JPS645448B2 - - Google Patents

Info

Publication number
JPS645448B2
JPS645448B2 JP12499880A JP12499880A JPS645448B2 JP S645448 B2 JPS645448 B2 JP S645448B2 JP 12499880 A JP12499880 A JP 12499880A JP 12499880 A JP12499880 A JP 12499880A JP S645448 B2 JPS645448 B2 JP S645448B2
Authority
JP
Japan
Prior art keywords
main
core
magnetic flux
iron core
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12499880A
Other languages
Japanese (ja)
Other versions
JPS5749213A (en
Inventor
Katamasa Harumoto
Eiji Kawagoe
Mitsumasa Oshimibe
Kazutaka Misawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Kansai Denryoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd, Kansai Denryoku KK filed Critical Nissin Electric Co Ltd
Priority to JP12499880A priority Critical patent/JPS5749213A/en
Publication of JPS5749213A publication Critical patent/JPS5749213A/en
Publication of JPS645448B2 publication Critical patent/JPS645448B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Description

【発明の詳細な説明】 この発明は分路リアクトルに関する。[Detailed description of the invention] This invention relates to shunt reactors.

分路リアクトルを電力用の線路に直結する場合
に必要とされている分路リアクトル開閉用の多額
度高電圧しや断器の使用を省略する目的のため
に、分路リアクトルに低電圧の制御巻線を設け、
これを短絡開放することによつて磁束の通路を制
御して等価的に分路リアクトルとしての遅相容量
を制御するようにしたものが知られている。第1
図、第2図はその構成の一例を示し、主鉄心1に
主巻線2を巻装するとともに、その内側に制御巻
線3を巻装する。又主鉄心1の両端間をヨーク鉄
心4A,4Bによつて磁気的に短絡し、閉磁路と
してある。主巻線2は線路に直結され、又制御巻
線3の両端間に短絡用の開閉器5が接続されてあ
る。
Low voltage control is applied to the shunt reactor for the purpose of omitting the use of multiple high voltage switches and disconnectors for switching the shunt reactor, which are required when the shunt reactor is directly connected to the power line. Provide a winding,
It is known that by short-circuiting and opening this, the path of magnetic flux is controlled, and the slow phase capacity as a shunt reactor is equivalently controlled. 1st
2 shows an example of the structure, in which a main winding 2 is wound around a main iron core 1, and a control winding 3 is wound inside the main winding 2. Further, both ends of the main core 1 are magnetically short-circuited by yoke cores 4A and 4B to form a closed magnetic path. The main winding 2 is directly connected to the line, and a short circuit switch 5 is connected between both ends of the control winding 3.

この構成によると第1図に示すように開閉器5
が開放されているときは、線路の電圧に規定され
て発生する磁束のすべては主鉄心1を通り、点線
で示すように各ヨーク鉄心4A,4Bを経て還流
する。第2図のように開閉器5を閉路して制御巻
線3を短絡すると、それまで主鉄心1を通つてい
た磁束は、点線で示すように制御巻線3の外側の
空間に移動(転流)しヨーク鉄心4A,4Bを経
て還流するようになる。そのため磁気抵抗がそれ
までより大幅に増加するため、主巻線2にはこれ
を補償するために磁化電流が流れる。これによつ
て大きな遅れ無効電力を発生する。以上のように
開閉器5を選択的に開閉することにより、この分
路リアクトルが直結されてある線路の遅れ無効電
力を調整することができることになる。
According to this configuration, as shown in FIG.
When the yoke is open, all of the magnetic flux generated according to the voltage of the line passes through the main core 1 and circulates through each yoke core 4A, 4B as shown by the dotted line. When the switch 5 is closed and the control winding 3 is short-circuited as shown in FIG. commutation) and returns via the yoke cores 4A and 4B. As a result, the magnetic resistance increases significantly, and a magnetizing current flows through the main winding 2 to compensate for this. This generates large delayed reactive power. By selectively opening and closing the switch 5 as described above, it is possible to adjust the delayed reactive power of the line to which this shunt reactor is directly connected.

しかし上記の説明から理解されるように、開閉
器5を閉成したときは、主鉄心1には磁束は何ら
通らないにしても、開放したときは全磁束が通る
ため、主鉄心1としては、この磁束が通るために
必要な断面積としておかなければならない。又主
鉄心1には主巻線2、制御巻線3を巻装しておく
ので、主鉄心1の断面積が大きい程、各巻線の寸
法重量が大となり、かつ損失も増すといつた欠点
がでてくる。
However, as can be understood from the above explanation, when the switch 5 is closed, no magnetic flux passes through the main core 1, but when it is opened, all the magnetic flux passes through it, so the main core 1 , must be the cross-sectional area necessary for this magnetic flux to pass through. Also, since the main winding 2 and the control winding 3 are wound around the main core 1, the larger the cross-sectional area of the main core 1, the larger the dimensions and weight of each winding, and the greater the loss. comes out.

この発明は主鉄心の断面積を縮少させ、重量、
寸法、損失等の軽減を図ることを目的とする。
This invention reduces the cross-sectional area of the main core, reduces weight,
The purpose is to reduce dimensions, losses, etc.

この発明は主鉄心にギヤツプを有する鉄心を使
用することによつて上記した目的を達成しようと
するものである。
This invention attempts to achieve the above object by using an iron core with a gap in the main iron core.

この発明の実施例を第3図以降の各図によつて
説明する。なお第1図と同じ符号を附した部分は
同一又は対応する部分を指す。上記したようにこ
の発明では主鉄心1にギヤツプ11を有する鉄心
を使用する。具体的にはブロツク鉄心12の複数
を、ギヤツプ11を介して柱状に積み重ねて主鉄
心1を構成する。
Embodiments of the present invention will be described with reference to FIG. 3 and subsequent figures. Note that parts with the same reference numerals as in FIG. 1 refer to the same or corresponding parts. As described above, in this invention, the main iron core 1 uses an iron core having a gap 11. Specifically, the main core 1 is constructed by stacking a plurality of block cores 12 in a column shape with gaps 11 interposed therebetween.

以上の構成において、第3図に示すように開閉
器5を開放した場合は、線路の電圧に規定されて
発生する磁束のうちの相当の磁束φaが図中点線
で示すように主鉄心1を通り、ヨーク鉄心4A,
4Bを経て還流するが、主鉄心1の磁気抵抗はギ
ヤツプ11の存在により大幅に増加しているため
前記磁束のうちの一部分の磁束φbは点線で示す
ように主鉄心1を通らずに主鉄心1の外側の空間
を通り、ヨーク鉄心4A,4Bを経て還流するよ
うになる。
In the above configuration, when the switch 5 is opened as shown in FIG. 3, a considerable amount of the magnetic flux φa of the magnetic flux generated according to the line voltage flows through the main iron core 1 as shown by the dotted line in the figure. street, yoke iron core 4A,
However, since the magnetic resistance of the main core 1 is greatly increased due to the presence of the gap 11, a part of the magnetic flux φb does not pass through the main core 1 as shown by the dotted line and flows back through the main core 1. It passes through the space outside of the yoke iron cores 4A and 4B and returns to the yoke cores 4A and 4B.

つぎに第4図に示すように開閉器5を閉成した
とき第2図と同じようにそれまで主鉄心1を通つ
ていた磁束φaは主鉄心1の外側の空間を通りヨ
ーク鉄心4A,4Bを経て還流するようになり、
このとき磁化電流はそれまでよりも増大し、大き
な遅れ無効電力が発生するようになる。
Next, as shown in FIG. 4, when the switch 5 is closed, the magnetic flux φa that had previously passed through the main core 1 passes through the space outside the main core 1 and the yoke core 4A, as shown in FIG. It becomes reflux after passing through 4B,
At this time, the magnetizing current increases more than before, and a large delayed reactive power is generated.

ここで第1図と第3図の場合を比較すれば、第
1図の場合は発生した全磁束が主鉄心1を通るの
に対し第3図の場合は主鉄心1を通る磁束φaは
発生した全磁束よりも磁束φbだけ少ない量とな
る。主鉄心の磁束密度はギヤツプの有無にあまり
影響されないので、したがつて通る磁束が少なく
なつた分だけ第3図に示す主鉄心1を、第1図に
示す主鉄心1よりも断面積を小さくすることがで
きることになる。
If we compare the cases in Figure 1 and Figure 3, in the case of Figure 1, the entire generated magnetic flux passes through the main iron core 1, whereas in the case of Figure 3, the magnetic flux φa passes through the main iron core 1. The amount of magnetic flux φb is smaller than the total magnetic flux. The magnetic flux density of the main core is not affected much by the presence or absence of a gap, so the cross-sectional area of the main core 1 shown in Figure 3 is made smaller than that of the main core 1 shown in Figure 1 to compensate for the decrease in magnetic flux passing through. You will be able to do so.

これを更に詳細に説明すると、今発生する全磁
束をφ、主鉄心1の磁気抵抗をRa、主鉄心1の
外側の空間の磁気抵抗をRbとすれば、主鉄心1
を通る磁束φaは φa=Rb/Ra+Rb×φ として表わされる。この種分路リアクトルは、開
閉器5を閉成したとき、発生する磁束のすべてが
主鉄心1の外側の空間を通るように設計されるの
で、磁気抵抗Rbは比較的小さく、したがつてRb
<Raとすることは比較的容易である。そのため
φa<φ/2の関係を満足させることは可能であ
る。一方主鉄心1の磁束密度は前述したようにギ
ヤツプ11の有無にはあまり影響されないから、
主鉄心1の断面積を第1図のギヤツプを有しない
主鉄心に比べて半分以下とすることも可能とな
る。
To explain this in more detail, if the total magnetic flux now generated is φ, the magnetic resistance of the main iron core 1 is Ra, and the magnetic resistance of the space outside the main iron core 1 is Rb, then the main iron core 1
The magnetic flux φa passing through is expressed as φa=Rb/Ra+Rb×φ. This type of shunt reactor is designed so that when the switch 5 is closed, all of the generated magnetic flux passes through the space outside the main iron core 1, so the magnetic resistance Rb is relatively small, and therefore the Rb
It is relatively easy to set <Ra. Therefore, it is possible to satisfy the relationship φa<φ/2. On the other hand, as mentioned above, the magnetic flux density of the main core 1 is not affected much by the presence or absence of the gap 11, so
It is also possible to reduce the cross-sectional area of the main core 1 to less than half that of the main core without a gap shown in FIG.

第1図の場合は発生した磁束はすべて主鉄心1
を通るのに対し、第2図の場合は、磁束はすべて
主鉄心1の外側の空間を通るので、開閉器5の開
閉による遅れ無効電力の調整は0容量と全容量の
2段階制御となる。しかし第3図の場合は開閉器
5を開放したときでも磁束φbが主鉄心1を通ら
ないので、このときは第1図のように0容量とは
ならない。したがつて0容量を除く或る容量と全
容量の2段階制御となる。ここに或る容量とは、
ギヤツプ11の設計によつて定まる任意の容量で
ある。
In the case of Figure 1, all the generated magnetic flux is at the main core 1.
In contrast, in the case of Figure 2, all the magnetic flux passes through the space outside the main core 1, so the adjustment of delayed reactive power by opening and closing the switch 5 is a two-stage control of 0 capacity and full capacity. . However, in the case of FIG. 3, even when the switch 5 is opened, the magnetic flux φb does not pass through the main iron core 1, so in this case, the capacity does not become 0 as in FIG. 1. Therefore, two-stage control is performed: a certain capacity excluding 0 capacity, and full capacity. What is the capacity here?
This is an arbitrary capacity determined by the design of the gap 11.

ブロツク鉄心12としては断面形状を方形状と
した積層鉄心であつてもよいが、空間率を高める
ために第5図に示すように段付鉄心として、断面
形状を円形状に近づけた積層鉄心としてもよいし
更に第6図に示すように断面形状を円形状とした
ラジアル鉄心又は第7図に示すようなインボリユ
ート鉄心を使用するようにしてもよい。
The block core 12 may be a laminated core with a rectangular cross-section, but in order to increase the porosity, it may be a stepped core or a laminated core with a circular cross-section as shown in FIG. Furthermore, a radial core having a circular cross-sectional shape as shown in FIG. 6 or an involute core as shown in FIG. 7 may be used.

以上詳述したようにこの発明によれば、主鉄心
の断面積を、従来のものに比較して縮少すること
ができるので、主鉄心はもちろん、主巻線、制御
巻線の小型軽量化が可能となり、又これにともな
つて運転時における損失も軽減できるようになる
といつた効果を奏する。
As detailed above, according to the present invention, the cross-sectional area of the main core can be reduced compared to conventional ones, so not only the main core but also the main winding and control winding can be made smaller and lighter. This makes it possible to reduce losses during operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は従来例の構成図、第3図、第
4図はこの発明の実施例を示す構成図、第5図乃
至第7図は鉄心ブロツクの断面図である。 1……主鉄心、2……主巻線、3……制御巻
線、4A,4B……ヨーク鉄心、5……開閉器、
11……ギヤツプ、12……ブロツク鉄心。
1 and 2 are configuration diagrams of a conventional example, FIGS. 3 and 4 are configuration diagrams showing an embodiment of the present invention, and FIGS. 5 to 7 are sectional views of the iron core block. 1... Main iron core, 2... Main winding, 3... Control winding, 4A, 4B... Yoke iron core, 5... Switch,
11...gap, 12...block iron core.

Claims (1)

【特許請求の範囲】[Claims] 1 両端がヨーク鉄心によつて磁気的に短絡され
てある主鉄心に、両端が選択的に短絡開放される
制御巻線と、その外側を囲む主巻線とを巻装せし
めてなる分路リアクトルにおいて、前記主鉄心に
ギヤツプを設けてなる分路リアクトル。
1. A shunt reactor in which a control winding whose ends are selectively short-circuited and opened, and a main winding surrounding the outside of the control winding are wound around a main core whose ends are magnetically short-circuited by a yoke core. In the shunt reactor, the main iron core is provided with a gap.
JP12499880A 1980-09-08 1980-09-08 Branch reactor Granted JPS5749213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12499880A JPS5749213A (en) 1980-09-08 1980-09-08 Branch reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12499880A JPS5749213A (en) 1980-09-08 1980-09-08 Branch reactor

Publications (2)

Publication Number Publication Date
JPS5749213A JPS5749213A (en) 1982-03-23
JPS645448B2 true JPS645448B2 (en) 1989-01-30

Family

ID=14899351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12499880A Granted JPS5749213A (en) 1980-09-08 1980-09-08 Branch reactor

Country Status (1)

Country Link
JP (1) JPS5749213A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5399317B2 (en) 2010-05-18 2014-01-29 株式会社神戸製鋼所 Reactor
CN102158164B (en) * 2011-03-02 2014-10-01 中国电力科学研究院 Trapezoidal variable weight regression control method for magnetically controlled shunt reactor
CN102158165B (en) * 2011-03-02 2014-12-10 中国电力科学研究院 Dynamic difference correction nonlinear adaptive control method for magnetically controlled shunt reactor
JP5923908B2 (en) * 2011-09-22 2016-05-25 富士電機株式会社 Reactor
CN109920627B (en) * 2019-04-24 2024-06-18 四川智翔电器有限公司 Three-phase three-dimensional lamination type iron core of three-phase reactor

Also Published As

Publication number Publication date
JPS5749213A (en) 1982-03-23

Similar Documents

Publication Publication Date Title
US5596469A (en) Apparatus for limiting high current electrical faults in distribution networks by use of superconducting excitation in transverse flux magnetic circuit
TWI529756B (en) Magnetic core
US20100091522A1 (en) Extended E Matrix Integrated Magnetics (MIM) Core
JPS645448B2 (en)
GB1033720A (en) Vacuum interrupter with magnetic means for reducing arc voltage
JPS639918A (en) Reactor for blocking radio interference
JPH0144002B2 (en)
KR102349708B1 (en) Core structure for SI-SFCL
JP2003284240A (en) Current limiter
JPH023283B2 (en)
JPH1020945A (en) Power-saving device
JPS57197816A (en) Shunt reactor
JP2001155936A (en) Capacitance switching reactor
JPS6252931B2 (en)
JPH0572086B2 (en)
JPS5935409A (en) On-load tap changing transformer
JPH01134907A (en) Power storing device
SU1046050A1 (en) Three-phase rectifier for resistance welding machines
JPH0391212A (en) Static induction electric device
JPH0757948A (en) Zero-phase current transformer
JPS59144113A (en) Magnetic core
JPH10108366A (en) Rotary phase modifier
JPS5925204A (en) Variable reactance type shunt reactor
JP2020025040A (en) Coupled inductor for multi-phase converter
JPH03290718A (en) Power saving circuit for single-turn transformer