JPS646230B2 - - Google Patents

Info

Publication number
JPS646230B2
JPS646230B2 JP2805981A JP2805981A JPS646230B2 JP S646230 B2 JPS646230 B2 JP S646230B2 JP 2805981 A JP2805981 A JP 2805981A JP 2805981 A JP2805981 A JP 2805981A JP S646230 B2 JPS646230 B2 JP S646230B2
Authority
JP
Japan
Prior art keywords
latex
paste
plasticizer
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2805981A
Other languages
Japanese (ja)
Other versions
JPS57141441A (en
Inventor
Saburo Kusudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Vinyl Co
Original Assignee
Mitsubishi Kasei Vinyl Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Vinyl Co filed Critical Mitsubishi Kasei Vinyl Co
Priority to JP2805981A priority Critical patent/JPS57141441A/en
Publication of JPS57141441A publication Critical patent/JPS57141441A/en
Publication of JPS646230B2 publication Critical patent/JPS646230B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、可塑剤を含有するペーストゾルを、
塩化ビニルペーストレジンの水性ラテツクスから
直接製造する方法に係る。 従来から、プラスチゾルまたはオルガノゾル等
のペーストゾルは、塩化ビニルペーストレジン重
合後の水性ラテツクスを一旦噴霧乾燥及び粉砕し
てペーストレジンを製造し、該レジンに可塑剤を
添加して調整されていた。 この方法によると、塩化ビニル重合後、噴霧乾
燥に供されるラテツクスの固形分濃度は、通常30
〜60重量%であり、多量の水分を蒸発させる必要
があり、また噴霧乾燥されたレジンは、凝集体で
あるために粒子径が大きく、粉砕が必要であつ
た。これらの工程は、多量のエネルギーを消費す
るので、ペーストレジンのコスト高の一因となつ
ていた。また、ペーストレジンの実際の用途にお
いては、これらペーストレジンを可塑剤、熱安定
剤、その他添加物と混練し、プラスチゾルあるい
はオルガノゾル等ペーストゾルとして使用される
が、ペーストゾルの製造工程においてはペースト
レジンが微粉末であるために粉立ちが激しく、取
扱い上の難点となつていた。この粉立ちの問題に
関しては、ペーストレジンの製造工程においても
同様であり、安全衛生の確保のためにも特別な装
置を必要としていた。要するに省エネルギー及び
労働衛生上の問題があつた。 本発明者は、噴霧乾燥及び粉砕工程を経ること
なく、直接ラテツクスからペーストゾルを製造す
る方法につき鋭意検討した結果、塩化ビニル重合
後のペーストレジンラテツクスに直接可塑剤を添
加することにより、ペーストレジンが可塑剤の方
に移行し、水が分離して二層になり、さらにラテ
ツクスの分散系を破壊させた後に可塑剤を加える
ことにより、より速やかに二層に分離し、その後
可塑剤の層を取り出すことによつて容易にペース
トゾルが得られることを見い出し、本発明に到達
した。 すなわち、本発明の目的は、塩化ビニル重合後
のラテツクスから、噴霧乾燥、粉砕工程を経るこ
となく、直接ペーストゾルを製造する方法を提供
するにある。 しかして、本発明の要旨は、塩化ビニルペース
トレジンの水性ラテツクスの分散系を破壊したも
のと可塑剤とを混合してペーストレジンを可塑剤
相に移行させ、次いで水相を分離することからな
るペーストゾルの製造法に存する。 本発明方法を詳細に説明する。 本発明方法に使用しうる塩化ビニルペーストレ
ジンラテツクスは、塩化ビニルまたは塩化ビニル
とそれに共重合可能なコモノマー、例えば酢酸ビ
ニル、アクリル酸、アクリル酸メチル等の混合物
を通常の乳化重合法によりまたは微細懸濁重合法
によつて製造されたラテツクスであるのが好まし
い。塩化ビニルに共重合可能なコモノマーは、上
述の具体例に限定されるものではなく、また重合
時に用いられる乳化剤または懸濁剤もその種類は
特に限定されるものではない。 また、ラテツクスは、後述のペーストゾル化に
悪影響を与えない限り、重合前または重合中に添
加された重合助剤、炭酸カルシウム等の粉末状の
充填材を含んでいてもよく、さらに重合後のラテ
ツクスには、親油性の熱安定剤、着色剤、紫外線
吸収剤、酸化防止剤、滑剤、充填材等の各種物性
改良助剤または加工助剤を添加したものであつて
もよい。 しかして、ラテツクスの固形分濃度は、重合性
モノマー及び水の浴比、添加物、重合の程度によ
り異なるけれども、可塑剤の添加、水の分離、装
置の大きさ等を勘案すると高い程好ましく、通常
全ラテツクスに対し30重量%以上の範囲にあるも
のを使用するのが望ましい。 本発明方法に用いられる可塑剤は、塩化ビニル
樹脂の可塑剤として使用されるものなら種々のも
のが使用され、特に限定されるものではない。例
えばフタル酸ジブチル、フタル酸ジヘプチル、フ
タル酸ジオクチル、フタル酸ジイソデシル、フタ
ル酸ブチルラウリル、フタル酸ジトリデシル、フ
タル酸ブチルベンジル、ブチルフタリルブチルグ
リコレート等のフタル酸エステル系可塑剤、燐酸
トリクレジル、燐酸トリオクチル等の燐酸エステ
ル系可塑剤、クエン酸トリ―n―ブチル、アジピ
ン酸ジオクチル、アゼライン酸ジオクチル、セバ
シン酸ジオクチル、アセチルリシノール酸メチル
等の脂肪酸エステル系可塑剤、アルキルエポキシ
ステアレート、エポキシ化大豆油等のエポキシ系
可塑剤を挙げることができ、これら可塑剤を一種
または二種以上混合して使用できる。 ラテツクスに添加される可塑剤の量は、ラテツ
クスからのペーストゾルの分離法、分離操作、ペ
ーストゾルの最終用途等種々の条件によつて異る
けれども、特にその使用量は限定されるものでは
なく、ラテツクス中の固形分100重量部に対して
20重量部以上用いるのが望ましく、普通100重量
部、好ましくは50重量部までの範囲であるのが好
ましい。例えばペーストゾルを粒状で取り出した
い場合には可塑剤の量は20〜30重量部程度添加
し、またゾル状で取り出したい場合は30重量部、
好ましくは40重量部以上用いればよい。ラテツク
ス中の固形分100重量部に対して可塑剤の量が20
重量部未満の場合には、水相にあるペーストレジ
ンを完全に可塑剤相に移行させることが難しくな
り、また可塑剤の使用量を100重量部を超えて使
用すると、処理量が多くなるばかりか、得られる
ペーストゾルの高濃度分野での使用が不可能とな
る。したがつて、可塑剤量50重量部程度までの高
濃度のペーストゾルを取り出し、使用時に適当な
濃度に稀釈するのが好ましい。 本発明方法は上述のラテツクスの分散系を破壊
したものに可塑剤を添加して撹拌するか、または
ラテツクスに可塑剤を添加混合した後にラテツク
スの分散系を破壊し、ペーストレジンが可塑剤相
に移行してペーストゾルと水に分離が完全になる
まで撹拌を続け、上層になつた水相と下層になつ
たペーストゾル相を別々に分離するにある。 可塑剤をラテツクスに添加する時期は、特に制
限されないが、ペーストレジン重合後のラテツク
スで、後述する時期ならならいつでも可能であ
る。 本発明方法では、ペーストレジンの可塑剤相へ
の移行を速やかにするために、塩化ビニルペース
トレジンラテツクスの分散系を破壊し、ペースト
レジンにゆるやかな凝集を起させた後に可塑剤を
添加するのが好ましい。塩化ビニルペーストラテ
ツクスの分散系を破壊する方法は、例えば高速撹
拌等機械的剪断力を作用させる方法、超音波等を
照射する方法、蒸気等による加熱加温する方法、
ミヨウバン、塩化カルシウム等の電解質を添加す
る方法、塩酸、苛性ソーダー等の酸またはアルカ
リを添加し、分散剤等を分解する方法、ポリアク
リルアミド等の高分子凝集剤を添加する方法、寒
剤により凍結させる方法等種種の方法が採用され
る。該分散系の破壊に先だち、ペーストゾルの品
質を保持するため乳化剤等の助剤を添加しておい
てもよい。ラテツクスの分散系の破壊が不充分で
あるとペーストレジンの可塑剤相への移行が遅く
なり、場合によつては水相がペーストレジンの微
粒子で白濁することもありうる。 さらにラテツクスに可塑剤を添加する時期は、
ラテツクス中のペーストレジンが可塑剤を速やか
に吸収しない温度、例えば40℃以下、好ましくは
35℃以下であるのが望ましい。可塑剤を40℃以上
の温度でラテツクスに添加するとペーストレジン
へ可塑剤の吸収が急激に起り、その結果可塑剤相
の粘度が上昇し、あるいは極端な場合にはゲル化
を起す。この温度は、適用するラテツクス中のペ
ーストレジンの組成によつて異なり、例えば高重
合度のストレートホモポリマーであれば40℃以上
の温度、例えば50℃で処理することも可能にな
り、また低重合度ポリマーあるいはコポリマーの
場合には比較的低温、すなわち35℃以下の温度で
処理しなければならないものもある。したがつ
て、本発明方法の場合、ラテツクスの温度を35℃
以下に保つておればほぼ充分である。 本発明方法は、必要に応じ可塑剤の添加時に疎
水性の稀釈剤、例えばテキサノールイソブチレー
ト、ドデシルベンゼン、燈油、ミネラルスピリツ
ト等を可塑剤と一緒に併用することも可能であ
る。しかし稀釈剤がペーストレジンと親和性の低
いものであれば相分離がうまくいかない場合もあ
りうる。したがつて、オルガノゾルを目的とする
稀釈剤は、ペーストゾルの分離取り出し後に添加
するのが望ましい。 ラテツクスに可塑剤を添加した後の撹拌は、そ
の速度、時間等は特に制限されるものではなく、
ペーストゾル相と水相の層分離が完全に行われる
まで、例えば数分ないし数十分行えばよい。撹拌
にはかなりの動力を必要とするので、若干大きい
目の動力を備えた撹拌機を用いるのが好ましく、
通常のプラスチゾルの混練に使用されるような混
合ミキサーを使用するのが望ましい。上述の撹拌
下での層分離は容易であり、完全に分離した後撹
拌を弱めまたは静置し、上層である水相をデカン
テーシヨンで除くかまたは下層の可塑剤相を抜き
とる方法によりペーストゾルを分離取り出す。 取り出したペーストゾルは、必要に応じその中
に含まれる乳化剤、懸濁剤等の分散剤、分散系の
破壊に用いた電解質等の不純物を除くために、純
水を加え撹拌、分離が繰り返される。 このようにして得られたペーストゾルは、まだ
かなりの水分を含むもので脱水工程を経て水分を
除くのが好ましい。脱水する方法は、例えばペー
ストゾルを簡単な三本ロール等を通して大部分の
水を分離し、その後減圧脱水を行う。水分をより
効果的に除去するために、三本ロールによるしぼ
り脱水の前に適当な界面活性剤を加えた後実施す
る方法も採用される。しかし、用途によつては、
例えば極薄膜等の成形に用いる場合には、上述の
脱水工程を省略することもできる。 また、本発明方法によつて製造されたペースト
ゾルは、その使用時に可塑剤、稀釈剤、紫外線吸
収剤、着色剤、熱安定剤、酸化防止剤、発泡剤、
発泡助剤、充填材等通常のペーストゾルに使用さ
れる添加剤(材)を適宜添加出来ることは勿論で
ある。 本発明によるプラスチゾルまたはオルガノゾル
等のペーストゾルの製造法によれば塩化ビニルペ
ーストレジンラテツクスを噴霧乾燥及び粉砕する
ことなくゾル化できるので粉立ちが防止でき、ま
たそれらに要していた多量のエネルギーは全く不
要になり、安価にペーストゾルが製造でき、省エ
ネルギー及び労働衛生上極めて工業的価値が高
い。そして、得られたペーストゾルは、乾燥、粉
砕工程を経ることなく製造されているので固い凝
集粒子が含まれず、成形加工に際しても加熱ゲル
化性が良好であり、得られた成形品につやがある
とともに加熱による着色が少ない。また、従来の
ペーストゾルの同一成形温度での成形品に比較し
てその物性はすぐれている。 以下に実施例をもつて本発明方法を詳述する
が、本発明は、その要旨を超えない限り以下の実
施例に限定されるものではない。 実施例 1 塩化ビニル100重量部、水100重量部、ドデシル
ベンゼンスルフオン酸ナトリウム1重量部及びラ
ウロイルパーオキサイド0.15重量部を予備乳化し
たのち、45℃にて20時間重合を行う。このように
して得られた塩化ビニルペーストレジンラテツク
スの一部分を撹拌機付きの容器に取り出し、次の
各種方法にて分散系を破壊した。 (i) ラテツクス中の固形分の100重量部に対して
塩化カルシウム0.5重量部入れる。 (ii) コロイドミル(5000rpm)を用いて強撹拌す
る。 (iii) 蒸気加熱(100℃)後常温に冷却する。 (iv) 寒剤で外部冷却して凍結後常温で放置する。 上記方法により分散系を破壊され、ゆるい凝集
を起したラテツクスに、その中の固形分100重量
部に対し40重量部に相当する量の可塑剤 (イ) ジオクチルフタレート (ロ) ジイソデシルフタレート (ハ) ジオクチルアジペート (ニ) ブチルベンジルフタレート (ホ) ジブチルフタレート (ヘ) エポキシ化大豆油 をそれぞれ添加し、10分間撹拌するとペーストレ
ジンが可塑剤相に移行し、上下二層に分離した。
上層は殆んど透明に近い水相からなり、ペースト
レジンの移行した可塑剤相が下層であつた。ま
た、上層の液面にも、水より比重の軽い可塑剤の
浮遊は認められず、すべてがペーストゾル層に入
つていた。 水層をデカンテーシヨンにより除去し、さらに
2回適当量の水を注入して水洗を繰り返し、その
後三本ロールを通して絞り脱水を行つた。ペース
トゾル層に水滴として含まれていた水は、この工
程で殆んど除かれていたが、さらにこれらを撹拌
機付き減圧乾燥機(常温)で脱水し、水分量1%
以下のペーストゾルとした。 得られたペーストゾルにペーストゾル100重量
部当り3重量部の熱安定剤(カルシウム―亜鉛
系)を添加し、ガラス板上に1mm厚に塗布し、
200℃に加熱されたオーブン中で5分間ゲル化さ
せて取り出し、その表面の艶の良し悪しを視覚に
より評価し、第1表に記した。 比較のため一旦噴霧乾燥したペーストレジンか
ら同様なペーストゾルを製造し(但し可塑剤ジオ
クチルフタレートのみ)、実施例1と同様に評価
した。 評価は、比較例を3級(普通)とし、それより
良好のものを2級、優秀のものを1級とした。
The present invention provides a paste sol containing a plasticizer,
This invention relates to a method for producing vinyl chloride paste resin directly from an aqueous latex. Conventionally, paste sols such as plastisols and organosols have been prepared by once spray-drying and pulverizing an aqueous latex after polymerizing vinyl chloride paste resin to produce a paste resin, and then adding a plasticizer to the resin. According to this method, the solid content concentration of the latex subjected to spray drying after vinyl chloride polymerization is usually 30
~60% by weight, requiring a large amount of water to be evaporated, and since the spray-dried resin was an aggregate, the particle size was large and required pulverization. These steps consume a large amount of energy, contributing to the high cost of paste resin. In addition, in the actual application of paste resin, these paste resins are kneaded with plasticizers, heat stabilizers, and other additives and used as paste sol such as plastisol or organosol. Since it is a fine powder, it tends to form a lot of powder, making it difficult to handle. This dusting problem also occurs in the paste resin manufacturing process, and special equipment is required to ensure safety and health. In short, there were problems in terms of energy conservation and occupational health. As a result of extensive research into a method for producing paste sol directly from latex without going through the spray drying and pulverization steps, the inventors of the present invention have discovered that paste sol can be produced by directly adding a plasticizer to paste resin latex after vinyl chloride polymerization. The resin migrates towards the plasticizer, the water separates and forms two layers, and by adding the plasticizer after the dispersion of the latex is broken down, it separates more quickly into two layers, and then the water separates into two layers. They discovered that a paste sol can be easily obtained by removing the layers, and have arrived at the present invention. That is, an object of the present invention is to provide a method for producing a paste sol directly from latex after vinyl chloride polymerization, without going through spray drying or pulverization steps. Therefore, the gist of the present invention consists of mixing a disrupted aqueous latex dispersion of vinyl chloride paste resin with a plasticizer to transfer the paste resin into the plasticizer phase, and then separating the aqueous phase. It consists in a method for producing a paste sol. The method of the present invention will be explained in detail. The vinyl chloride paste resin latex that can be used in the method of the present invention can be produced by adding vinyl chloride or a mixture of vinyl chloride and a comonomer copolymerizable therewith, such as vinyl acetate, acrylic acid, methyl acrylate, etc., by a conventional emulsion polymerization method or finely divided polymerization. Preferably, the latex is produced by suspension polymerization. The comonomer copolymerizable with vinyl chloride is not limited to the above-mentioned specific examples, and the type of emulsifier or suspending agent used during polymerization is not particularly limited either. In addition, the latex may contain a polymerization aid added before or during the polymerization, a powder filler such as calcium carbonate, etc., as long as it does not adversely affect the paste sol formation described below. The latex may contain various physical property improving aids or processing aids such as lipophilic heat stabilizers, colorants, ultraviolet absorbers, antioxidants, lubricants, and fillers. Although the solid content concentration of the latex varies depending on the bath ratio of the polymerizable monomer and water, additives, and the degree of polymerization, it is preferable to have a higher solid content in consideration of the addition of plasticizer, water separation, the size of the equipment, etc. Usually, it is desirable to use 30% by weight or more of the total latex. The plasticizer used in the method of the present invention is not particularly limited, and may be any of a variety of plasticizers that can be used as plasticizers for vinyl chloride resins. For example, phthalate ester plasticizers such as dibutyl phthalate, diheptyl phthalate, dioctyl phthalate, diisodecyl phthalate, butyl lauryl phthalate, ditridecyl phthalate, butyl benzyl phthalate, butyl phthalyl butyl glycolate, tricresyl phosphate, and phosphoric acid. Phosphate ester plasticizers such as trioctyl, fatty acid ester plasticizers such as tri-n-butyl citrate, dioctyl adipate, dioctyl azelaate, dioctyl sebacate, methyl acetyl ricinoleate, alkyl epoxy stearate, epoxidized soybean oil These plasticizers can be used singly or in combination of two or more. The amount of plasticizer added to the latex varies depending on various conditions such as the method of separating the paste sol from the latex, the separation operation, and the final use of the paste sol, but the amount used is not particularly limited. , based on 100 parts by weight of solids in latex
It is desirable to use 20 parts by weight or more, usually up to 100 parts by weight, preferably up to 50 parts by weight. For example, if you want to take out the paste sol in granular form, add about 20 to 30 parts by weight of plasticizer, and if you want to take out the paste sol in sol form, add 30 parts by weight.
Preferably, 40 parts by weight or more may be used. The amount of plasticizer is 20 parts by weight per 100 parts by weight of solid content in latex.
If the amount is less than 100 parts by weight, it will be difficult to completely transfer the paste resin in the aqueous phase to the plasticizer phase, and if the amount of plasticizer used exceeds 100 parts by weight, the amount to be processed will increase. Otherwise, the resulting paste sol cannot be used in high-concentration fields. Therefore, it is preferable to take out a paste sol with a high concentration of up to about 50 parts by weight of plasticizer and dilute it to an appropriate concentration before use. The method of the present invention involves adding a plasticizer to the above-mentioned latex dispersion system and stirring it, or adding and mixing a plasticizer to the latex and then destroying the latex dispersion system, so that the paste resin becomes a plasticizer phase. Stirring is continued until the paste sol and water are completely separated, and the upper aqueous phase and the lower paste sol phase are separated. The timing of adding the plasticizer to the latex is not particularly limited, but it can be added to the latex after polymerization of the paste resin at any time as described below. In the method of the present invention, in order to speed up the transition of the paste resin to the plasticizer phase, the dispersion system of the vinyl chloride paste resin latex is destroyed and the plasticizer is added after the paste resin is gently agglomerated. is preferable. Methods for destroying the dispersion system of vinyl chloride paste latex include, for example, applying mechanical shearing force such as high-speed stirring, irradiating with ultrasonic waves, etc., heating with steam, etc.
A method of adding an electrolyte such as alum or calcium chloride, a method of adding an acid or alkali such as hydrochloric acid or caustic soda to decompose a dispersant, a method of adding a polymer flocculant such as polyacrylamide, a method of freezing with a cryogen, etc. Various methods are employed. Prior to the destruction of the dispersion system, an auxiliary agent such as an emulsifier may be added in order to maintain the quality of the paste sol. If the latex dispersion system is insufficiently broken, the transfer of the paste resin to the plasticizer phase will be delayed, and in some cases, the aqueous phase may become cloudy with fine particles of the paste resin. Furthermore, when to add plasticizer to latex,
The temperature at which the paste resin in the latex does not quickly absorb the plasticizer, e.g. below 40°C, preferably
It is desirable that the temperature be below 35°C. Addition of plasticizers to latexes at temperatures above 40°C causes rapid absorption of the plasticizer into the paste resin, resulting in an increase in the viscosity of the plasticizer phase or, in extreme cases, gelation. This temperature varies depending on the composition of the paste resin in the applied latex; for example, straight homopolymers with a high degree of polymerization can be treated at temperatures above 40°C, e.g. 50°C; Some polymers or copolymers must be processed at relatively low temperatures, ie, at temperatures below 35°C. Therefore, in the case of the method of the present invention, the temperature of the latex is set at 35°C.
It is almost sufficient to keep it below. In the method of the present invention, it is also possible to use a hydrophobic diluent such as texanol isobutyrate, dodecylbenzene, kerosene, mineral spirits, etc. together with the plasticizer, if necessary. However, if the diluent has low affinity with the paste resin, phase separation may not be successful. Therefore, it is desirable to add a diluent intended for the organosol after the paste sol is separated and taken out. There are no particular restrictions on the speed, time, etc. of stirring after adding the plasticizer to the latex.
This may be continued for several minutes to several tens of minutes until the paste sol phase and aqueous phase are completely separated. Since stirring requires a considerable amount of power, it is preferable to use a stirrer with slightly larger power.
Preferably, a mixing mixer such as that used for conventional plastisol compounding is used. The above-mentioned layer separation under stirring is easy, and after complete separation, the stirring is weakened or the mixture is allowed to stand still, and the upper aqueous phase is removed by decantation or the lower plasticizer phase is extracted to form a paste. Separate and take out the sol. The extracted paste sol is stirred and separated repeatedly by adding pure water as necessary to remove impurities such as emulsifiers, dispersants such as suspending agents, and electrolytes used to destroy the dispersion system. . Since the paste sol thus obtained still contains a considerable amount of water, it is preferable to remove the water through a dehydration step. The dehydration method involves, for example, passing the paste sol through a simple three-roll roll or the like to separate most of the water, and then dehydrating it under reduced pressure. In order to remove water more effectively, a method is also adopted in which a suitable surfactant is added before dehydration by squeezing using three rolls. However, depending on the application,
For example, when used for forming an extremely thin film, the above-mentioned dehydration step can be omitted. In addition, the paste sol produced by the method of the present invention also contains plasticizers, diluents, ultraviolet absorbers, colorants, heat stabilizers, antioxidants, blowing agents,
It goes without saying that additives (materials) used in ordinary paste sol, such as foaming aids and fillers, can be added as appropriate. According to the method for producing paste sol such as plastisol or organosol according to the present invention, vinyl chloride paste resin latex can be made into a sol without spray drying or pulverization, thereby preventing dusting and reducing the large amount of energy previously required. is completely unnecessary, paste sol can be produced at low cost, and has extremely high industrial value in terms of energy saving and occupational health. Since the obtained paste sol is manufactured without going through a drying or pulverizing process, it does not contain hard agglomerated particles, has good heat gelling properties during molding, and has a glossy finish on the resulting molded product. At the same time, there is little discoloration due to heating. In addition, its physical properties are superior to those of conventional paste sol molded products at the same molding temperature. The method of the present invention will be explained below in detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded. Example 1 After pre-emulsifying 100 parts by weight of vinyl chloride, 100 parts by weight of water, 1 part by weight of sodium dodecylbenzenesulfonate and 0.15 parts by weight of lauroyl peroxide, polymerization was carried out at 45°C for 20 hours. A portion of the vinyl chloride paste resin latex thus obtained was taken out into a container equipped with a stirrer, and the dispersion system was disrupted using the following various methods. (i) Add 0.5 parts by weight of calcium chloride to 100 parts by weight of solids in the latex. (ii) Stir vigorously using a colloid mill (5000 rpm). (iii) Cool to room temperature after steam heating (100℃). (iv) Externally cool with cryogen and leave at room temperature after freezing. To the latex whose dispersion system has been destroyed by the above method and loose agglomeration has occurred, an amount of plasticizer (a) dioctyl phthalate (b) diisodecyl phthalate (c) is added in an amount equivalent to 40 parts by weight per 100 parts by weight of solid content in the latex. Dioctyl adipate (d), butyl benzyl phthalate (e), dibutyl phthalate (f), and epoxidized soybean oil were respectively added and stirred for 10 minutes. The paste resin transferred to the plasticizer phase and was separated into upper and lower layers.
The upper layer consisted of an almost transparent aqueous phase, and the lower layer was a plasticizer phase to which the paste resin had migrated. Furthermore, floating plasticizer, which has a specific gravity lower than water, was not observed on the liquid surface of the upper layer, and all of the plasticizer was contained in the paste sol layer. The aqueous layer was removed by decantation, and an appropriate amount of water was added twice to repeat the washing process, followed by squeezing and dehydration through three rolls. Most of the water contained in the paste sol layer as water droplets was removed in this process, but this was further dehydrated in a vacuum dryer with a stirrer (at room temperature) to reduce the water content to 1%.
The following paste sol was prepared. Add 3 parts by weight of a heat stabilizer (calcium-zinc type) per 100 parts by weight of the paste sol to the obtained paste sol, and apply it on a glass plate to a thickness of 1 mm.
The samples were allowed to gel for 5 minutes in an oven heated to 200°C, then taken out, and the quality of the surface gloss was visually evaluated, and the results are shown in Table 1. For comparison, a similar paste sol was produced from a paste resin that had been once spray-dried (however, only the plasticizer dioctyl phthalate was used), and evaluated in the same manner as in Example 1. In the evaluation, the comparative example was rated 3rd grade (fair), the better one was 2nd grade, and the better one was 1st grade.

【表】 第1表の結果からゾル化までに高温に接したも
のは若干艶が劣るように見えるが、従来品(比較
例)と比較すると一段と良好である。 実施例 2 100のグラスライニング製オートクレーブに、
イオン交換水100重量部及び単位粒子径0.4μ、平
均重合度1500の塩化ビニル種子重合体ラテツクス
を重合体成分として3重量部装入した。その後、
減圧脱気し、塩化ビニル97重量部を加え、温度を
50℃に上げて重合反応を開始するとともに全量で
0.015重量%(対塩化ビニル)の過硫酸カリウム
および5モル相当(対過硫酸カリウム)の亜硫酸
水素ナトリウムをそれぞれ別個の導入管から全重
合時間を通じて連続的に添加した。また、重合率
が15重量%に達した時から反応圧の降下が始まる
まで、乳化剤としてラウリル硫酸ナトリムを塩化
ビニルに対し毎時0.01重量%の割合で連続的に添
加し、塩化ビニルペーストレジンラテツクスを製
造した。このラテツクスを冷却し、35℃以下の温
度にして可塑剤ジオクチルフタレートをラテツク
ス固形分100重量部に対し、40重量部添加し実施
例1の(i)と同様の方法にて、水分1%以下のペー
ストゾルを製造した。表面の艶の評価は、1級で
あつた。 実施例 3 実施例1の塩化ビニルペーストレジンラテツク
スの製造方法において、塩化ビニル100重量部を
塩化ビニル95重量部及び酢酸ビニル5重量部の混
合物に代えたほかは、実施例1と同様にラテツク
スを製造した。該ラテツクスを35℃以下の温度に
冷却した後にジオクチルフタレートをラテツクス
中の固形分100重量部当り40重量部を入れ、実施
例1の(i)と同様にして水分1%以下のペーストゾ
ルを製造した。表面の艶の評価は、1級であつ
た。
[Table] From the results in Table 1, it appears that the gloss that was exposed to high temperatures before sol formation is slightly inferior, but it is much better than the conventional product (comparative example). Example 2 In a 100 glass lined autoclave,
100 parts by weight of ion-exchanged water and 3 parts by weight of vinyl chloride seed polymer latex having a unit particle size of 0.4 μm and an average degree of polymerization of 1500 were charged as polymer components. after that,
Degas under reduced pressure, add 97 parts by weight of vinyl chloride, and lower the temperature.
Raise the temperature to 50℃ to start the polymerization reaction and
0.015% by weight (based on vinyl chloride) of potassium persulfate and 5 molar equivalent (based on potassium persulfate) of sodium bisulfite were added continuously through separate inlet tubes throughout the entire polymerization time. In addition, from the time the polymerization rate reached 15% by weight until the reaction pressure started to drop, sodium lauryl sulfate was continuously added as an emulsifier at a rate of 0.01% by weight to vinyl chloride per hour to form a vinyl chloride paste resin latex. was manufactured. This latex was cooled to a temperature of 35°C or less, and 40 parts by weight of the plasticizer dioctyl phthalate was added to 100 parts by weight of the solid content of the latex. A paste sol was produced. The surface gloss was rated as grade 1. Example 3 A latex was produced in the same manner as in Example 1, except that in the method for producing vinyl chloride paste resin latex of Example 1, 100 parts by weight of vinyl chloride was replaced with a mixture of 95 parts by weight of vinyl chloride and 5 parts by weight of vinyl acetate. was manufactured. After cooling the latex to a temperature of 35°C or less, add 40 parts by weight of dioctyl phthalate per 100 parts by weight of solid content in the latex, and produce a paste sol with a moisture content of 1% or less in the same manner as in Example 1 (i). did. The surface gloss was rated as grade 1.

Claims (1)

【特許請求の範囲】 1 塩化ビニルペーストレジンの水性ラテツクス
の分散系を破壊したものと可塑剤とを混合してペ
ーストレジンを可塑剤相に移行させ、次いで水相
を分離することからなるペーストゾルの製造法。 2 ラテツクスの分散系を破壊したものの温度が
40℃以下である特許請求の範囲第1項記載のペー
ストゾルの製造法。 3 ラテツクスの分散系を破壊した後に、可塑剤
を添加混合する特許請求の範囲第1項または第2
項記載のペーストゾルの製造法。 4 可塑剤を添加した後に、ラテツクスの分散系
を破壊する特許請求の範囲第1項または第2項記
載のペーストゾルの製造法。
[Scope of Claims] 1. A paste sol comprising a broken aqueous latex dispersion of vinyl chloride paste resin mixed with a plasticizer to transfer the paste resin to the plasticizer phase, and then separating the aqueous phase. manufacturing method. 2 The temperature of the dispersion system of latex is
A method for producing a paste sol according to claim 1, wherein the temperature is 40°C or less. 3. Claim 1 or 2, in which a plasticizer is added and mixed after the latex dispersion system is destroyed.
2. Method for producing paste sol described in Section 1. 4. The method for producing a paste sol according to claim 1 or 2, wherein the latex dispersion system is destroyed after adding the plasticizer.
JP2805981A 1981-02-27 1981-02-27 Production of paste sol Granted JPS57141441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2805981A JPS57141441A (en) 1981-02-27 1981-02-27 Production of paste sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2805981A JPS57141441A (en) 1981-02-27 1981-02-27 Production of paste sol

Publications (2)

Publication Number Publication Date
JPS57141441A JPS57141441A (en) 1982-09-01
JPS646230B2 true JPS646230B2 (en) 1989-02-02

Family

ID=12238182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2805981A Granted JPS57141441A (en) 1981-02-27 1981-02-27 Production of paste sol

Country Status (1)

Country Link
JP (1) JPS57141441A (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1429627A (en) * 1972-08-16 1976-03-24 Bp Chem Int Ltd Production of vinyl halide paste-forming polymers
US3912664A (en) * 1974-08-23 1975-10-14 Horizons Inc Recovery of flexible and rigid materials from scrap polyvinylchloride, its copolymers and cogeners
DE2650331C3 (en) * 1976-11-03 1981-05-07 Chemische Werke Hüls AG, 4370 Marl Process for the production of powders suitable for plastisol preparation based on polyvinyl chloride
JPS5686935A (en) * 1979-12-19 1981-07-15 Nippon Zeon Co Ltd Production of vinyl chloride resin paste sol

Also Published As

Publication number Publication date
JPS57141441A (en) 1982-09-01

Similar Documents

Publication Publication Date Title
JPH08225623A (en) Butadiene-based impact modifier
US3383346A (en) Particle size control in seed technique emulsion polymerization using hydroxyl group-containing modifier
JP2008512544A (en) Processing aid for vinyl chloride resin and method for producing the same
JPS646230B2 (en)
KR20120107201A (en) Method of preparing paste polyvinyl chloride resin
JP5255730B2 (en) Vinyl chloride resin aggregate particles, method for producing the same, and gloves using the same
JPS6354002B2 (en)
US3563936A (en) Plastisol composition
US4604454A (en) Method of recovering vinyl chloride resin
NO169719B (en) PROCEDURE FOR POLYMERIZATION OF SPHERICALLY POROUS POLYMER PARTICLES
JP2512111B2 (en) Method for producing vinyl chloride resin paste sol
EP2948497B1 (en) Halogenated polymer composite composition, its manufacturing process and its use
TWI328020B (en) Method of preparing vinylchloride-based resin
JPS61207411A (en) Production of vinyl chloride resin
JP2003301083A (en) Vinyl chloride-based resin latex, vinyl chloride-based resin for paste processing and production method thereof, and vinyl chloride-based resin composition for paste processing and use thereof
US3179646A (en) Polymerization to produce friable aggregates of individual spheres of polyvinyl chloride
JP7472616B2 (en) Vinyl chloride resin composition for paste processing and its uses
US4229569A (en) Process for the removal of vinyl chloride from aqueous slurries of vinyl chloride polymers
CN110770293B (en) Vinyl chloride-vinyl acetate copolymer resin composition
JP4151419B2 (en) Vinyl chloride polymer latex for paste, method for producing the same, and method for producing vinyl chloride resin for paste processing comprising the same
NO158626B (en) PROCEDURE TE FOR PREPARING LOW MELTING BIMNYL DISPERSION RESINES.
JPS5912956A (en) Manufacture of polyvinyl chloride resin composition
JPH11140256A (en) Spherical vinyl chloride-based blended resin for paste processing, production thereof and vinyl chloride resin composition for paste processing containing the same
JP4122835B2 (en) Paste vinyl chloride resin, method for producing the same, and resin composition using the same
JP4192508B2 (en) Method for producing vinyl chloride resin for paste processing