JPS647295B2 - - Google Patents
Info
- Publication number
- JPS647295B2 JPS647295B2 JP14071783A JP14071783A JPS647295B2 JP S647295 B2 JPS647295 B2 JP S647295B2 JP 14071783 A JP14071783 A JP 14071783A JP 14071783 A JP14071783 A JP 14071783A JP S647295 B2 JPS647295 B2 JP S647295B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- hot water
- amount
- electricity
- heating element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 88
- 238000009835 boiling Methods 0.000 claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 18
- 230000005611 electricity Effects 0.000 claims description 13
- 238000001514 detection method Methods 0.000 claims description 3
- 230000000630 rising effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 6
- 238000003287 bathing Methods 0.000 description 5
- 230000005855 radiation Effects 0.000 description 2
- 230000003203 everyday effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H9/00—Details
- F24H9/20—Arrangement or mounting of control or safety devices
- F24H9/2007—Arrangement or mounting of control or safety devices for water heaters
- F24H9/2014—Arrangement or mounting of control or safety devices for water heaters using electrical energy supply
- F24H9/2021—Storage heaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/10—Control of fluid heaters characterised by the purpose of the control
- F24H15/144—Measuring or calculating energy consumption
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/10—Control of fluid heaters characterised by the purpose of the control
- F24H15/172—Scheduling based on user demand, e.g. determining starting point of heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/20—Control of fluid heaters characterised by control inputs
- F24H15/212—Temperature of the water
- F24H15/223—Temperature of the water in the water storage tank
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/30—Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
- F24H15/355—Control of heat-generating means in heaters
- F24H15/37—Control of heat-generating means in heaters of electric heaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/40—Control of fluid heaters characterised by the type of controllers
- F24H15/407—Control of fluid heaters characterised by the type of controllers using electrical switching, e.g. TRIAC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/40—Control of fluid heaters characterised by the type of controllers
- F24H15/414—Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
- F24H15/421—Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based using pre-stored data
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Description
【発明の詳細な説明】
この発明は、深夜電力を利用する貯湯式電気温
水器の制御装置に関し、使用者側の湯量使用の実
績、ならびに入力装置から入力される翌日の湯の
沸き上げパターンに基づいて所要通電電力量を算
出するようにして、従来、固定であつた貯湯式電
気温水器の能力を使用者側の実体に合わせて使用
できるようにすることを目的としている。[Detailed Description of the Invention] The present invention relates to a control device for a hot water storage type electric water heater that uses late-night electricity, and the present invention is based on the user's hot water usage performance and the next day's hot water boiling pattern input from an input device. The purpose of this invention is to calculate the required amount of energized power based on the system, so that the capacity of a hot water storage type electric water heater, which has conventionally been fixed, can be used in accordance with the actual situation of the user.
第1図は一般的な貯湯式電気温水器の構成図
で、第2図は従来の貯湯式電気温水器の主要電気
回路図を示す。 FIG. 1 is a block diagram of a general hot water storage type electric water heater, and FIG. 2 is a main electrical circuit diagram of a conventional hot water storage type electric water heater.
これらの図において、1は貯湯タンク、2は給
水管、3は給湯管、4は出湯栓、5は発熱体、6
は自動温度調節器、7は電源、8は深夜電力用の
タイムスイツチで、その通電電力量帯は一般には
23時から翌朝の7時までの8時間である。 In these figures, 1 is a hot water storage tank, 2 is a water supply pipe, 3 is a hot water supply pipe, 4 is a hot water tap, 5 is a heating element, 6
is an automatic temperature controller, 7 is a power supply, and 8 is a time switch for late-night electricity, whose power consumption range is generally
It is 8 hours from 11pm to 7am the next morning.
次に上記構成よりなる従来例の動作を説明す
る。深夜電力の通電開始時刻になると、タイムス
イツチ8の接点が閉成して、発熱体5への通電が
開始される。そして貯湯タンク1内の湯温が85℃
になると、自動温度調節器6の接点が開成して発
熱体5への通電が停止される。その後は自動温度
調節器6の開閉により湯温が85℃に保たれ、この
ようにして毎朝貯湯量全部が85℃に沸き上つてい
る。 Next, the operation of the conventional example having the above configuration will be explained. When the time to start supplying late-night power comes, the contact of the time switch 8 is closed and the supply of electricity to the heating element 5 is started. And the water temperature in hot water storage tank 1 is 85℃.
When this happens, the contacts of the automatic temperature regulator 6 are opened and the power supply to the heating element 5 is stopped. Thereafter, the water temperature is maintained at 85°C by opening and closing the automatic temperature controller 6, and in this way, the entire stored hot water is heated to 85°C every morning.
このように、貯湯式電気温水器では貯湯効率を
高めるため、沸き上り温度をできる限り高温に設
定し、その設定温度に達すると加熱を停止する構
造となつている。しかし、使用者は高温湯のまま
使用するのではなく、水と混合して40〜45℃前後
の混合湯として使用する。その得られる混合湯量
を求める式は次の通りである。 In this way, in order to increase the efficiency of hot water storage, electric hot water heaters are designed to set the boiling temperature as high as possible, and stop heating when the set temperature is reached. However, users do not use high-temperature hot water as it is, but mix it with water and use it as a mixed hot water at around 40 to 45 degrees Celsius. The formula for determining the amount of mixed hot water obtained is as follows.
今、貯湯タンク容量をVt()、貯湯タンク1
内の沸き上り温度をTo(℃)、得ようとする混合
湯の温度をTm(℃)、混ぜ合わせる水の温度(給
水温度)をTi(℃)とすると、混合湯量Vm()
は、
Vm=Vt×To−Ti/Tm−Ti()
で表わせる。 Now, the hot water storage tank capacity is Vt (), hot water storage tank 1
If the boiling temperature in the water is To (℃), the temperature of the mixed water to be obtained is Tm (℃), and the temperature of the water to be mixed (water supply temperature) is Ti (℃), the mixed hot water volume Vm ()
can be expressed as Vm=Vt×To−Ti/Tm−Ti().
この算式において、給水温度Tiは季節によつ
て大きく変動する。東京では冬は5℃位から、夏
には27℃位にまで達する。このため、適温の混合
湯として得られる湯量は、冬期には少なく、夏期
には多いということになる。すなわち、沸き上り
温度Toを85℃として、給水温度Tiが5℃の時に
対して、27℃の時に得られる混合湯量Vmは1.6倍
にも達する。 In this formula, the water supply temperature Ti varies greatly depending on the season. In Tokyo, temperatures range from around 5°C in winter to around 27°C in summer. Therefore, the amount of hot water that can be obtained as mixed hot water at an appropriate temperature is small in the winter and large in the summer. That is, when the boiling temperature To is 85°C, the amount of mixed hot water Vm obtained when the water supply temperature Ti is 5°C is 1.6 times that obtained when the water supply temperature Ti is 27°C.
一方、湯の使用量は年間ほぼ一定か、むしろ夏
期の方が低温湯で使用するため、実質的な使用量
が低下するのが一般的であり、冬期よりも夏期の
残湯量が多くなる。さらに、使用者によつては家
族数の減少などによつて定格の1/2とか、2/3とか
しか使用せず、毎日多くの湯を残す使い方をす
る。 On the other hand, the amount of hot water used is almost constant throughout the year, or rather, the actual amount used is generally lower in the summer because hot water is used at a lower temperature, and the amount of hot water remaining in the summer is larger than in the winter. Furthermore, some users use only 1/2 or 2/3 of the rated amount due to a decrease in the number of family members, leaving a large amount of hot water available each day.
このように、給水温度が高かつたり残湯がある
と、沸き上りも早く、高温湯を長時間使用に供さ
ないで放置することになる。 In this way, if the water supply temperature is high and there is residual hot water, the hot water will boil quickly and the hot water will be left unused for a long time.
このように、不必要に高い温度の湯を長時間使
用に供さないで放置することは、貯湯タンク1か
らの自然放熱および配管内の滞留した温水の放熱
等による熱ロスが大きくなるという欠点があつ
た。 In this way, leaving unnecessarily high-temperature hot water unused for a long time has the disadvantage of increasing heat loss due to natural heat radiation from the hot water storage tank 1 and heat radiation from hot water stagnant in the pipes. It was hot.
この発明は、これらの欠点を解消しようとする
もので、翌日の湯の沸き上げパターンを、例えば
「入浴する」、「入浴しない」などと、あらかじめ
段階的に設定するための入力装置を備え、その設
定された沸き上げパターン毎に記憶装置に記憶さ
れた過去数日分の実績データをもとに、残湯量を
少なくした最適の沸き上げを行い、かつ、発熱体
への電力の供給を深夜電力の供給開始から供給終
了まで全時間に亘つて平準化して行うことによつ
て、熱ロスをできるだけ排除しようとするもので
ある。 This invention aims to eliminate these drawbacks, and includes an input device for setting the next day's water boiling pattern in advance, step by step, such as "bathing", "not bathing", etc. Based on the past several days' worth of actual data stored in the storage device for each set boiling pattern, the system performs optimal boiling with a reduced amount of remaining hot water, and also supplies power to the heating element late at night. This is intended to eliminate heat loss as much as possible by equalizing the entire time from the start of power supply to the end of power supply.
以下、この発明の一実施例を第3図の全体構成
図、第4図の制御フローチヤートに基づいて説明
する。 Hereinafter, one embodiment of the present invention will be described based on the overall configuration diagram in FIG. 3 and the control flowchart in FIG. 4.
第3図において、符号1〜5,7,8は第1
図、第2図と同じものを示す。9はサーミスタな
どの温度検出手段(以下温度センサという)で、
貯湯タンク1内に給水管2より給水された水の温
度を連続的に検知するとともに、沸き上りの湯の
温度も検知するものであり、貯湯タンク1の下部
に設けてある。なお、この温度センサ9は水の温
度と湯の温度をそれぞれ検出するよう別個に設け
てもよい。10は前記発熱体5への通電率を制御
するトライアツクなどの通電率制御素子で、後述
の制御部によつて制御される。11は前記した制
御部で、記憶装置12、演算装置13、通電率制
御装置14、通電制御装置15、および通電電力
量算出装置16からなる。17は入力装置であ
る。 In Fig. 3, symbols 1 to 5, 7, and 8 are the first
Figure 2 shows the same thing as Figure 2. 9 is a temperature detection means such as a thermistor (hereinafter referred to as a temperature sensor);
It continuously detects the temperature of water supplied into the hot water storage tank 1 from the water supply pipe 2, and also detects the temperature of boiling hot water, and is provided at the bottom of the hot water storage tank 1. Note that this temperature sensor 9 may be provided separately to detect the temperature of water and the temperature of hot water, respectively. Reference numeral 10 denotes an energization rate control element such as a triax for controlling the energization rate to the heating element 5, which is controlled by a control section to be described later. Reference numeral 11 denotes the above-mentioned control unit, which includes a storage device 12, an arithmetic unit 13, an energization rate control device 14, an energization control device 15, and an energization power amount calculation device 16. 17 is an input device.
入力装置17は、例えば「入浴する」とか、
「入浴しない」などの翌日の湯の沸き上げパター
ンをあらかじめ用意された沸き上げパターンの中
から選定するものであり、記憶装置12は、入力
装置17に入力された沸き上げパターン毎に通電
電力量算出装置16による通電電力量の過去数日
分の実績WGをデータとして記憶しておく。この
データは、例えば10日というように固定日数と
し、常に前日分の最新データが記憶されて最古の
データが消去されるようにする。 The input device 17 may be used to input, for example, "take a bath" or the like.
The next day's boiling pattern, such as "no bathing", is selected from pre-prepared boiling patterns, and the storage device 12 stores the amount of electricity applied for each boiling pattern input into the input device 17. The past several days' worth of energized power amount WG calculated by the calculation device 16 is stored as data. This data is set to a fixed number of days, such as 10 days, so that the latest data for the previous day is always stored and the oldest data is deleted.
演算装置13は、例えば記憶装置12からその
内に各パターン毎に分類されて記憶されているデ
ータ中(上記の例では10日間のうち)最大値
WGmaxを呼び出し、余裕率を見た定数C(例え
ば余裕率10%の場合は1.1となる)を乗じて、所
要通電電力量Ws(KWH)を
Ws=WGmax×C(KWH)
として算出する。 The arithmetic device 13 calculates, for example, the maximum value among the data stored in the storage device 12 classified into each pattern (within 10 days in the above example).
WGmax is called and multiplied by a constant C based on the margin rate (for example, 1.1 when the margin rate is 10%) to calculate the required energized power amount Ws (KWH) as Ws=WGmax×C(KWH).
また、発熱体5の通電容量Q(KW)を演算装
置13で算出する。すなわち、深夜電力供給時間
帯は8時間なので、
Q=Ws/8(KW)
となる。 Further, the current carrying capacity Q (KW) of the heating element 5 is calculated by the calculation device 13. In other words, since the late-night power supply period is 8 hours, Q = Ws/8 (KW).
演算装置13は、貯湯タンク容量Vt()、前
記所要通電電力量Ws(KWH)と、給水温度Ti
(℃)から、沸き上り温度To(℃)を下式から求
める。 The arithmetic unit 13 calculates the hot water storage tank capacity Vt (), the required energizing power amount Ws (KWH), and the water supply temperature Ti.
(°C), calculate the boiling temperature To (°C) using the formula below.
To=Ws×860/Vt+Ti
通電率制御装置14は、演算装置13で求めた
通電容量Q(KW)になるように発熱体5への通
電率を通電率制御素子10により制御する。これ
には例えばトライアツクを用い、そのゲートを位
相制御することにより行う。 To=Ws×860/Vt+Ti The energization rate control device 14 controls the energization rate to the heating element 5 using the energization rate control element 10 so that the energization capacity Q (KW) determined by the arithmetic unit 13 is achieved. This is done by using, for example, a triax and controlling the phase of its gate.
通電制御装置15は、通電率制御素子10のオ
フ(開)の制御を行うもので、温度センサ9が演
算装置13の求めた沸き上り温度Toを検知した
とき作動する。 The energization control device 15 controls the OFF (opening) of the energization rate control element 10, and is activated when the temperature sensor 9 detects the boiling temperature To determined by the arithmetic device 13.
通電電力量算出装置16は、通電が開始されて
から発熱体5がオフするまでの時間Hと通電容量
Q(KW)から通電電力量WG=H×Q(KWH)
を算出し、最新データとして記憶装置12へ入力
するものである。 The energized power amount calculation device 16 calculates the energized power amount WG=H×Q(KWH) from the time H from the start of energization until the heating element 5 is turned off and the energized capacity Q (KW).
is calculated and input into the storage device 12 as the latest data.
入力装置17は翌日の湯の沸き上げパターンを
入力するものである。例えば入浴日と非入浴日と
では使用湯量が大きく相違するので、これをあら
かじめパターン化して前日に入力できるようにし
ている。 The input device 17 is used to input the boiling water pattern for the next day. For example, the amount of hot water used on bathing days and non-bathing days differs greatly, so this can be made into a pattern in advance and inputted the day before.
次に第3図の実施例の動作について第4図を参
照して説明する。なお、第4図の(1)〜(13)は各ステ
ツプを表わす。 Next, the operation of the embodiment shown in FIG. 3 will be explained with reference to FIG. 4. Note that (1) to (13) in FIG. 4 represent each step.
スタートし(1)、深夜の、例えば23時になるとタ
イムスイツチ8がオンする(2)。まず、記憶装置1
2から入力装置17のパターン毎に分類記憶され
ている最新データのうち、該当パターンの最大の
通電電力量WGmaxを呼び出す(3)。 It starts (1), and at midnight, for example, 11pm, the time switch 8 is turned on (2). First, storage device 1
2, the maximum amount of energized power WGmax for the corresponding pattern is called out of the latest data stored in the input device 17 classified for each pattern (3).
次に、演算装置13において、WGmaxに余裕
率を見た定数Cを乗じて所要通電電力量Ws
(KWH)を求め、さらに、8で除算して通電容
量Q(KW)を算出する(4)。また、温度センサ9
によつて貯湯タンク1内の給水温度Tiを測定す
る(5)。さらに、演算装置13は、所要通電電力量
Ws(KWH)、給水温度Ti、貯湯タンク容量Vtと
から沸き上り温度Toを算出し(6)、あらかじめ算
出した通電容量Q(KW)が得られるよう発熱体
5への通電を開始する(7)。一方、温度センサ9に
よつて湯温がToになれば(8)、発熱体5への通電
をオフとし(9)、通電開始から通電停止までの時間
Hから通電電力量の実績値WG(KWH)を算出す
る(10)。そして、算出した実績値WG(KWH)を最
新のデータとして記憶装置12へ入力すると同時
に、今まで記憶されていたデータの中から最古の
データが消去されてデータを更新する(11)。 Next, in the arithmetic unit 13, WGmax is multiplied by a constant C based on the margin rate to calculate the required energized power amount Ws.
(KWH) and further divide by 8 to calculate current carrying capacity Q (KW) (4). In addition, the temperature sensor 9
Measure the water supply temperature Ti in the hot water storage tank 1 by (5). Furthermore, the arithmetic device 13
The boiling temperature To is calculated from Ws (KWH), the water supply temperature Ti, and the hot water storage tank capacity Vt (6), and energization to the heating element 5 is started so that the pre-calculated current carrying capacity Q (KW) is obtained (7) ). On the other hand, when the water temperature reaches To by the temperature sensor 9 (8), the power supply to the heating element 5 is turned off (9), and the actual value WG of the energized power amount is calculated from the time H from the start of energization to the stop of energization ( KWH) (10). Then, the calculated performance value WG (KWH) is input into the storage device 12 as the latest data, and at the same time, the oldest data from among the data stored so far is deleted to update the data (11).
さらに、深夜電力供給時間終了時刻、例えば7
時になると、タイムスイツチ8がオフとなり(12)、
ストツプとなる(13)。 Furthermore, the late-night power supply time end time, for example, 7
When the time comes, time switch 8 turns off (12),
Stop (13).
なお、上記の実施例では演算装置13での通電
容量Q(KW)の算出に、記憶装置12内のデー
タ中、最大のWGmaxを利用したが、この他、固
定日数中の平均を用いたり、他のデータを用いて
もよい。また、制御部11として中央処理装置
(CPU)を備えたマイクロコンピユータを用いる
ことができる。 In the above embodiment, the maximum WGmax of the data in the storage device 12 is used to calculate the current carrying capacity Q (KW) in the arithmetic unit 13, but in addition, the average over a fixed number of days may be used, Other data may also be used. Furthermore, a microcomputer equipped with a central processing unit (CPU) can be used as the control unit 11.
以上詳細に説明したように、この発明は入力装
置により使用者に湯の沸き上げパターンを入力さ
せ、その沸き上げパターン毎に記憶装置に過去の
実績として数日分の通電電力量の最新のデータを
記憶しておき、このデータに基づいて発熱体に通
電する所要通電電力量を決定するようにし、かつ
電力の供給を深夜電力供給時間帯の全体に亘つて
平準化して行うようにしたので、使用者の実状に
応じた湯量が毎日得られるので、入力装置のない
ものにくらべ、より残湯量が少なくなり、したが
つて、沸き上り後の放熱ロスが減少して維持費が
安くなるとともに、深夜電力負荷を平準化できる
利点を有する。 As explained in detail above, the present invention allows the user to input a water boiling pattern using an input device, and for each boiling pattern, the latest data of the amount of electricity supplied for several days is stored in the storage device as past results. is memorized and the required amount of electricity to be applied to the heating element is determined based on this data, and the power supply is leveled over the entire late night power supply time period. Since the amount of hot water that is available every day is based on the user's actual situation, the amount of remaining hot water is smaller compared to those without an input device, which reduces heat loss after boiling and reduces maintenance costs. It has the advantage of leveling out late-night power loads.
第1図は一般的な貯湯式電気温水器の構成図、
第2図は従来の貯湯式電気温水器における主要電
気回路図、第3図はこの発明の一実施例を示す全
体構成図、第4図は同じくその制御フローチヤー
トを示す。
図中、1は貯湯タンク、2は給水管、3は給湯
管、4は出湯栓、5は発熱体、7は電源、8はタ
イムスイツチ、9は温度センサ、10は通電率制
御素子、11は制御部、12は記憶装置、13は
演算装置、14は通電率制御装置、15は通電制
御装置、16は通電電力量算出装置、17は入力
装置である。なお、各図中の同一符号は同一また
は相当部分を示す。
Figure 1 is a configuration diagram of a typical hot water storage type electric water heater.
FIG. 2 is a main electrical circuit diagram of a conventional hot water storage type electric water heater, FIG. 3 is an overall configuration diagram showing an embodiment of the present invention, and FIG. 4 is a control flow chart thereof. In the figure, 1 is a hot water storage tank, 2 is a water supply pipe, 3 is a hot water supply pipe, 4 is a hot water tap, 5 is a heating element, 7 is a power supply, 8 is a time switch, 9 is a temperature sensor, 10 is an energization rate control element, 11 12 is a storage device, 13 is an arithmetic device, 14 is an energization rate control device, 15 is an energization control device, 16 is an energization power amount calculation device, and 17 is an input device. Note that the same reference numerals in each figure indicate the same or corresponding parts.
Claims (1)
ク内の水を加熱する電気温水器において、前記貯
湯タンク内への給水温度と沸き上り温度を検出す
る温度検出手段と、翌日の湯の沸き上げパターン
を入力する入力装置と、この入力装置からの入力
パターン毎に過去数日分の通電電力量の実績をデ
ータとして記憶しておく記憶装置と、前記データ
に基づいて前記発熱体への所要通電電力量を算出
するとともに、前記給水温度、通電電力量、貯湯
タンク容量から沸き上り湯温を算出する演算装置
と、深夜電力の供給開始から供給終了の間に前記
発熱体へ供給する電力量が前記演算装置で求めた
所要通電電力量に一致するように前記発熱体への
通電率を制御する通電率制御装置と、前記温度検
出手段で検出した沸き上り温度が前記演算装置で
算出した沸き上り温度に達した時に前記発熱体へ
の通電を停止させる通電制御装置と、前記発熱体
への通電電力量の実績を算出してその値を最新の
データとして前記記憶装置へ入力し、前記記憶装
置に記憶されたデータの中から最古のデータを消
去させてデータの更新を行わせる通電電力量算出
装置とを具備してなる貯湯式電気温水器の制御装
置。1. In an electric water heater that heats water in a hot water storage tank by energizing a heating element using late-night electricity, a temperature detection means for detecting the temperature of water supplied to the hot water storage tank and the boiling temperature, and a temperature detection means for detecting the boiling temperature of the water the next day. an input device for inputting an increase pattern; a storage device for storing the past few days' worth of energized power as data for each input pattern from the input device; an arithmetic device that calculates the amount of energized electricity and also calculates the boiling water temperature from the water supply temperature, the energized amount of electricity, and the hot water storage tank capacity; and the amount of electricity that is supplied to the heating element between the start and end of supply of late-night electricity. an energization rate control device that controls the energization rate to the heating element so that the amount of electricity matches the required amount of energization power calculated by the arithmetic device; an energization control device that stops energizing the heating element when a rising temperature is reached; and an energization control device that calculates the actual amount of electricity energized to the heating element and inputs the value as the latest data to the storage device; A control device for a hot water storage type electric water heater, comprising a energizing power amount calculation device that causes the device to delete the oldest data from among the data stored in the device and update the data.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58140717A JPS6030929A (en) | 1983-08-01 | 1983-08-01 | Control device for hot water storage type electric water heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58140717A JPS6030929A (en) | 1983-08-01 | 1983-08-01 | Control device for hot water storage type electric water heater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6030929A JPS6030929A (en) | 1985-02-16 |
JPS647295B2 true JPS647295B2 (en) | 1989-02-08 |
Family
ID=15275068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58140717A Granted JPS6030929A (en) | 1983-08-01 | 1983-08-01 | Control device for hot water storage type electric water heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6030929A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62175380A (en) * | 1986-01-28 | 1987-08-01 | Fuji Photo Film Co Ltd | Stacker for storage-type phosphor sheet |
JPH0745296B2 (en) * | 1987-03-20 | 1995-05-17 | 富士写真フイルム株式会社 | Stacker for stimulable phosphor sheet |
JPH0745295B2 (en) * | 1987-03-20 | 1995-05-17 | 富士写真フイルム株式会社 | Stacker for stimulable phosphor sheet |
CN104729098A (en) * | 2013-12-24 | 2015-06-24 | 罗伟强 | Control device of intelligent water heater |
-
1983
- 1983-08-01 JP JP58140717A patent/JPS6030929A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6030929A (en) | 1985-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS647294B2 (en) | ||
JPS647295B2 (en) | ||
JPS6318104B2 (en) | ||
JPH0213222B2 (en) | ||
JPS647302B2 (en) | ||
JPH028224B2 (en) | ||
JPH0320659B2 (en) | ||
JPH05157354A (en) | Electric hot water supply apparatus | |
JPH026980B2 (en) | ||
JPH028225B2 (en) | ||
JPS647297B2 (en) | ||
JPH026978B2 (en) | ||
JPS647299B2 (en) | ||
JPS6316666B2 (en) | ||
JPH026979B2 (en) | ||
JPS647296B2 (en) | ||
JPS647300B2 (en) | ||
JPS647298B2 (en) | ||
JPH026981B2 (en) | ||
JPS647301B2 (en) | ||
JPS6316665B2 (en) | ||
JPS59183243A (en) | Control device for hot water storage type electrical water heater | |
JPS6365864B2 (en) | ||
JPS647292B2 (en) | ||
JPH0322551B2 (en) |