JPS645528B2 - - Google Patents

Info

Publication number
JPS645528B2
JPS645528B2 JP55074726A JP7472680A JPS645528B2 JP S645528 B2 JPS645528 B2 JP S645528B2 JP 55074726 A JP55074726 A JP 55074726A JP 7472680 A JP7472680 A JP 7472680A JP S645528 B2 JPS645528 B2 JP S645528B2
Authority
JP
Japan
Prior art keywords
mold
urethane foam
stock solution
parts
polyol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55074726A
Other languages
Japanese (ja)
Other versions
JPS571740A (en
Inventor
Katsuhisa Kodama
Kenkichi Nakagawa
Kazuo Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP7472680A priority Critical patent/JPS571740A/en
Publication of JPS571740A publication Critical patent/JPS571740A/en
Publication of JPS645528B2 publication Critical patent/JPS645528B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、表皮付き硬質ウレタンフオーム成形
品の製造法に関する。 表皮付き硬質ウレタンフオーム成形品は、近
来、非常な発展をとげており、特に家庭電器、自
動車や家具などの分野でその現象が著しい。 一般に、表皮付き硬質ウレタンフオーム成形品
は気密性のある型内に高発泡倍率の硬質ウレタン
フオーム原液を過剰に注入し、発泡させて高密度
の表皮層部と低密度のコアー層部とを一体成形す
ることによつて製造されるが、型内の圧力を常圧
にして発泡させた場合、成形品の密度分布の不均
一、表皮面のボイドおよび熱伝導率が上昇する、
すなわち断熱性能は悪くなるなどの問題があり、
実用化されるにはいたつていない。上記の問題点
のうち、密度分布の均一化についてはウレタンフ
オーム原液を多く注入することにより改善される
が、成形品の密度は高くなり、熱伝導率は上昇す
る。また、表皮面に発生するボイドは、外観を悪
くし、成形品の商品価値を著しく低下させるもの
であるが、一般に注入原液の発泡密度を低くする
程、ウレタンフオーム原液の注入量を少なくする
程、多く発生する。発泡密度を高くし、かつ、原
液の注入量を増すことにより幾分は改善される
が、成形品の末端部分のボイドを完全になくすこ
とは不可能である。また、成形品の密度の上昇に
よる重量の増加や熱伝導率の上昇など好ましくな
い現象がみられる。型の形状が複雑な、たとえば
凹凸部やインサート部などがある型の場合にはボ
イドをなくすことは事実上不可能である。 近時、省資源、省エネルギーの観点から成形品
の軽量化が強く要求され、低い熱伝導率すなわち
すぐれた断熱性と成形品の密度が均一で、しかも
ボイドがないか、あつても実用にさしつかえのな
い程度にまでその量が軽減された外観を有する成
形品を製造する方法が各方面より強くもとめられ
ていた。発明者らはこれらの実状に鑑み、鋭意研
究を重ねた結果、硬質ウレタンフオーム原液を気
密性のある型内に注入するに先立ち、型内の圧力
を特定の圧力にする一方、硬質ウレタンフオーム
原液のパツク率を約150〜450%にし、しかも原液
が発泡する間、型の温度を約10〜45℃に保持する
ことによりすぐれた外観と均一な密度分布ならび
にすぐれた断熱性能を有した成形品が得られるこ
とを知見し、この知見にもとづき本発明を完成す
るに至つた。 すなわち、本発明は気密性のある型内の圧力を
約50〜500mmHgにした後、硬質ウレタンフオーム
原液を、パツク率が約150〜450%となるように型
内に注入し、型の温度を約10〜45℃に保持しなが
ら発泡させることを特徴とする表皮付き硬質ウレ
タンフオーム成形品の製造法に関する。 本発明で用いられる硬質ウレタンフオーム原液
は、有機ポリイソシアネート、ポリオール、触
媒、発泡剤および整泡剤、必要により、たとえば
難燃剤、顔料、安定剤などを含有している。 有機ポリイソシアネートとしては、通常の硬質
ウレタンフオームを製造する際に一般的に使用さ
れているものをそのまま使用することができる。
代表的なものを例示すると、たとえばトルイレン
ジイソシアネート、4,4′−ジフエニルメタンジ
イソシアネート、ポリメチレンポリフエニルイソ
シアネート(C−MDI)、粗製のトルイレンジイ
ソシアネート及びこれらを部分的にウレタン化、
三量化、カルボジイミド化又はアミド化などの手
段で変性したポリイソシアネート類があげられ
る。これらを2種以上混合して使つてもよい。こ
れらのポリイソシアネートは、前述のポリオール
に対して一般にNCO/OH当量比が約1.03〜1.15
の範囲で使用することが好ましい。 ポリオールとしては、通常の硬質ウレタンフオ
ームの製造に使用される官能基数が約2〜8で、
水酸基価が約350〜800mgKOH/gのポリエーテ
ルポリオールやポリエステルポリオールなどを用
いることができる。 特に、芳香族アミンを開始剤とし、これにエチ
レンオキサイドとプロピレンオキサイドとを、そ
の重量比が約50〜50/95〜50、好ましくは約10〜
30/90〜70の割合でブロツク状またはランダムに
付加して得られる水酸基価約300〜550mgKOH/
gのポリエーテルポリオールA)と後述するポリ
エステルポリオールB)とをその重量比が約50〜
90/50〜10、好ましくは約60〜85/40〜15の割合
で混合して得られるものが好ましい。ポリエーテ
ルポリオールA)の開始剤として用いられる芳香
族アミンとしては、たとえばアニリン、トルイジ
ンなどのモノアミン類、たとえばフエニレンジア
ミン、O−トルイレンジアミン、m−トルイレン
ジアミン、ナフタレンジアミン、4,4′−ジアミ
ノジフエニルメタン、キシレンジアミンなどのジ
アミン類、たとえばアニリンとホルムアルデヒド
の縮合によつて得られる生成物、たとえばトリレ
ンジイソシアネートやジフエニルメタンジイソシ
アネートなどの蒸留残渣やたとえばトリレンジイ
ソシアネートやジフエニルメタンジイソシアネー
トなどを用いて製造されたウレタンフオームなど
をアルカリもしくはアミンなどにより加水分解し
て得られる分解物などがあげられる。これらの芳
香族アミンは2種以上混合して使用してもよい。 ポリエーテルポリオール(A)の水酸基価は、使用
する芳香族アミンの種類などによつても異なる
が、約300〜550mgKOH/g、好ましくは約350〜
500mgKOH/g程度である。 ポリエステルポリオール(B)は通常、一級の水酸
基を有するポリオールとポリカルボン酸、ポリカ
ルボン酸無水物との縮合によつて製造される。 一級の水酸基を有するポリオールとしては、た
とえばエチレングリコール、ジエチレングリコー
ル、トリエチレングリコール、1,4ブタンジオ
ール、1,6ヘキサングリコール、トリメチロー
ルプロパン、ペンタエリスリトールなどがあげら
れる。ポリカルボン酸、ポリカルボン酸無水物と
しては、たとえばアジピン酸、コハク酸、無水コ
ハク酸、マレイン酸、無水マレイン酸、フマール
酸、フタール酸、ピロメリツト酸などをあげるこ
とができる。上述のポリオールの1種又は2種以
上と、ポリカルボン酸又はポリカルボン酸無水物
の1種又は2種以上とを、水酸基過剰の条件で、
加熱、脱水、縮合して得られる。 このポリエステルポリオールの水酸基価は通
常、300〜500mgKOH/g程度である。 ポリエーテルポリオール(A)とポリエステルポリ
オール(B)からなる混合ポリオールを用いる場合、
その混合ポリオールの割合はポリオール成分の約
80重量%以上、好ましくは約90重量%以上となる
ような割合で用いることが好ましい。 また、触媒、整泡剤、発泡剤についてもその種
類及び使用量については特に限定されるものでは
なく、従来技術に準じて用いることができる。代
表的なものを例示すると、触媒としてはたとえば
ジメチルエタノールアミン、トリエチレンジアミ
ン、テトラメチルプロパンジアミン、テトラメチ
ルヘキサメチレンジアミン、ジメチルシクロヘキ
シルアミンなどの三級アミン類、たとえばスタナ
スオクトエート、ジブチルチンジラウレートなど
の有機スズ化合物などがあげられる。 触媒は、通常ポリオール100重量部に対して約
0.1〜10重量部程度用いられる。 発泡剤の例としては、たとえば塩化メチレン、
クロロホルム、トリクロロモノフルオロメタン、
トリクロロトリフルオロエタン、トリブロモトリ
フルオロエタン、ジクロロジフルオロメタンな
ど、特に好ましくはトリクロロモノフルオロメタ
ン、トリクロロトリフルオロエタンがあげられ
る。 発泡剤は通常、ポリオール100重量部に対して
約10〜70重量部程度用いられる。 整泡剤としては各種のシロキサン・ポリアルキ
レンオキシドブロツク共重合体(シリコン整泡
剤)を使うことができる。整泡剤は通常、ポリオ
ール100重量部に対して約0.2〜3重量部程度用い
られる。 前述の触媒、発泡剤、整泡剤のほかに、必要に
よりたとえばトリスクロルエチルホスフアイト、
トリスジクロロプロピルホスフエート、塩素化パ
ラフイン、トリクレジルホスフエートなどの難燃
剤、たとえばカーボンブラツク、酸化チタン、ベ
ンガラ、フタロシアニンブルーなどの顔料、たと
えば2−テトラブチルヒドロキノン、フエニルサ
リチレート、2−ヒドロキシフエニルベンゾトリ
アゾールなどの安定剤などを適宜量加えてもよ
い。 本発明に用いられる型としては、通常、合成樹
脂成形に用いられる材質で作製した気密性を有す
る型であれば如何なる型でも用いることができる
が、型の材質は、金属製もしくは金属と他の材質
とを組み合わせたものがよい。また、型には温度
調節機(例;冷温水じゅん環用ジヤケツト内蔵な
ど)を備え、しかも型内の圧力調整用バルブを設
けたものが好ましい。 本発明では、まず型内の圧力を約50〜500mm
Hg、好ましくは約150〜400mmHgにする。型内の
圧力は用いられるウレタン原液中の発泡剤の種類
や量、硬質ウレタンフオーム原液の粘度や硬化特
性、型の温度などにより任意に選択される。 型内の圧力が約500mmHgを越すと従来の常圧法
と変わらず、型内に未充てん部が発生したり、フ
オーム密度の不均一化を起すことがある。 型内の圧力が約50mmHgに満たない場合は、発
泡剤の部分的異状発泡が起こり、成形品内部でセ
ル荒れが起こることがある。 型内の圧力を約50〜500mmHgにした後、硬質ウ
レタンフオーム原液を、パツク率が約150〜450
%、好ましくは約180〜400%になるように型内に
注入する。特に、成形品の強度や外観などがすぐ
れたものを望む場合、パツク率は約300〜450%、
また、特に熱伝導率の低い成形品を望む場合、パ
ツク率は約150〜250%が好ましい。 ここでパツク率とは次の式で定義される。 パツク率(%)=表皮付き硬質ウレタンフオーム成形
品を得るのに要した原液の重量/硬質ウレタンフオーム
原液が型内を完全に充てんするに必要な原液の重量×10
0 硬質ウレタンフオーム原液の注入は、たとえば
高圧発泡機などの射出部を型の注入口に直結して
おこなわれる。 硬質ウレタンフオーム原液を型内に注入した
後、型の温度を約10〜45℃、好ましくは約15〜30
℃に保持しながら発泡させる。 型の温度が約45℃を越すとボイドのある成形品
しか得られない。 一方、10℃未満の温度では、ボイドや熱伝導率
の点ではすぐれているが、密度分布の不均一化や
型内に未充てん部分が発生したり、また、成形品
の硬化速度がおそく、したがつて脱型時間が長く
なり、工業的生産には不利である。 本発明によれば、熱伝導率が低く外観が良好で
かつ密度分布の均一な表皮付き硬質ウレタンフオ
ーム成形品が容易に得られるので工業的に極めて
有利な方法である。 以下に実施例をあげて本発明を更に詳細に説明
する。 実施例 1 A成分 クルードMDI(ミリオネートMR−200日本ポリウ
レタン(株)製) 100部 B成分 Γポリエーテルポリオール1(芳香族ジアミン/
プロピレンオキサイド/エチレンオキサイド系
水酸基価400mgKOH/g) 35部 Γポリエーテルポリオール2(芳香族ジアミン/
プロピレンオキサイド/エチレンオキサイド系
水酸基価490mgKOH/g) 35部 Γポリエステルポリオール(アジピン酸、トリメ
チロールプロパン、ジエチレングリコール系水
酸基価400mgKOH/g) 17部 発泡剤 トリクロロモルフルオロメタン(昭和電工フロン
シヨワー11) 30部 触媒 1,4−ジアザビシクロ(2,2,2)オクタン
0.7部 整泡剤 ポリシロキサン・ポリオキシアルキレングリコー
ル重合体(信越化学工業(株)整泡剤F−318) 1.5部 A成分およびB成分を高圧発泡機(PU−50;
ポリウレタンエンジニアリング(株)製)の2つのタ
ンクにそれぞれ仕込み液温をそれぞれ20℃に調節
した。発泡機の注入ヘツドを第1図のように下金
型に直結し、ついで上下金型を閉じ予め温度調節
をした水をじゆん環させて型の温度を第1表の如
くに調節した。つぎに減圧緩衝タンクと金型を直
結しているバルブを開き、型内を第1表の如く一
定圧力に調節した。型内の圧力が目標値に達した
のち、高圧発泡機を作動させ、A成分/B成分の
比率120部/100部の割合で混合し、原液を型内に
パツク率約150〜450%で注入して発泡させた。硬
化後、型を開いて成形品を得た。
The present invention relates to a method for manufacturing a hard urethane foam molded article with a skin. Rigid urethane foam molded products with skins have made great progress in recent years, particularly in the fields of home appliances, automobiles, and furniture. In general, hard urethane foam molded products with a skin are made by injecting an excessive amount of a hard urethane foam stock solution with a high expansion ratio into an airtight mold, and then foaming it to integrate the high-density skin layer and the low-density core layer. It is manufactured by molding, but when foaming is performed under normal pressure in the mold, the density distribution of the molded product becomes uneven, voids on the skin surface, and thermal conductivity increase.
In other words, there are problems such as poor insulation performance.
It has not yet been put into practical use. Among the above problems, uniform density distribution can be improved by injecting a large amount of urethane foam stock solution, but the density of the molded product increases and the thermal conductivity increases. In addition, voids that occur on the surface of the skin deteriorate the appearance and significantly reduce the commercial value of the molded product, but in general, the lower the foaming density of the injection stock solution, the lower the injection amount of the urethane foam stock solution. , occurs a lot. This can be improved somewhat by increasing the foaming density and the injection amount of the stock solution, but it is impossible to completely eliminate the voids at the end of the molded product. In addition, undesirable phenomena such as an increase in weight and an increase in thermal conductivity due to an increase in the density of the molded article are observed. In the case of a mold having a complicated shape, for example, a mold having uneven parts or insert parts, it is practically impossible to eliminate voids. In recent years, there has been a strong demand for lightweight molded products from the viewpoint of resource and energy conservation, and it is important to have low thermal conductivity, i.e., excellent heat insulation, uniform density of molded products, and no voids, even if it is not practical. There has been a strong demand from various quarters for a method of producing molded articles with an appearance in which the amount of molten metal is reduced to the extent that there is no oxidation. In view of these circumstances, the inventors conducted extensive research and found that, prior to injecting the hard urethane foam stock solution into an airtight mold, the pressure inside the mold was set to a specific pressure, while the hard urethane foam stock solution was injected into the airtight mold. The molded product has an excellent appearance, uniform density distribution, and excellent heat insulation performance by increasing the packing rate of approximately 150 to 450% and maintaining the temperature of the mold at approximately 10 to 45°C while the raw solution is foaming. The present invention was completed based on this knowledge. That is, in the present invention, after setting the pressure inside the airtight mold to about 50 to 500 mmHg, a hard urethane foam stock solution is injected into the mold so that the packing ratio is about 150 to 450%, and the temperature of the mold is lowered. This invention relates to a method for producing a hard urethane foam molded product with a skin, which is characterized by foaming while maintaining the temperature at about 10 to 45°C. The rigid urethane foam stock solution used in the present invention contains an organic polyisocyanate, a polyol, a catalyst, a blowing agent, a foam stabilizer, and if necessary, a flame retardant, a pigment, a stabilizer, and the like. As the organic polyisocyanate, those commonly used in producing ordinary rigid urethane foams can be used as they are.
Typical examples include toluylene diisocyanate, 4,4'-diphenylmethane diisocyanate, polymethylene polyphenyl isocyanate (C-MDI), crude toluylene diisocyanate, and partially urethanized toluylene diisocyanate.
Examples include polyisocyanates modified by trimerization, carbodiimidization, amidation, or the like. Two or more of these may be used in combination. These polyisocyanates generally have NCO/OH equivalent ratios of about 1.03 to 1.15 relative to the aforementioned polyols.
It is preferable to use it within the range of . The polyol has a functional group number of about 2 to 8 and is used in the production of ordinary rigid urethane foam.
Polyether polyols, polyester polyols, etc. having a hydroxyl value of about 350 to 800 mgKOH/g can be used. In particular, an aromatic amine is used as an initiator, and ethylene oxide and propylene oxide are added thereto in a weight ratio of about 50 to 50/95 to 50, preferably about 10 to
Hydroxyl value approximately 300 to 550mgKOH/ obtained by adding blocks or randomly at a ratio of 30/90 to 70
g of polyether polyol A) and polyester polyol B) described below in a weight ratio of about 50 to
Those obtained by mixing in a ratio of 90/50 to 10, preferably about 60 to 85/40 to 15 are preferred. Aromatic amines used as initiators for polyether polyols A) include monoamines such as aniline and toluidine, such as phenylenediamine, O-tolylenediamine, m-tolylenediamine, naphthalenediamine, 4,4' - diamines such as diaminodiphenylmethane, xylene diamine, e.g. products obtained by condensation of aniline with formaldehyde, distillation residues such as tolylene diisocyanate and diphenylmethane diisocyanate, e.g. tolylene diisocyanate and diphenylmethane diisocyanate; Examples include decomposition products obtained by hydrolyzing urethane foam, etc., produced using, for example, alkali or amine. Two or more of these aromatic amines may be used in combination. The hydroxyl value of the polyether polyol (A) varies depending on the type of aromatic amine used, but is approximately 300 to 550 mgKOH/g, preferably approximately 350 to 550 mgKOH/g.
It is about 500mgKOH/g. Polyester polyol (B) is usually produced by condensing a polyol having a primary hydroxyl group with a polycarboxylic acid or a polycarboxylic acid anhydride. Examples of polyols having primary hydroxyl groups include ethylene glycol, diethylene glycol, triethylene glycol, 1,4 butanediol, 1,6 hexane glycol, trimethylolpropane, and pentaerythritol. Examples of polycarboxylic acids and polycarboxylic anhydrides include adipic acid, succinic acid, succinic anhydride, maleic acid, maleic anhydride, fumaric acid, phthalic acid, and pyromellitic acid. One or more of the above-mentioned polyols and one or more of polycarboxylic acids or polycarboxylic acid anhydrides under conditions of excess hydroxyl groups,
Obtained by heating, dehydration, and condensation. The hydroxyl value of this polyester polyol is usually about 300 to 500 mgKOH/g. When using a mixed polyol consisting of polyether polyol (A) and polyester polyol (B),
The proportion of the mixed polyol is approximately
It is preferable to use it in a proportion of 80% by weight or more, preferably about 90% by weight or more. Furthermore, the types and amounts of catalysts, foam stabilizers, and blowing agents used are not particularly limited, and can be used in accordance with conventional techniques. Typical examples of catalysts include tertiary amines such as dimethylethanolamine, triethylenediamine, tetramethylpropanediamine, tetramethylhexamethylenediamine, and dimethylcyclohexylamine, such as stannous octoate, dibutyltin dilaurate, etc. Examples include organic tin compounds. The amount of catalyst is usually about 100 parts by weight of polyol.
It is used in an amount of about 0.1 to 10 parts by weight. Examples of blowing agents include methylene chloride,
Chloroform, trichloromonofluoromethane,
Trichlorotrifluoroethane, tribromotrifluoroethane, dichlorodifluoromethane, etc., and particularly preferred are trichloromonofluoromethane and trichlorotrifluoroethane. The blowing agent is usually used in an amount of about 10 to 70 parts by weight per 100 parts by weight of the polyol. As the foam stabilizer, various siloxane/polyalkylene oxide block copolymers (silicon foam stabilizers) can be used. The foam stabilizer is usually used in an amount of about 0.2 to 3 parts by weight per 100 parts by weight of the polyol. In addition to the above-mentioned catalyst, blowing agent, and foam stabilizer, if necessary, for example, trichloroethyl phosphite,
Flame retardants such as trisdichloropropyl phosphate, chlorinated paraffin, tricresyl phosphate, pigments such as carbon black, titanium oxide, red iron oxide, phthalocyanine blue, such as 2-tetrabutylhydroquinone, phenylsalicylate, 2- An appropriate amount of a stabilizer such as hydroxyphenylbenzotriazole may be added. As the mold used in the present invention, any airtight mold made of a material normally used for synthetic resin molding can be used, but the material of the mold may be metal or metal and other materials. It is best to use a combination of materials. Further, it is preferable that the mold is equipped with a temperature regulator (eg, a built-in jacket for running cold and hot water), and is also provided with a valve for regulating the pressure inside the mold. In the present invention, first, the pressure inside the mold is reduced to approximately 50 to 500 mm.
Hg, preferably about 150-400 mmHg. The pressure inside the mold is arbitrarily selected depending on the type and amount of the blowing agent in the urethane stock solution used, the viscosity and curing characteristics of the rigid urethane foam stock solution, the temperature of the mold, etc. If the pressure inside the mold exceeds approximately 500 mmHg, unfilled areas may occur within the mold or the foam density may become non-uniform, as is the case with conventional normal pressure methods. If the pressure inside the mold is less than about 50 mmHg, the blowing agent may partially foam and roughen the cells inside the molded product. After setting the pressure in the mold to approximately 50 to 500 mmHg, the hard urethane foam stock solution is heated to a packing rate of approximately 150 to 450.
%, preferably about 180-400%. In particular, if you want a molded product with excellent strength and appearance, the packing rate is approximately 300 to 450%.
Furthermore, when a molded article with particularly low thermal conductivity is desired, the pack rate is preferably about 150 to 250%. Here, the pack rate is defined by the following formula. Packing rate (%) = Weight of stock solution required to obtain a hard urethane foam molded product with skin/Weight of stock solution required to completely fill the mold with hard urethane foam stock solution x 10
0 The hard urethane foam stock solution is injected by directly connecting the injection part of a high-pressure foaming machine to the injection port of the mold. After injecting the hard urethane foam stock solution into the mold, the temperature of the mold is set to about 10 to 45℃, preferably about 15 to 30℃.
Foam while maintaining at ℃. If the temperature of the mold exceeds approximately 45°C, only molded products with voids will be obtained. On the other hand, temperatures below 10°C are excellent in terms of voids and thermal conductivity, but the density distribution becomes uneven, unfilled areas occur in the mold, and the curing speed of the molded product is slow. Therefore, demolding time becomes long, which is disadvantageous for industrial production. According to the present invention, a hard urethane foam molded article with a skin having low thermal conductivity, a good appearance, and a uniform density distribution can be easily obtained, and therefore it is an industrially extremely advantageous method. The present invention will be explained in more detail with reference to Examples below. Example 1 Component A crude MDI (Millionate MR-200 manufactured by Nippon Polyurethane Co., Ltd.) 100 parts B component Γ polyether polyol 1 (aromatic diamine/
Propylene oxide/ethylene oxide hydroxyl value 400mgKOH/g) 35 parts Γ polyether polyol 2 (aromatic diamine/
Propylene oxide/ethylene oxide (hydroxyl value: 490mgKOH/g) 35 parts Γ polyester polyol (adipic acid, trimethylolpropane, diethylene glycol (hydroxyl value: 400mgKOH/g)) 17 parts Blowing agent trichloromorphoromethane (Showa Denko Frontier 11) 30 parts catalyst 1,4-diazabicyclo(2,2,2)octane
0.7 parts Foam stabilizer Polysiloxane polyoxyalkylene glycol polymer (Shin-Etsu Chemical Co., Ltd. Foam stabilizer F-318) 1.5 parts A and B components were mixed in a high-pressure foaming machine (PU-50;
The solution was charged into two tanks (manufactured by Polyurethane Engineering Co., Ltd.), and the temperature of each solution was adjusted to 20°C. The injection head of the foaming machine was directly connected to the lower mold as shown in FIG. 1, and then the upper and lower molds were closed and the temperature of the mold was adjusted as shown in Table 1 by circulating water whose temperature had been adjusted in advance. Next, the valve directly connecting the vacuum buffer tank and the mold was opened, and the pressure inside the mold was adjusted to a constant pressure as shown in Table 1. After the pressure in the mold reaches the target value, activate the high-pressure foaming machine, mix the A component/B component at a ratio of 120 parts/100 parts, and fill the stock solution in the mold with a pack rate of about 150 to 450%. Injected and foamed. After curing, the mold was opened to obtain a molded product.

【表】【table】

【表】 実施例 2 実施例1と同じ原液、金型および操作条件下で
型の温度20℃、型内の圧力760および260mmHgで
パツク率を変えてそれぞれ成形品を得た。得られ
た成形品の結果を第2表に示す。
[Table] Example 2 Molded products were obtained using the same stock solution, mold, and operating conditions as in Example 1, with a mold temperature of 20° C. and a mold pressure of 760 and 260 mmHg, with different pack rates. The results of the molded products obtained are shown in Table 2.

【表】 注 密度分布、外観は第1表と同じ
熱伝導率単位 K〓′/mh℃
[Table] Note: Density distribution and appearance are the same as Table 1.
Thermal conductivity unit K〓′/mh℃

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、硬質ウレタンフオーム原液を発泡さ
せる際に用いられる型の1例の断面図である。 1……注入機、2……下型、3……上型、4…
…金型温度調節用じゆん環水パイプ、5……真空
ダマリ、6……減圧パイプ、7……調圧バルブ、
8……減圧緩衝タンク、9……型キヤビテイ、1
0……真空ポンプ、11……注入フイルムゲー
ト、12……キヤビテイ内真空用微細通路、13
……上型、下型および注入ヘツド間の型内気密用
パツキング、14……圧力計。
FIG. 1 is a sectional view of an example of a mold used when foaming a rigid urethane foam stock solution. 1...Injection machine, 2...Lower mold, 3...Upper mold, 4...
...Jiyun water pipe for mold temperature adjustment, 5...Vacuum damper, 6...Pressure reduction pipe, 7...Pressure adjustment valve,
8... Decompression buffer tank, 9... Type cavity, 1
0...Vacuum pump, 11...Injection film gate, 12...Vacuum fine passage within the cavity, 13
...Mold airtight packing between the upper mold, lower mold and injection head, 14...Pressure gauge.

Claims (1)

【特許請求の範囲】[Claims] 1 気密性のある型内の圧力を約50〜500mmHgに
した後、硬質ウレタンフオーム原液をパツク率が
約150〜450%となるように型内に注入し、型の温
度を約10〜45℃に保持しながら発泡させることを
特徴とする表皮付き硬質ウレタンフオーム成形品
の製造法。
1. After setting the pressure inside the airtight mold to about 50 to 500 mmHg, pour the hard urethane foam stock solution into the mold so that the packing ratio is about 150 to 450%, and lower the temperature of the mold to about 10 to 45℃. A method for producing a hard urethane foam molded product with a skin, which is characterized by foaming while holding the foam.
JP7472680A 1980-06-02 1980-06-02 Manufacture of hard urethane foam molded form with skin Granted JPS571740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7472680A JPS571740A (en) 1980-06-02 1980-06-02 Manufacture of hard urethane foam molded form with skin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7472680A JPS571740A (en) 1980-06-02 1980-06-02 Manufacture of hard urethane foam molded form with skin

Publications (2)

Publication Number Publication Date
JPS571740A JPS571740A (en) 1982-01-06
JPS645528B2 true JPS645528B2 (en) 1989-01-31

Family

ID=13555512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7472680A Granted JPS571740A (en) 1980-06-02 1980-06-02 Manufacture of hard urethane foam molded form with skin

Country Status (1)

Country Link
JP (1) JPS571740A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0180407U (en) * 1987-11-18 1989-05-30
JPH10337738A (en) * 1997-06-06 1998-12-22 Showa Alum Corp Manufacture of heat insulated panel
US7943679B2 (en) * 2005-11-14 2011-05-17 Dow Global Technologies Llc Method of molding rigid polyurethane foams with enhanced thermal conductivity
JP2010201868A (en) * 2009-03-05 2010-09-16 Toyo Tire & Rubber Co Ltd Method of manufacturing urethane mount member and urethane mount member

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2428519A1 (en) * 1978-06-13 1980-01-11 Ameublement Ind Et Tech PLUG FOR CAST HOLE OF EXPANDED MATERIAL IN A MOLD

Also Published As

Publication number Publication date
JPS571740A (en) 1982-01-06

Similar Documents

Publication Publication Date Title
US4436869A (en) Production of closed-cell polyurethane moldings having a densified surface zone
CA1242848A (en) Flexible polyurethane foams
EP2726544B1 (en) Method for making organic foam composites containing aerogel particles
CN105555825B (en) Polyurethane foam and associated method and product
US4916168A (en) Manufacture of polyurethane foam
AU703758B2 (en) Very low density molded polyurethane foams via isocyanate- terminated prepolymers
US4569952A (en) Flexible polyurethane foams having improved load bearing characteristics and mixtures useful therein
JP2001504150A (en) Method for producing flexible polyurethane foam
JP7330890B2 (en) Catalyst for polyurethane production
US5844012A (en) Process and composition for improving the cure of water-blown molded polyurethane foam
US4452924A (en) Flexible polyurethane foams having improved load bearing characteristics
JPH03124741A (en) Flexible polyurethane foam and its manufacture
JPS6361014A (en) Soft polyurethane foam based on difunctional polyol and mdi and its production
JPS645528B2 (en)
CA2429868A1 (en) Process for making polyurethane integral skin foams
JP3906479B2 (en) Polyisocyanate composition for rigid polyurethane foam and method for producing rigid polyurethane foam using the same
EP3154763B1 (en) Polyurethane compound for producing an integrated insulation component
CA1158817A (en) Foam composites of polyurethane integral skin foam and non-polyurethane foam and a process for their manufacture
CN114341238A (en) Rigid polyurethane foams prepared with hydrocarbon blowing agents and 1,1,1,4,4, 4-hexafluorobut-2-ene
US5332763A (en) Stable dispersions and their use in the preparation of polyurethane foams
JPH03239716A (en) Composition for forming flexible polyurethane foam and its production
EP3919537B1 (en) Method for preparing a rigid polyurethane foam
JPH10139847A (en) Production of rigid polyurethane foam
JPH11217417A (en) Semirigid polyurethane foamed material containing main componential biuret-modified polyisocyanate, composite structure using said semirigid polyurethane foamed material, and preparation thereof
US4981878A (en) Process for the production of heat curable flexible polyurethane molded foams