradient is applied to the addition of acetonitrile. It is assumed that the content of acetonitrile gradually increases. 4 is a gradient programmer for this purpose.

5は試料注入器であり、デオキシコール酸ある
いはケノデオキシコール酸の酸性アミノ酸抱合体
の一定量を前処理した血清試料に添加した試料液
が注入されて溶離液と混合される。又、試料液と
しては、前処理における血中胆汁酸の損失を補正
する方法として、血清試料に一定量の内部標準物
質を加えた後、前処理を行い、抽出したものを使
用してもよい。試料液は流路3から分離用カラム
6に導かれ、胆汁酸の分離がなされる。分離用カ
ラム6には、例えばオクタデシル基を導入した多
孔性シリカ、ジビニルベンゼン―(メタ)アクリ
ル酸共重合体等の粒子が充填されている。
Reference numeral 5 denotes a sample injector, into which a sample solution in which a certain amount of an acidic amino acid conjugate of deoxycholic acid or chenodeoxycholic acid is added to a pretreated serum sample is injected and mixed with the eluent. In addition, as a sample solution, as a method of correcting the loss of blood bile acids during pretreatment, a serum sample may be pretreated and extracted after adding a certain amount of internal standard substance. . The sample liquid is led from the flow path 3 to the separation column 6, where bile acids are separated. The separation column 6 is filled with particles of, for example, porous silica into which octadecyl groups have been introduced, divinylbenzene-(meth)acrylic acid copolymer, or the like.

分離用カラム6において高速液体クロマトグラ
フイーにより胆汁酸が分離される。上記分離用カ
ラム6から流出した分離液にNAD+を含む反応液
を反応液槽10から供給し、これを3α―HSDが
充填されている固定化酵素カラム7に導き、上記
3α―HSDの作用により各胆汁酸成分とNAD+
を順次反応させ、該反応により螢光物質を生成さ
せる。
Bile acids are separated in the separation column 6 by high performance liquid chromatography. A reaction solution containing NAD + is supplied from the reaction solution tank 10 to the separated solution flowing out from the separation column 6, and is guided to the immobilized enzyme column 7 filled with 3α-HSD, and then
The action of 3α-HSD causes each bile acid component to react with NAD + in sequence, and the reaction produces a fluorescent substance.

この螢光物質の生成量は試料液中に含まれる胆
汁酸の量に依存するので螢光光度計8においてこ
れを検出しその結果を記録計9により記録する。
Since the amount of this fluorescent substance produced depends on the amount of bile acid contained in the sample solution, it is detected by a fluorophotometer 8 and the result is recorded by a recorder 9.

このようにしてまず、試料液中の蛋白質等の混
合物のピーク、内部標準物質であるデオキシコー
ル酸またはケノデオキシコール酸の酸性アミノ酸
抱合体によるピーク、各胆汁酸によるピークが記
録される。
In this way, first, the peaks of a mixture of proteins and the like in the sample solution, the peaks due to the acidic amino acid conjugates of deoxycholic acid or chenodeoxycholic acid as internal standard substances, and the peaks due to each bile acid are recorded.

そしてこのようにして得られた結果に基づいて
各胆汁酸の量を定量することができる。
Based on the results thus obtained, the amount of each bile acid can be determined.

本発明によれば、内部標準物質としてデオキシ
コール酸またはケノデオキシコール酸の酸性アミ
ノ酸抱合体を用いることにより、分離用カラムで
の保持時間が各胆汁酸より短かいものとなつて、
各胆汁酸の分析時間を短縮することができるので
あり、さらに検出時のピークが鋭いものとなり、
定量誤差を少なくすることができる。
According to the present invention, by using an acidic amino acid conjugate of deoxycholic acid or chenodeoxycholic acid as an internal standard substance, the retention time in the separation column is shorter than that of each bile acid.
The analysis time for each bile acid can be shortened, and the peaks at the time of detection will be sharper.
Quantitative errors can be reduced.

実施例 1 デオキシコール酸のグルタミン酸抱合体を次の
ようにして合成した。
Example 1 A glutamic acid conjugate of deoxycholic acid was synthesized as follows.

L―グルタミン酸ジエチルエステル塩酸塩
(323mg)、デオキシコール酸(399mg)をジクロロ
メタン(100ml)に撹拌懸濁させ、トリエチルア
ミン(0.19ml)を滴下する。続いて塩酸1―エチ
ル―3―(3―ジメチルアミノプロピル)カルボ
ジイミド(293mg)を加え、室温で撹拌し、反応
させた。2時間後得られた溶液を、水(50ml×
3)、1M塩酸(50ml×3)、飽和炭酸水素ナトリ
ウム溶液(50ml×3)で洗浄した後、無水硫酸マ
グネシウムで脱水し、濾別する。液の溶媒を留
去し、続いて、1%水酸化カリウム―メタノール
―水(3:1V/V)溶液(50ml)にとかして加
水分解した。室温にて2時間かくはん後、メタノ
ールを減圧下に留去し、得られる水溶液を氷冷し
ながら塩酸を滴下しPH4に調整した。冷蔵庫に静
置し、析出する沈澱を集め、氷水で洗浄した後、
凍結乾燥した。この際の収量は424mg(80%)で
あつた。この凍結乾燥粉末を内部標準として用い
た。
L-glutamic acid diethyl ester hydrochloride (323 mg) and deoxycholic acid (399 mg) are stirred and suspended in dichloromethane (100 ml), and triethylamine (0.19 ml) is added dropwise. Subsequently, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (293 mg) was added, and the mixture was stirred and reacted at room temperature. After 2 hours, the resulting solution was mixed with water (50 ml x
3) After washing with 1M hydrochloric acid (50 ml x 3) and saturated sodium bicarbonate solution (50 ml x 3), dehydrate over anhydrous magnesium sulfate and filter. The solvent of the solution was distilled off, and then the solution was dissolved in a 1% potassium hydroxide-methanol-water (3:1 V/V) solution (50 ml) for hydrolysis. After stirring at room temperature for 2 hours, methanol was distilled off under reduced pressure, and while cooling the resulting aqueous solution with ice, hydrochloric acid was added dropwise to adjust the pH to 4. After leaving it in the refrigerator and collecting the precipitate, washing it with ice water,
Lyophilized. The yield at this time was 424 mg (80%). This lyophilized powder was used as an internal standard.

上述の内部標準物質(例えば、デオキシコール
酸のグルタミン酸抱合体)20mgをエタノール
(100ml)に溶解し、この溶液を試料血清1mlに
10μ添加し、この血清0.5mlにエタノール(2.5
ml)を加え、85℃の水浴中で1分間撹拌した後、
これを遠心分離し、上澄を採取した。
Dissolve 20 mg of the above-mentioned internal standard substance (e.g., glutamate conjugate of deoxycholic acid) in ethanol (100 ml), and add this solution to 1 ml of sample serum.
Add 10 μl of ethanol (2.5 μl) to 0.5 ml of this serum.
ml) and stirred for 1 minute in a water bath at 85°C.
This was centrifuged and the supernatant was collected.

残渣にエタノール(2.5ml)を加え上記操作を
くり返し、得られた上澄を蒸発乾固し、これにメ
タノール100μを加え溶解し、この10μを試料
注入口5より注入した。
Ethanol (2.5 ml) was added to the residue and the above operation was repeated, the resulting supernatant was evaporated to dryness, 100 μm of methanol was added and dissolved, and this 10 μm was injected through the sample injection port 5.

溶離液槽1から0.3重量%の炭酸アンモニウム
20容量%とアセトニトリル80容量%の混合液をポ
ンプ11により供給し、又溶離液槽2からアセト
ニトリルを初期値0容量%から1容量%/分のグ
ラジエントを有するようにポンプ12より供給し
流量を0.5ml/分として試料と混合し、得られた
試料液を分離用カラム6に導いた。分離用カラム
6としては、オクチル基をその表面に化学的に結
合させた粒径10μm前後の球状シリカゲルが充填
された内径3.9mm、長さ30cmのものを使用し、試
料液中の各胆汁酸を分離した。分離用カラム6か
ら出てきた各成分は反応液槽10からポンプ13
によつて供給される反応液と混合され固定化酵素
カラム7に導入された。
0.3% by weight ammonium carbonate from eluent tank 1
A mixed solution of 20% by volume and 80% by volume of acetonitrile is supplied by the pump 11, and acetonitrile is supplied from the eluent tank 2 by the pump 12 so as to have a gradient from the initial value of 0% by volume to 1% by volume per minute, and the flow rate is adjusted. The mixture was mixed with the sample at a rate of 0.5 ml/min, and the resulting sample solution was introduced into the separation column 6. As the separation column 6, we used a column with an inner diameter of 3.9 mm and a length of 30 cm, filled with spherical silica gel with a particle size of around 10 μm and having octyl groups chemically bonded to its surface. was separated. Each component coming out of the separation column 6 is transferred from the reaction liquid tank 10 to the pump 13.
The immobilized enzyme column 7 was mixed with the reaction solution supplied by the immobilized enzyme column 7.

反応液は0.3mMのβ―NAD+、10mMのリン酸
緩衝液(PH8.0)、1mMのEDTA、0.05重量%の2
―メルカプトエタノールからなり、供給量は0.5
ml/分とした。
The reaction solution contained 0.3mM β-NAD + , 10mM phosphate buffer (PH8.0), 1mM EDTA, and 0.05% by weight of 2
- Consists of mercaptoethanol, supply amount is 0.5
ml/min.

固定化酵素カラム7としては、3α―HSD100ユ
ニツトを2ccの粒状セルロースに臭化シアン法で
固定化し、内径4.6mm、長さ5cmのカラムに充填
したものを用いた。
The immobilized enzyme column 7 used was one in which 100 units of 3α-HSD were immobilized on 2 cc of granular cellulose by the cyanogen bromide method and packed into a column with an inner diameter of 4.6 mm and a length of 5 cm.

試料液中の胆汁酸成分は、酵素によりβ―ケト
体に酸化され、同時に反応液中のβ―NAD+は還
元されて螢光を有するNADHになり、螢光光度
計8によつてその濃度が測定された。螢光光度計
8は励起波長350mm、螢光波長450mmの条件で測定
された。螢光光度計8による測定結果を記録計9
により記録した。
The bile acid component in the sample solution is oxidized to β-keto form by the enzyme, and at the same time, β-NAD + in the reaction solution is reduced to fluorescent NADH, and its concentration is measured by the fluorophotometer 8. was measured. The fluorescence photometer 8 was used for measurement under the conditions of an excitation wavelength of 350 mm and a fluorescence wavelength of 450 mm. The measurement result by the fluorescence photometer 8 is recorded by the recorder 9.
Recorded by.

第2図は急性肝炎患者の血清試料を用いて測定
した例を示すものであり、内部標準であるデオキ
シコール酸のグルタミン酸抱合体によるピーク
PBは、血清試料中の蛋白質等の混在物によるピ
ークPA及び胆汁酸によるピークPCとよく分離さ
れた。
Figure 2 shows an example of measurement using a serum sample from an acute hepatitis patient.
P B was well separated from peak P A due to contaminants such as proteins in the serum sample and peak P C due to bile acids.

実施例 2 ケノデオキシコール酸のグルタミン酸抱合体20
mgを内部標準物質としてエタノール100mlに溶解
した。この溶液を慢性肝炎患者の試料血清1ml当
り5μ量添加した。これを疎水性ゲルを充填し
た前処理カラムに添加し、続いて蒸溜水5mlで洗
浄した後、無水エタノール10mlで溶離した。更に
エタノールを蒸発乾固した後、残渣をメタノール
100μに溶解した。
Example 2 Glutamic acid conjugate of chenodeoxycholic acid 20
mg was dissolved in 100 ml of ethanol as an internal standard substance. This solution was added in an amount of 5μ per ml of serum sample from a patient with chronic hepatitis. This was added to a pretreatment column packed with hydrophobic gel, washed with 5 ml of distilled water, and eluted with 10 ml of absolute ethanol. After further evaporating the ethanol to dryness, the residue was dissolved in methanol.
Dissolved in 100μ.

このようにして処理された試料液を用いて実施
例1と同様にして胆汁酸の定量を行つた。
Bile acids were quantified in the same manner as in Example 1 using the sample solution treated in this manner.

第3図にその結果を示す。内部標準であるケノ
デオキシコール酸のグルタミン酸抱合体によるピ
ークPBは、血清試料中の蛋白質等の混在物によ
るピークPA及び胆汁酸によるピークPCとよく分
離された。
Figure 3 shows the results. The peak P B due to the glutamic acid conjugate of chenodeoxycholic acid, which is an internal standard, was well separated from the peak P A due to contaminants such as proteins in the serum sample and the peak P C due to bile acids.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明胆汁酸の定量法に使用する装置
の例を示す説明図、第2図は実施例1におけるク
ロマトグラフ、第3図は実施例2におけるクロマ
トグラムである。 1,2……溶離液槽、4……グラジエントプロ
グラマー、5……試料注入口、6……分離用カラ
ム、7……固定化酵素カラム、8……螢光光度
計、9……記録計、10……反応液槽、11,1
2,13……ポンプ。
FIG. 1 is an explanatory diagram showing an example of an apparatus used in the method for quantifying bile acids of the present invention, FIG. 2 is a chromatogram in Example 1, and FIG. 3 is a chromatogram in Example 2. 1, 2... Eluent tank, 4... Gradient programmer, 5... Sample injection port, 6... Separation column, 7... Immobilized enzyme column, 8... Fluorescence photometer, 9... Recorder , 10...reaction liquid tank, 11,1
2,13...Pump.

Claims (1)

【特許請求の範囲】 1 液体クロマトグラフイーによつて生体試料中
の胆汁酸を分離し、固定化酵素を入れたカラムに
導入し、カラム内で固定化酵素と接触させて胆汁
酸とこれと反応しうる物質との反応を生じさせ、
反応生成物を検出器で測定することにより胆汁酸
を定量する方法において、内部標準物質としてデ
オキシコール酸又はケノデオキシコール酸の酸性
アミノ酸抱合体を用いることを特徴とする胆汁酸
の定量法。 2 内部標準物質がデオキシコール酸又はケノデ
オキシコール酸のグルタミン酸抱合体である特許
請求の範囲第1項記載の胆汁酸の定量法。 3 内部標準物質がデオキシコール酸又はケノデ
オキシコール酸のアスパラギン酸抱合体である特
許請求の範囲第1項記載の胆汁酸の定量法。
[Claims] 1. Bile acids in a biological sample are separated by liquid chromatography, introduced into a column containing an immobilized enzyme, and brought into contact with the immobilized enzyme within the column to separate the bile acids and the bile acids. causing a reaction with a reactive substance,
A method for quantifying bile acids by measuring a reaction product with a detector, the method comprising using an acidic amino acid conjugate of deoxycholic acid or chenodeoxycholic acid as an internal standard substance. 2. The method for quantifying bile acids according to claim 1, wherein the internal standard substance is a glutamic acid conjugate of deoxycholic acid or chenodeoxycholic acid. 3. The method for quantifying bile acids according to claim 1, wherein the internal standard substance is an aspartic acid conjugate of deoxycholic acid or chenodeoxycholic acid.
JP7330883A 1983-04-25 1983-04-25 Determination of bile acid Granted JPS59197858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7330883A JPS59197858A (en) 1983-04-25 1983-04-25 Determination of bile acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7330883A JPS59197858A (en) 1983-04-25 1983-04-25 Determination of bile acid

Publications (2)

Publication Number Publication Date
JPS59197858A JPS59197858A (en) 1984-11-09
JPS648305B2 true JPS648305B2 (en) 1989-02-13

Family

ID=13514403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7330883A Granted JPS59197858A (en) 1983-04-25 1983-04-25 Determination of bile acid

Country Status (1)

Country Link
JP (1) JPS59197858A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716439B2 (en) * 1986-12-16 1995-03-01 積水化学工業株式会社 Bile acid fractionation quantification method

Also Published As

Publication number Publication date
JPS59197858A (en) 1984-11-09

Similar Documents

Publication Publication Date Title
US4269605A (en) Method and kit for separation of glycoproteins
EP2282209A1 (en) Method for labelling sugar chains
Lanckmans et al. Quantitative liquid chromatography/mass spectrometry for the analysis of microdialysates
WO1995023800A1 (en) Photo-activatable biotin derivatives and their use in suppressing interference in immuno assaying
JPH0233360B2 (en) TANJUSANNOTEIRYOHO
US4788136A (en) Diagnostic immunoassay by solid phase separation for digoxin
Yodoshi et al. Optimized conditions for high-performance liquid chromatography analysis of oligosaccharides using 7-amino-4-methylcoumarin as a reductive amination reagent
JPS648305B2 (en)
Nambara et al. High-performance liquid chromatography
Maeda et al. Fluorescence and chemiluminescence determination of steroid and bile acid sulphates with lucigenin by flow injection analysis based on ion-pair solvent extraction
US4200625A (en) Immobilized binder for automated assay
CN113624866B (en) CNT@COF THB-TAPB Adsorbent and application thereof in online solid-phase extraction and mass spectrum combined device
EP0234799A2 (en) Method of protein detection or isolation
Goto et al. Studies on Steroids. CLXXXIL. Determination of 6β-Hydroxycortisol in Urine by High-Performance Liquid Chromatography with Fluorescence Detection
JPS63152996A (en) Fractionation and quantitative determination of bile acid
EP0488755A1 (en) Process for rapid measurement of trace components
Hendler Further characterization of an amino acid-lipid complex from hen oviduct
Kurtin et al. Assay of β-glucuronidase in bile following ion-pair extraction of pigments and bile acids
JPS63179255A (en) Carrier for adsorbing protein
Ikegawa et al. Simultaneous fluorometric determination of conjugated fetal bile acids in urine of newborns by high-performance liquid chromatography
JPS5961777A (en) Analytical system of bile acid
JPH0126506B2 (en)
Takeda et al. FLUORESCENCE HIGH PERFORMANCE LIQUID CHROMATOGRAPHY OF BILE ACID 3-SULFATES USING 1-BROMOACETYLPYRENE AS PRELABELING REAGENT
JPH0231959B2 (en)
JPS63196857A (en) Decision of amino acid array of protein of peptide