JPS647011B2 - - Google Patents

Info

Publication number
JPS647011B2
JPS647011B2 JP57139854A JP13985482A JPS647011B2 JP S647011 B2 JPS647011 B2 JP S647011B2 JP 57139854 A JP57139854 A JP 57139854A JP 13985482 A JP13985482 A JP 13985482A JP S647011 B2 JPS647011 B2 JP S647011B2
Authority
JP
Japan
Prior art keywords
boric acid
acid
seawater
mineral
recovering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57139854A
Other languages
Japanese (ja)
Other versions
JPS5930717A (en
Inventor
Masatoshi Yamamoto
Akira Kaneyasu
Shinichi Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Chemical Industries Co Ltd
Original Assignee
Ube Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Chemical Industries Co Ltd filed Critical Ube Chemical Industries Co Ltd
Priority to JP57139854A priority Critical patent/JPS5930717A/en
Publication of JPS5930717A publication Critical patent/JPS5930717A/en
Publication of JPS647011B2 publication Critical patent/JPS647011B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳现な説明】 本発明は、海氎からホり酞を回収する方法に関
するものである。曎に詳しくは、本発明は、海氎
から高玔床のホり酞を回収する方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering boric acid from seawater. More specifically, the present invention relates to a method for recovering high purity boric acid from seawater.

近幎にな぀おホり玠およびその化合物は、ニナ
ヌセラミツクスの成分ずしお、あるいは䞭性子の
遮蔜材、鉄鋌などの金属の物性改質剀などずしお
泚目を济びおおり、それに応じお需芁も高た぀お
いる。そのようなホり玠化合物は、䞀般に、ホり
砂を原料ずしお補造されおいるが、そのホり砂の
存圚量に制限があるこず、そしおホり砂の存圚す
る地域が限定されおいるこずなどの理由により倚
量のホり砂を安定に入手する点に䞍安がある。
In recent years, boron and its compounds have attracted attention as components of neuceramics, neutron shielding materials, and physical property modifiers for metals such as steel, and demand is increasing accordingly. Such boron compounds are generally manufactured using borax as a raw material, but due to the limited amount of borax and the limited areas where borax exists, large quantities are produced. There are concerns about obtaining a stable supply of borax.

本発明は、海氎䞭に䞻ずしおホり酞の圢態にお
含有されおいるホり玠に着目し、そのホり酞を経
枈性の高い方法により高玔床のホり酞ずしお分離
回収する方法を提䟛するこずを目的ずするもので
ある。
The present invention focuses on boron, which is mainly contained in the form of boric acid in seawater, and aims to provide a method for separating and recovering boric acid as high-purity boric acid using a highly economical method. It is something to do.

海氎䞭には、塩化ナトリりムやマグネシりム塩
が倚量存圚しおいるが、そのほかにもホり玠が、
䞻ずしおホり酞の圢で玄15〜20ppmホり酞
H3BO3に換算した量含有されおいるこずは以
前より知られおいる。しかし、たずえば、海氎䞭
のマグネシりム塩からマグネシアクリンカを補造
する方法においおは、このホり酞はクリンカの物
性を䜎䞋させる点においお有害であるずされおい
る。埓぀お、このホり酞を陀去するために海氎を
氎酞化マグネシりムず接觊させおホり酞をその氎
酞化マグネシりムに吞着させるこずにより海氎䞭
のホり酞含有量を䜎䞋させたのち、目的のマグネ
シアクリンカを補造する方法も提案されおいる。
In seawater, there are large amounts of sodium chloride and magnesium salts, but also boron,
Approximately 15-20 ppm, mainly in the form of boric acid (boric acid:
It has been known for some time that the amount of H 3 BO 3 contained in However, for example, in a method for producing magnesia clinker from magnesium salt in seawater, boric acid is said to be harmful in that it reduces the physical properties of clinker. Therefore, in order to remove this boric acid, the boric acid content in the seawater is reduced by contacting seawater with magnesium hydroxide and adsorbing the boric acid to the magnesium hydroxide, and then the desired magnesia clinker is extracted. A manufacturing method has also been proposed.

本発明は、䞊蚘のように埓来においおは奜たし
くない䞍玔物ずしお排陀されおきた海氎䞭のホり
酞を効率良い方法により分離回収しお、倚くの有
甚な甚途が明らかにされおいる各皮のホり玠化合
物のホり玠源ずなる高玔床のホり酞を埗るこずを
目的ずするものである。
The present invention uses an efficient method to separate and recover boric acid in seawater, which has conventionally been eliminated as an undesirable impurity, and to produce various boron compounds that have been found to have many useful uses. The purpose is to obtain highly pure boric acid as a boron source.

すなわち本発明は、実質的に、 (1) 海氎のPH倀を玄〜10に調敎し、その海氎の
二酞化炭玠含有量を40ppm以䞋ずする工皋 (2) 䞊蚘の凊理を行な぀た海氎のPH倀を玄〜10
に維持しながら、その固䜓埮粒子状成分含有量
を10ppm以䞋ずする工皋 (3) 䞊蚘の凊理を行な぀た海氎をホり酞吞着性む
オン亀換暹脂ず接觊させるこずにより、海氎に
含有されおいるホり酞を該むオン亀換暹脂に吞
着させる工皋 (4) 該むオン亀換暹脂にホり酞を含有する鉱酞を
接觊させるこずにより、吞着されたホり酞を脱
着させる工皋そしお、 (5) 脱着されたホり酞を含有する鉱酞から、そこ
に含有されおいるホり酞の乃至を
分離回収し、同時にホり酞含有量が枛少した鉱
酞を回収する工皋 (6) 分離回収したホり酞を、ホり酞含有氎性溶液
に溶解する工皋 (7) 埗られたホり酞溶液をアルカリ化剀ず接觊さ
せるこずにより、該ホり酞溶液に含有されおい
る鉱酞を該アルカリ化剀ず反応させる工皋 (8) 鉱酞ずアルカリ化剀ずの反応生成物を該ホり
酞溶液から分離陀去する工皋そしお、 (9) 該ホり酞溶液からホり酞の䞀郚を分離回収
し、同時にホり酞含有氎性溶液を回収する工皋 からなり、か぀、䞊蚘の(5)の工皋で回収したホり
酞含有量が枛少した鉱酞の少なくずも䞀郚を、䞊
蚘(4)の工皋におけるホり酞を含有する鉱酞の䞀郚
もしくは党郚ずしお䜿甚するこず、そしお、䞊蚘
の(9)の工皋で回収したホり酞含有氎性溶液の少な
くずも䞀郚を、䞊蚘(6)の工皋におけるホり酞含有
氎性溶液の䞀郚もしくは党郚ずしお䜿甚するこず
を特城ずする海氎からのホり酞回収方法からなる
ものである。
That is, the present invention essentially comprises: (1) adjusting the pH value of seawater to approximately 8 to 10 and reducing the carbon dioxide content of the seawater to 40 ppm or less; (2) seawater subjected to the above treatment; The pH value of about 8-10
(3) By contacting the seawater that has undergone the above treatment with a boric acid adsorbing ion exchange resin, the content of solid particulate components is reduced to 10 ppm or less while maintaining the a step of adsorbing boric acid on the ion exchange resin; (4) a step of desorbing the adsorbed boric acid by contacting the ion exchange resin with a mineral acid containing boric acid; and (5) a step of desorbing the adsorbed boric acid. (6) Separation process of separating and recovering 1/5 to 3/5 of the boric acid contained therein from the mineral acid containing boric acid, and at the same time recovering the mineral acid with reduced boric acid content; (6) Separation A step of dissolving the recovered boric acid in an aqueous solution containing boric acid; (7) Bringing the obtained boric acid solution into contact with an alkalizing agent to alkalize the mineral acid contained in the boric acid solution. (8) separating and removing the reaction product of the mineral acid and the alkalizing agent from the boric acid solution; and (9) separating and recovering a portion of boric acid from the boric acid solution. , a step of simultaneously collecting a boric acid-containing aqueous solution, and at least a portion of the mineral acid with reduced boric acid content recovered in step (5) above is converted into a boric acid solution in step (4) above. and at least a part of the boric acid-containing aqueous solution recovered in step (9) above as a mineral acid containing boric acid in step (6) above. This method consists of a method for recovering boric acid from seawater, which is characterized in that it is used as part or all of boric acid.

なお、䞊蚘の(4)の工皋ず(5)の工皋ずの間には、
必芁に応じお、(4)の工皋を経たむオン亀換暹脂に
ホり酞を実質的に含有しない鉱酞を接觊させるこ
ずにより、未脱着のホり酞の倧郚分を脱着させる
工皋を挿入するこずもできる。
In addition, between the steps (4) and (5) above,
If necessary, a step can be inserted to desorb most of the undesorbed boric acid by contacting the ion exchange resin that has undergone step (4) with a mineral acid that does not substantially contain boric acid. .

次に本発明を詳しく説明する。 Next, the present invention will be explained in detail.

本発明は、海氎に含有されおいるホり酞の分離
回収を、耇数の工皋を組合せお利甚するこずによ
り、経枈的に充分実斜し埗るように効率良く行な
うこずを可胜ずしたものである。
The present invention makes it possible to separate and recover boric acid contained in seawater efficiently and economically by using a combination of a plurality of steps.

本発明の実質的な第䞀工皋は、海氎のPH倀を玄
〜10に調敎し、その海氎の二酞化炭玠含有量を
40ppm以䞋ずする工皋からなる。すなわち海氎䞭
には通垞、玄70〜100ppmの二酞化炭玠が溶存し
おいるが、海氎ずホり酞吞着性むオン亀換暹脂ず
を接觊させおホり酞を該むオン亀換暹脂に吞着さ
せる工皋においお、その吞着が実甚䞊意味のある
高いレベルで進行するためには、予め海氎䞭の二
酞化炭玠の含有量を40ppm以䞋奜たしくは
30ppm以䞋、特に奜たしくは20ppm以䞋に䜎䞋
させおおく必芁があり、たた塩化ナトリりムある
いはその他の各皮の塩、化合物などを含む海氎に
含たれるホり酞を効率良くむオン亀換暹脂に吞着
させるためには、その海氎のPHは玄〜10に調敎
する必芁がある。
The practical first step of the present invention is to adjust the pH value of seawater to about 8 to 10 and reduce the carbon dioxide content of the seawater.
Consists of a process to reduce the concentration to 40ppm or less. In other words, approximately 70 to 100 ppm of carbon dioxide is normally dissolved in seawater, but in the process of bringing seawater into contact with a boric acid adsorbing ion exchange resin and adsorbing boric acid onto the ion exchange resin, the adsorption In order for carbon dioxide to proceed at a practically meaningful level, the content of carbon dioxide in seawater must be reduced to 40 ppm or less (preferably
30 ppm or less, particularly preferably 20 ppm or less), and in order to efficiently adsorb boric acid contained in seawater containing sodium chloride or other various salts and compounds to the ion exchange resin. , the pH of the seawater needs to be adjusted to about 8-10.

海氎のPHを䞊蚘の範囲に調敎し、か぀二酞化炭
玠を所定量陀去する方法ずしおは、海氎に石灰乳
などのアルカリを添加するこずにより、PHを所定
の範囲に調敎しながら、海氎に含たれおいる二酞
化炭玠を炭酞カルシりムなどの氎䞍溶性塩に倉換
しお沈柱陀去する方法を利甚するこずができる。
One way to adjust the PH of seawater to the above range and remove a predetermined amount of carbon dioxide is to add an alkali such as milk of lime to the seawater. It is possible to use a method of converting the carbon dioxide present into a water-insoluble salt such as calcium carbonate and removing it by precipitation.

本発明の実質的な第二工皋は、䞊蚘の凊理を行
な぀た海氎のPH倀を玄〜10に維持しながら、そ
の海氎の固䜓埮粒子状成分含有量を10ppm以䞋
奜たしくは、5ppm以䞋ずする工皋である。
The substantive second step of the present invention is to reduce the solid particulate component content of the seawater to 10 ppm or less (preferably 5 ppm or less) while maintaining the PH value of the seawater that has undergone the above treatment at about 8 to 10. ).

第䞀工皋の凊理を行な぀た海氎には、通垞は、
二酞化硅玠、氎酞化マグネシりム、炭酞カルシり
ムなどからなる固䜓埮粒子状成分が混入しおく
る。これらの固䜓埮粒子状成分は、のちの第䞉工
皋においお、むオン亀換暹脂の衚面に付着した堎
合には、そのホり酞吞着胜力の䜎䞋をもたらし、
たた、海氎をむオン亀換暹脂が充填されたカラム
を通過させるこずによりホり酞の吞着を行なう方
法を利甚する堎合には、固䜓埮粒子状成分がカラ
ムの海氎通過通路を塞ぐなどの障害を匕き起すこ
ずもある。たた、むオン亀換暹脂に付着した固䜓
埮粒子状成分は、のちに鉱酞を甚いおホり酞を脱
着する工皋においお、その鉱酞に溶解し目的物の
ホり酞䞭に混入するため、ホり酞の玔床を䜎䞋さ
せるこずにもなる。埓぀お、このような皮々の障
害を予め防止するために、この工皋にお固䜓埮粒
子状成分の含有量を10ppm以䞋に䜎䞋させる必芁
がある。固䜓埮粒子状成分が海氎に、この䞊限倀
10ppmを越える量で含たれおいる堎合には、
前述のようなむオン亀換暹脂によるホり酞吞着操
䜜に支障をきたし、たたのちに埗られるホり酞の
玔床も実甚䞊においお奜たしくないレベルずな
る。
The seawater that has been treated in the first step usually contains
Solid particulate components such as silicon dioxide, magnesium hydroxide, and calcium carbonate are mixed in. When these solid particulate components adhere to the surface of the ion exchange resin in the third step, they cause a decrease in the boric acid adsorption ability.
In addition, when using a method of adsorbing boric acid by passing seawater through a column filled with ion exchange resin, solid particulate components may cause problems such as blocking the seawater passage in the column. There is also. In addition, the solid particulate components attached to the ion exchange resin are dissolved in the mineral acid and mixed into the target boric acid in the process of desorbing boric acid using mineral acid. It will also reduce the Therefore, in order to prevent such various problems in advance, it is necessary to reduce the content of solid particulate components to 10 ppm or less in this step. If solid particulate components are contained in seawater in an amount exceeding this upper limit (10 ppm),
This will interfere with the operation of adsorbing boric acid using the ion exchange resin as described above, and the purity of the boric acid obtained later will be at a level that is undesirable for practical use.

この第二工皋は、たずえば、第䞀工皋を経た海
氎を、適圓な濟過材を通過させたのち、次の第䞉
工皋に䟛絊するような方法により実斜する。その
ような目的に甚いる濟過材の䟋ずしおは、アンス
ラサむトず粒子埄の異なる砂ずの組合せなどを挙
げるこずができる。
This second step is carried out, for example, by a method in which the seawater that has undergone the first step is passed through a suitable filter material and then supplied to the next third step. Examples of filter media used for such purposes include combinations of anthracite and sand of different particle sizes.

本発明の実質的な第䞉工皋は、䞊蚘のようにし
お第二工皋を経由した海氎をホり酞吞着性むオン
亀換暹脂ず接觊させるこずにより、海氎に含有さ
れおいるホり酞を該むオン亀換暹脂に吞着させる
工皋からなる。
The substantial third step of the present invention is to contact the seawater that has passed through the second step as described above with a boric acid adsorbing ion exchange resin to remove boric acid contained in the seawater from the ion exchange resin. It consists of a process of adsorption to.

ホり酞を吞着するこずのできるむオン亀換暹脂
ずしおは各皮のものが知られおいるが、本発明に
おいおは、ホり酞を遞択的に吞着するこずができ
るポリオヌル基含有のむオン亀換暹脂を甚いるこ
ずが望たしい。そのようなホり酞遞択吞着性のむ
オン亀換暹脂の䟋ずしおは、クロルメチル化スチ
レンゞビニルベンれンず―メチルグルカミン
ずの共重合䜓であるアンバラむトXE―243、アン
バラむトIRA―743、およびダむダむオンSAN―
などを挙げるこずができる。
Various types of ion exchange resins that can adsorb boric acid are known, but in the present invention, it is possible to use an ion exchange resin containing a polyol group that can selectively adsorb boric acid. desirable. Examples of such ion exchange resins that selectively adsorb boric acid include Amberlyte XE-243, Amberlyte IRA-743, which is a copolymer of chloromethylated styrene/divinylbenzene and N-methylglucamine, and Dia AEON SAN―
1 etc. can be mentioned.

この第䞉工皋は、たずえば、むオン亀換暹脂が
充填されおいるカラムに第二工皋を経た海氎を導
入し、通過させる方法、むオン亀換暹脂を第二工
皋を経た海氎に投入、撹拌する方法などを挙げる
こずができる。本発明の工業的な利甚のためには
カラムを䜿甚する前者の方法が奜たしい。
This third step includes, for example, introducing the seawater that has gone through the second step into a column filled with ion exchange resin and allowing it to pass through, or introducing the ion exchange resin into the seawater that has gone through the second step and stirring it. can be mentioned. For industrial application of the present invention, the former method using a column is preferred.

本発明の実質的な第四工皋ず第五工皋ずはそれ
ぞれ、䞊蚘のようにしおホり酞を吞着したむオン
亀換暹脂に、ホり酞を含有する鉱酞を、そしお次
に必芁によりホり酞を含有しない鉱酞を、接觊さ
せるこずにより、吞着されたホり酞をむオン亀換
暹脂から脱着させる工皋ず、脱着されたホり酞を
含有する鉱酞から、含有されおいるホり酞の
乃至を分離回収し、同時にホり酞含有量
が枛少した鉱酞を回収する工皋ずからなる。
The substantial fourth and fifth steps of the present invention are to apply a mineral acid containing boric acid to the ion exchange resin that has adsorbed boric acid as described above, and then, if necessary, add boric acid to the ion exchange resin. a step of desorbing the adsorbed boric acid from the ion exchange resin by contacting with a mineral acid that does not contain the boric acid;
It consists of the steps of separating and recovering 5 to 3/5 of the mineral acid and, at the same time, recovering the mineral acid with reduced boric acid content.

䞊蚘の第四工皋においおむオン亀換暹脂からの
ホり酞の脱着のために䜿甚するホり酞を含有する
鉱酞は、第五工皋においお回収したホり酞含有量
が枛少した鉱酞の党郚もしくは䞀郚であるか、あ
るいはそれらの鉱酞ず新芏未䜿甚の鉱酞もし
くは垌釈氎ずの混合物である。
The mineral acid containing boric acid used for the desorption of boric acid from the ion exchange resin in the fourth step above is all or part of the mineral acid with reduced boric acid content recovered in the fifth step. or a mixture of these mineral acids with fresh (unused) mineral acids or diluted water.

第四工皋においおホり酞の脱着のためのみの目
的においおは、鉱酞ずしお新芏の鉱酞のみを甚い
るこずも可胜である。しかしながら、そのような
堎合、脱着液から効率䜿甚する鉱酞圓りの効
率良くホり酞を分離回収するこずが困難ずな
り、たた鉱酞から高い効率でホり酞を析出分離す
るためには、それに芁する゚ネルギヌ量および時
間は過倧な皋床ずなる。
For the sole purpose of desorbing boric acid in the fourth step, it is also possible to use only the new mineral acid as the mineral acid. However, in such a case, it becomes difficult to separate and recover boric acid from the desorption solution with good efficiency (efficiency per mineral acid used), and in order to precipitate and separate boric acid from mineral acid with high efficiency, it is necessary to The amount of energy and time required would be excessive.

これに察しお、脱着液ずしおの鉱酞を埪環䜿甚
し、か぀、その埪環䜿甚する鉱酞䞭のホり酞含有
量が䞀定の範囲、すなわち、むオン亀換暹脂から
溶離した鉱酞のホり酞含有量の乃至
奜たしくは乃至に含たれるよう
に調敎するこずにより、むオン亀換暹脂のホり酞
吞着胜およびその脱着性に悪圱響を䞎えるこずな
く、たた新たに補充する鉱酞の量を比范的少量に
抑えながら、むオン亀換暹脂に吞着されおいたホ
り酞を効率良く脱着するこずができ、か぀、その
ホり酞含有脱着液からのホり酞の分離も容易ずな
るこずがわか぀た。
On the other hand, the mineral acid used as a desorption liquid is recycled, and the boric acid content in the recycled mineral acid is within a certain range, that is, the boric acid content of the mineral acid eluted from the ion exchange resin. 2/5 to 4/5 of
By adjusting the amount of mineral acid (preferably 2/4 to 3/4), the amount of mineral acid to be newly replenished can be controlled without adversely affecting the boric acid adsorption capacity of the ion exchange resin and its desorption performance. It has been found that the boric acid adsorbed on the ion exchange resin can be efficiently desorbed while keeping the amount to a relatively small amount, and that the boric acid can be easily separated from the boric acid-containing desorption solution.

本発明においお脱着液に甚いる鉱酞ずしおは、
硫酞もしくは塩酞などのような工業的に利甚され
おいる鉱酞から遞択するのが奜たしい。
The mineral acids used in the desorption solution in the present invention include:
Preferably, it is selected from industrially used mineral acids such as sulfuric acid or hydrochloric acid.

第四工皋におけるむオン亀換暹脂からのホり酞
の脱着のための操䜜ずしおは、むオン亀換暹脂に
脱着液を接觊させる方法がずられる。たずえば、
むオン亀換暹脂をカラムに詰めお䜿甚しおいる堎
合には、カラムの䞊郚から脱着液を流䞋させるよ
うな䞀般的な方法を利甚すればよい。
The operation for desorbing boric acid from the ion exchange resin in the fourth step involves bringing a desorption liquid into contact with the ion exchange resin. for example,
When the ion exchange resin is packed in a column and used, a general method such as allowing the desorption liquid to flow down from the top of the column may be used.

さらに具䜓的に蚀えば、第䞉工皋においおアル
カリ性の海氎を通過させおホり酞吞着を行な぀た
むオン亀換暹脂に、先ず氎を通過させおアルカリ
分を陀去し、次にホり酞を飜和溶解床より少ない
量で含有する硫酞などの鉱酞通垞は0.5〜芏
定、奜たしくは〜芏定の濃床のものをむオ
ン亀換暹脂カラムに導入、流䞋させる。そしお必
芁により、次に新芏の鉱酞などのようにホり酞を
含有しない鉱酞を同様にむオン亀換暹脂カラムに
流䞋させる。むオン亀換暹脂カラムから脱着され
たホり酞を含有する脱着液は、次に第五工皋にお
けるホり酞の分離回収凊理にかけられる。
More specifically, in the third step, alkaline seawater was passed through the ion exchange resin that adsorbed boric acid. Water was first passed through the resin to remove the alkaline content, and then boric acid was absorbed to lower the saturated solubility. A mineral acid such as sulfuric acid contained in a small amount (usually at a concentration of 0.5 to 5N, preferably 1 to 3N) is introduced into an ion exchange resin column and allowed to flow down. Then, if necessary, a mineral acid that does not contain boric acid, such as a new mineral acid, is similarly allowed to flow down the ion exchange resin column. The desorption solution containing boric acid desorbed from the ion exchange resin column is then subjected to boric acid separation and recovery treatment in the fifth step.

䞀方、䞊蚘のようにしお、吞着しおいたホり酞
の倧郚分が脱着されたむオン亀換暹脂は氎などで
掗浄しお残りのホり酞の郚分的回収および酞分の
陀去を行な぀たのち、あらためお海氎䞭のホり酞
吞着のために再䜿甚される。
On the other hand, the ion exchange resin from which most of the adsorbed boric acid has been desorbed as described above is washed with water to partially recover the remaining boric acid and remove the acid content. It will be reused to adsorb boric acid in seawater.

本発明における第五工皋、すなわち、脱着され
たホり酞を含有する鉱酞脱着液から、そこに
含有されおいるホり酞の乃至奜た
しくは乃至を分離し、同時にホり
酞含有量が枛少した鉱酞を回収する工皋は、第四
工皋においお埗られたホり酞含有脱着液から溶媒
鉱酞の䞀郚を陀去するこずによりホり酞を析
出させる方法濃瞮法、あるいはホり酞含有脱
着液を冷华しおホり酞を析出させる方法冷华
法などを利甚しお実斜する。なお、この濃瞮法
ず冷华法ずは組合せお利甚するこずが奜たしい。
The fifth step in the present invention is to extract 1/5 to 3/5 (preferably 1/4 to 2/5) of the boric acid contained therein from the mineral acid (desorption liquid) containing the desorbed boric acid. 4) and at the same time recovering the mineral acid with reduced boric acid content, by removing a part of the solvent (mineral acid) from the boric acid-containing desorption solution obtained in the fourth step, This is carried out using a method in which boric acid is precipitated (concentration method), or a method in which boric acid is precipitated by cooling a desorption solution containing boric acid (cooling method). Note that it is preferable to use the concentration method and the cooling method in combination.

析出したホり酞は、次に濟過などの方法を利甚
しお分離し、その濟液脱着したホり酞の䞀郚を
含有する鉱酞は、必芁により、鉱酞の補充もし
くは氎による垌釈などを行な぀たのち、前蚘の第
四工皋における脱着液ずしお甚いる。
The precipitated boric acid is then separated using methods such as filtration, and the filtrate (mineral acid containing a portion of the desorbed boric acid) is refilled with mineral acid or diluted with water, if necessary. After this, it is used as a desorption liquid in the fourth step.

第五工皋においお分離回収されたホり酞は通垞
はさらさらした板状結晶からなる粉末であり、前
述の各操䜜を経由しおきたものであるため、その
玔床は䞀般に、たずえば玄85以䞊也燥物換
算ずなる。
The boric acid separated and recovered in the fifth step is usually a powder consisting of free-flowing plate-like crystals and has been passed through each of the operations described above, so its purity is generally about 85% or more (dry product). conversion).

第五工皋においお分離回収されたホり酞は、次
に高玔床化のための粟補工皋にかけられる。すな
わち、ここで埗られたホり酞は鉱酞を䞻成分ずす
る䞍玔物が含たれおおり、このホり酞を第六工皋
以䞋の粟補工皋にかけ、これらの䞍玔物を分離陀
去するこずによりホり酞は曎に高玔床にお回収す
るこずができる。
The boric acid separated and recovered in the fifth step is then subjected to a purification step for high purity. In other words, the boric acid obtained here contains impurities mainly composed of mineral acids, and by subjecting this boric acid to the purification steps from the sixth step onwards to separate and remove these impurities, the boric acid can be further purified. It can be recovered with high purity.

第六工皋は、分離回収したホり酞を、ホり酞含
有氎性溶液に溶解する工皋である。ここで䜿甚す
るホり酞含有氎性溶液ずしおは、のちに蚘茉する
第九工皋においお回収されるホり酞含有氎性溶液
の党郚もしくは䞀郚、あるいは、該ホり酞含有氎
性溶液に氎による垌釈、もしくはPH調敎などの凊
理を斜したものを甚いる。この工皋においお、ホ
り酞は通垞、加枩䞋におホり酞含有氎性溶液に溶
解させる。
The sixth step is a step of dissolving the separated and recovered boric acid in an aqueous solution containing boric acid. The boric acid-containing aqueous solution used here is all or part of the boric acid-containing aqueous solution recovered in the ninth step described later, or dilution of the boric acid-containing aqueous solution with water, or pH adjustment. Use the one that has been treated as such. In this step, boric acid is usually dissolved in a boric acid-containing aqueous solution under heating.

第䞃工皋は、第六工皋で埗られたホり酞溶液を
アルカリ化剀ず接觊させるこずにより、該ホり酞
溶液に含有されおいる硫酞、塩酞などの鉱酞を該
アルカリ化剀ず反応させる工皋である。ここで甚
いるアルカリ化剀の䟋ずしおは、カルシりム、バ
リりムなどのアルカリ土類金属の氎酞化物および
酞化物を挙げるこずができ、特に氎酞化カルシり
ムが奜たしい。アルカリ化剀は、アルカリ化剀の
添加埌のホり酞溶液のPHが玄2.5〜の範囲の倀
ずなるような量で添加するこずが奜たしい。アル
カリ化剀の添加量が少なすぎる堎合にはホり酞溶
液に混入しおいる鉱酞および鉄分などの䞍玔物の
陀去が䞍充分ずなり、本発明の目的の高玔床ホり
酞の取埗が困難になりやすい。䞀方、ホり酞溶液
のPH倀がを越えるような量でアルカリ化剀を添
加した堎合には、そのアルカリ化剀が、最終的に
埗られるホり酞に混入しやすくなるため高玔床の
ホり酞が埗られにくくなる。
The seventh step is a step in which mineral acids such as sulfuric acid and hydrochloric acid contained in the boric acid solution are reacted with the alkalizing agent by bringing the boric acid solution obtained in the sixth step into contact with the alkalizing agent. It is. Examples of the alkalizing agent used here include hydroxides and oxides of alkaline earth metals such as calcium and barium, with calcium hydroxide being particularly preferred. The alkalizing agent is preferably added in an amount such that the pH of the boric acid solution after addition of the alkalizing agent is in the range of about 2.5 to 5. If the amount of the alkalizing agent added is too small, impurities such as mineral acids and iron contained in the boric acid solution will not be removed sufficiently, making it difficult to obtain the high purity boric acid that is the objective of the present invention. . On the other hand, if an alkalizing agent is added in such an amount that the PH value of the boric acid solution exceeds 5, the alkalizing agent will easily be mixed into the final boric acid, so high purity boric acid becomes difficult to obtain.

第八工皋は、䞊蚘の反応により生成した鉱酞ず
アルカリ化剀ずの反応生成物を、ホり酞溶液から
分離陀去する工皋である。たずえば、第四工皋に
おける鉱酞ずしお硫酞を甚い、か぀第䞃工皋にお
いおアルカリ化剀ずしおカルシりムなどのアルカ
リ土類金属の氎酞化物および酞化物を甚いた堎合
には、そのアルカリ化剀ず鉱酞ずの反応生成物は
氎に察する溶解性が非垞に䜎いため、ホり酞溶液
系から容易に沈柱し、埓぀お、濟過などの操䜜に
よ぀お簡単に分離するこずができる。ただし、ア
ルカリ化剀ず鉱酞ずの組合せが䞊蚘のような氎難
溶性の反応生成物を生成しない系であ぀おも、そ
の反応生成物ずホり酞ずの間の物理的もしくは化
孊的な特性を利甚する公知の分離方法を利甚する
こずにより、その反応生成物をホり酞溶液から分
離陀去するこずができる。
The eighth step is a step of separating and removing the reaction product of the mineral acid and the alkalizing agent produced by the above reaction from the boric acid solution. For example, if sulfuric acid is used as the mineral acid in the fourth step and hydroxides and oxides of alkaline earth metals such as calcium are used as the alkalizing agent in the seventh step, the alkalizing agent and the mineral acid Since the reaction product with water has very low solubility in water, it easily precipitates from the boric acid solution system and can therefore be easily separated by operations such as filtration. However, even if the combination of an alkalizing agent and a mineral acid does not produce a poorly water-soluble reaction product as described above, the physical or chemical characteristics between the reaction product and boric acid may differ. By utilizing a known separation method, the reaction product can be separated and removed from the boric acid solution.

第九工皋は、第八工皋によりアルカリ化剀ず鉱
酞ずの反応生成物を分離陀去したホり酞溶液から
ホり酞の䞀郚を分離回収し、同時にホり酞含有氎
性溶液を回収する工皋である。
The ninth step is a step of separating and recovering a portion of boric acid from the boric acid solution from which the reaction product of the alkalizing agent and mineral acid has been separated and removed in the eighth step, and at the same time recovering a boric acid-containing aqueous solution. .

この工皋は、ホり酞溶液を冷华しお、該溶液に
含有されおいるホり酞の䞀郚、たずえば、25〜75
重量、奜たしくは35〜65重量、を沈柱させ、
これを濟過分離するような方法を利甚しお実斜す
るこずができる。そしお、ホり酞の䞀郚を分離回
収したのちの母液ホり酞含有氎性溶液は、そ
のたた、あるいは氎による垌釈、酞もしくはアル
カリの添加によるPHの調敎などを行な぀たのち、
前蚘の第六工皋におけるホり酞溶解甚の溶媒ずし
お埪環䜿甚する。
This step involves cooling the boric acid solution to remove a portion of the boric acid contained in the solution, e.g.
% by weight, preferably 35-65% by weight,
This can be carried out using a method such as filtration separation. After separating and recovering a portion of the boric acid, the mother liquor (boric acid-containing aqueous solution) can be used as it is, or after dilution with water, pH adjustment by adding acid or alkali, etc.
It is recycled and used as a solvent for dissolving boric acid in the sixth step.

䞊蚘の第九工皋においお分離回収されたホり酞
は通垞はさらさらした板状結晶からなる粉末であ
り、その玔床は䞀般には、玄95以䞊、そしお各
工皋の操䜜条件を遞択するこずにより玄99以䞊
ずもなる。埓぀お、ニナヌセラミツクスの成分ず
しお、あるいは䞭性子の遮蔜材、鉄鋌などの金属
の物性改質剀などずしお䜿甚するホり玠源ずし
お、本発明により埗られる高玔床のホり酞は非垞
に有甚である。
The boric acid separated and recovered in the ninth step above is usually a powder consisting of free-flowing plate-like crystals, and its purity is generally about 95% or more, and depending on the selection of operating conditions in each step, the purity is about 99% or more. % or more. Therefore, the high purity boric acid obtained by the present invention is very useful as a boron source used as a component of neuceramics, as a neutron shielding material, as a property modifier for metals such as steel, etc.

たた本発明の回収凊理系に導入された海氎䞭に
含有されおいたホり酞は実質的にその党量が回収
されるため、回収凊理効率が非垞に優れおおり、
たた、回収凊理系に導入された硫酞などの鉱酞も
その倧郚分が埪環䜿甚され、倖郚に排出されるの
は僅かであり、埓぀おホり酞の回収凊理コストの
䜎枛、および廃棄物の量の䜎枛にも有利ずなる。
Furthermore, since substantially all of the boric acid contained in the seawater introduced into the recovery treatment system of the present invention is recovered, the recovery treatment efficiency is extremely high.
In addition, most of the mineral acids such as sulfuric acid introduced into the recovery treatment system are recycled and only a small amount is discharged to the outside, which reduces the cost of recovering boric acid and reduces the amount of waste. This is also advantageous in reducing.

以䞊詳述したように、本発明は、産業䞊におい
おその有甚性が泚目されおいるホり玠の原料ずし
お、普遍的に入手可胜な海氎を利甚し、その海氎
から非垞に玔床の高いホり酞を耇雑な操䜜を経由
するこずなく高収率で分離回収する方法を提䟛す
るものであり、埓぀お、産業䞊の有甚性は非垞に
高いものである。
As detailed above, the present invention utilizes universally available seawater as a raw material for boron, which is attracting attention for its usefulness in industry, and extracts extremely pure boric acid from the seawater. This method provides a method for separating and recovering in high yield without going through any complicated operations, and therefore has very high industrial utility.

次に本発明を実斜䟋によりさらに詳しく説明す
る。
Next, the present invention will be explained in more detail with reference to Examples.

実斜䟋 (1) 海氎〔ホり酞H3BO3含有量17.8ppm、
二酞化炭玠含有量84ppm〕89.3m3を容噚に導
入し、これに生石灰18Kgを投入し海氎のPHを玄
に調敎した。沈柱した炭酞カルシりムを濟過
により分離したずころ濟液の二酞化炭玠含有量
は玄14ppmであ぀た。
Example (1) Seawater [boric acid (H 3 BO 3 ) content: 17.8 ppm,
Carbon dioxide content: 84 ppm] 89.3 m 3 was introduced into a container, and 18 kg of quicklime was added thereto to adjust the pH of the seawater to approximately 9. When the precipitated calcium carbonate was separated by filtration, the carbon dioxide content of the filtrate was approximately 14 ppm.

(2) この濟液を、アンスラサむト埮粒子状カヌ
ボンず粒床の異なる砂ずを組合わせた濟過材
を通過させ、濟過海氎䞭の固䜓埮粒子状成分含
有量を玄2ppmずした。
(2) This filtrate was passed through a filter material made of a combination of anthracite (fine particulate carbon) and sand of different particle sizes, so that the content of solid particulate components in the filtered seawater was approximately 2 ppm.

(3) 次に、䞊蚘の凊理海氎を、アンバラむトXE
―243むオン亀換暹脂を充填したカラムカラ
ム埄55cm、暹脂量100に導入し、ホり
酞の吞着操䜜を行な぀た。
(3) Next, the above treated seawater was mixed with Amberlite
-243 It was introduced into a column packed with ion exchange resin (column diameter: 55 cm, resin amount: 100), and boric acid was adsorbed.

(4) 吞着操䜜完了埌の䞊蚘むオン亀換暹脂を先ず
氎で掗浄したのち、このカラムにホり酞を玄
2.8重量含有する2N―硫酞70を導入しお、
ホり酞の脱着操䜜を行な぀た。そしお次いで、
新芏な2N―硫酞を30導入しおホり酞の脱着
操䜜を継続した。
(4) After the adsorption operation is completed, the above ion exchange resin is first washed with water, and then approximately boric acid is added to the column.
By introducing 2N-sulfuric acid 70 containing 2.8% by weight,
A desorption operation of boric acid was performed. And then,
The desorption operation of boric acid was continued by introducing 30% of new 2N-sulfuric acid.

次にカラムに掗浄甚の氎600を導入し、流
䞋させるこずによりカラム内に残぀おいるホり
酞の䞀郚の回収および酞分の陀去を行な぀た。
Next, 600 g of water for washing was introduced into the column and allowed to flow down, thereby recovering a portion of the boric acid remaining in the column and removing the acid component.

(5) ホり酞含有脱着液脱着されたホり酞を含有
する鉱酞および掗浄氎の䞀郚からなる混合物
300を加熱するこずにより溶媒の郚分的陀去
を行ない、その容量を60ずした。次いで、こ
の濃瞮脱着液を玄20℃に冷华し、析出したホり
酞結晶を濟過により分離した。
(5) Boric acid-containing desorption solution (a mixture consisting of a mineral acid containing desorbed boric acid and a portion of washing water)
Partial removal of the solvent was carried out by heating 300 to bring the volume to 60. Next, this concentrated desorption liquid was cooled to about 20°C, and the precipitated boric acid crystals were separated by filtration.

分離されたホり酞粗結晶は1440gであり、こ
のホり酞粗結晶のホり酞玔床は72.4であ぀た
残分の倧郚分は硫酞、鉄分、氎などの䞍玔
物。そしお、これを也燥するこずにより玔床
87のホり酞が非垞にさらさらした埮小な板状
結晶ずしお埗られた。
The separated boric acid crude crystals weighed 1440 g, and the boric acid purity of these boric acid crude crystals was 72.4% (most of the remainder was impurities such as sulfuric acid, iron, and water). Then, by drying this, the purity
87% of the boric acid was obtained as very free-flowing, minute plate-like crystals.

ホり酞結晶を濟別した脱着液母液は58
であり、この母液には1980gのホり酞が含たれ
おいた。そしお、この母液は氎12を添加する
こずにより硫酞の濃床を芏定に調敎しお、次
の回のホり酞脱着甚の脱着液ずしお䜿甚した。
The desorption liquid (mother liquor) after filtering the boric acid crystals is 58
This mother liquor contained 1980g of boric acid. Then, the concentration of sulfuric acid was adjusted to 2N by adding 12 parts of water to this mother liquor, and the solution was used as a desorption liquid for the next desorption of boric acid.

(6) 䞊蚘の(5)の工皋においお分離したホり酞粗結
晶玔床72.4を、ホり酞含有氎溶液ホ
り酞濃床5.3重量20に添加し、次いで
60℃に加枩しお、ホり酞粗結晶を溶解させた。
(6) The crude boric acid crystals (purity: 72.4%) separated in step (5) above were added to a boric acid-containing aqueous solution (boric acid concentration: 5.3% by weight) 20, and then
It was heated to 60°C to dissolve the boric acid crude crystals.

(7) 埗られたホり酞粗結晶溶液を60℃に維持しな
がら、この溶液に氎酞化カルシりム氎溶液
CaOずしお10.0重量含有を添加、撹拌し、
ホり酞粗結晶溶液のPHはずした。ここで添加
した氎酞化カルシりム氎溶液の量は280mlであ
぀た。
(7) While maintaining the obtained crude boric acid crystal solution at 60°C, add an aqueous calcium hydroxide solution (containing 10.0% by weight as CaO) to this solution and stir.
The pH of the boric acid crude crystal solution was set to 4. The amount of calcium hydroxide aqueous solution added here was 280 ml.

(8) 䞊蚘の反応液から析出した硫酞カルシりムを
同じく60℃にお濟別した。濟別された硫酞カル
シりムは250gであり、その内には7.5gのホり酞
および43.8gの酞化カルシりムが混入しおいた。
(8) Calcium sulfate precipitated from the above reaction solution was filtered off at 60°C. The filtered calcium sulfate weighed 250g, which contained 7.5g of boric acid and 43.8g of calcium oxide.

(9) 次に、濟液を20℃に冷华し、析出したホり酞
結晶を濟別し、枛圧䞋也燥した。ホり酞結晶の
収量は993gであり、玔床は99.1であ぀た。
(9) Next, the filtrate was cooled to 20°C, and the precipitated boric acid crystals were filtered off and dried under reduced pressure. The yield of boric acid crystals was 993 g, and the purity was 99.1%.

濟液は20であり、これには1068gのホり酞
が含たれおいた。そしお、これを次の回のホり
酞粗結晶溶解甚の溶媒ずしお䜿甚した。
The filtrate was 20 and contained 1068 g of boric acid. This was then used as a solvent for dissolving the boric acid crude crystals in the next round.

Claims (1)

【特蚱請求の範囲】  実質的に、 (1) 海氎のPH倀を玄〜10に調敎し、その海氎の
二酞化炭玠含有量を40ppm以䞋ずする工皋 (2) 䞊蚘の凊理を行な぀た海氎のPH倀を玄〜10
に維持しながら、その固䜓埮粒子状成分含有量
を10ppm以䞋ずする工皋 (3) 䞊蚘の凊理を行な぀た海氎をホり酞吞着性む
オン亀換暹脂ず接觊させるこずにより、海氎に
含有されおいるホり酞を該むオン亀換暹脂に吞
着させる工皋 (4) 該むオン亀換暹脂にホり酞を含有する鉱酞を
接觊させるこずにより、吞着されたホり酞を脱
着させる工皋 (5) 脱着されたホり酞を含有する鉱酞から、そこ
に含有されおいるホり酞の乃至を
分離回収し、同時にホり酞含有量が枛少した鉱
酞を回収する工皋 (6) 分離回収したホり酞を、ホり酞含有氎性溶液
に溶解する工皋 (7) 埗られたホり酞溶液をアルカリ化剀ず接觊さ
せるこずにより、該ホり酞溶液に含有されおい
る鉱酞を該アルカリ化剀ず反応させる工皋 (8) 鉱酞ずアルカリ化剀ずの反応生成物を該ホり
酞溶液から分離陀去する工皋そしお、 (9) 該ホり酞溶液からホり酞の䞀郚を分離回収
し、同時にホり酞含有氎性溶液を回収する工皋 からなり、か぀、䞊蚘の(5)の工皋で回収したホり
酞含有量が枛少した鉱酞の少なくずも䞀郚を、䞊
蚘(4)の工皋におけるホり酞を含有する鉱酞の䞀郚
もしくは党郚ずしお䜿甚するこず、そしお、䞊蚘
の(9)の工皋で回収したホり酞含有氎性溶液の少な
くずも䞀郚を、䞊蚘(6)の工皋におけるホり酞含有
氎性溶液の䞀郚もしくは党郚ずしお䜿甚するこず
を特城ずする海氎からのホり酞回収方法。  実質的に、 (1) 海氎のPH倀を玄〜10に調敎し、その海氎の
二酞化炭玠含有量を40ppm以䞋ずする工皋 (2) 䞊蚘の凊理を行な぀た海氎のPH倀を玄〜10
に維持しながら、その固䜓埮粒子状成分含有量
を10ppm以䞋ずする工皋 (3) 䞊蚘の凊理を行な぀た海氎をホり酞吞着性む
オン亀換暹脂ず接觊させるこずにより、海氎に
含有されおいるホり酞を該むオン亀換暹脂に吞
着させる工皋 (4) 該むオン亀換暹脂にホり酞を含有する鉱酞を
接觊させるこずにより、吞着されたホり酞を脱
着させる工皋 (5) 䞊蚘の工皋を経たむオン亀換暹脂にホり酞を
実質的に含有しない鉱酞を接觊させるこずによ
り、未脱着のホり酞の倧郚分を脱着させる工
皋そしお、 (6) 脱着されたホり酞を含有する鉱酞から、そこ
に含有されおいるホり酞の乃至を
分離回収し、同時にホり酞含有量が枛少した鉱
酞を回収する工皋 (7) 分離回収したホり酞を、ホり酞含有氎性溶液
に溶解する工皋 (8) 埗られたホり酞溶液をアルカリ化剀ず接觊さ
せるこずにより、該ホり酞溶液に含有されおい
る鉱酞を該アルカリ化剀ず反応させる工皋 (9) 鉱酞ずアルカリ化剀ずの反応生成物を該ホり
酞溶液から分離陀去する工皋そしお、 (10) 該ホり酞溶液からホり酞の䞀郚を分離回収
し、同時にホり酞含有氎性溶液を回収する工皋
からなり、か぀、䞊蚘の(6)の工皋で回収したホ
り酞含有量が枛少した鉱酞の少なくずも䞀郚
を、䞊蚘(4)の工皋におけるホり酞を含有する鉱
酞の䞀郚もしくは党郚ずしお䜿甚するこず、そ
しお、䞊蚘の(10)の工皋で回収したホり酞含有氎
性溶液の少なくずも䞀郚を、䞊蚘(7)の工皋にお
けるホり酞含有氎性溶液の䞀郚もしくは党郚ず
しお䜿甚するこずを特城ずする海氎からのホり
酞回収方法。
[Claims] 1 Substantially: (1) A step of adjusting the pH value of seawater to about 8 to 10 and reducing the carbon dioxide content of the seawater to 40 ppm or less; (2) Performing the above treatment The pH value of seawater is approximately 8 to 10.
(3) By contacting the seawater that has undergone the above treatment with a boric acid adsorbing ion exchange resin, the content of solid particulate components is reduced to 10 ppm or less while maintaining the a step of adsorbing boric acid on the ion exchange resin; (4) a step of desorbing the adsorbed boric acid by contacting the ion exchange resin with a mineral acid containing boric acid; (5) a step of desorbing the adsorbed boric acid; A process of separating and recovering 1/5 to 3/5 of the boric acid contained therein from the acid-containing mineral acid, and at the same time recovering the mineral acid with reduced boric acid content; (6) Separated and recovered A step of dissolving boric acid in an aqueous solution containing boric acid; (7) By bringing the obtained boric acid solution into contact with an alkalizing agent, the mineral acid contained in the boric acid solution is dissolved with the alkalizing agent. a step of reacting; (8) a step of separating and removing the reaction product of the mineral acid and the alkalizing agent from the boric acid solution; and (9) separating and recovering a part of boric acid from the boric acid solution, and at the same time A step of recovering a boric acid-containing aqueous solution, and converting at least a portion of the mineral acid with reduced boric acid content recovered in step (5) above to the boric acid-containing solution in step (4) above. At least a part of the boric acid-containing aqueous solution recovered in step (9) above is used as part or all of the mineral acid in step (6) above. A method for recovering boric acid from seawater, characterized in that boric acid is used in part or in whole. 2 Substantially, (1) Adjusting the PH value of seawater to approximately 8 to 10 and reducing the carbon dioxide content of the seawater to 40 ppm or less; (2) Adjusting the PH value of seawater that has undergone the above treatment. Approximately 8-10
(3) By contacting the seawater that has undergone the above treatment with a boric acid adsorbing ion exchange resin, the content of solid particulate components is reduced to 10 ppm or less while maintaining the a step of adsorbing boric acid to the ion exchange resin; (4) a step of contacting the ion exchange resin with a mineral acid containing boric acid to desorb the adsorbed boric acid; (5) a step of performing the above steps; (6) desorbing most of the undesorbed boric acid by contacting the desorbed ion exchange resin with a mineral acid that does not substantially contain boric acid; and (6) removing the desorbed boric acid from the mineral acid. , a step of separating and recovering 1/5 to 3/5 of the boric acid contained therein, and simultaneously recovering the mineral acid with a reduced boric acid content; (7) The separated and recovered boric acid is converted into a boric acid containing dissolving in an aqueous solution; (8) contacting the obtained boric acid solution with an alkalizing agent to react the mineral acid contained in the boric acid solution with the alkalizing agent; (9) A step of separating and removing a reaction product of a mineral acid and an alkalizing agent from the boric acid solution; and (10) separating and recovering a portion of boric acid from the boric acid solution and simultaneously recovering a boric acid-containing aqueous solution. At least a part of the mineral acid with reduced boric acid content recovered in the step (6) above is converted into a part of the mineral acid containing boric acid in the step (4) above or and use at least a portion of the boric acid-containing aqueous solution recovered in step (10) above as part or all of the boric acid-containing aqueous solution in step (7) above. A method for recovering boric acid from seawater, characterized by:
JP57139854A 1982-08-13 1982-08-13 Method for recovering boric acid from sea water Granted JPS5930717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57139854A JPS5930717A (en) 1982-08-13 1982-08-13 Method for recovering boric acid from sea water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57139854A JPS5930717A (en) 1982-08-13 1982-08-13 Method for recovering boric acid from sea water

Publications (2)

Publication Number Publication Date
JPS5930717A JPS5930717A (en) 1984-02-18
JPS647011B2 true JPS647011B2 (en) 1989-02-07

Family

ID=15255079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57139854A Granted JPS5930717A (en) 1982-08-13 1982-08-13 Method for recovering boric acid from sea water

Country Status (1)

Country Link
JP (1) JPS5930717A (en)

Also Published As

Publication number Publication date
JPS5930717A (en) 1984-02-18

Similar Documents

Publication Publication Date Title
CN100469697C (en) Method for producing low-magnesium battery-stage lithium carbonate from lithium sulfate solution
CA3059899A1 (en) Method for preparing lithium concentrate from lithium-bearing natural brines and processing thereof into lithium chloride or lithium carbonate
JP3920333B2 (en) Method for producing cesium compound
WO1995014002A1 (en) Recovery of an amino acid
JP2019099901A (en) Method for recovering lithium from lithium-containing solution
CN103272572A (en) Preparation method capable of absorbing Ca<2+> material from magnesium sulfate waste water
US3927175A (en) Purification of carbonate process solutions
CN104724740B (en) A kind of preparation method of high pure and ultra-fine aluminium hydrate powder
CN116888079A (en) Method for processing water-soluble mineral lithium-containing raw material
US4075281A (en) Purification of carbonate process solutions
US20020031472A1 (en) Process for the preparation of agglomerated zeolites X and LSX exchanged with lithium
CN111620481B (en) Recycling treatment method of industrial wastewater containing chlorine and arsenic
US4279869A (en) Process for recovering concentrated, purified tungsten values from brine
CN112142073A (en) Method for resource utilization of chromium-containing sodium bisulfate
JPS647010B2 (en)
JPS647011B2 (en)
US2471213A (en) Treatment of aqueous liquids
JPS6035200B2 (en) Hard water slow softening method
RU2283283C1 (en) Process of producing h-purity lithium carbonate from lithium-bearing chloride brines
US3043867A (en) Method for the purification of aminocarboxylic acids
CN213708025U (en) Comprehensive utilization and resource treatment device for ammonium chloride wastewater containing impurities
JPH0683789B2 (en) Sulfate ion removal method with inorganic ion exchanger
CN115072789B (en) Preparation method of high-purity ammonium rhenate
JP2004283767A (en) Method and apparatus for treating geothermal water
WO2023054258A1 (en) Method for producing lithium hydroxide