JPS646Y2 - - Google Patents

Info

Publication number
JPS646Y2
JPS646Y2 JP5376380U JP5376380U JPS646Y2 JP S646 Y2 JPS646 Y2 JP S646Y2 JP 5376380 U JP5376380 U JP 5376380U JP 5376380 U JP5376380 U JP 5376380U JP S646 Y2 JPS646 Y2 JP S646Y2
Authority
JP
Japan
Prior art keywords
steering
photoelectric element
photoelectric
sensor
boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5376380U
Other languages
Japanese (ja)
Other versions
JPS56157902U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5376380U priority Critical patent/JPS646Y2/ja
Publication of JPS56157902U publication Critical patent/JPS56157902U/ja
Application granted granted Critical
Publication of JPS646Y2 publication Critical patent/JPS646Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Steering Controls (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Guiding Agricultural Machines (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は自動操向機能、或は作業機の位置制御
機能を備えたトラクタ等の作業用車輌に関し、更
に詳述すれば自動操向等の倣いガイドとする既耕
地と未耕地との境界を検出する操向センサの工夫
により信号処理回路の簡略化を図つた作業用車輌
を提案したものである。 第1図は本考案に係るトラクタ(以下本案機と
いう)の一部破断左側面図、第2図は操向センサ
の取付状態を示す本案機の略示平面図、第3図は
操向センサを構成する光電素子の接続状態を示す
電気回路図、第4図は自動操向制御システムの模
式的ブロツク図である。このトラクタは、既耕地
CDTと未耕地UCTとの境界INTは自動操向の倣
いガイドとして自動操向を行うようにしてある。
図中1はこの境界INTを捉える操向センサであ
つて、機体左右に各1組設けられており、ボンネ
ツト11の左右の側面上前部から横方向へ水平に
突出させたアーム12にて支持され、検知面が前
輪2,2の着地点数10cm前方の地点を臨むように
してある。この操向センサ1は赤外線発光素子、
同受光素子(光電素子)を内蔵し、前者から発せ
られた赤外線を被検物に投射し、該被検物からの
反射赤外線を後者にて捉え、これを電気信号に変
換出力する光学センサ1a,1b,1cを3個、
機体の外側から内側にかけてこの順序で機体の横
方向に並設してなるものであつて、最外側(既耕
地CTD側)の光学センサ1aは、既耕地CTDの
みを、中間の光学センサ1bは既耕地CTDと未
耕地UCTとを半分ずつ、また最内側(未耕地
UCT側)の光学センサ1cは未耕地UCTのみを
夫々検知対象とする状態となつている。光学セン
サ1a,1cは同仕様のものであるが、光学セン
サ1bはその光電素子1b1の有効受光面積が光学
センサ1a,1cのそれよりも略2倍のものとし
てある。そして、これら光学センサ1a,1b,
1cの受光素子1a1,1b1,1c1は第3図に示す
如く接続してある。即ち、光電素子1a1と可変抵
抗器13との直列回路、光電素子1b1と可変抵抗
器14との直列回路、及び光電素子1c1と可変抵
抗器15との直列回路を、光電素子1b1のみが逆
並列的になるように並列接続し、この並列回路と
抵抗16とを並列接続して一端を接地電位に、他
端を信号処理回路3の入力端子に繋ぎ込んでい
る。抵抗16の両端には光電素子1a1及び1c1
短絡電流の和と光電素子1b1の短絡電流の差に見
合う電位が現れる。短絡電流は受光面積及び照度
に関係し、いずれにも略比例の関係にある。光電
素子1b1の受光面積は光電素子1a1,1c1の略2
倍であるので、夫々が受光している領域の照度が
同一である場合は抵抗16の非接地側電位、即ち
操向センサ1の出力電位は略零となる。抵抗1
3,14,15は短絡電流を調整して光電素子1
a1,1b1,1c1が同一照度の領域に臨んでいる際
の操向センサ1の出力電位を零とすべく使用され
る。従つて、このように調整しておいた場合に
は、光電素子1a1の受光量をA、光電素子1b1
受光量を2B、光電素子1c1の受光量をCとする
と、出力電位はA+C−2Bの内容を表わしてい
ることになる。 而して未耕地UCTの草の生育状態、凹凸、濡
れ具合等により差異はあるものの、一般に未耕地
UCTは既耕地CTDよりも反射率が高いから、光
学センサ1a,1b,1cの各光電素子1a1,1
b1,1c1の受光量は光電素子1c1のCが最も多
く、光電素子1b1の2Bの値の1/2、即ちBがこれ
に次ぎ、光電素子1a1のAが最も低く、従つてC
>B>Aとなる。而して、光学センサ1a,1
b,1cの各光電素子1a1,1b1,1c1の各出力
信号の電位A,B,Cは、光電素子1a1,1b1
1c1の各出力端子が第3図に示す如く接続されて
いるので、抵抗16の両端子間の電位はA+C−
2B(以下Pとする)に相当する値となつて、第4
図に示す如く信号処理回路3へ入力されることと
なる。 さて、第4図に示す如く中間の光学センサ1b
の検知域が既耕地CTDと未耕地UCTとの半分ず
つに亘つている場合は2B=A+CとなるのでP
=0となるが、機体が未耕地UCT〔又は既耕地
CTD〕寄りの位置を移動している状態では未耕
地UCT〔又は既耕地CTD〕が光学センサ1bの
検知域のより多くの部分を占めるので2B>A+
C〔2B<A+C〕となる。従つてP<0〔又はP
>0〕となり、しかもPの絶対値は第4図の状態
からの偏りの大きさに応じて定まるので、要する
にPは操向センサ1と自動操向の倣いガイドとな
る境界線INTとの偏位量を表す信号となつてい
る。これは既耕地CTDが機体左側に在る場合に
ついても同様である。 4は舵取角センサであつて、機体の左右方向の
中心線に対する左右の前輪2,2の水平回動角
度、即ち舵取角を検出すべく、左右の前輪2,2
を連動させて水平回動させ得べく支持しているナ
ツクルアーム等の部材に付設されたものであり、
具体的にはポテンシオメータを利用している。舵
取角センサ4の出力信号Dは信号処理回路3へ入
力される。そしてこの出力信号Dは前述の偏位量
検出信号Pと共に信号処理回路3内の差動アンプ
へ入力され、両者の差E=P−Dに相当する信号
を得るようにしてある。この差信号Eは操向セン
サと境界との偏位量から実舵取角を差引いたもの
であるから、要するに所要の舵取量(現状状態よ
りも更に必要とされる舵取量)を表す信号となつ
ている。例えば図示の例において機体が直進して
いる(D=0)にも拘らず、P>0(又はP<0)
となつた場合はE>0(又はE<0)となり、そ
の絶対値に応じた量だけ機体を未耕側(又は既耕
側)へ寄せることを要することを意味することに
なる。また、P>0(又はP<0)であつてもそ
れまでの自動操向制御その他によりD=Pとなつ
た場合にはそれ以上の舵取を要しないことを意味
することになる。そして理想的な操向状態が継続
されている場合はE=P=D=0となることは勿
論である。 6はデイジタルのデータ処理装置であつて
CPU〔例えば日本電気(株)製マイクロプロセツサ
μPD556D〕、A/D変換器、メモリ、入出力イン
ターフエース等を備えた所謂マイクロコンピユー
タである。前記信号処理回路3の出力信号Eはデ
ータ処理装置6の入力インターフエースにて所定
の変換処理を施され、適宜のサンプリング周期
で、そのレベルに応じたデイジタルデータとして
CPUに取込まれる。例えばEのレベルを7段階
に分離識別する処理を行つてCPUへ取込むこと
としている。データ処理装置6のCPUは主とし
て前記信号Eに基く操向制御を行い、油圧駆動に
よつて前輪2,2を水平回動させ舵取を行わせ
る。データ処理装置6への入力信号Eのレベルと
舵取との関係は、表1のとおりである。
The present invention relates to a work vehicle such as a tractor that is equipped with an automatic steering function or a position control function for working equipment. This paper proposes a work vehicle in which the signal processing circuit is simplified by improving the steering sensor. Fig. 1 is a partially cutaway left side view of the tractor according to the present invention (hereinafter referred to as the proposed machine), Fig. 2 is a schematic plan view of the proposed machine showing the mounting state of the steering sensor, and Fig. 3 is the steering sensor. FIG. 4 is a schematic block diagram of the automatic steering control system. This tractor is used on cultivated land.
The boundary INT between the CDT and the uncultivated land UCT is designed to perform automatic steering as a guide for automatic steering.
Reference numeral 1 in the figure indicates a steering sensor that detects this boundary INT, and one set is provided on each side of the aircraft body, and is supported by an arm 12 that projects horizontally from the upper front part of the left and right sides of the bonnet 11. The detection surface faces a point several 10 cm in front of the landing point of the front wheels 2, 2. This steering sensor 1 includes an infrared light emitting element,
Optical sensor 1a has a built-in light-receiving element (photoelectric element), projects infrared rays emitted from the former onto a test object, captures reflected infrared rays from the test object with the latter, converts it into an electrical signal, and outputs it. , 1b, 1c, 3 pieces,
They are arranged in the horizontal direction of the machine in this order from the outside to the inside of the machine, and the outermost optical sensor 1a (on the cultivated land CTD side) only detects the cultivated land CTD, and the middle optical sensor 1b detects only the cultivated land CTD. Half of the cultivated land CTD and half of the uncultivated land UCT, and the innermost (uncultivated land)
The optical sensors 1c on the UCT side are in a state where they detect only uncultivated land UCT. The optical sensors 1a and 1c have the same specifications, but the effective light receiving area of the photoelectric element 1b1 of the optical sensor 1b is approximately twice that of the optical sensors 1a and 1c. These optical sensors 1a, 1b,
The light receiving elements 1a 1 , 1b 1 and 1c 1 of 1c are connected as shown in FIG. That is, a series circuit of the photoelectric element 1a 1 and the variable resistor 13, a series circuit of the photoelectric element 1b 1 and the variable resistor 14, and a series circuit of the photoelectric element 1c 1 and the variable resistor 15 are connected to the photoelectric element 1b 1. This parallel circuit and the resistor 16 are connected in parallel, with one end connected to the ground potential and the other end connected to the input terminal of the signal processing circuit 3. A potential corresponding to the difference between the sum of the short-circuit currents of the photoelectric elements 1a 1 and 1c 1 and the short-circuit current of the photoelectric element 1b 1 appears at both ends of the resistor 16. The short circuit current is related to the light receiving area and the illuminance, and is approximately proportional to both. The light receiving area of the photoelectric element 1b 1 is approximately 2 that of the photoelectric elements 1a 1 and 1c 1 .
Therefore, if the illuminance of each region receiving light is the same, the non-ground potential of the resistor 16, that is, the output potential of the steering sensor 1 will be approximately zero. resistance 1
3, 14, 15 are photoelectric elements 1 by adjusting the short circuit current.
It is used to make the output potential of the steering sensor 1 zero when a 1 , 1b 1 , and 1c 1 face an area with the same illuminance. Therefore, when adjusted in this way, if the amount of light received by the photoelectric element 1a 1 is A, the amount of light received by the photoelectric element 1b 1 is 2B, and the amount of light received by the photoelectric element 1c 1 is C, the output potential is This represents the contents of A+C-2B. Although there are differences depending on the grass growth condition, unevenness, wetness, etc. of uncultivated land UCT, in general, uncultivated land
Since the UCT has a higher reflectance than the cultivated land CTD, each photoelectric element 1a 1, 1 of the optical sensor 1a , 1b, 1c
Regarding the amount of light received by b 1 and 1c 1 , C of the photoelectric element 1c 1 has the highest value, B, which is 1/2 of the value of 2B of the photoelectric element 1b 1 , has the highest amount, and A of the photoelectric element 1a 1 has the lowest value, which is the lowest. C
>B>A. Therefore, the optical sensors 1a, 1
The potentials A, B, and C of the respective output signals of the photoelectric elements 1a 1 , 1b 1 , and 1c 1 of the photoelectric elements 1a 1 , 1b 1 , and 1c 1c are the same as those of the photoelectric elements 1a 1 , 1b 1 ,
Since each output terminal of 1c1 is connected as shown in Fig. 3, the potential between both terminals of resistor 16 is A+C-
2B (hereinafter referred to as P), the fourth
The signal is input to the signal processing circuit 3 as shown in the figure. Now, as shown in FIG. 4, the intermediate optical sensor 1b
If the detection area covers half of the cultivated land CTD and half of the uncultivated land UCT, 2B = A + C, so P
= 0, but the aircraft is on uncultivated land UCT [or cultivated land]
CTD], the uncultivated land UCT [or cultivated land CTD] occupies a larger portion of the detection area of the optical sensor 1b, so 2B>A+
C [2B<A+C]. Therefore, P<0 [or P
>0], and the absolute value of P is determined depending on the magnitude of the deviation from the state shown in Figure 4. In other words, P is the deviation between the steering sensor 1 and the boundary line INT, which serves as a tracing guide for automatic steering. It serves as a signal that represents the amount of energy. This also applies when the cultivated land CTD is on the left side of the aircraft. Reference numeral 4 denotes a steering angle sensor, which detects the horizontal rotation angle of the left and right front wheels 2, 2 with respect to the center line in the left-right direction of the aircraft, that is, the steering angle.
It is attached to a member such as a knuckle arm that supports horizontal rotation in conjunction with the
Specifically, a potentiometer is used. The output signal D of the steering angle sensor 4 is input to the signal processing circuit 3. This output signal D is inputted to the differential amplifier in the signal processing circuit 3 together with the above-mentioned deviation amount detection signal P to obtain a signal corresponding to the difference between the two, E=PD. Since this difference signal E is obtained by subtracting the actual steering angle from the deviation amount between the steering sensor and the boundary, it basically represents the required steering amount (a steering amount that is required more than the current state). It has become a signal. For example, in the illustrated example, even though the aircraft is moving straight (D=0), P>0 (or P<0)
In this case, E>0 (or E<0), which means that it is necessary to move the machine toward the uncultivated side (or the plowed side) by an amount corresponding to the absolute value. Further, even if P>0 (or P<0), if D=P due to automatic steering control or other factors up to that point, it means that no further steering is required. Of course, if the ideal steering condition continues, E=P=D=0. 6 is a digital data processing device;
It is a so-called microcomputer equipped with a CPU (for example, a microprocessor μPD556D manufactured by NEC Corporation), an A/D converter, a memory, an input/output interface, and the like. The output signal E of the signal processing circuit 3 is subjected to a predetermined conversion process at the input interface of the data processing device 6, and is converted into digital data according to its level at an appropriate sampling period.
Incorporated into CPU. For example, the level of E is separated and identified into seven stages, and the resultant data is imported into the CPU. The CPU of the data processing device 6 mainly performs steering control based on the signal E, and uses hydraulic drive to horizontally rotate the front wheels 2, 2 to perform steering. Table 1 shows the relationship between the level of the input signal E to the data processing device 6 and steering.

【表】 なお、表1はD=0とした場合についての機体
進行状況を表わしているが、前述した如くE=P
−Dであり、Pは左側(図示の例では未耕側)へ
の偏位が負、右側(同じく既耕側)への偏位が
正、またDは右側(同じく既耕側)への舵取量が
負、左側(同じく未耕側)への舵取角が正となる
ように定めているので、機体進行域が既耕側へ大
きく偏位している(Pが大きい)場合において
も、舵取が未耕側へ大きく行われている。Dが大
きいときは、必ずしもE≧E3とはならずE1>E
>−E1のような状態となり得、それ以上の舵取
を行わせず現状のままを維持させることとする。
けだし、既に未耕側への舵取が十分に行われた状
態にあり、そのままの状態を継続しても既耕側へ
の偏位を解消する方向へ機体が旋回進行していく
からである。 さて、油圧回路7はデータ処理装置6によつて
電磁切換弁を作動させ、油路を切換えることによ
り複動シリンダのロツドを進出、退入せしめる。
このロツドは左右の前輪2,2の支持部材に連動
連結されており、ロツドの進出、退入に応じて左
右の前輪2,2は左、右方向へ連動して水平回動
する。而して、舵取量の大小制御は複動シリンダ
への圧油供給を断続的に行わせることとし、この
継続的圧油供給サイクルのデユーテイ比を大小に
異らせることによつて実現している。即ちE≧
E3である場合はロツドの進出方向への圧油供給
を大きなデユーテイ比で行い、−E1≧E≧−E2
ある場合はロツドの退入方向への圧油供給を小さ
なデユーテイ比で行うようにしてある。 8は入力操作部であつて、データ処理装置6へ
の電源投入、自動−手動操向の切換、その他自動
操向に必要とされる各種データ、信号の入力を行
うために運転者用の座席9の前方にあるフロント
パネル10に設けられている。この入力操作部8
の操作によつて手動操向モードが選択された場合
はデータ処理装置6による油圧回路7の制御は行
われずフロントパネル10から突出させたステア
リングコラムの上端に固定された操舵輪5の回動
操作により操向が行えるようにしてある。即ち、
この操舵輪5の回動により油圧回路7中の前記電
磁切換弁を機械的に切換動作させて、複動シリン
ダの進出、退入を行わせ、データ処理装置6によ
る場合と同様に油圧力によつて旋回を行わせるこ
とにしている。 叙上の如く構成された本考案に係るトラクタに
よりロータリ耕耘を行う場合には、まず最初の一
行程を手動操向にて耕耘し、次の行程からは先行
行程にて形成された既耕地CTDと未耕地UCTと
の間の境界INTを倣いガイドとして、上述した
ところから理解される如く自動操向を行わせる。 以上詳述したように本考案による場合は、自動
操向のための基本情報となるP(=A+C−2B)
をオペアンプ等の演算回路を用いることなく得る
ことができ、信号処理回路の簡略化が図れ、部品
数削減による信頼性の向上、製造コストの低減が
可能となり、また演算回路を用いた場合のドリフ
トの虞れもなく、安定した制御が行える。 なお、上述の実施例では各受光素子1a1,1
b1,1c1の出力調整のために抵抗13,14,1
5を設けたが、光学的に調整すべく光電素子1
a1,1b1,1c1の前面に絞りを設け、その開度調
整により出力調整を行うように構成してもよい。
また、上述の実施例では光学センサ1bとしてそ
の受光面積が光学センサ1a,1cの略2倍のも
のを用いたが、総て同一のものを用いて光学セン
サ1a,1cの受光光量を絞りで抑制するように
してもよい。また光学センサ1bの光電素子1b1
として光学センサ1a,1cの光電素子1a1,1
c1と同じものを2個並列的に接続したものを用い
てもよい。 更に本考案は自動操向用に限らず、ロータリ等
の作業機を、その作業機(耕耘機)の一縁が既耕
地と未耕地との境界に一致するように左右に移動
制御して残耕、オーバラツプ耕耘等を回避するよ
うにした作業機の位置制御装置にも適用できる。
[Table] Table 1 shows the progress status of the aircraft when D=0, but as mentioned above, when E=P
-D, P has a negative deviation to the left (in the illustrated example, the uncultivated side), a positive deviation to the right (also the plowed side), and D has a positive deviation to the right (also the plowed side). Since the steering amount is set to be negative and the steering angle to the left side (also the unplowed side) is positive, when the aircraft travel range is largely deviated to the plowed side (P is large), Also, the steering has been largely shifted towards the uncultivated side. When D is large, E≧E 3 does not necessarily hold and E 1 >E
>-E 1 , and we will maintain the current status without further steering.
This is because the aircraft has already been sufficiently steered towards the uncultivated side, and even if it continues in that state, the aircraft will continue to turn in a direction that eliminates the deviation towards the plowed side. . Now, the hydraulic circuit 7 operates the electromagnetic switching valve by the data processing device 6, and switches the oil path to advance and retract the rod of the double-acting cylinder.
This rod is interlocked and connected to support members for the left and right front wheels 2, 2, and as the rod moves forward and backward, the left and right front wheels 2, 2 are interlocked and horizontally rotated in the left and right directions. Therefore, the magnitude control of the steering amount is achieved by intermittently supplying pressure oil to the double-acting cylinder and by varying the duty ratio of this continuous pressure oil supply cycle. ing. That is, E≧
If E 3 , the pressure oil is supplied in the rod's advancing direction at a large duty ratio, and if -E 1 ≧E ≧ -E 2 , the pressure oil is supplied in the rod's retracting direction at a small duty ratio. I am planning to do it. Reference numeral 8 denotes an input operation section, which is installed on the driver's seat in order to turn on power to the data processing device 6, switch between automatic and manual steering, and input various data and signals required for automatic steering. It is provided on the front panel 10 in front of the camera 9. This input operation section 8
When the manual steering mode is selected by the operation, the hydraulic circuit 7 is not controlled by the data processing device 6, and the steering wheel 5 fixed to the upper end of the steering column protruding from the front panel 10 is rotated. This allows for steering. That is,
The rotation of the steering wheel 5 mechanically switches the electromagnetic switching valve in the hydraulic circuit 7 to move the double-acting cylinder forward and backward. I am planning to make a turn. When performing rotary tillage with the tractor according to the present invention configured as described above, the first stroke is tilled by manual steering, and from the next stroke, the already cultivated land CTD formed in the previous stroke is tilled. Using the boundary INT between UCT and uncultivated land as a guide, automatic steering is performed as understood from the above. As detailed above, in the case of the present invention, P(=A+C-2B) is the basic information for automatic steering.
can be obtained without using arithmetic circuits such as operational amplifiers, simplifying the signal processing circuit, improving reliability by reducing the number of parts, reducing manufacturing costs, and reducing drift when using arithmetic circuits. Stable control can be performed without any risk of In addition, in the above-mentioned embodiment, each light receiving element 1a 1 , 1
Resistors 13, 14, 1 to adjust the output of b 1 , 1c 1
5 was provided, but a photoelectric element 1 was provided for optical adjustment.
A configuration may also be adopted in which a diaphragm is provided on the front surface of a 1 , 1b 1 , and 1c 1 and the output is adjusted by adjusting the opening degree of the diaphragm.
In addition, in the above embodiment, an optical sensor 1b whose light receiving area is approximately twice that of the optical sensors 1a and 1c was used. It may be suppressed. Also, the photoelectric element 1b 1 of the optical sensor 1b
As photoelectric elements 1a 1 , 1 of optical sensors 1a, 1c
You may also use two pieces of the same type as c1 connected in parallel. Furthermore, the present invention is not limited to automatic steering, but also controls the movement of a rotary or other working machine from side to side so that one edge of the working machine (cultivator) coincides with the boundary between cultivated and uncultivated land. The present invention can also be applied to a position control device for a working machine that avoids plowing, overlapping plowing, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案の実施例を示すものであつて、第
1図は本案機の一部破砕左側面図、第2図は操向
センサの取付状態を示す本案機の略示平面図、第
3図は操向センサを構成する光電素子の接続状態
を示す電気回路図、第4図は自動操向制御システ
ムの模式的ブロツク図である。 1……操向センサ、1a,1b,1c……光学
センサ、1a1,1b1,1c1……光電素子、3……
信号処理回路、6……データ処理装置、13,1
4,15……可変抵抗器、12……アーム、16
……抵抗。
The drawings show an embodiment of the present invention, in which Fig. 1 is a partially fragmented left side view of the proposed machine, Fig. 2 is a schematic plan view of the proposed machine showing the installed state of the steering sensor, and Fig. 3 is a schematic plan view of the proposed machine showing the installed state of the steering sensor. The figure is an electric circuit diagram showing the connection state of photoelectric elements constituting the steering sensor, and FIG. 4 is a schematic block diagram of the automatic steering control system. 1...Steering sensor, 1a, 1b, 1c...Optical sensor, 1a 1 , 1b 1 , 1c 1 ...Photoelectric element, 3...
Signal processing circuit, 6... Data processing device, 13, 1
4, 15...Variable resistor, 12...Arm, 16
……resistance.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 反射率が相異る領域の境界を作業の倣いガイド
として自動制御されるように構成した作業用車輌
において、一方の領域を臨ませるべく配した第1
の光電素子、他方の領域を臨ませるべく配した第
2の光電素子及びこれら両領域の境界を含む部分
を臨ませるべく配した第3の光電素子は、第1及
び第2の光電素子が並列的に接続され、これら第
1及び第2の光電素子と第3の光電素子とが逆並
列的に接続されており、この並列的回路の出力に
基き前記境界を認識するように構成したことを特
徴とする作業用車輌。
In a work vehicle configured to automatically control the boundary between regions with different reflectances as a work tracing guide, a first
A second photoelectric element arranged to face the other area, and a third photoelectric element arranged to face a part including the boundary between these two areas, the first and second photoelectric elements are arranged in parallel. The first and second photoelectric elements and the third photoelectric element are connected in antiparallel, and the boundary is recognized based on the output of this parallel circuit. Features: Work vehicle.
JP5376380U 1980-04-18 1980-04-18 Expired JPS646Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5376380U JPS646Y2 (en) 1980-04-18 1980-04-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5376380U JPS646Y2 (en) 1980-04-18 1980-04-18

Publications (2)

Publication Number Publication Date
JPS56157902U JPS56157902U (en) 1981-11-25
JPS646Y2 true JPS646Y2 (en) 1989-01-05

Family

ID=29648563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5376380U Expired JPS646Y2 (en) 1980-04-18 1980-04-18

Country Status (1)

Country Link
JP (1) JPS646Y2 (en)

Also Published As

Publication number Publication date
JPS56157902U (en) 1981-11-25

Similar Documents

Publication Publication Date Title
JPS646Y2 (en)
JPS6320247Y2 (en)
JPS6334489Y2 (en)
JPS6037605Y2 (en) work vehicle
JPS6125322B2 (en)
JPH0382683A (en) Three-point link type working machine fitting device
JPS6247481B2 (en)
JPH0114083Y2 (en)
JPS646004Y2 (en)
JPS622967Y2 (en)
JP2827416B2 (en) Ground work machine control device
JPH0348762B2 (en)
JPS6253124B2 (en)
JP2552134B2 (en) Torque detector for electric power steering system
JPS595B2 (en) Automatic travel control device for tillers
JPH0449852Y2 (en)
JPH0241282B2 (en)
JPS607230Y2 (en) work vehicle
JPH0448649Y2 (en)
JPH0425924Y2 (en)
JPH0410721Y2 (en)
JPH01128706A (en) Front gauge-type rotary apparatus
JPS6253122B2 (en)
JPS6324804A (en) Posture control unit of running working machine
JPH0348761B2 (en)