JPS6462B2 - - Google Patents

Info

Publication number
JPS6462B2
JPS6462B2 JP56075679A JP7567981A JPS6462B2 JP S6462 B2 JPS6462 B2 JP S6462B2 JP 56075679 A JP56075679 A JP 56075679A JP 7567981 A JP7567981 A JP 7567981A JP S6462 B2 JPS6462 B2 JP S6462B2
Authority
JP
Japan
Prior art keywords
circuit
blood
detection means
output
monitoring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56075679A
Other languages
Japanese (ja)
Other versions
JPS57190547A (en
Inventor
Yoshiro Suzuki
Yasuhiro Kawamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP56075679A priority Critical patent/JPS57190547A/en
Publication of JPS57190547A publication Critical patent/JPS57190547A/en
Publication of JPS6462B2 publication Critical patent/JPS6462B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は体外循環血液回路の監視装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a monitoring device for an extracorporeal circulation blood circuit.

先行技術 例えば人工腎臓は人体の静脈より導出した血液
を圧送する血液ポンプ1、エアーチヤンバ2、透
析を行う中空糸型腎臓3、エアーチヤンバ4を経
て人体に帰環する体外循環血液回路を構成するも
のであるが、体外循環血液回路の接続時等には導
管に外部の空気の流入の防止、人体の血圧による
血のふき出しの防止等のために、コツヘルを使用
している。第1図に示される体外血液循環回路が
導管の折れ曲がりやコツヘルAの外しわすれで閉
じられている場合、回路内圧は異常に上昇する。
この異常状態を検出し、回路内圧を監視するため
に圧力導管lをエアーチヤンバ4に接続し、圧力
導管lに接続された圧力検出器7で異常な高圧、
低圧を検出している。
Prior Art For example, an artificial kidney comprises an extracorporeal blood circulation circuit that pumps blood drawn from the veins of the human body through a blood pump 1, an air chamber 2, a hollow fiber kidney 3 that performs dialysis, and an air chamber 4 that returns the blood to the human body. However, when connecting an extracorporeal circulation blood circuit, etc., a conduit is used to prevent outside air from flowing into the conduit and to prevent blood from spurting out due to the human body's blood pressure. When the extracorporeal blood circulation circuit shown in FIG. 1 is closed due to a bend in the conduit or a dislodgement of the tube A, the pressure inside the circuit increases abnormally.
In order to detect this abnormal state and monitor the circuit internal pressure, a pressure conduit l is connected to the air chamber 4, and a pressure detector 7 connected to the pressure conduit l detects abnormal high pressure.
Detecting low pressure.

従来技術の問題点 しかしながら、圧力導管lがコツヘルBの外し
わすれや導管の折れ曲りで閉じられてあつたり、
圧力検出器への圧力導管lの接続忘れがあつた
り、又はガスフイルタ6の詰まりがある場合など
は、体外循環血液回路内の圧力の異常を圧力検出
器では発見することができない。即ち、回路内圧
の異常を検出するための従来技術は圧力検出器の
故障・圧力導管の接続忘れやつまり等がある場合
はその効用を発揮しうるものではない。
Problems with the prior art However, the pressure conduit 1 is often closed due to the removal of the pressure conduit B or the conduit being bent.
If the pressure conduit 1 is forgotten to be connected to the pressure detector, or if the gas filter 6 is clogged, the pressure detector cannot detect abnormalities in the pressure in the extracorporeal circulation blood circuit. That is, the conventional technology for detecting an abnormality in the internal pressure of the circuit is not effective when there is a malfunction of the pressure detector, a forgetting to connect the pressure pipe, or a blockage.

発明の目的 本願発明の主要な目的は、体外血液循環回路の
動作の監視と同時に体外血液循環回路の圧力監視
装置の監視を行う監視装置を提案する所にある。
更に詳細に言えば、本発明の目的は、導管部に対
するコツヘルの外し忘れなど圧力監視装置では監
視が不可能な事故を検出できる監視装置を提案す
る所にある。
OBJECTS OF THE INVENTION The main object of the present invention is to propose a monitoring device that monitors the pressure monitoring device of the extracorporeal blood circulation circuit at the same time as monitoring the operation of the extracorporeal blood circulation circuit.
More specifically, it is an object of the present invention to propose a monitoring device capable of detecting accidents that cannot be monitored with a pressure monitoring device, such as forgetting to remove a pressure gauge from a conduit section.

また、本発明の他の目的は、ガスフイルタの詰
まり、圧力変換器の故障など体外血液循環回路の
圧力検出装置の事故をも検出できる監視装置を提
案し、体外血液循環回路の正常な動作を二重に監
視する所にある。
Another object of the present invention is to propose a monitoring device capable of detecting accidents in the pressure detection device of the extracorporeal blood circulation circuit, such as clogging of the gas filter and malfunction of the pressure transducer, thereby ensuring the normal operation of the extracorporeal blood circulation circuit. It is in a place that is closely monitored.

更に本発明の他の目的は圧力監視装置の体外血
液循環回路への接続忘れを防止し、血液循環回路
の監視の万全を期する所にある。
Another object of the present invention is to prevent forgetting to connect the pressure monitoring device to the extracorporeal blood circulation circuit, and to ensure thorough monitoring of the blood circulation circuit.

その他の本発明の目的及び特徴は以下の説明よ
り明らかとなるであろう。
Other objects and features of the present invention will become apparent from the following description.

発明の構成及び作用 本発明は血液導出管と、血液導入管との間に設
けられ、生体から血液を導出し、血流に脈動を発
生させるポンプを含む手段と、透析装置とを含む
体外循環血液回路であつて、 該透析装置と該導入管との間には、該回路内の
脈動状態を監視する圧力監視装置を有し、 該圧力監視装置は、静脈圧の脈動変化を検出・
増幅する検出手段と、該検出手段の出力により生
成するパルス波形生成手段と、該波形生成手段か
らのパルスの供給を検知するミスパルス検知手段
とで構成させるとともに、前記ポンプの作動状態
を検出する作動検出手段と、前記ミスパルス検知
手段と前記作動検出手段双方の出力の有無を判別
する判別回路手段とからなることを特徴とする体
外循環血液回路の監視装置を提供する。
Structure and operation of the invention The present invention provides an extracorporeal circulation system that includes a pump that is provided between a blood outlet tube and a blood inlet tube, that draws blood out of a living body, and generates pulsation in the blood flow, and a dialysis device. The blood circuit includes a pressure monitoring device that monitors a pulsation state in the circuit between the dialysis device and the introduction tube, and the pressure monitoring device detects and detects pulsation changes in venous pressure.
A detection means for amplifying, a pulse waveform generation means for generating from the output of the detection means, and a miss pulse detection means for detecting the supply of pulses from the waveform generation means, and an operation for detecting the operating state of the pump. A monitoring device for an extracorporeal circulation blood circuit is provided, comprising a detection means and a discrimination circuit means for determining whether or not there is an output from both the missed pulse detection means and the operation detection means.

ポンプには拍動型血液ポンプが好適である。 A pulsatile blood pump is suitable for the pump.

圧力監視装置が圧力変換器と、交流増幅器の脈
動変化を検出・増幅する検出手段と、該検出手段
の出力により生成するパルス波形生成手段と、該
波形生成手段からのパルス周期を監視し、一定周
期内の時に出力を生ずるミスパルス検知手段とを
備えた前記監視装置が好適である。
The pressure monitoring device monitors the pressure transducer, a detection means for detecting and amplifying pulsation changes of the AC amplifier, a pulse waveform generation means generated by the output of the detection means, and a pulse period from the waveform generation means to maintain a constant state. Preferably, the monitoring device comprises a missed pulse detection means that produces an output when the missed pulse is within the period.

また、パルス波形生成手段が一定レベル以上の
交流成分を選択的にデジタル出力とするヒステリ
シス特性を有する回路を含むことも好適である。
It is also preferable that the pulse waveform generating means includes a circuit having a hysteresis characteristic that selectively converts AC components of a certain level or higher into digital output.

さらに、ヒステリシス特性を有する回路の出力
の変化時にのみ一定間隔のパルス出力を出す単安
定回路がパルス波形生成手段に含まれることも好
適である。
Furthermore, it is also preferable that the pulse waveform generating means includes a monostable circuit that outputs pulses at constant intervals only when the output of the circuit having hysteresis characteristics changes.

本発明の代表的な実施例を示す第2図におい
て、患者の前腕静脈から血液導出管l1を介して
血液を導出し、血液ポンプ(ローラポンプ)1に
導く。血液ポンプ1の一例として、静脈圧に脈流
が形成されるように、スリーローラ式の血液ポン
プを使用する。スリーローラ式ポンプにおいて
は、ローラが血液を導くポンプチユーブに対して
周期的に圧・接を断続するため、静脈圧の脈流が
生じることは当業者には自明である。本発明が使
用する血液ポンプはその駆動による静脈圧を脈動
させるものが望ましい。この目的に適合する血液
ポンプとしては、前述のローラポンプの他に例え
ばフインガーポンプ、往復動ポンプ、ダイヤフラ
ムポンプ、心室型ポンプなどがある。なお、以上
のポンプ例示は、無脈動流の血流を与える遠心ポ
ンプ等を本発明の範囲から除外するものではな
い。この点については、後述することで明らかに
なろう。要するに脈動を発生する手段をポンプに
付加することにより達成できる。
In FIG. 2, which shows a typical embodiment of the present invention, blood is led out from a patient's forearm vein through a blood lead-out tube 11 and guided to a blood pump (roller pump) 1. As an example of the blood pump 1, a three-roller type blood pump is used so that a pulsating flow is formed in the venous pressure. In a three-roller type pump, it is obvious to those skilled in the art that pulsating venous pressure flow occurs because the rollers periodically disconnect and press pressure against the pump tube that guides blood. The blood pump used in the present invention is preferably one that causes venous pressure to pulsate due to its drive. In addition to the above-mentioned roller pumps, blood pumps suitable for this purpose include, for example, finger pumps, reciprocating pumps, diaphragm pumps, and ventricular pumps. Note that the above examples of pumps do not exclude centrifugal pumps and the like that provide non-pulsating blood flow from the scope of the present invention. This point will become clearer later. In short, this can be achieved by adding means for generating pulsation to the pump.

血液ポンプ1により送られる静脈血は、エアー
チヤンバ2で脱気され、中空糸型腎臓3に至り、
有害代謝産物を血中から透析排除する。参照番号
4は気泡、血栓を除去するためのエアーチヤンバ
である。エアーチヤンバと人体前腕動脈をつなぐ
血液導入管l2をクレンメ5で一部閉塞し、血圧
を上昇させることにより中空糸型腎臓3の内部圧
を高くし、圧力勾配を大きくし水分の濾過に役立
たせる。
Venous blood sent by the blood pump 1 is degassed in the air chamber 2 and reaches the hollow fiber kidney 3.
Dialysis removes harmful metabolites from the blood. Reference number 4 is an air chamber for removing air bubbles and thrombi. A blood introduction pipe 12 connecting an air chamber and a human forearm artery is partially occluded with a crevice 5 to raise the blood pressure, thereby increasing the internal pressure of the hollow fiber kidney 3, increasing the pressure gradient, and making it useful for water filtration.

エアーチヤンバ4には圧力導管lが接続され、
ガスフイルタ6を通してエアーチヤンバ4内の圧
力を空気を介して圧力検出器7に導く。第3図が
示す様にストレンゲージを使用する圧力変換器7
は圧力導管l内の圧力変化をブリツジの不平衡出
力として導き、増幅器8の+、−側の入力端子に
与える。増幅器8はこれを増幅して高圧警報信号
発生用のコンパレータ9及び低圧警報信号発生用
コンパレータ10に与えると共に第3図の*印で
示された信号線路を経て第4図の交流増幅器11
の前段に与える。コンパレータ9に所定電圧より
も高い電圧が印加されると出力が低電位となり、
制御用トランジスタTR1をオフし、出力を高電位
のものとして、高圧警報信号を出力する。一方、
増幅器8の出力が所定の電圧以下に下がつたとき
は、コンパレータ10の出力も低電位のものとな
り、トランジスタTR2をオフし、低圧警報信号を
発生する。なお、第5図Aは増幅器8の出力を示
す。増幅器8によつて増幅された電気信号は第4
図の*印で示された信号線路を経て交流増幅器1
1の前段に設けられたコンデンサC1及び抵抗R
よりなるハイパスフイルタに入り、このハイパス
フイルタで直流成分がカツトされ、血液ポンプ1
が発生させる脈動による交流信号分だけを抽出し
て交流増幅器11に与え、交流増幅を行う(第5
図B)。増幅された信号はコンパレータ12の
(−)側入力端子に与えられる。本発明の装置の
信頼性を向上させるためには、コンパレータ12
にヒシテリシス特性を特つたシユミツトトリガ回
路を使用するのが望ましい。コンパレータは一定
レベル以上の入力信号が与えられたときにのみ動
作し、交流信号を立上がり・立下がりの急峻な
“1”、“0”のパルス波形に変換し(第5図C)、
トランジスタTR3をオン・オフする。単安定回路
13はその時定数回路で定まる一定幅の出力パル
ス(第5図D)をミスパルス検知回路14に与え
る。ミスパルス検知回路14は第4図が示す如
く、単安定回路13の出力に対しコンデンサと抵
抗を並列に接続して時定数回路を構成している。
従つて、ミスパルス検知回路14の出力はその入
力端子に所定の周期Tm以内でパルスが供給され
ている限り、高電位のものとする。反転器15は
ミスパルス検知回路の出力をトランジスタTR4
用いて反転して出力する。この低電位の出力が検
出手段によつて得られた脈動を示す状態信号であ
る。一方、血液ポンプ1が駆動されるとリレー接
点がb側に切換わり、ランプLを点灯する。接点
a側はオープンとなるため、オンデイレイタイマ
ー16のコンデンサC2に充電する。コンデンサ
C2の所定の充電が完了したとき、コンデンサC
の+側電極の高電位がトランジスタTR5のベース
に現われ、TR5をオンとする。このため、TR6
オフに変化し、高電位の出力をアンド回路17に
与える。斯様にして、血液ポンプ1の作動状態
(スタートボタンが押されたことの検出でもよい)
を示す信号は常に所定の遅延時間Td(第6図E)
をもつて立上がり、アンド回路17に与えられる
ものである。この結果、血液ポンプの起動と脈流
発生に要する時間差間を事故としてアンド回路1
7によつて検出することを防止する。
A pressure conduit l is connected to the air chamber 4,
The pressure inside the air chamber 4 is introduced to a pressure detector 7 via air through a gas filter 6 . Pressure transducer 7 using a strain gauge as shown in Figure 3
introduces the pressure change in the pressure conduit 1 as an unbalanced output of the bridge and supplies it to the + and - side input terminals of the amplifier 8. The amplifier 8 amplifies this signal and supplies it to a comparator 9 for generating a high-voltage alarm signal and a comparator 10 for generating a low-voltage alarm signal, and also passes it to the AC amplifier 11 in FIG. 4 via the signal line indicated by the * symbol in FIG.
Give it in front of. When a voltage higher than the predetermined voltage is applied to the comparator 9, the output becomes a low potential,
Turn off the control transistor TR1 , set the output to a high potential, and output a high voltage alarm signal. on the other hand,
When the output of the amplifier 8 falls below a predetermined voltage, the output of the comparator 10 also becomes a low potential, turning off the transistor TR 2 and generating a low voltage alarm signal. Note that FIG. 5A shows the output of the amplifier 8. The electrical signal amplified by the amplifier 8 is
The AC amplifier 1 is connected to the AC amplifier 1 via the signal line indicated by the * mark in the diagram.
Capacitor C 1 and resistor R provided in front of 1
The DC component is filtered out by this high-pass filter, and the blood pump 1
extracts only the AC signal due to the pulsations generated by the AC amplifier 11, and performs AC amplification (fifth
Figure B). The amplified signal is given to the (-) side input terminal of the comparator 12. In order to improve the reliability of the device of the present invention, the comparator 12
It is desirable to use a Schmitt trigger circuit with special hysteresis characteristics. The comparator operates only when an input signal of a certain level or higher is applied, and converts the AC signal into a pulse waveform of "1" and "0" with steep rises and falls (Figure 5C).
Turns transistor TR 3 on and off. The monostable circuit 13 provides an output pulse (FIG. 5D) with a constant width determined by its time constant circuit to the miss pulse detection circuit 14. As shown in FIG. 4, the miss pulse detection circuit 14 has a capacitor and a resistor connected in parallel to the output of the monostable circuit 13 to form a time constant circuit.
Therefore, the output of the missed pulse detection circuit 14 is at a high potential as long as pulses are supplied to its input terminal within the predetermined period Tm. The inverter 15 inverts the output of the missed pulse detection circuit using the transistor TR4 and outputs the result. This low potential output is a state signal indicating pulsation obtained by the detection means. On the other hand, when the blood pump 1 is driven, the relay contact is switched to the b side and the lamp L is turned on. Since the contact a side is open, the capacitor C2 of the on-delay timer 16 is charged. capacitor
When the prescribed charging of C 2 is completed, the capacitor C
The high potential of the + side electrode of the transistor appears at the base of the transistor TR 5 , turning it on. Therefore, TR 6 turns off and provides a high potential output to the AND circuit 17. In this way, the operating state of the blood pump 1 (detection of the start button being pressed may also be used)
The signal indicating always has a predetermined delay time Td (Fig. 6E)
, and is applied to the AND circuit 17. As a result, AND circuit 1 considers the time difference between starting the blood pump and generating pulsating flow as an accident.
7 to prevent detection.

次に第6図イで示す時点で圧力導管lが閉塞さ
れた事故が発生したと仮定しよう。事故発生前は
第5図B,C及びDが示す如く、ゼロレベルより
高い電圧値の時間幅に対応するコンパレータ出力
が形成され、コンパレータの出力の立上がりで単
安定回路をトリガし、一定幅の出力パルスをミス
パルス検知回路14に与える。このため、ミス検
知回路の出力は入力パルスの周期が時間Tm以内
であることを条件として高電位である。ところ
が、入力パルスがTm以上の間隔をもつたとき、
出力は低電位に変化する(第6図A,B及びC)。
この結果アンド回路17は反転器15より脈動を
示す状態信号として高電位の入力信号を受ける。
一方、血液ポンプは駆動状態にあり、リレー接点
はb側に接続されている。従つて、脈動を示す状
態信号と作動状態を示す状態信号とが入力されて
いることを検出する手段であるアンド回路は高電
位の出力を出し(第6図F)、これを以つて異常
状態と判定するのである。
Next, let us assume that an accident occurs in which the pressure conduit 1 is blocked at the time shown in Figure 6A. Before the accident occurred, as shown in Figure 5 B, C, and D, a comparator output corresponding to the time width of the voltage value higher than the zero level was formed, and the rise of the comparator output triggered the monostable circuit, and a constant width of the output was generated. The output pulse is given to the miss pulse detection circuit 14. Therefore, the output of the miss detection circuit is at a high potential provided that the period of the input pulse is within time Tm. However, when the input pulses have an interval greater than Tm,
The output changes to a low potential (Figure 6A, B and C).
As a result, the AND circuit 17 receives a high potential input signal from the inverter 15 as a state signal indicating pulsation.
On the other hand, the blood pump is in a driving state, and the relay contact is connected to the b side. Therefore, the AND circuit, which is a means for detecting that a state signal indicating pulsation and a state signal indicating an operating state are input, outputs a high potential (FIG. 6F), thereby indicating an abnormal state. It is judged that.

事故の発生原因としては第7図で示されている
ように、記号ロは導管の接続がはずれた際の増幅
器8の出力波形変化を示す。この場合は交流増幅
器11、コンパレータ12、単安定回路13及び
ミスパルス検知回路14の出力消失し、同様にし
て異常と判別されるものである。
As for the cause of the accident, as shown in FIG. 7, symbol B shows the change in the output waveform of the amplifier 8 when the conduit is disconnected. In this case, the outputs of the AC amplifier 11, the comparator 12, the monostable circuit 13, and the missed pulse detection circuit 14 disappear, and it is similarly determined that there is an abnormality.

以上の実施例においては、血液ポンプが脈動発
生源である場合を例にとつて説明したが、血液ポ
ンプに遠心ポンプを使用する場合など液送源に脈
動源がないときは、第8図に示すようにモータ2
0の回転を減速機21で減速して偏心ローラ22
に与え、偏心ローラ22とベース23間に挾まれ
た血液導出管の一部であるチユーブ24を間欠的
に閉塞させ偏心ローラ22の回転周期に対応する
脈動を静脈圧に与える。この場合、モータ20の
駆動状態を表わす信号を第2図のオンデイレイタ
イマー16に与えればよい。
In the above embodiments, the case where the blood pump is the source of pulsation has been explained as an example, but when there is no pulsation source in the fluid supply source, such as when a centrifugal pump is used as the blood pump, FIG. Motor 2 as shown
The rotation of 0 is decelerated by the reducer 21 and the eccentric roller 22
The tube 24, which is a part of the blood outlet tube sandwiched between the eccentric roller 22 and the base 23, is intermittently occluded to apply pulsations corresponding to the rotation period of the eccentric roller 22 to the venous pressure. In this case, a signal representing the driving state of the motor 20 may be applied to the on-delay timer 16 shown in FIG.

また更に、第9図が示す如く、交流電源の周波
数に応じた励磁・消磁がくり返されるコイル26
で振動子27を吸引するバイブレータ25を用い
てチユーブ24を間欠的に閉塞することにより、
静脈圧に脈動を与えることができる。この場合も
同様にバイブレータの作動状態を表わす信号を第
2図のオンデイレイタイマー16に与えればよ
い。
Furthermore, as shown in FIG. 9, a coil 26 is repeatedly magnetized and demagnetized according to the frequency of the AC power source.
By intermittently closing the tube 24 using the vibrator 25 that sucks the vibrator 27,
It can pulsate venous pressure. In this case as well, a signal representing the operating state of the vibrator may be given to the on-delay timer 16 shown in FIG. 2.

以上の説明では、脈動を示す状態信号を低電
位、作動指令又はその作動状態を示す状態信号を
高電位としてAND回路に入力し、脈動が一定周
期内に入力されない場合、脈動を示す状態信号が
反転して高電位となりAND回路の出力に高電位
が出力されることにより異常を検出する場合を説
明しているが、作動指令又は作動状態を示す状態
信号が入力され、かつ、脈動を示す状態信号が入
力されているときは異常なし、作動指令又は作動
状態を示す状態信号が入力されているにもかかわ
らず脈動を示す状態信号が入力されていないとき
(上記例では高電位のとき)は異常として検出で
きる検出手段であればAND回路に限るものでは
ない。
In the above explanation, the status signal indicating pulsation is input to the AND circuit as a low potential, and the status signal indicating the operation command or its operation status is input as high potential, and if pulsation is not input within a certain period, the status signal indicating pulsation is input to the AND circuit. This example describes a case in which an abnormality is detected by inverting to a high potential and outputting a high potential to the output of the AND circuit. There is no abnormality when the signal is input, and when the status signal indicating pulsation is not input even though the operation command or status signal indicating the operation status is input (in the above example, when the potential is high) Any detection means that can detect an abnormality is not limited to an AND circuit.

発明の効果 本発明は以上に述べられたように構成されかつ
動作するため、体外血液循環回路及び圧力監視装
置双方の正常動作を監視できる。
Effects of the Invention Since the present invention is configured and operates as described above, it is possible to monitor the normal operation of both the extracorporeal blood circulation circuit and the pressure monitoring device.

しかも圧力導管のコツヘルのはずし忘れ、ガス
フイルタの詰まりなどにより圧力検出装置が体外
血液循環回路の異常を、検出不能な状態にあるこ
とを検出することが可能であるため、体外血液循
環回路及びその圧力監視系統の正常な動作を確実
に監視しうるものである。
In addition, the pressure detection device can detect abnormalities in the extracorporeal blood circulation circuit that cannot be detected due to forgetting to remove the pressure conduit plug, clogging of the gas filter, etc. It is possible to reliably monitor the normal operation of the monitoring system.

更に本発明は圧力監視装置の出力を状態の判別
情報として利用しながら、圧力監視装置の接続忘
れなどの場合も機能する構成となつているため、
信頼性と確実性に富む体外血液循環回路の監視装
置を提供するものである。
Furthermore, the present invention is configured to function even when the pressure monitoring device is forgotten to be connected, while using the output of the pressure monitoring device as status discrimination information.
The present invention provides a highly reliable and reliable extracorporeal blood circulation circuit monitoring device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の体外循環血液回路の異常検出装
置の構成を示すブロツク図、第2図は本発明の代
表的な実施例のブロツク図、第3図及び第4図は
第2図の圧力変換器からアンド回路までの詳細な
回路構成の一例を示す(なお第3図の*は第4図
の*と接続されている)回路図、第5図は増幅回
路、交流増幅器、コンパレータおよび単安定回路
の出力を示す波形図、第6図は増幅器、単安定回
路、ミスパルス検知回路、血液ポンプ、オンデイ
レイタイマーおよびアンド回路のそれぞれの出力
および相互の動作状態の関係を導管の閉塞時イの
前後にわたつて示す波形図、第7図は圧力導管の
接続がはずれたときロの増幅回路の出力を示す波
形図、第8図及び第9図は血液ポンプに換わる脈
動発生手段の他例を示すブロツク図である。 符号の説明、1……血液ポンプ、8……増幅
器、11……交流増幅器、12……コンパレー
タ、13……単安定回路、14……ミスパルス検
知回路、16……オンデイレイタイマー、22…
…偏心ローラ、25……バイブレータ、l1……
血液導出管、l2……血液導入管。
FIG. 1 is a block diagram showing the configuration of a conventional extracorporeal circulation blood circuit abnormality detection device, FIG. 2 is a block diagram of a typical embodiment of the present invention, and FIGS. A circuit diagram showing an example of a detailed circuit configuration from the converter to the AND circuit (the * in Figure 3 is connected to the * in Figure 4), and Figure 5 shows the amplifier circuit, AC amplifier, comparator, and simple circuit. Figure 6 is a waveform diagram showing the output of the stabilizer circuit, and shows the relationship between the outputs and mutual operating states of the amplifier, monostable circuit, missed pulse detection circuit, blood pump, on-delay timer, and AND circuit when the conduit is blocked. Waveform diagrams shown before and after, Figure 7 is a waveform diagram showing the output of the amplifier circuit in B when the pressure conduit is disconnected, Figures 8 and 9 are other examples of pulsation generating means in place of the blood pump. FIG. Explanation of symbols, 1... Blood pump, 8... Amplifier, 11... AC amplifier, 12... Comparator, 13... Monostable circuit, 14... Miss pulse detection circuit, 16... On-delay timer, 22...
...Eccentric roller, 25...Vibrator, l1...
Blood lead-out tube, l2...Blood introduction tube.

Claims (1)

【特許請求の範囲】 1 血液導出管と、血液導入管との間に設けら
れ、生体から血液を導出し、血流に脈動を発生さ
せるポンプを含む手段と、透析装置とを含む体外
循環血液回路であつて、 該透析装置と該導入管との間には、該回路内の
脈動状態を監視する圧力監視装置を有し、 該圧力監視装置は、静脈圧の脈動変化を検出・
増幅する検出手段と、該検出手段の出力により生
成するパルス波形生成手段と、該波形生成手段か
らのパルスの供給を検知するミスパルス検知手段
とで構成させるとともに、前記ポンプの作動状態
を検出する作動検出手段と、前記ミスパルス検知
手段と前記作動検出手段双方の出力の有無を判別
する判別回路手段とからなることを特徴とする体
外循環血液回路の監視装置。 2 ポンプが拍動型血液ポンプであることを特徴
とする特許請求の範囲第1項記載の体外循環血液
回路の監視装置。 3 圧力監視装置が圧力変換器と、交流増幅器の
脈動変化を検出・増幅する検出手段と、該検出手
段の出力により生成するパルス波形生成手段と、
該波形生成手段からのパルス周期を監視し、一定
周期内の時に出力を生ずるミスパルス検知手段と
を備えることを特徴とする特許請求の範囲第1項
記載の体外循環血液回路の監視装置。 4 パルス波形生成手段が一定レベル以上の交流
成分を選択的にデジタル出力とするヒステリシス
特性を有する回路を含むことを特徴とする特許請
求の範囲第1項ないし第3項のいずれかに記載の
体外循環血液回路の監視装置。 5 ヒステリシス特性を有する回路の出力の変化
時にのみ一定間隔のパルス出力を出す単安定回路
がパルス波形生成手段に含まれることを特徴とす
る特許請求の範囲第3項ないし第4項のいずれか
に記載の体外循環血液回路の監視装置。
[Scope of Claims] 1. Extracorporeal circulating blood comprising means including a pump that is provided between a blood outlet tube and a blood inlet tube and that draws blood from a living body and generates pulsation in the blood flow, and a dialysis device. The circuit includes a pressure monitoring device that monitors a pulsating state in the circuit between the dialysis device and the introduction tube, and the pressure monitoring device detects and detects pulsating changes in venous pressure.
A detection means for amplifying, a pulse waveform generation means for generating from the output of the detection means, and a miss pulse detection means for detecting the supply of pulses from the waveform generation means, and an operation for detecting the operating state of the pump. 1. A monitoring device for an extracorporeal circulation blood circuit, comprising: a detection means; and a discrimination circuit means for determining the presence or absence of an output from both the missed pulse detection means and the operation detection means. 2. The extracorporeal circulation blood circuit monitoring device according to claim 1, wherein the pump is a pulsatile blood pump. 3. The pressure monitoring device includes a pressure transducer, a detection means for detecting and amplifying pulsation changes of the AC amplifier, and a pulse waveform generation means for generating from the output of the detection means,
2. The extracorporeal circulation blood circuit monitoring apparatus according to claim 1, further comprising a miss pulse detection means for monitoring the pulse period from the waveform generating means and producing an output when the pulse period is within a certain period. 4. The extracorporeal device according to any one of claims 1 to 3, characterized in that the pulse waveform generating means includes a circuit having a hysteresis characteristic that selectively converts alternating current components of a certain level or higher into digital output. Circulatory blood circuit monitoring device. 5. Any one of claims 3 to 4, characterized in that the pulse waveform generating means includes a monostable circuit that outputs pulses at regular intervals only when the output of a circuit having hysteresis characteristics changes. The extracorporeal circulation blood circuit monitoring device described.
JP56075679A 1981-05-21 1981-05-21 Monitor apparatus for blood recirculating circuit in external body Granted JPS57190547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56075679A JPS57190547A (en) 1981-05-21 1981-05-21 Monitor apparatus for blood recirculating circuit in external body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56075679A JPS57190547A (en) 1981-05-21 1981-05-21 Monitor apparatus for blood recirculating circuit in external body

Publications (2)

Publication Number Publication Date
JPS57190547A JPS57190547A (en) 1982-11-24
JPS6462B2 true JPS6462B2 (en) 1989-01-05

Family

ID=13583118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56075679A Granted JPS57190547A (en) 1981-05-21 1981-05-21 Monitor apparatus for blood recirculating circuit in external body

Country Status (1)

Country Link
JP (1) JPS57190547A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843450U (en) * 1981-09-16 1983-03-23 横河電機株式会社 artificial kidney device
DE3806248A1 (en) * 1988-02-27 1989-09-07 Fresenius Ag MEASURING / DISPLAYING METHOD FOR LIQUID SYSTEMS OF MEDICAL DEVICES AND DEVICE FOR IMPLEMENTING THE METHOD
JP2006198141A (en) * 2005-01-20 2006-08-03 Toray Medical Co Ltd Abnormality detecting system in blood extracorporeal circulation apparatus
US7771453B2 (en) * 2005-03-31 2010-08-10 Mcewen James A Occlusion detector for dual-port surgical tourniquet systems
DE102009024864B4 (en) * 2009-06-09 2012-10-11 Fresenius Medical Care Deutschland Gmbh Method and device for monitoring a fluid system of an extracorporeal blood treatment device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50141898A (en) * 1974-05-02 1975-11-14
JPS5151192A (en) * 1974-10-29 1976-05-06 Tokyo Shibaura Electric Co
JPS5353198A (en) * 1976-10-18 1978-05-15 Baxter Travenol Lab Improved numerical memory for dialyzer
JPS53101893A (en) * 1977-02-18 1978-09-05 Iriyou Kougaku Kenkiyuushiyo K Device for supervising artificial dialysis
JPS54117196A (en) * 1977-10-12 1979-09-11 Baxter Travenol Lab Negative pressure valve system and membrane crossing pressure alarm system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5290395U (en) * 1975-12-27 1977-07-06

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50141898A (en) * 1974-05-02 1975-11-14
JPS5151192A (en) * 1974-10-29 1976-05-06 Tokyo Shibaura Electric Co
JPS5353198A (en) * 1976-10-18 1978-05-15 Baxter Travenol Lab Improved numerical memory for dialyzer
JPS53101893A (en) * 1977-02-18 1978-09-05 Iriyou Kougaku Kenkiyuushiyo K Device for supervising artificial dialysis
JPS54117196A (en) * 1977-10-12 1979-09-11 Baxter Travenol Lab Negative pressure valve system and membrane crossing pressure alarm system

Also Published As

Publication number Publication date
JPS57190547A (en) 1982-11-24

Similar Documents

Publication Publication Date Title
AU730338B2 (en) Method and device for monitoring vessel access during extracorporeal blood treatment
JP5286268B2 (en) Apparatus and method for monitoring connection to a patient, particularly to a blood vessel, in extracorporeal blood treatment
JP4391054B2 (en) Device for monitoring a patient's connection to the cardiovascular system
US8535522B2 (en) System and method for detection of disconnection in an extracorporeal blood circuit
US9632018B2 (en) Method and device for monitoring the integrity of a connection system
US6745630B2 (en) Method and device for detecting stenoses in a tubular line system
JP5357812B2 (en) Access disconnection system and method
US9427513B2 (en) Detecting blood path disruption in extracorpreal blood processing
EP0328162A2 (en) Fault detection apparatus for parenteral infusion system and method of detecting a fault in a parenteral infusion system
EP0121931A2 (en) Fault detection apparatus for parenteral infusion system
KR102584051B1 (en) Detection of disruption of fluid communication between two fluid-containing systems
EP3393546B1 (en) System for detection of access disconnection
EP0328163B1 (en) Fault detection apparatus for parenteral infusion system and method of detecting faults in such a system
JPS6462B2 (en)
JP2019533567A (en) Portable ultrafiltration device
CN110494176B (en) Blood purification device
JPH0833706A (en) Clogging detecting method for body fluid external circulating device
JP4026690B2 (en) Infusion line monitoring system
CN221535115U (en) Liquid level monitoring and alarming device of external circulation kettle
CN113018550A (en) Portable heart failure dewatering device
JP2002186665A (en) Method and system for monitoring blood pressure in artificial dialysis
JP2024069064A (en) Needle removal detection system and needle removal detection method
IT1256691B (en) Blood filtration equipment for cardiological use
JPS6264337A (en) Electronic hemomanometer