JPS64632B2 - - Google Patents
Info
- Publication number
- JPS64632B2 JPS64632B2 JP10654084A JP10654084A JPS64632B2 JP S64632 B2 JPS64632 B2 JP S64632B2 JP 10654084 A JP10654084 A JP 10654084A JP 10654084 A JP10654084 A JP 10654084A JP S64632 B2 JPS64632 B2 JP S64632B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- hot air
- dried
- drying
- exhaust gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000463 material Substances 0.000 claims description 50
- 238000001035 drying Methods 0.000 claims description 25
- 238000007602 hot air drying Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- 238000013019 agitation Methods 0.000 claims description 4
- 238000003756 stirring Methods 0.000 description 20
- 239000007789 gas Substances 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Drying Of Solid Materials (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、泥漿、糊泥状材料、粉粒状材料等の
熱風乾燥装置の運転を合理的に制御する方法に関
するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for rationally controlling the operation of a hot air drying apparatus for drying slurry, paste-like materials, powder-like materials, etc.
従来、泥漿、糊泥状材料、粉粒状材料等(以下
「被乾燥材料」という)を対象とした乾燥装置に
は多くの種類があるが、乾燥製品に対する形状や
品質に関する要求により機種が決定される場合を
除くと、装置の小型化という意味では内部に撹拌
羽根を有する撹拌乾燥装置が最もすぐれており、
また撹拌は凝集性の強い材料に特に有効である。
Conventionally, there are many types of drying equipment for slurry, paste-like materials, powder and granular materials, etc. (hereinafter referred to as "materials to be dried"), but the model is determined depending on the requirements regarding the shape and quality of the dried product. In other cases, the agitation drying device with internal stirring blades is the best in terms of downsizing the device.
Further, stirring is particularly effective for materials with strong cohesion.
撹拌乾燥装置の主要なものとしては、本体内に
熱風を送給し、撹拌羽根によつて被乾燥材料を解
砕しつつ熱風との接触表面積の増大を図る撹拌熱
風乾燥装置と、熱源として蒸気を用い、本体に蒸
気の流通する加熱用ジヤケツトを形成し、さらに
内部に蒸気の流通する中空撹拌羽根を備えた間接
加熱式撹拌乾燥装置がある。しかしながら、後者
の間接加熱式撹拌乾燥装置の運転制御は、出口側
の蒸気温度又は圧力の制御と伝熱壁を兼ねる撹拌
羽根の回転数の調整によるもので、きわめて厄介
であり、また装置的にも複雑であり、材料の質的
変動に弱く、ボイラ能力によつて利用できる熱源
の範囲が限定されるところから、前者の撹拌熱風
乾燥装置が多用されている。 The main types of stirring drying equipment are the stirring hot air drying equipment, which feeds hot air into the main body and uses stirring blades to crush the material to be dried while increasing the surface area in contact with the hot air, and the other, which uses steam as a heat source. There is an indirect heating agitation drying device which uses a heating jacket in the main body to allow steam to flow therethrough, and is further equipped with hollow stirring blades inside which steam flows. However, the operation control of the latter indirect heating type stirring dryer is extremely troublesome and equipment-intensive, as it involves controlling the steam temperature or pressure on the outlet side and adjusting the rotation speed of the stirring blade, which also serves as a heat transfer wall. The former type of stirring hot air drying equipment is often used because it is complicated, susceptible to qualitative changes in materials, and the range of usable heat sources is limited by the boiler capacity.
撹拌熱風乾燥装置の運転制御は、熱風量と被乾
燥材料供給量を経験的に決定し、乾燥排ガス温度
が一定となるように熱風発生炉における燃料量を
調節することによつて行われている。これは、熱
風温度を調節する方が応答性が速いということ
と、装置内部の熱バランスがとり易いという理由
によるものであるが、この方式では、材料の性質
や熱風の量や温度がある程度一定の場合には支障
はないが、泥状物の脱水ケーキのように性状が一
定しない材料を扱う場合や他のプロセスからの廃
熱を利用する場合のように、熱源の質的、量的変
動を含む場合には運転が大変困難になる。これに
対処するためには、材料を混合して均質化した
り、熱風の変動を重油などの補助燃料を使用して
補完するなどが必要となり、省エネルギ的に見て
も不合理であるばかりでなく、装置の複雑化や装
置費の増大を招く結果となる。 Operation control of the stirring hot air drying equipment is performed by empirically determining the amount of hot air and the amount of material to be dried, and adjusting the amount of fuel in the hot air generating furnace so that the temperature of the drying exhaust gas remains constant. . This is because adjusting the hot air temperature has a faster response and makes it easier to maintain the heat balance inside the device. However, there are qualitative and quantitative fluctuations in the heat source, such as when handling materials with variable properties such as dehydrated cakes of slurry, or when using waste heat from other processes. It becomes very difficult to drive if it includes. To deal with this, it is necessary to mix materials to homogenize them, or to compensate for fluctuations in hot air using auxiliary fuel such as heavy oil, which is not only unreasonable from an energy conservation perspective. This results in an increase in the complexity of the device and the cost of the device.
また、乾燥排ガス温度の設定値は、通常熱風温
度が700〜900℃において180〜200℃とされてお
り、この値は装置の安全運転上の余裕を含んだも
のである。乾燥理論からみると、乾燥排ガスの温
度は低ければ低いほど熱効率は高くなるわけであ
るが、蒸発すべき水の量すなわち供給される被乾
燥材料の量と熱風の持ち込む熱量のバランスがく
ずれ、熱量が不足した場合には未乾燥物の排出、
材料の団塊化などの重大な支障を生じ、運転不能
にまで至るおそれもある。そのために持ち込む熱
量の方を多目にし、重大な支障を生じないように
排ガス温度を高目にしているから、どうしても熱
効率は低くなる。しかしながら、このような熱効
率上の不利は従来方式では不可避であるといえ
る。 Further, the set value of the dry exhaust gas temperature is usually 180 to 200°C when the hot air temperature is 700 to 900°C, and this value includes a margin for safe operation of the device. From a drying theory, the lower the temperature of the drying exhaust gas, the higher the thermal efficiency.However, the balance between the amount of water to be evaporated, that is, the amount of material to be dried, and the amount of heat brought in by the hot air is lost, and the amount of heat increases. If there is a shortage, discharge undried materials,
There is a risk that serious problems such as material clumping may occur, leading to the inability to operate. For this reason, more heat is brought in, and the exhaust gas temperature is raised to avoid serious problems, which inevitably results in lower thermal efficiency. However, such a disadvantage in terms of thermal efficiency can be said to be unavoidable in the conventional method.
本発明は、撹拌熱風乾燥装置における運転制御
上の前記欠点を解消し、熱風条件、材料の質的、
量的変動に十分対処し得て、高い熱効率で制御精
度の高い合理的な制御方法を提供しようとするも
のである。
The present invention solves the above-mentioned drawbacks in operation control in a stirring hot air drying device, and improves hot air conditions, quality of materials,
The objective is to provide a rational control method that can adequately cope with quantitative fluctuations, has high thermal efficiency, and has high control accuracy.
本発明は、内部に撹拌装置を備えた撹拌熱風乾
燥装置において、内部に滞留する被乾燥材料に接
する部位の機体表面温度あるいは該温度と乾燥排
ガス温度の差を測定し、該温度あるいは温度差が
あらかじめ設定した設定温度範囲内に維持される
ように被乾燥材料の供給量を調節することを特徴
とする乾燥装置の制御方法である。
The present invention is an agitating hot air drying device equipped with an internal agitating device, and measures the body surface temperature of a portion that comes into contact with the material to be dried staying inside, or the difference between this temperature and the drying exhaust gas temperature, and measures the temperature or the temperature difference. This is a method of controlling a drying device, characterized by adjusting the supply amount of a material to be dried so that the temperature is maintained within a preset temperature range.
本発明の一実施例を図面を参照しながら説明す
ると、第1図において、装置としては、例えば堅
型筒状の機体1内に回転撹拌羽根2が配備され、
下部に熱風供給装置3に連なる熱風導入管4が開
口し、さらに、被乾燥材料供給装置5に連なる供
給管6が開口した構成となつている。
An embodiment of the present invention will be described with reference to the drawings. In FIG. 1, the device includes, for example, a rotary stirring blade 2 disposed inside a rigid cylindrical body 1,
A hot air introduction pipe 4 connected to a hot air supply device 3 is opened at the bottom, and a supply pipe 6 connected to a drying material supply device 5 is opened.
この供給管6は機体1の底部あるいは側壁の下
部に開口させるとよく、これは熱風と並流にする
ことによつて乾燥効率を高めるためであり、さら
に機体1内に滞留する材料層に接する部位に供給
することによつて速やかに混合される。また、被
乾燥材料供給装置5は、配管輸送できるような高
圧ポンプ式が好ましく、これは応答性の良さや材
料層内へ圧入するためにも効果がある。 This supply pipe 6 is preferably opened at the bottom of the machine body 1 or at the lower part of the side wall, in order to increase the drying efficiency by creating a parallel flow with the hot air, and furthermore, it is in contact with the material layer staying inside the machine body 1. It is quickly mixed by feeding it to the site. Further, the material supplying device 5 to be dried is preferably a high-pressure pump type that can be transported through a pipe, and this is effective in improving responsiveness and press-fitting the material into the material layer.
さらに機体1の上部には乾燥排ガスダクト7が
連なり、機体1の直径の約1/3以上の高さには製
品排出シユート8が開口し、気密ダンパ9を介し
て外部に導かれている。また、回転撹拌羽根2は
駆動装置10によりギヤボツクス11を介して駆
動され、回転撹拌羽根2の軸トルクはトルク検出
器12で検出されるようになつている。 Further, a dry exhaust gas duct 7 is connected to the upper part of the machine body 1, and a product discharge chute 8 opens at a height of about 1/3 or more of the diameter of the machine body 1, and is guided to the outside via an airtight damper 9. Further, the rotary stirring blade 2 is driven by a drive device 10 via a gear box 11, and the shaft torque of the rotary stirring blade 2 is detected by a torque detector 12.
しかして、熱風は熱風供給装置3から熱風導入
管4を経て機体1内下部に導入され、回転撹拌羽
根2の回転によつて解砕されている被乾燥材料層
と直接接触したのち上部の乾燥排ガスダクト7か
ら排出され、被乾燥材料は機体1内にある時間滞
留して乾燥製品となり、製品排出シユート8から
気密ダンパ9を経て外部へ取り出される。 The hot air is introduced into the lower part of the machine body 1 from the hot air supply device 3 through the hot air introduction pipe 4, and after coming into direct contact with the material layer to be dried which has been crushed by the rotation of the rotary stirring blades 2, the upper part is dried. The material to be dried is discharged from the exhaust gas duct 7 and remains in the machine body 1 for a certain period of time to become a dried product, which is then taken out from the product discharge chute 8 via an airtight damper 9 to the outside.
この機体1内に滞留する被乾燥材料は、層上部
にはほぼ乾燥を終了したものが存在し、下部では
まだかなり湿潤した材料が存在する。しかし、回
転撹拌羽根2によつて混合を受けているので、上
下の水分量の差はあまり大きくなく、層全体は材
料が粒状に分散された乾燥に望ましい状態とな
り、このような運転状態に維持することが好まし
い。このように、供給された被乾燥材料は分散粒
子と混合され、粒子表面に塗りつけられて乾燥を
受ける。 The material to be dried that remains in the body 1 has almost completely dried material in the upper part of the layer, and material that is still quite wet in the lower part. However, since the mixing is carried out by the rotating stirring blade 2, the difference in the moisture content between the upper and lower layers is not very large, and the entire layer is in a state where the material is dispersed in granular form, which is desirable for drying, and this operating state is maintained. It is preferable to do so. In this way, the supplied material to be dried is mixed with the dispersed particles, spread over the particle surfaces, and subjected to drying.
しかるに、被乾燥材料が多く供給された状態で
熱風と接触すると、乾燥理論からまず材料の予熱
区間を経て恒率乾燥区間に入る。この区間では、
材料の温度は熱風温度に対する湿球温度あるいは
それ以下となる。例えば、通常の熱風条件(600
〜800℃)での材料温度は65〜75℃となる。また、
材料の供給を遮断して乾燥のみを進行させると、
滞留材料の水分は次第に低下し、乾燥理論でいう
ところの減率乾燥区間に入り、この区間では材料
温度は次第に高くなる。 However, when a large amount of material to be dried is supplied and comes into contact with hot air, according to drying theory, the material first passes through a preheating period and then enters a constant rate drying period. In this section,
The temperature of the material is at or below the wet bulb temperature relative to the hot air temperature. For example, under normal hot air conditions (600
~800℃), the material temperature will be 65-75℃. Also,
If the supply of material is cut off and only drying proceeds,
The moisture content of the retained material gradually decreases and enters the lapse rate drying section according to drying theory, during which the material temperature gradually increases.
したがつて、ある水分範囲内の乾燥製品を得る
ときには、材料自体の温度変化を測定しつつ材料
の供給量を調節すればよく、材料層内に温度計を
挿入して温度を測定することは構造的にも困難で
ある。しかし、この問題は機体1の表面温度を測
定することで解決できる。すなわち、機体1は通
常鉄でできているから、熱伝導率が高く、速やか
に内部温度変化に追従することができる。この機
体1の表面温度は、機体表面用温度計13で測定
する。温度計13としては、放射温度計などを使
用することができるが、価格の点などから熱電対
や測温抵抗体でも十分である。熱電対などは押し
ボルトなどで表面に押しつけて固定するとよい。
測温の部位は、被乾燥材料層に接する部分の壁部
とし、しかも温度の変化度合が大きく、応答性の
速いところが望ましく、例えば熱風導入口と被乾
燥材料供給口の両者に近いところがよい。 Therefore, when obtaining a dry product within a certain moisture range, it is sufficient to measure the temperature change of the material itself and adjust the feed rate of the material; it is not necessary to insert a thermometer into the material layer to measure the temperature. It is also structurally difficult. However, this problem can be solved by measuring the surface temperature of the aircraft body 1. That is, since the fuselage 1 is usually made of iron, it has high thermal conductivity and can quickly follow internal temperature changes. The surface temperature of the fuselage 1 is measured with a thermometer 13 for the fuselage surface. As the thermometer 13, a radiation thermometer or the like can be used, but a thermocouple or a thermometer may also suffice from the viewpoint of cost. It is best to fix thermocouples by pressing them against the surface with push bolts.
The temperature measurement site is preferably a wall portion in contact with the layer of the material to be dried, where the degree of temperature change is large and the response is fast, for example, a location close to both the hot air inlet and the material supply port to be dried.
このようにして測定された機体1の温度は、制
御装置14に入力され、制御装置14であらかじ
め設定された設定値範囲と比較し、高設定値と超
えると乾燥の進行による温度上昇と判断して被乾
燥材料の供給を開始又は供給量の増加を行わし
め、低設定値を下回ると供給の過多による温度降
下と判断して被乾燥材料の供給を停止又は供給量
の減少を行わしめることにより、常に層内の熱及
び物質のバランスをとることができる。 The temperature of the machine body 1 measured in this way is input to the control device 14, and is compared with a preset value range set by the control device 14. If it exceeds the high set value, it is determined that the temperature has increased due to the progress of drying. When the temperature falls below the low set value, it is determined that the temperature has dropped due to excessive supply, and the supply of the material to be dried is stopped or the supply amount is reduced. , can always balance the heat and material within the layer.
以上のような制御は、熱風の変動が比較的小さ
い場合に適しているが、熱風の変動が大きい場合
には、乾燥の進行度合だけでなく、熱風温度の変
動によつて材料温度の変動を生じ、制御回路に誤
動作を生ずるおそれがある。この場合には、前記
機体1表面温度と乾燥排ガスダクト7に付設した
乾燥排ガス用温度計15にて測定した乾燥排ガス
温度の差をとり、これを制御装置14に入力する
ことにより熱風変動の影響を免れることができ
る。これは、熱風温度の変動に対する影響の度合
が機体1温度と乾燥排ガス温度とでほぼ等しいと
いう性質を利用したものである。 The above control is suitable when the fluctuations in the hot air are relatively small, but when the fluctuations in the hot air are large, it is necessary to control the fluctuations in the material temperature not only by the degree of drying progress but also by the fluctuations in the hot air temperature. This may cause the control circuit to malfunction. In this case, the difference between the surface temperature of the airframe 1 and the dry exhaust gas temperature measured with the dry exhaust gas thermometer 15 attached to the dry exhaust gas duct 7 is calculated, and this is input into the control device 14 to control the influence of hot air fluctuations. can be avoided. This takes advantage of the property that the degree of influence on fluctuations in hot air temperature is approximately the same between the temperature of the airframe 1 and the temperature of the dry exhaust gas.
なお、前記制御装置14に設定される設定値範
囲において、高設定値と低設定値の差は、あまり
大きいと乾燥製品の品質にばらつきを生ずること
になるから、20℃以内にすることが好ましい。 In addition, in the setting value range set in the control device 14, the difference between the high setting value and the low setting value is preferably within 20°C because if it is too large, it will cause variations in the quality of the dried product. .
また、さらに精度の高い制御を行わせるために
は、自動制御でいうD動作、すなわち微分動作と
同じ考え方を導入することができる。この場合、
前記測定温度は微分演算機構を持つた制御装置に
入力され、温度の上昇あるいは下降曲線の傾きを
求め、その傾きの大きさに比例した供給量とする
か、あるいは傾きの値を設定して、その設定値に
よつて供給装置の運転、停止を行うとよい。 Furthermore, in order to perform even more precise control, it is possible to introduce the same idea as the D operation in automatic control, that is, the differential operation. in this case,
The measured temperature is input to a control device having a differential calculation mechanism, the slope of the temperature rise or fall curve is determined, and the supply amount is set in proportion to the magnitude of the slope, or the value of the slope is set. It is preferable to operate and stop the supply device according to the set value.
以上の制御方法をさらに精度よく行わせるため
には、回転撹拌羽根2の軸トルクをトルク検出器
12によつて検出し、このトルク値を前記機体1
表面温度又は該温度と乾燥排ガスス温度の差と併
用することも有効である。例えば、運転状態にお
ける機体1表面温度とトルク値の推移は、第2図
に示すように被乾燥材料の供給過多でトルク値が
上昇し、乾燥の進行でトルク値が低下するという
性質を利用したものである。 In order to perform the above control method with higher accuracy, the shaft torque of the rotary stirring blade 2 is detected by the torque detector 12, and this torque value is detected by the
It is also effective to use the surface temperature or the difference between the surface temperature and the dry exhaust gas temperature. For example, the changes in the surface temperature of the machine body 1 and the torque value during operation are based on the property that, as shown in Figure 2, the torque value increases when there is an oversupply of material to be dried, and the torque value decreases as drying progresses. It is something.
以上述べたように本発明によれば、撹拌熱風乾
燥装置における熱風条件、材料の質的、量的変動
によく追従して最適な被乾燥材料供給量に調節
し、常に安定して熱風の持つ熱量を有効利用し、
しかも精度高く、きわめて合理的で省エネルギ的
にも多大の効果をもつことができるものである。
As described above, according to the present invention, the supply amount of the material to be dried is adjusted to the optimum amount by closely following the hot air conditions in the stirring hot air drying device and the qualitative and quantitative fluctuations of the material. Make effective use of heat,
Moreover, it is highly accurate, extremely rational, and can have a great effect in terms of energy saving.
第1図は本発明の一実施例を示す装置の一部縦
断面図で、第2図は被乾燥材料供給装置の運転状
態と、機体温度及び回転撹拌羽根の軸トルク値の
推移を示す線図である。
1……機体、2……回転撹拌羽根、3……熱風
供給装置、4……熱風導入管、5……被乾燥材料
供給装置、6……供給管、7……乾燥排ガスダク
ト、8……製品排出シユート、9……気密ダン
パ、10……駆動装置、12……トルク検出器、
13……機体表面用温度計、14……制御装置、
15……乾燥排ガス用温度計。
Fig. 1 is a partial vertical sectional view of a device showing an embodiment of the present invention, and Fig. 2 is a line showing the operating state of the material supplying device to be dried and changes in the machine body temperature and the shaft torque value of the rotary stirring blade. It is a diagram. DESCRIPTION OF SYMBOLS 1... Body, 2... Rotating stirring blade, 3... Hot air supply device, 4... Hot air introduction pipe, 5... Dry material supply device, 6... Supply pipe, 7... Dry exhaust gas duct, 8... ... Product discharge chute, 9 ... Airtight damper, 10 ... Drive device, 12 ... Torque detector,
13... Aircraft surface thermometer, 14... Control device,
15... Thermometer for dry exhaust gas.
Claims (1)
おいて、内部に滞留する被乾燥材料に接する部位
の機体表面温度あるいは該温度と乾燥排ガス温度
の差を測定し、該温度あるいは温度差があらかじ
め設定した設定温度範囲内に維持されるように被
乾燥材料の供給量を調節することを特徴とする乾
燥装置の制御方法。 2 前記設定温度範囲の高設定値と低設定値の差
を20℃以内とするものである特許請求の範囲第1
項記載の乾燥装置の制御方法。[Claims] 1. In an agitation hot air drying device equipped with an internal agitation device, the surface temperature of the machine body at a portion in contact with the material to be dried staying inside or the difference between this temperature and the drying exhaust gas temperature is measured, and the temperature or A method of controlling a drying device, comprising adjusting the amount of material to be dried such that the temperature difference is maintained within a preset temperature range. 2. Claim 1, wherein the difference between the high set value and the low set value of the set temperature range is within 20°C.
A method of controlling the drying device described in Section 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10654084A JPS60251383A (en) | 1984-05-28 | 1984-05-28 | Method of controlling drier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10654084A JPS60251383A (en) | 1984-05-28 | 1984-05-28 | Method of controlling drier |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60251383A JPS60251383A (en) | 1985-12-12 |
JPS64632B2 true JPS64632B2 (en) | 1989-01-09 |
Family
ID=14436208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10654084A Granted JPS60251383A (en) | 1984-05-28 | 1984-05-28 | Method of controlling drier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60251383A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6924938B2 (en) * | 2017-10-24 | 2021-08-25 | 株式会社大川原製作所 | How to operate conduction heat transfer drying equipment |
-
1984
- 1984-05-28 JP JP10654084A patent/JPS60251383A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60251383A (en) | 1985-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7404262B2 (en) | Heat-moisture control in agricultural-product production using moisture from water vapor extraction | |
US7730633B2 (en) | Agricultural-product production with heat and moisture recovery and control | |
US7562465B2 (en) | Process and means for drying of sticky materials | |
CN111675478A (en) | Full-automatic hot air sludge drying equipment and drying method thereof | |
CA2976720C (en) | Casting sand cooler | |
CN201100827Y (en) | Turning cylinder drier with end scattering device | |
JP2005528310A (en) | Equipment for drying and / or calcining gypsum | |
US4929163A (en) | Apparatus for a pellet mill without steam addition | |
US4209537A (en) | Method for expanding particulate material | |
JPH04338300A (en) | Method for drying pasty material by rotary drying machine | |
JPS64632B2 (en) | ||
KR101015386B1 (en) | Spray dryer | |
EP0090261A2 (en) | Drying apparatus | |
US4046066A (en) | Continuous flow expander for expanding particulate material | |
CN209310447U (en) | A kind of novel energy-conserving continuous feed list cone drying machine | |
JPS60900A (en) | Process for drying muddy material | |
JP3867266B2 (en) | Operation control method of indirect heating type stirring dryer | |
RU2350866C1 (en) | Technique of automatic control over process of dispersion materials drying in active hydrodynamics devices with heat medium recirculation | |
US4069830A (en) | Apparatus for conditioning tobacco | |
US2833345A (en) | Spray drying apparatus | |
CN201804259U (en) | Online moisture content detection and control device for powdery raw materials | |
JPH05269394A (en) | Device for grinding coal and method for controlling rate of water injection | |
JPS6317520B2 (en) | ||
JPS6141874A (en) | Method of controlling drier | |
JPS64631B2 (en) |