JPS646128B2 - - Google Patents

Info

Publication number
JPS646128B2
JPS646128B2 JP57066139A JP6613982A JPS646128B2 JP S646128 B2 JPS646128 B2 JP S646128B2 JP 57066139 A JP57066139 A JP 57066139A JP 6613982 A JP6613982 A JP 6613982A JP S646128 B2 JPS646128 B2 JP S646128B2
Authority
JP
Japan
Prior art keywords
expanded graphite
graphite particles
metal
deposited
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57066139A
Other languages
Japanese (ja)
Other versions
JPS58181713A (en
Inventor
Kicha Yano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP57066139A priority Critical patent/JPS58181713A/en
Publication of JPS58181713A publication Critical patent/JPS58181713A/en
Publication of JPS646128B2 publication Critical patent/JPS646128B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 本発明は、ガスケツト、パツキン或いはこれら
の成形素材等として好適な膨張黒鉛成形体に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an expanded graphite molded body suitable as a gasket, a packing, or a molding material thereof.

従来のこの種膨張黒鉛成形体例えば膨張黒鉛シ
ートは、鱗状天然黒鉛等の結晶粒を素材としてC
軸方向に80倍以上に膨張処理させた芋虫状の膨張
黒鉛粒子を、所望量シート状にロール或いは圧盤
でもつて圧縮成形させているのが普通である。
Conventional expanded graphite molded bodies of this type, such as expanded graphite sheets, are made from crystal grains such as scale-like natural graphite.
Usually, caterpillar-shaped expanded graphite particles that have been expanded 80 times or more in the axial direction are compressed into a desired amount of sheet form using a roll or a platen.

この膨張黒鉛シートは、主として高性能のガス
ケツトやパツキンの成形素材として用いられてお
り、かかる膨張黒鉛製のガスケツトやパツキン
は、膨張黒鉛本来の特性から、耐熱性、耐塞性、
耐薬品性及び密封性に優れたものであるが、その
反面次のような欠点を有するものでもある。
This expanded graphite sheet is mainly used as a molding material for high-performance gaskets and packings, and due to the inherent properties of expanded graphite, gaskets and packings made of expanded graphite have excellent heat resistance, occlusion resistance,
Although it has excellent chemical resistance and sealing properties, it also has the following drawbacks.

すなわち、第1に強度不足による取扱いの悪
さ、第2に相手材に付着し易く、層間より破壊さ
れ易い、第3に接触部において相手材に電気化学
的腐蝕を生じさせ易い、といつた欠点を有する。
Namely, first, it is difficult to handle due to lack of strength, second, it easily adheres to the mating material and is easily destroyed between layers, and third, it tends to cause electrochemical corrosion to the mating material at the contact area. has.

そこで、従来からも、かかる欠点を解消すべく
種々の工夫が施されてはいるが、充分とはいい難
い。
Therefore, although various efforts have been made to overcome these drawbacks, they have not been sufficient.

すなわち、前記第1の欠点については、強度不
足を補うべく、有機及び無機高分子材(例えば合
成樹脂、水ガラス、リン酸塩等)といつた補強材
を膨張黒鉛シート成形時つまり膨張黒鉛粒子の圧
縮成形時において添加させておくこと等が行われ
ている。しかしながら、前記した如く膨張黒鉛粒
子は結晶粒が80倍以上にも膨張されたものである
ため、前記補強材が均一に分散混合されることは
期待し得ず、均質な製品を得ることは極めて困難
であり、しかも前記補強材の添加によつて、膨張
黒鉛本来の耐薬品性及び耐熱性といつた特性を損
うことにもなる。したがつて、かかる方法は殆ん
ど行われていないのが実情である。
That is, regarding the first drawback, in order to compensate for the lack of strength, reinforcing materials such as organic and inorganic polymer materials (for example, synthetic resins, water glass, phosphates, etc.) are used when forming expanded graphite sheets, that is, expanded graphite particles. It is common practice to add it during compression molding. However, as mentioned above, since the crystal grains of expanded graphite particles have been expanded by more than 80 times, it is impossible to expect the reinforcing material to be uniformly dispersed and mixed, and it is extremely difficult to obtain a homogeneous product. This is difficult, and furthermore, the addition of the reinforcing material impairs the properties of expanded graphite, such as chemical resistance and heat resistance. Therefore, the reality is that such a method is rarely used.

また、前記第2の欠点を除去する方法として
は、油類の含浸による表面処理、金属類による鍍
金処理、無機及び有機固形潤滑材の塗布等が公知
である。しかしながら、かかる方法は、ガスケツ
ト等の成形素材としての膨張黒鉛シートに対して
はシートとしての加工性を損うことになり、した
がつて最終製品に対して行われることが多く、汎
用性に乏しい。しかも、前記したと同様に耐薬品
性及び耐熱性等の特性を損うことにもなる。
Further, as methods for eliminating the second drawback, surface treatment by impregnation with oil, plating treatment with metal, application of inorganic and organic solid lubricants, etc. are known. However, this method impairs the processability of expanded graphite sheets as molding materials for gaskets, etc., and is therefore often applied to final products, resulting in poor versatility. . Moreover, as described above, properties such as chemical resistance and heat resistance may be impaired.

さらに、前記第3の欠点を除去させるために
は、亜鉛等の犠性金属を添加させる方法、亜硝酸
ナトリウム、過マンガン酸塩等の無機防蝕剤或い
はアミン、油類の有機防蝕剤を含浸させる方法が
公知である。しかしながら、前者の方法によれ
ば、亜鉛等の固形物を混合することによつて可撓
性等の強度特性が著しく損われることになり、ま
た後者の方法によれば、無機或いは有機防蝕剤の
含浸によつて耐熱性が劣化し、200℃以上では期
待する効果を持続し難くなる。
Furthermore, in order to eliminate the third drawback, there are methods of adding sacrificial metals such as zinc, impregnation with inorganic corrosion inhibitors such as sodium nitrite and permanganate, or organic corrosion inhibitors such as amines and oils. Methods are known. However, according to the former method, strength properties such as flexibility are significantly impaired by mixing solid substances such as zinc, and according to the latter method, inorganic or organic corrosion inhibitors are mixed. Impregnation deteriorates heat resistance, making it difficult to maintain the desired effect at temperatures above 200°C.

したがつて、以上の実情に鑑みれば、膨張黒鉛
成形体の前記した諸欠点を解消するに充分なもの
は未だ存在しないと考えられる。
Therefore, in view of the above-mentioned circumstances, it is considered that there is still no product that is sufficient to eliminate the above-mentioned drawbacks of expanded graphite molded bodies.

そこで本発明は、膨張黒鉛粒子の表面に金属若
しくは金属酸化物を蒸着させておき、かかる膨張
黒鉛粒子を所望形状に圧縮成形させた膨張黒鉛成
形体を提供し、もつて膨張黒鉛本来の特性を損ね
ることなく、そのまま維持させながら、膨張黒鉛
単味からなる成形体において宿命的な前記諸欠点
を解消させるべく図つたものである。
Therefore, the present invention provides an expanded graphite molded article in which a metal or metal oxide is vapor-deposited on the surface of expanded graphite particles, and the expanded graphite particles are compression-molded into a desired shape, thereby maintaining the original characteristics of expanded graphite. This is intended to eliminate the above-mentioned disadvantages that are inevitable in molded products made of expanded graphite alone, while maintaining the product as it is without any damage.

すなわち、本発明によれば、膨張黒鉛粒子の圧
縮成形(ロール成形を含む)時において、膨張黒
鉛粒子の表面に蒸着させた金属若しくは金属酸化
物(以下、両者を含めて「金属等」と称する)の
微粉体が固有する凝集力によつて、膨張黒鉛粒子
相互の結合力が高められることになり、強度的に
優れた膨張黒鉛成形体を得ることができる。ここ
に、膨張黒鉛粒子の表面に蒸着される金属等とし
ては、亜鉛、鉛、アルミニウム、銅、アンチモ
ン、マグネシウム等の金属若しくはこれらの金属
酸化物が用いられる。
That is, according to the present invention, during compression molding (including roll molding) of expanded graphite particles, metals or metal oxides (hereinafter both are collectively referred to as "metals, etc.") deposited on the surface of expanded graphite particles. ) The cohesive force inherent in the fine powder increases the bonding force between the expanded graphite particles, making it possible to obtain an expanded graphite molded body with excellent strength. Here, as the metal etc. deposited on the surface of the expanded graphite particles, metals such as zinc, lead, aluminum, copper, antimony, magnesium, etc., or metal oxides thereof are used.

したがつて、かかる膨張黒鉛成形体をガスケツ
ト或いはパツキンとして用いたときにも、強度不
足による取扱いの悪さ及び相手材に付着すること
による焼付の発生並びに破壊といつた欠点を全く
生じることがない。さらに、膨張黒鉛粒子の表面
に蒸着させた金属等が、マグネシウム、アルミニ
ウム、亜鉛等の犠性金属若しくはこれらの酸化物
である場合には、より一層相手材に与える電気化
学的腐蝕が確実に防止される。しかも、金属等の
微粉体が表面に蒸着された膨張黒鉛粒子を用いて
圧縮成形させたものであるから、膨張黒鉛粒子自
体の形状が添加物等によつて変化されず、膨張黒
鉛本来の特性が何ら損われない。
Therefore, even when such an expanded graphite molded body is used as a gasket or packing, there will be no drawbacks such as poor handling due to insufficient strength, seizure or destruction due to adhesion to the mating material. Furthermore, if the metal deposited on the surface of the expanded graphite particles is a sacrificial metal such as magnesium, aluminum, or zinc, or an oxide of these metals, electrochemical corrosion to the other material can be even more reliably prevented. be done. Moreover, since the expanded graphite particles are compression-molded using fine powder such as metal vapor-deposited on the surface, the shape of the expanded graphite particles themselves is not changed by additives, etc., and the original characteristics of expanded graphite are retained. is not harmed in any way.

ところで、前記した如く金属等の微粉体の凝集
力によつて膨張黒鉛粒子間の結合力が高められる
理由としては、膨張黒鉛粒子の表面に金属等の微
粉体が蒸着されていることによつて、比表面積が
増大し、表面エネルギーが増大することが挙げら
れる。したがつて、膨張黒鉛粒子表面に蒸着され
る金属等の微粉体は、これが可及的に微細なもの
であることが望ましい。
By the way, as mentioned above, the reason why the bonding force between expanded graphite particles is increased by the cohesive force of fine powder such as metal is that fine powder such as metal is deposited on the surface of expanded graphite particles. , the specific surface area increases, and the surface energy increases. Therefore, it is desirable that the fine powder of metal or the like deposited on the surface of the expanded graphite particles be as fine as possible.

また、膨張黒鉛粒子表面に蒸着される金属等と
しては前述したように種々のものが選択される
が、特に高温中では、高温時の潤滑性が最もよい
鉛或いは酸化鉛が好適である。
Further, various metals can be selected as the metal to be deposited on the surface of the expanded graphite particles, as described above, but lead or lead oxide is particularly suitable at high temperatures, as they have the best lubricity at high temperatures.

さらに、ガスケツト等の最終製品は、金属等を
表面に蒸着された膨張黒鉛粒子をシート状に圧縮
成形して得られた膨張黒鉛シートを用いて製造
(圧縮成形)されたものであつても、或いは上記
の膨張黒鉛粒子を用いてそのまま最終製品形状に
圧縮成形されたものであつても、前記した利点を
有するに変りない。
Furthermore, even if the final product such as a gasket is manufactured (compression molded) using an expanded graphite sheet obtained by compression molding expanded graphite particles on the surface of which a metal or the like is vapor-deposited, Alternatively, even if the above-mentioned expanded graphite particles are used and compression-molded into the final product shape, the above-mentioned advantages will still be obtained.

次に、本発明を図面に基づいて具体的に説明す
る。
Next, the present invention will be specifically explained based on the drawings.

第1図は、膨張黒鉛粒子の表面に金属等を真空
蒸着させるための真空蒸着装置の一例を示したも
のである。
FIG. 1 shows an example of a vacuum evaporation apparatus for vacuum evaporating metal or the like onto the surface of expanded graphite particles.

すなわち、図示の真空蒸着装置において、1は
真空容器で、アルゴン等の不活性ガスを供給する
ための供給管2及び真空吸引ポンプ(図示せず)
に連結された排気管3を夫々備えている。
That is, in the illustrated vacuum evaporation apparatus, 1 is a vacuum container, a supply pipe 2 for supplying an inert gas such as argon, and a vacuum suction pump (not shown).
The exhaust pipes 3 are connected to the exhaust pipes 3, respectively.

この真空容器1内の上位には、各々シヤツタ4
aでもつて開閉される一対の落下口4b,4bを
備えたホツパー4が配設されており、このホツパ
ー4内には、膨張黒鉛粒子10が適当量収納され
ている。
In the upper part of this vacuum container 1, there are shutters 4, respectively.
A hopper 4 is provided with a pair of drop ports 4b, 4b which are opened and closed at the same time as the hopper 4, and a suitable amount of expanded graphite particles 10 are stored in the hopper 4.

ところで、膨張黒鉛粒子10は、一般に次のよ
うにして得られるものである。
By the way, the expanded graphite particles 10 are generally obtained as follows.

すなわち、鱗片状天然黒鉛等の、結晶がよく発
達した大きな結晶粒のものを素材として、主とし
て濃硫酸及び濃硝酸で酸化処理して、C軸方向結
晶層間に硫酸化合物を生成させ、これを水洗によ
り水に置換させる。そして、表面符着水を適度に
除去すべく乾燥させた上、これを350℃以上の雰
囲中に置いて、急加熱によつて結晶層間に存する
水等を気化させる。かくすることによつて、結晶
粒がC軸方向に80倍以上に膨張された膨張黒鉛粒
子が得られる。この膨張黒鉛粒子の形態は、第2
図に示す如く、C軸方向に平行且つ不連続な無数
の楔状の破断溝10a,10a……を有する芋虫
形状をなしている。
In other words, a material with large crystal grains with well-developed crystals, such as flaky natural graphite, is oxidized mainly with concentrated sulfuric acid and concentrated nitric acid to generate a sulfuric acid compound between the crystal layers in the C-axis direction, and this is washed with water. The water is replaced by water. Then, after drying to appropriately remove surface water, it is placed in an atmosphere of 350° C. or higher, and water, etc. existing between crystal layers is vaporized by rapid heating. By doing so, expanded graphite particles in which the crystal grains are expanded 80 times or more in the C-axis direction can be obtained. The morphology of the expanded graphite particles is
As shown in the figure, it has a caterpillar shape with numerous wedge-shaped fracture grooves 10a, 10a, . . . that are discontinuous and parallel to the C-axis direction.

また、前記真空容器1内の下位には、前記各落
下口4bの直下に各々位置せしめて一対の収納槽
5,5が配設されていると共に両収納槽5,5間
に位置せしめて蒸発源坩堝6が配設されている。
この蒸発源坩堝6内には、鉛或いは酸化鉛といつ
た膨張黒鉛粒子10に蒸着させるための金属等が
収容されている。蒸発源坩堝6は、発熱体7によ
つて加熱されて前記金属等を蒸発させるものであ
り、その加熱温度つまり蒸着源温度は熱電対8に
よつて適宜に調節可能である。なお、9は加熱電
源である。
Further, in the lower part of the vacuum container 1, a pair of storage tanks 5, 5 are provided, which are located directly below each of the drop ports 4b, and are also located between the storage tanks 5, 5, for evaporation. A source crucible 6 is provided.
The evaporation source crucible 6 contains metals such as lead or lead oxide to be vapor-deposited onto the expanded graphite particles 10. The evaporation source crucible 6 is heated by a heating element 7 to evaporate the metal, etc., and its heating temperature, that is, the evaporation source temperature, can be adjusted as appropriate by a thermocouple 8. Note that 9 is a heating power source.

而して、以上のような真空蒸着装置によれば、
真空容器1内を10-2〜10-3torrの雰囲気に保持し
ておき、ホツパー4の各落下口4bから各収納槽
5へ各々膨張黒鉛粒子10,10……を分散状に
遂次落下させることにより、表面に50Å〜0.1μm
の金属等の超微粉体が均一に且つ強固に蒸着され
た膨張黒鉛粒子10が得られる。この蒸着層の厚
みは、蒸着時間つまり膨張黒鉛粒子10の落下距
離並びに蒸発源温度を適宜に調整することによつ
て、任意とできるが、好まくは100Å〜1μmとし
ておく。なお、蒸着層の厚さの測定並びにこれに
基づく調整はかなり困難であるため、蒸着による
膨張黒鉛粒子の重量増を測定して蒸着層厚さの調
整を行うが、この重量増は0.1〜1%の重量増で
あることが望ましい。
According to the vacuum evaporation apparatus as described above,
The inside of the vacuum container 1 is maintained at an atmosphere of 10 -2 to 10 -3 torr, and expanded graphite particles 10, 10, . 50 Å to 0.1 μm on the surface
Expanded graphite particles 10 are obtained in which ultrafine powder of metal or the like is uniformly and firmly deposited. The thickness of this vapor deposition layer can be set arbitrarily by appropriately adjusting the vapor deposition time, that is, the falling distance of the expanded graphite particles 10, and the evaporation source temperature, but is preferably 100 Å to 1 μm. Since it is quite difficult to measure the thickness of the vapor deposited layer and adjust it based on this, the thickness of the vapor deposited layer is adjusted by measuring the weight increase of expanded graphite particles due to vapor deposition, but this weight increase is 0.1 to 1. % weight increase is desirable.

なお、第1図に示す真空蒸着装置を用いた上記
蒸着方法によれば、膨張黒鉛粒子を自然落下を利
用することにより簡便に蒸着処理させることがで
きるが、蒸着量を任意に選択したい場合や蒸着速
度が極めて遅い場合等には、第3図に示す如き真
空蒸着装置を用いるのがより有効である。
In addition, according to the above vapor deposition method using the vacuum vapor deposition apparatus shown in FIG. In cases where the deposition rate is extremely slow, it is more effective to use a vacuum deposition apparatus as shown in FIG.

すなわち、この真空蒸着装置は、第3図に示す
如く、真空容器1内に、シユータ11a及び開閉
シヤツタ11bを備えた膨張黒鉛粒子収納用ホツ
パー11と、該ホツパー11のシユータ11aの
直下位から下方へ傾斜して収納槽5の直上位に臨
む移送体12と、該移送体12の下位に位置され
た、蒸発源坩堝6の直上位へと下り傾斜状に延び
るシユータ13a及び開閉シヤツタ13bを備え
た金属等の微粉物収納用ホツパー13とを夫々配
設したものである。前記移送体12は、金網等の
網状体12aの両端に案内体12b,12cを一
体連設してなるものであり、この移送体12及び
ホツパー11,13は、夫々適宜のバイブレータ
12d及び11c,13cによつて振動せしめら
れるようなされている。なお、14は真空計端子
である。第3図において、第1図におけると同一
部分には同一の符号を付してある。
That is, as shown in FIG. 3, this vacuum evaporation apparatus includes a hopper 11 for storing expanded graphite particles that is provided with a shutter 11a and an opening/closing shutter 11b in a vacuum container 1, and a hopper 11 for storing expanded graphite particles that is provided with a shutter 11a of the hopper 11 from directly below the shutter 11a. A transfer body 12 that is inclined downwardly and faces directly above the storage tank 5, and a shutter 13a and an opening/closing shutter 13b that are located below the transfer body 12 and extend in a downwardly inclined manner directly above the evaporation source crucible 6. A hopper 13 for storing fine powder such as metal or the like is provided in each case. The transfer body 12 is formed by integrally connecting guide bodies 12b and 12c at both ends of a net-like body 12a such as a wire mesh, and the transfer body 12 and hoppers 11 and 13 are equipped with appropriate vibrators 12d and 11c, respectively. 13c. Note that 14 is a vacuum gauge terminal. In FIG. 3, the same parts as in FIG. 1 are given the same reference numerals.

而して、かかる真空蒸着装置を用いて膨張黒鉛
粒子10を蒸着処理させるには、まず真空容器1
内が10-4torr程度となるよう排気管3より排気さ
せた上、10-2〜10-3torrとなるまで供給管2より
アルゴンを供給させると共に、坩堝6を約1500℃
に加熱させておく。そして、ホツパー13内の金
属等の粉粒物を、バイブレータ13cによる振動
によつてシユータ13aから坩堝6へと適当量宛
供給させながら、ポツパー11内の膨張黒鉛粒子
10を、バイブレータ11cによる振動によつて
シユータ11aから移送体12上へ適当量宛供給
させる。かくすれば、移送体12上に供給された
膨張黒鉛粒子10は、移送体12つまり網状体1
2aをその傾斜及びバイプレータ12dによる振
動によつて下方へ転動移送せしめられ、この間に
おいて、表面に金属等の超微粉体が均一且つ強固
に蒸着される。その後、膨張黒鉛粒子10は、移
送体12つまり案内体12cから収納槽5へと落
下収納される。
Therefore, in order to vapor-deposit the expanded graphite particles 10 using such a vacuum evaporation apparatus, first, the vacuum container 1 is
The crucible 6 was heated to about 1500°C while evacuating from the exhaust pipe 3 so that the internal pressure was about 10 -4 torr, and supplying argon from the supply pipe 2 until the pressure reached 10 -2 to 10 -3 torr.
Let it heat to. Then, while supplying an appropriate amount of powder such as metal in the hopper 13 from the shooter 13a to the crucible 6 by vibration by the vibrator 13c, the expanded graphite particles 10 in the popper 11 are caused to vibrate by the vibrator 11c. Therefore, an appropriate amount is supplied from the shooter 11a onto the transfer body 12. In this way, the expanded graphite particles 10 supplied onto the transfer body 12 are transferred to the transfer body 12, that is, the mesh body 1.
2a is rolled and transferred downward by its inclination and vibration by the biplate 12d, and during this time, ultrafine powder such as metal is uniformly and firmly deposited on the surface. Thereafter, the expanded graphite particles 10 fall from the transfer body 12, that is, the guide body 12c, and are stored in the storage tank 5.

したがつて、第3図に示す真空蒸着装置によれ
ば、蒸着時間を、移送体12の傾斜及びバイブレ
ータ12dによる振動を適宜調整することによつ
て、任意に設定できるから、蒸着量を自由に選択
でき、蒸着速度が極めて遅い場合等においても良
好な蒸着処理を施すことができる。しかも、膨張
黒鉛粒子10は移送体12上を転動移送され、こ
の間において蒸着されるから、蒸着がより均一に
行われうる。
Therefore, according to the vacuum evaporation apparatus shown in FIG. 3, the evaporation time can be arbitrarily set by appropriately adjusting the inclination of the transfer body 12 and the vibration by the vibrator 12d, so the amount of evaporation can be freely determined. It is possible to perform a good vapor deposition process even when the vapor deposition rate is extremely slow. Moreover, since the expanded graphite particles 10 are transferred by rolling on the transfer body 12 and are deposited during this time, the vapor deposition can be performed more uniformly.

そして、以上の如くして得られた膨張黒鉛粒子
を所望量用いて、シート状等所望形状に圧縮成形
することによつて、本発明の膨張黒鉛成形体が得
られる。なお、第1図及び第3図に例示した如き
真空蒸着装置による蒸着によつては、膨張黒鉛粒
子10の第2図に示す如き芋虫形状が何ら損われ
ず、且つ無数の楔状の破断溝10a,10a……
もそのまま維持されるから、圧縮成形時において
生じる膨張黒鉛粒子間相互の投錨効果が何ら損わ
れず、金属等の超微粉体の凝集力による膨張黒鉛
粒子相互の結合力が有効に高められる。
Then, by using a desired amount of the expanded graphite particles obtained as described above and compression molding them into a desired shape such as a sheet, the expanded graphite molded article of the present invention can be obtained. In addition, by vapor deposition using the vacuum vapor deposition apparatus as illustrated in FIGS. 1 and 3, the caterpillar shape of the expanded graphite particles 10 as shown in FIG. ,10a...
is maintained as it is, the mutual anchoring effect between the expanded graphite particles that occurs during compression molding is not impaired in any way, and the bonding force between the expanded graphite particles due to the cohesive force of ultrafine powder such as metal is effectively increased.

なお、ガスケツト等の成形素材としての膨張黒
鉛シートは、金属等が蒸着されていない膨張黒鉛
粒子をシート状に圧縮成形した上で、その表面に
金属等を蒸着させたものでも、かかるシートを積
層して圧縮成形によりガスケツト等を製造した場
合には、本発明に従つて得られた膨張黒鉛シート
を用いた場合同様の効果を奏しうる。
Expanded graphite sheets used as molding materials for gaskets, etc. may be made by compression molding expanded graphite particles on which no metal, etc. is vapor-deposited into a sheet shape, and then vapor-depositing metal, etc. on the surface of the expanded graphite particles, or by laminating such sheets. When a gasket or the like is manufactured by compression molding, the same effect can be obtained when the expanded graphite sheet obtained according to the present invention is used.

これも、シート表面に蒸着された金属等の微粉
体の凝集力に基づくものである。
This is also based on the cohesive force of fine powder such as metal deposited on the sheet surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は真空蒸着装置の一例を示す概略図、第
2図は膨張黒鉛粒子の拡大図であり、第3図は真
空蒸着装置の他の一例を示す概略図である。 10……膨張黒鉛粒子。
FIG. 1 is a schematic diagram showing an example of a vacuum evaporation device, FIG. 2 is an enlarged view of expanded graphite particles, and FIG. 3 is a schematic diagram showing another example of a vacuum evaporation device. 10...Expanded graphite particles.

Claims (1)

【特許請求の範囲】[Claims] 1 表面に所望量の金属若しくは金属酸化物を蒸
着させた膨張黒鉛粒子を、所望形状に圧縮成形し
てなる膨張黒鉛成形体。
1. An expanded graphite molded body obtained by compression molding expanded graphite particles having a desired amount of metal or metal oxide deposited on the surface into a desired shape.
JP57066139A 1982-04-19 1982-04-19 Molded body of expanded graphite Granted JPS58181713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57066139A JPS58181713A (en) 1982-04-19 1982-04-19 Molded body of expanded graphite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57066139A JPS58181713A (en) 1982-04-19 1982-04-19 Molded body of expanded graphite

Publications (2)

Publication Number Publication Date
JPS58181713A JPS58181713A (en) 1983-10-24
JPS646128B2 true JPS646128B2 (en) 1989-02-02

Family

ID=13307225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57066139A Granted JPS58181713A (en) 1982-04-19 1982-04-19 Molded body of expanded graphite

Country Status (1)

Country Link
JP (1) JPS58181713A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5678332B2 (en) 2009-09-04 2015-03-04 東洋炭素株式会社 Ceramic carbon composite material and manufacturing method thereof, ceramic-coated ceramic carbon composite material and manufacturing method thereof
US9963395B2 (en) * 2013-12-11 2018-05-08 Baker Hughes, A Ge Company, Llc Methods of making carbon composites
US9325012B1 (en) 2014-09-17 2016-04-26 Baker Hughes Incorporated Carbon composites
US10480288B2 (en) 2014-10-15 2019-11-19 Baker Hughes, A Ge Company, Llc Articles containing carbon composites and methods of manufacture
US9962903B2 (en) 2014-11-13 2018-05-08 Baker Hughes, A Ge Company, Llc Reinforced composites, methods of manufacture, and articles therefrom
US9745451B2 (en) 2014-11-17 2017-08-29 Baker Hughes Incorporated Swellable compositions, articles formed therefrom, and methods of manufacture thereof
US11097511B2 (en) 2014-11-18 2021-08-24 Baker Hughes, A Ge Company, Llc Methods of forming polymer coatings on metallic substrates
US10344559B2 (en) 2016-05-26 2019-07-09 Baker Hughes, A Ge Company, Llc High temperature high pressure seal for downhole chemical injection applications

Also Published As

Publication number Publication date
JPS58181713A (en) 1983-10-24

Similar Documents

Publication Publication Date Title
EP0216184B1 (en) Intercalated graphite sealing members
US2351798A (en) Coating metal articles
Dolmatov Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications
JPS646128B2 (en)
WO2006103798A1 (en) High-heat-conduction composite with graphite grain dispersed and process for producing the same
US2161597A (en) Method of bonding powdered metallic material
RU2760896C1 (en) Method for producing heat-conducting composite material from powders of aluminium or alloy thereof with graphene coating
JPH02236244A (en) Forming method for metallic matrix complex by spontaneous infiltration process and product produced thereby
US3384482A (en) Method of making a sintered zinc battery anode structure
US6080341A (en) Process for making an indium-tin-oxide shaped body
US3348976A (en) Self-supporting sintered zinc anode structure
US3131089A (en) Carbon article coated with boron carbide and boron nitride, and process of making the same
CN102216241A (en) Method for producing carbon material, and carbon material
EP0260101A2 (en) Production of flat products from particulate material
JP3199086B2 (en) Valve sealing material, method for manufacturing valve sealing material, and valve sealing structure
EP2807119B1 (en) A method of reducing friction
JPS59217675A (en) Silicon nitride reaction sintered body composite material and manufacture
JP2021091564A (en) Material for expanded-graphite sheet, expanded-graphite sheet, method for producing material for expanded-graphite sheet, and method for producing expanded-graphite sheet
JP3464615B2 (en) Aluminum surface nitriding method
JPS5822521B2 (en) Manufacturing method of stainless steel powder for powder metallurgy
JPH01252512A (en) Modified graphite material
JP2527666B2 (en) Glassy carbon coated article
JPH0483784A (en) Production of metal composite carbon material
JPH022282B2 (en)
US3732095A (en) Method of making porous electrodes comprising freezing wet powder and sintering